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Abstract

We address the study of reconnecting instabilities in magnetized plasmas,
a highly multiscale process, using an innovative adaptive scheme based on
Adaptive Mesh Refinement (AMR) and Multigrid Algorithms. The reduced
model we exploit is very sensitive to numerical errors and demands high order
solvers which we develop for this purpose. We validate our approach with
two numerical experiments of physical interest.
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1. Introduction

Through a global change of the magnetic topology, which locally occurs
where spatial and/or temporal gradients of macroscopic quantities, such as
density current, magnetic field or anisotropic pressure components become
important, magnetic reconnection [1] emphasizes the multi-scale character
usually displayed by plasma instabilities. The fact that the nonlinear dy-
namics of reconnection instabilities typically remains confined in a relatively
small region of the macroscopic domain makes Adaptive Mesh Refinement
(AMR) techniques of integration particularly suited to numerically investi-
gate this problem. To this purpose, they have been already used in many
previous studies, both in fluid and kinetic frameworks, among which we men-
tion Refs.[2, 3, 4, 5, 6, 7, 8, 9, 10][11].

Here we present a new AMR algorithm that integrates a set of reduced
magnetohydrodynamics (RMHD) equations (see later) by adopting a wavelet-
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based detection of areas of interest for the mesh refinement [12]. The strong
points of this algorithm are its high order –three in space while most of the
classical AMR schemes are of second order [13, 14, 15]–, and its wavelet-
based refinement criterion, allowing a stable automatic refinement of the
mesh along the areas of interest. We however note that high order AMR
Finite Volumes exist which only recently have been made possible by high
order Riemann solvers with exact divergence-free condition on unstructured
meshes [16, 11]. The purpose of the algorithm is to allow the study of recon-
nection at more “realistic” values of the microscopic, non-ideal parameters,
which drive reconnection by weighing the gradients of the macroscopic quan-
tities that violate the conservation of the magnetic topology in an ideal MHD
plasma. The smallness of such parameters implies indeed an asymptotically
small ratio δ/a between the characteristic linear reconnection layer width,
δ, inside of which increasingly smaller spatial scales are nonlinearly gener-
ated, and the equilibrium magnetic shear length, a. In particular, it always
results, both in the classical tearing mode theory and in steady state recon-
nection, that δ/a scales as ∼ εσ, where σ is a positive fractional power of
some macroscopic dimensionless parameter ε � 1 and usually 1/3 . σ ≤ 1
(see e.g. [17]). Realistic values of the latter, for example in a tokamak
where a is of the order of the macroscopic length scale L0, may well lay
in the range 10−11 . ε . 10−6, depending on the regime of reconnection
considered (e.g. if purely resistive or purely inertia-driven −cf. Table 1 of
Ref.[18]). Therefore, even in a case in which δ/a ∼ 0.1 (see the numerical
experiment Sec.4.1), a spatial resolution of the inner layer corresponding to
22×12 = 4 0962 and of just 22×5 = 322 points at the macroscopic scales outside
of it, means a reduction of a factor 26 in the computational cost with respect
to spectral-like codes such as those used for analogous studies of primary
reconnection instabilities [17, 19, 20, 21, 22, 23, 24]. The fact that the AMR
scheme refines only when the singularity appears (and coarsens the grid when
a lower resolution results sufficient), makes the adaptivity even more advan-
tageous since almost 70% of the time the simulation –until the transition
to the turbulent nonlinear regime– advances with an accuracy equivalent to
a 22×10 = 1 0242 points uniform grid while using less than 155 818 points.
The gain with respect to codes based on non-uniform grids which do not
evolve in time (see Refs.[25, 26, 27]) becomes then particularly evident in the
low-collision regimes relevant to natural and laboratory plasmas, where the
smallness of the dissipation length allows a progressive development of short
spatial scales.
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The paper is structured as follows. In Sec.1.1 we recall some hot, open
problems in magnetic reconnection, affordable in the framework of a RMHD
description, for which AMR codes result particularly suited. In Sec.2 the
RMHD equations are introduced (Sec.2.1) and the AMR algorithm is de-
scribed (Sec.2.2-2.4), together with the schemes applied for the integration.
An example of fourth order multi-grid Poisson-solver adapted to a non-
uniform mesh is detailed in Sec.2.5. In Sec.2.6 the CFL conditions for the
integration of the RMHD equations are obtained and discussed in different
reconnection regimes. In Sec.3 the physical model behind the equations of
Sec.2.1 is recalled, as well as the notion of reconnection instability and the
classifications of its different wave-length regimes in terms of the so-called ∆′

stability parameter (Sec.3.1). Sec.3.2 focusses on the dissipation-less limit
of the model equations, whose Hamiltonian character and implications, both
analytical and numerical, are discussed. Sec.4 is devoted to present a few
numerical results performed in regimes of collision-less reconnection, already
studied in literature, with the aim of both validating the AMR integration
scheme and emphasizing its relevance and usefulness: two examples of re-
connection leading to a nonlinear “turbulent” (Sec.4.1) and to a “laminar”
regime (Sec.4.2) are provided. A conclusion Section follows (Sec.5), in which
comments about the parallelization of the algorithm are also given.

1.1. Relevance and usefulness of RMHD AMR schemes for some up-to-date
reconnection problems

Most numerical studies on magnetic reconnection with AMR schemes
are aimed at performing MHD or PIC 3D massive simulations, whereas just
few exceptions, like Ref.[6], focus on the exploitation of self-adapting grid
schemes for the integration of RMHD equations. From a numerical point of
view, the slab geometry RMHD modelling we are going to focus on, is free
from the “burden” of the ∇ ·B = 0 constraint, since the divergence-free con-
dition on the magnetic field results automatically satisfied in this framework
where flux and stream functions only are considered (see Sec.2.1). From the
physical point of view, the RMHD description does not retain the Hall-MHD
effects that are responsible, for example, of the transition to a fast recon-
nection by excitation of whistler waves [28], but is appropriate to describe
reconnection instabilities in plasma confined by a strong guide field (e.g. in
tokamaks). More generally, RMHD results very useful for isolating the fun-
damental physics related to the stability and evolution of large aspect ratio
current sheets generated by ideal processes or by primary reconnection insta-
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bilities. This dynamics is relevant to phenomena like tokamak disruptions,
solar flares or to the magnetic activity in the magnetosphere. In particular,
the missing ingredients to look for, in order to understand and model the fast
reconnection rates which are suggested by experimental evidence, have been
since long time considered the kinetic processes that affect the evolution of
current sheets and/or the occurrence of secondary reconnection instabilities,
or, in turbulent environments such as the solar corona, effects related to the
stochasticity of the turbulent magnetic field fluctuations [29]. A prominent
example of kinetic effects expected to speed up the reconnection process is
the generation of anomalous resistivity, but many other mechanisms may in-
tervene at microscopic scales comparable to kinetic ones. These effects are
believed to suffice to explain the observed fast reconnection rates, even within
fluid descriptions. The recent results of Refs.[18, 30, 31] provide models for
when this may occur in a RMHD approximation, thus without the need to
rely on the transition to the whistler mediated, Hall-reconnection, because
of geometrical features of the reconnecting current sheet, which are related
to the magnitude of its aspect ratio. An example of such microscopic effects
occurring at kinetic-like scales, and which can be retained in the extended
fluid model we consider here, is provided by non dissipative reconnection
mechanisms due to a non negligible electron inertia [19, 32], first devised in
Refs.[33, 34] as a likely alternative to resistive reconnection. Fast reconnec-
tion instabilities associated to the development of “plasmoids” (i.e., magnetic
islands) on large aspect ratio current sheets have been first numerically evi-
denced in Ref.[35] by Biskamp, but it is only with the work of Ref.[39] that an
early theoretical model for fast reconnection has been provided by Shibata
and Tanuma, based on the generation of plasmoids on the current sheets
generated by primary reconnecting modes. This possibility has been then
supported by several early numerical studies of secondary reconnection pro-
cesses [38, 21, 40, 41], among which it is due to include also the preceding,
pioneering works of Refs.[36, 37] (despite less stress or direct evidence was
put in the latter on the reconnection rate enhancement due to secondary
reconnecting instabilities). The relationship between fast reconnection rates
and the occurrence of plasmoids has been later reinterpreted in the light of
the “plasmoid instability” scaling [42, 43]. This, on the other hand, turns
out to be nothing but the scaling of a tearing mode developing on a steady
Sweet-Parker current sheet, as a previous derivation by Tajima and Shibata
had already evidenced [44]. More recently, however, the existence of a quasi-
singular tearing eigenmode corresponding to an ideal growth rate (γτ ∼ ε0),
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and therefore dubbed “ideal” tearing, has been shown in the quasi-ideal limit
ε → 0 with ε 6= 0, first in the resistive regime [30] and then in reconnection
induced by non-collisional effects [18]. In particular, by relying on a re-
scaling argument such as that first exploited in Ref.[39], it was pointed out
in Ref.[30] how the tearing growth rate becomes an increasing function of the
current sheet aspect ratio Lcs/acs, once the current sheet length Lcs is fixed
and assumed as the macroscopic reference scale, much larger than the current
sheet width, acs. This has opened a new scenario for the description of the
reconnection rate increase up to an Alfvénic, “ideal” time scale, during the
nonlinear phase of primary tearing-type modes [18, 45, 46, 31], since current
sheets nonlinearly generated by primary reconnecting modes on a magnetic
field with shear length a easily achieve aspect ratios Lcs/acs ∼ a/δ � 1
(see Refs.[17, 19] and all the numerical studies about secondary reconnec-
tion quoted so far). For example, relying on the essence of this re-scaling
argument for the reference lengths, a possible theoretical interpretation has
been given [31] of the sawtooth crash in tokamaks, where fast reconnecting
current sheets (yet not necessarily on an ideal time scale) can be generated
by primary reconnection instabilities, in turn too slow to account, alone, for
the short time scales of the phenomenon. Evidence of such fast, secondary
instabilities in the sawtooth cycle had been earlier provided by numerical sim-
ulations of Yu et al. [47] and, less explicitly, in Refs.[36, 37]. On the other
hand, the very existence of the “ideal” tearing solution has questioned the
possibility to achieve a Sweet-Parker-type steady reconnection regime both
in resistive [30], viscous-resistive [48] and inertial regimes [18]. This has pro-
vided an explanation to the instability of a Sweet-Parker current sheet over
ideal time scales, earlier evidenced by Biskamp for sufficiently small values
of the resistivity [35]. At the same time, the unlikeliness of the Sweet-Parker
assumption in weakly collisional plasmas invalidates, in turn, the hypothesis
at the basis of the plasmoid instability scaling, which in recent years has
been regarded as the most promising paradigm to explain by means of sec-
ondary instabilities the fast reconnection rates deduced from measurements
(for a recent review on secondary reconnecting instabilities observed in simu-
lations and experiments, and on the notion of fast reconnection, see Ref.[31]).
Even if the quasi-singular “ideal” tearing solution is formally obtained in the
asymptotic limit ε → 0 with ε 6= 0, it is of general, practical relevance to
physical phenomena: the values of the “ideal” tearing growth rates, which
differ in each reconnection regime depending on the nature of the parameter
ε involved, are achieved with excellent approximation for values of ε encoun-
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tered in nature or in laboratory [18, 30, 48]. In particular, a quantitative
analysis, both theoretical and numerical, of the secondary reconnecting in-
stability occurring on a current sheet whose aspect ratio is rapidly increasing
has been first provided by Tenerani et al. in Ref.[46] and recently reviewed
in Ref.[49]. These works, which have given the first numerical evidence that
is unlikely to achieve a Sweet-Parker steady configuration in a dynamically
evolving setting, also show how delicate can be to distinguish in numerical
simulations the different scalings predicted by asymptotic theories: in this
case, for example, only for sufficiently small values of the plasma resistivity
(corresponding to Lundquist numbers & 106 −see, e.g., Fig.4 of Ref.[46]) it
is possible to separate scalings of the current sheet aspect ratio which go
like powers 1/2 or 1/3 of the resistivity. But even more challenging, from a
computational point of view, can be to quantify the growth rates predicted
by asymptotic models for secondary reconnecting instabilities [31] which es-
timate, for example, scalings like 1/6 or 1/7, against the 1/3 scalings of the
primary mode’s growth rate.

Remarkable numerical efforts are therefore required to perform nonlinear
simulations capable of testing the correctness of the scalings predicted by all
these theoretical models, since only for sufficiently small values of ε the nu-
merically measured scalings can be accurately compared with those predicted
by the different asymptotic theories. Only a few recent numerical investiga-
tions (see e.g. Refs.[46, 49, 50]) have been performed with this purpose in a
parameter range (ε . 10−6) which just begins to be significant in this sense,
and many open questions still remain to be answered. Examples concern
the role of flows and of secondary fluid-type instabilities in the disruption of
current sheets [20, 46]; the role of the relative amplitude of the reconnect-
ing magnetic field with respect to the ambient one [31, 51]; not to speak of
the specific features of the current sheets dynamics (amplitude, characteris-
tic spatial and time scales of the current density’s evolution) and the way
these are related to the onset of secondary reconnecting instabilities. The
latter point is crucial to test and investigate one of the main implications of
the “ideal” tearing model, that is, the possibility to observe turbulent recon-
nection processes [52, 29] due to the occurrence of secondary tearing modes
on the current sheets generated by ideal, convective motions −see in par-
ticular the discussion of Ref.[30, 53], the extensive analysis of Refs.[46, 49]
and the more recent comments in Refs.[18, 31]. These phenomena are of
great relevance to turbulent media such as plasmas on the solar corona or in
the solar wind, as well as in magnetic confinement experiments, an example
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being provided by drift-kinetic turbulent transport in tokamak plasmas. In
these large scale turbulent frameworks, the formation of progressively thinner
current sheets due to the fluid convection in an almost collisionless regime
(ε → 0), usually requires to numerically quantify the global energy conver-
sion processes, which allow to transfer magnetic energy to thermal heating
via magnetic reconnection, in terms of statistical models that account for
the microscopic stochastic fluctuations of the magnetic field [29, 54]. These
models, however, rely on specific hypotheses and scalings about the average
behaviour and aspect ratio of the single current sheet, which are related to,
or depend on, the reconnecting models we have discussed so far. Moreover,
also the interplay between the nonlinear dynamics of tearing instabilities and
a background turbulence is an issue of general importance for both coronal
plasmas [53] and tokamaks [55]. In the latter, for example, magnetic is-
lands generated by primary tearing and kink instabilities in the core plasma
may become the seed for neoclassical tearing modes excited by tokamak edge
turbulence [56].

It is furthermore worth remarking that, if one wants to investigate the
nonlinear dynamics of a primary tearing mode in the “ideal” tearing regime,
as it has been done in Refs.[45, 46, 49, 50], a huge scale separation L� a� δ
is needed already in the linear stage of the simulation, especially in the
asymptotic regime ε � 1, since both the equilibrium current sheet inverse
aspect ratio a/L (with L in fact being one size of the simulation box) and
the ratio δ/a, between the width of the linear reconnecting layer δ and the
equilibrium current sheet a, scale like positive powers of ε.

All those provided above are examples of computationally challenging
problems that the AMR algorithm we are going to present can help to ef-
ficiently address, while aiming to perform numerical studies of reconnection
phenomena with microscopic parameters sufficiently small to approach real-
istic values.

2. Adaptive mesh refinement numerical scheme

2.1. Model equations

We have applied the AMR technique to the integration of the following
set of RMHD equations (see, e.g., Refs.[17, 18] and references therein for a
discussion) for quantities depending on x, y (space) and t (time),

∂F

∂t
+ [ϕ , F ] = ρ2

s[U , ψ] + η(∇2ψ −∇2ψeq), (1)
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∂U

∂t
+ [ϕ , U ] = [ψ , ∇2ψ] + ν(∇2U −∇2Ueq), (2)

F ≡ ψ − d2
e∇2ψ U ≡ ∇2ϕ, (3)

with (ψeq and Ueq) denoting the equilibrium quantities and the Poisson brack-
ets meaning, with standard notation,

[f, g] ≡∇f ×∇g · ez = ∂xf∂yg − ∂yf∂xg. (4)

The physical meaning of the RMHD set will be recalled next, when some
applications of the numerical model are discussed (Sec.3). For the sake of
future notation we remind that the Poisson brackets relate to the convective
derivatives associated to the fluid velocity u ≡ ez ×∇ϕ, and to the in-plane
magnetic field, B⊥ ≡∇ψ × ez, that is

[ϕ, f ] = u ·∇f, [ψ, f ] = −B⊥ ·∇f. (5)

The z-components of the vorticity and of the current density are therefore

(∇× u)z = ∇2ϕ = U, (∇×B)z = −∇2ψ = Jz (6)

As it is customary, equilibrium quantities are subtracted in the last r.h.s.
terms of Eqs.(1-2), in order to prevent dissipation effects to affect them on
time scales numerically comparable to those of the linear instabilities we
want to study. This problem would be avoided in the asymptotic limit in
which both η and ν are sufficiently close to zero and for which the more
realistic equations, without such a subtraction, could be restored. Then
we note that the finite differences AMR algorithm developed for Eqs.(1-
3) can be easily modified to integrate equations with analogous differential
operators, such as those of the electron-magnetohydrodynamic regime [57,
58], and to include further microscopic effects such as ion-Finite Larmor
Radius (FLR) corrections [24]. Therefore, it can be easily upgraded to include
similar equations for further scalar fields (see, e.g., Refs.[59, 60, 55]), possibly
dependent from a third space coordinate [61, 62].

We have implemented two main cases of the RMHD equations (1,2,3) with
AMR schemes: the inertial case when η = 0 and de 6= 0 and the resistive
case when η 6= 0 and de = 0. Both require high-order numerical integration.
While in both implementations some care is needed for the elliptic solvers,
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the first case needs a special attention to be payed to the CFL conditions
(Sec.2.6), the second one requires an IMEX scheme [64] in order to solve
efficiently the convection terms explicitly and the diffusion term implicitly.

In this paper we focus on the inertial case with η = 0 and de 6= 0, whose
nonlinear description is the most challenging from a computational point of
view (cf. Sec.3.2 and 4).

2.2. AMR and finite differences

As the reconnecting instability develops in a very thin layer along the
invariant axis, say y, its numerical simulation benefits from an adaptive mesh.
The grid refines or coarsens itself according to the spatial regularity of the
solution, so only a small portion of the domain is finely meshed. The points
allocated inside a tree structure at dyadic positions are recursively split in a
fractal way as long as the accuracy of the numerical approximation requires
it [65, 69]. The AMR solver we propose is written in C and allows us to test
original computer algorithms and numerical methods.

While most of the existing AMR are based on finite volume methods
and cell-centered refinement methods, we propose a finite-differences point-
centered refinement technique. It provides an easy access to high order nu-
merical schemes: typically, we are using an upwind third order finite differ-
ence for the convections, and fourth order compact finite-differences multi-
grid solvers for the elliptic equations (of Poisson type). Until the late 2000’s
[13, 65, 14] finite-volume cell-centered schemes hardly reached an accuracy
beyond the second order. Only recently high order finite-volume schemes
based on Riemann solvers for MHD equations have been made available
[16, 11, 66, 67, 68].

This high order is essential to simulate the RMHD model Eq. (1), (2)
and (3) where we have to compute ∇φ and ∇ψ with a high accuracy in
the non uniform grid. The other possibilities to maintain the order of the
discrete operators are either to consider a uniform grid with periodic bound-
ary conditions or to express all the differential operators with respect to a
unique discrete operator. For instance, when solving ∇2u = v, if the dis-
cretized operators ∇2

∆x, ∇·∆x and ∇∆x satisfy ∇2
∆x = ∇ ·∆x ◦∇∆x, as in

[65], then ∇∆x(∇2
∆x)
−1v is computed at an order equal to the minimum order

of ∇·∆x and ∇∆x. Whereas, in our case, the order of ∇∆x(∇2
∆x)
−1 equals

the minimum between the order of ∇2
∆x minus one and the order of ∇∆x.

We numerically solve both the elliptic equations (3) by using fourth-order
multigrid methods adapted to the non uniform mesh. They follow the pattern
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struct Node {
double tab[16][4]; /* 16 tables, 4 points */

struct Node *prt; /* parent */

struct Node *chd[4]; /* children (0,1,2,3) */

struct Node *ngb[4]; /* neighbors (0,1,2,3) */

int rgf; /* filiation rank */

int ell; /* parameter */

int flg; /* flag indicating which points are active */

};

Table 1: The Node: basic element of the tree structure.

detailed in the Sec. 2.5. Aside Eqs.(3) a similar method allows to compute
Jz = ∇2ψ = ∇2(Id− d2

e∇2)−1F directly from F .

2.3. Implementation

The whole implementation is based on a structure named Node presented
in Table 1. This structure gathers all the physical values of the simulation and
connects to the other nodes in order to form the tree structure. The node
at the top of the tree is called the root. Following the parent-to-children
links it gives access to the whole tree. In the domain [0, Lx] × [0, Ly] with
periodic boundary conditions, the four points of the root are located at (0, 0),
(Lx/2, 0), (0, Ly/2) and (Lx/2, Ly/2). Each of these points can be refined into
four points. For instance the point (0, 0) may be refined. In this case, we
just allocate a new node which is pointed by chd[0] in the initial root node
and which contains the points (0, 0), (Lx/4, 0), (0, Ly/4) and (Lx/4, Ly/4).

Recursively we generate a grid with points located at positions of the
type (2−jκ1Lx, 2

−jκ2Ly) for integers j ≥ 1 and 0 ≤ κ1, κ2 ≤ 2j − 1.
At each time step, the grid is modified according to the refinement crite-

rion of paragraph 2.4. Then we create a table which lists all the nodes level
by level. This table allows to:

1. compute the finite differences level by level starting from the coarsest
one. When a point cannot be computed by the usual finite difference
scheme because a neighboring point is missing, then it is interpolated
by the result obtained at the coarser level,

2. apply multi-grid schemes (Sec.2.5),

3. parallelize these operations with OpenMP. We cut and distribute each
loop over each level.
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Regarding the time scheme, we basically apply the fourth order Runge-
Kutta scheme.

2.4. Mesh refinement criterion

At the end of each Runge-Kutta time step, the mesh is refined and coars-
ened according to a simple regularity indicator. For each level j and for each
point 2−jκ = (2−jκ1, 2

−jκ2) of the level j, we compute the residual of a linear
interpolation by the coarser level j − 1:

dj,(2`1+1,2`2) = fj,(2`1+1,2`2) −
fj,(2`1,2`2) + fj,(2`1+2,2`2)

2
,

the case for dj,(2`1,2`2+1) is obtained by symmetry, and

dj,(2`1+1,2`2+1) = fj,(2`1+1,2`2+1)−
fj,(2`1,2`2) + fj,(2`1+2,2`2) + fj,(2`1,2`2+2) + fj,(2`1+2,2`2+2)

4
.

Remark that fj,(2`1,2`2) = fj−1,(`1,`2) so there is no residual at this point.
Then we consider a cell-centered estimator around 2−jκ = 2−j(2`1 +

1, 2`2 + 1) for all `1 and `2:

w2
jκ =

∑
e1∈{−1,0,1}

∑
e2∈{−1,0,1}

d2
j(κ1+e1,κ2+e2). (7)

Hence for each (j,κ) such that κi = 2`i+1, we know the weight wjκ associated
to the point (j,κ). This point is the center of a cell formed by the node that
contains it, and its three –right, upper and upper-right– neighboring nodes.
For the thresholding the weigh wjκ is compared to the quantity 2αjε which
depends on the given refinement parameters α and ε and on the refinement
level j. The parameter α between −2 and +∞ modules the approximation
space: if α = dim/p− s with dim the space dimension (here dim = 2) then
this thresholding minimizes the Bs

p(L
p)-norm of the error (i.e. the Lp-norm

of its s-th derivative) [63]. Hence α = 1 corresponds to a L2-thresholding of
the solution, and α = 0 to a L∞-thresholding.

Then we apply the following refinement and prune algorithm:

• (refine 1) if wjκ > 2αjε, the children of the nine points around (j,κ)
are activated (created if they do not exist, preserved if they do),

• if wjκ > 2αjε/2, then the cell is preserved, the same if it is the parent
of a preserved node,
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• (refine 2) the neighboring nodes of the activated nodes up to now are
activated on two ranks, this implies the graduation of the tree,

• (prune) at this stage, if a node is not preserved then it is removed,

• in addition, for some of the experiments, we impose a maximum limit
to the refinement level: j ≤ jlim.

The larger α, the closer the grid will be to a uniform grid. The values of F
and U of the newly created points are interpolated from the points of the
coarser level thanks to a fourth-order interpolation scheme.

2.5. Multigrid Collatz Poisson solver

Here we detail a multi-grid Collatz solver applied to the AMR framework.
The Collatz method is a fourth order compact finite difference method for
solving the Poisson equation ∇2u = v. In the 80’s it was applied in the
multi-grid context [70, 71]. Then, during the years 2000 and 2010, it was
successfully implemented in two and three dimensions for non-uniform grids
and for nested grids data structure in the Adaptive Mesh Refinement and
Finite Volume frameworks [72, 73, 74] but not for Fully Threaded Tree struc-
tures as presented here.

In dimension two it is given by:

1

6h2

 1 4 1
4 −20 4
1 4 1

u =
1

12

 0 1 0
1 8 1
0 1 0

 v (8)

for a uniform discretization in x and y with space step h: xi1 = i1h, yi2 = i2h.
The above two dimensional notation for the stencils allows to visualize the
application of multi-diagonal matrices so Eq.(8) corresponds to:

1

6h
(−20ui1,i2 + 4ui1+1,i2 + 4ui1−1,i2 + 4ui1,i2+1 + 4ui1,i2−1 + ui1+1,i2+1 + ui1−1,i2+1

+ui1+1,i2−1 + ui1−1,i2−1) =
1

12
(8 vi1,i2 + vi1+1,i2 + vi1−1,i2 + vi1,i2+1 + vi1,i2−1)

for all i1, i2.
We apply a data structure and an algorithm similar to [65] where the

author restrains to the classical second order Poisson solver. Rather than
applying the “Full Approximation Scheme” which consists in starting the
approximation algorithm at the coarser levels before doing the V-cycles, we
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Ω̊jΩj−1

∂Ωj

Figure 1: Example of domain Ωj divided between its boundary ∂Ωj and its interior Ω̊j .

initiate the algorithm in a “Residual-based” way with the previous time step
result as a first guess.

In the following, we assume the domain [−L/2, L/2]2 to be paved with
different continuous domains Ωj such that Ωj+1 ⊂ Ωj. For j ≥ 0, the domain
Ωj is discretized with a space step hj = 2−j−1L. The structure described in
Tab. 1 generates such a mesh. We also consider the boundary ∂Ωj of the
domain Ωj as composed of the points with missing direct neighboring points

in Ωj in one of the four directions or in diagonal. We note Ω̊j = Ωj \ ∂Ωj

(see Fig.1 for an illustration).
We will solve Eq. (8) on all points of Ω̊j while the points of ∂Ωj will be

interpolated from Ωj−1 providing boundary conditions for Ωj.
The resulting algorithm is of multigrid type with values of v known at

the points of the mesh ∪jmax

j=0 Ωj and values of u to be determined at these
points.

In this algorithm, the residual is computed at the finest level: if x ∈ Ω̊j

and x /∈ Ω̊j+1 then the residual at x = (i1hj, i2hj) is

r(x) =
1

12

 0 1 0
1 8 1
0 1 0

 vi1,i2 − 1

6h2
j

 1 4 1
4 −20 4
1 4 1

ui1,i2 .
At the end of the Gauss-Seidel iterations at level j (two iterations in our
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code), the residual r(x) is restricted to provide the residual at point x and
level j − 1.

Conversely, during the prolongation process, the boundary ∂Ωj is inter-
polated from level j − 1. This interpolation has to be sixth order accurate
because the Dirichlet boundary conditions require a C6 continuity to ensure
the fourth order accuracy of the Collatz solver (Eq.(8)) on Ωj.

Nevertheless the restriction of the residual and of the prolongation of the
“residual solution” are the classical second order multigrid restriction and
prolongation used in [71]: 1

4
[1 2 1] and 1

2
[1 2 1] respectively. The whole

algorithm is detailed in Appendix A.
It is possible to extend this scheme to solve(

αId− β∇2
)
u = v +∇2w (9)

where αβ ≥ 0, α 6= 0 or β 6= 0, v and w are known and u is the unknown
function with the fourth order accuracy approximation: α

12

 0 1 0
1 8 1
0 1 0

− β

6h2

 1 4 1
4 −20 4
1 4 1

u (10)

=
1

12

 0 1 0
1 8 1
0 1 0

 v +
1

6h2

 1 4 1
4 −20 4
1 4 1

w. (11)

This general formulation may be specialized to

• α = 0, β = −1, w = 0 for the Poisson equation ∇2u = v,

• α = 1, β = ν∆t, w = 0 for the implicit Euler integration of the Heat
Equation ∂tu = ν∇2u, useful in the resistive case,

• α = 1, β = d2
e, v = 0 and w = −F for the computation of Jz given by

the equation (Id− d2
e∇2)Jz = −∇2F .

The convergence of this kind of multi-grid algorithms is studied in [71].
It allows an exponential convergence to the solution with a rate independent
of the finest space step h. From our experience, the shape of the domains Ωj

may have an influence on the convergence rate only in the most pathological
cases. Most importantly, this solver guarantees a fourth order accuracy as
confirmed by Fig.2 left.
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2.6. CFL condition for the RMHD equations

In the case η 6= 0, the viscous term has to be treated implicitly, otherwise
a penalizing ∆t ≤ ∆x2 stability condition would appear. Then, the choice of
a particular IMEX scheme (Implicit-Explicit scheme [64]) largely influences
the stability conditions.

In order to derive a proper CFL condition adapted to the RMHD equa-
tions Eq.(1), (2) and (3) for η = ν = 0, we apply a routine von Neumann
stability analysis [75] detailed in Appendix B.

From this analysis we derive the stability condition:

∆t ≤ C
∆x

‖∇ϕ‖∞ +
ρ2
s∆x

2

∆x2 + d2
e

‖∇U‖∞ +

(
2ρ2

s + ∆x2

∆x2 + d2
e

)1/2

‖∇F‖∞

, (12)

where ‖ · ‖∞ = ‖ | · |`1‖L∞(Ω).
In the case ρs 6= 0 and de = 0 (which is however not of interest to

the reconnection problems we consider here, which require either de 6= 0 or
η 6= 0), we obtain the condition

∆t ≤ C
∆x2

√
2ρs‖∇F‖∞

,

which is particularly restrictive.
In the case ρs = 0 and de 6= 0, we obtain

∆t ≤ C
(∆x2 + d2

e)
1/2 ∆x

‖∇ϕ‖∞ (∆x2 + d2
e)

1/2 + ‖∇F‖∞∆x
, (13)

where ‖ · ‖∞ = ‖ | · |`1‖L∞(Ω). This inequality is implied by the simpler
condition

∆t ≤ C
de ∆x

‖∇ϕ‖∞ de + ‖∇F‖∞∆x
. (14)

The CFL condition provided by Eqs.(13-14) allows much larger time steps at
the beginning of the numerical experiment than later, when the singularity
is developed. Having implemented it at each time step allows a substantial
economy in the computation and also discards the numerical instabilities
which appear when using any unfit time step.
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We finally note that, by using Eqs.(5) and (B.1), Eq.(13) can be rewritten
in terms of the vector components as

∆t ≤ C
(∆x2 + d2

e)
1/2 ∆x

‖u‖∞ (∆x2 + d2
e)

1/2 + ‖B⊥ − d2
e∇2B⊥‖∞∆x

. (15)

This inequality is in turn implied by the simpler condition:

∆t ≤ C
de ∆x

‖u‖∞ de + ‖B⊥‖∞∆x
. (16)

3. Physical model for reconnection instabilities

We recall that Eqs.(1-3) describe the dynamics in the Alfvénic frequency
range of an MHD plasma in a strong guide magnetic field, whose domi-
nant, uniform component is oriented along z. Eq.(1) corresponds to the
z-component of the magnetic induction equation obtained from the gener-
alized Ohm’s law in which resistivity (η), electron inertia effects (related to
the ion skin depth de) and electron temperature effects (related to the ion-
sound Larmor radius ρs) have been retained; Eq.(2) is the z-component of the
plasma vorticity equation, which includes ion-ion viscosity (ν). As already
mentioned (Sec.2.1) ϕ and ψ are the stream functions respectively related
to the fluid E ×B-drift plasma velocity, u = ez ×∇ϕ, and to the in-plane
magnetic field, B⊥ = ∇ψ × ez; they are in turn related by Eqs.(3) to the
z-component of the electron canonical momentum F and to the z-component
of the fluid vorticity U . Further details about the derivation and meaning of
the equations can be found for example in Refs.[18, 57]. Eqs.(1-3) are written
in non-dimensional units, with density and magnetic field expressed in units
of their reference values n0 and B0, lengths normalized to the equilibrium
shear length a, and velocities to the Alfvén velocity c

A
≡ B0/

√
4πn0mi, with

mi the ion mass. The parameters η, de, ρs and ν are therefore dimensionless
with respect to their appropriate normalizations.

Note that resistive reconnection, especially in space-plasma literature, of-
ten refers to the dimensionless Lundquist number S ≡ c

A
a/ηm, defined as the

inverse of the magnetic diffusity ηm, normalized to the characteristic Alfvén
time measured with respect to the scale a. Because of the normalization
of Eq.(1) the dimensionless resistivity η coincides with the so-normalized
magnetic diffusivity, so that it can be read η ≡ S−1.

Concerning the normalization of lengths we finally recall that, due to
the separation of scales which can be encountered in different reconnection
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problems, it is generally important to distinguish between Lx, Ly (dimensions
of the simulation box), acs and Lcs (width and length, respectively, of a
generic current sheet). We name the latter respectively a and L when referred
to the equilibrium quantities. Appropriate rescaling arguments should be
therefore considered when applying the tearing mode theory to a generic
current sheet of aspect ratio Lcs/acs, such as that generated by primary
instabilities.

3.1. Reconnection instability and ∆′ parameter

By choosing a magnetic equilibrium profile ψeq(x), sheared with respect
to the x variable and not dependent on y, we are interested in studying
reconnection instabilities which develop by exciting the perturbations of the
kind f(x)ei(kyy−ωt)eγt, with ky, ω, γ real parameters, the latter thus expressing
the growth rate of the tearing-type instability. This instability induces the
formation of the characteristic magnetic island structures, linearly developing
inside a reconnection layer of characteristic width δ, centered around the
resonant position. For a locally monotone ψ′eq(x), the latter corresponds to
the value of x where ψ′eq(x) = 0. The study of the reconnection instabilities
leads to the eigenvalue problem related to the linearized Eqs.(1-3), which
is solved as a boundary layer problem [76]: an outer solution ψout, which
depends only on the shape of ψeq(x) and on the wave-number ky, is obtained
in the “outer” region (i.e. for x/a ∼ 1), in which the ideal MHD limit
is assumed (de = ρs = η = ν = 0); ψout is then exploited as “boundary
condition” for the inner solution, to which it is matched, and that is sought for
the system in an inner layer, close x→ 0, where non-ideal MHD effects result
non negligible. Depending on the shape of the equilibrium profile ψeq(x/a),
which varies over the characteristic length a, different wavenumbers ky may
result unstable. The instability condition can be related to the so-called ∆′

parameter, formally defined [76] as the derivative of the logarithmic jump of
the solution ψout as it approaches the inner layer,

∆′ ≡ ψ′out(0
+)− ψ′out(0−)

ψout(0)
. (17)

This parameter, which can be shown (see, e.g., Ref.[1], Sec.4.1) to be pro-
portional to the amount of free magnetic energy that can be transferred from
the ideal region into the reconnection layer during the linear growth of the
resistive instability, must be positive in order for a given tearing-type mode
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(i.e. a fixed ky) to be unstable. This condition fixes, for an unstable mode
with m = kyL/(2π), the maximum number of oscillations mmax on a current
sheet with length L. This will be discussed in the simulation examples to be
considered next.

Furthermore, depending on the mechanism violating the ideal Ohm’s law,
here expressed by the generic parameter ε, it can be shown that the relative
magnitude of ∆′(kya)δ(ε) with respect to unity identifies different regimes of
the reconnection instabilities, where the growth rate γ and the layer width δ
take different scalings with respect to ε (see [77, 78] for the resistive regime
and [79, 32] for the collisionless one). Following the standard terminology
we name these three regimes “small-∆′ ” (SD), for ∆′δ � 1, “large-∆′ ”
(LD), for ∆′δ � 1, and “fastest growing mode”, for ∆′δ ' 1. The latter
corresponds to the maximally growing wave-number kM (at fixed ε) in a
continuum wave-length spectrum of unstable modes. It can be shown [18]
that both the wave-number and the growth rate of the fastest growing mode
are, in general, function of ε only, kM(ε) and γM(ε). In a continuum wave-
length spectrum the asymptotic limits of the LD and SD regimes correspond
respectively to ky � kM(ε) and ky � kM(ε) [80]. Recent discussions on the
transition among the three regimes can be found in Refs.[18, 31, 80].

3.2. Hamiltonian limit

The low-collision regime which characterizes most astrophysical and fu-
sion plasmas corresponds to a parameter range in which η and ν are often
much smaller than both d2

e and ρ2
s. Even if this does not generally imply

that the effects of η and ν on the reconnection rate and on the nonlinear
dynamics can be totally neglected (see [18]), in the numerical applications
which follow we focus on the completely collisionless, inviscid limit (η = 0
and ν = 0) of Eqs.(1-3), in which reconnection is possible whenever de 6= 0.
This limit is particularly interesting because, on the one hand, the stiffness of
the corresponding equations makes it particularly challenging from a compu-
tational point of view, and therefore compelling to test the AMR code. On
the other hand, its Hamiltonian character implies the existence of an infin-
ity of integral constants of motion besides the total energy [81, 82] and also
grants the Lagrangian conservation of local quantities dragged by the fluid
flow u [25, 81]. These can be used to check the accuracy and conservations
of the algorithm during the numerical integration.

We recall in particular that the conservation of the total energy follows
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from Eqs.(1-3) at η = ν = 0:

E ≡
∫ ∫ (

|∇ψ|2 + d2
e|∇2ψ|2 + |∇ϕ|2 + ρ2

s|∇2ϕ|2
)
dx dy. (18)

Then, for ρs 6= 0 [81, 25], the two following families of Casimir’s integrals
commute with the Hamiltonian,

C+ ≡
∫ ∫

f+ (F + deρsU) dx dy, C− ≡
∫ ∫

f− (F − deρsU) dx dy,

(19)
with f+ and f− arbitrary functions. In this regime Eqs.(1-2) can be manip-
ulated to express the two following Lagrangian invariances,

d+

dt
(F + deρsU) = 0,

d−
dt

(F − deρsU) = 0, (20)

with respect to the flows

d±
dt
≡ ∂

∂t
+ [ϕ± (ρs/de)ψ, · ]. (21)

The “cold electron” ρs = 0 case is instead singular with respect to the
corresponding limit of Eqs.(19-21). The two families of Casimir’s invariants
are replaced by

C1 ≡
∫ ∫

f1 (F ) dx dy, C2 ≡
∫ ∫

Uf2 (F ) dx dy, (22)

with f1 and f2 arbitrary functions. In this case only F results a Lagrangian
invariant advected by the flow generated by ϕ,

d

dt
F = 0, (23)

where d/dt ≡ ∂t + [ϕ, · ].

3.3. Linear analysis in the Hamiltonian limit

In the RMHD Hamiltonian limit, the stable, normal modes propagating in
a homogeneous plasma with a wave vector of modulus k having a component
k|| along a uniform, in-plane magnetic field component, correspond to the
dispersive, kinetic-Alfvén waves. Their dispersion relation is

ω2 = k2
||
1 + k2ρ2

s

1 + k2d2
e

. (24)
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In the “cold” ρs = 0 limit they display the same kind of stiffness of whistler
waves in 2D incompressible EMHD (see [57] for a comparison of the 2D
RMHD and EMHD models), having an identical dispersion relation but for
the substitution k2

|| → k||k. In the “warm” ρs 6= 0 limit, they describe fast

dispersive waves −see e.g. [83] for a recent discussion about these modes and
for their implications for implicit solvers of the RMHD set.

As discussed in Sec.3.1, the unstable tearing mode we are interested in de-
velops instead when the in-plane component of the magnetic field is sheared,
with a locally linear dependence near a singular position. As already recalled
in the same Section, the corresponding eigenvalue problem can be analyti-
cally solved by relying on the asymptotic analysis, here valid when de/a→ 0.

In the “cold” ρs = 0 limit the linear dispersion relation so obtained
assumes, by restoring dimensional quantities, the following implicit form
[32, 19],

γτ
A

ka
= − π

a∆′(ka)

(
γτ

A
a

4kd2
e

) 3
2 Γ((Q− 1)/4)

Γ((Q+ 5)/4)
, Q ≡ γτ

A
a

kd2
e

, (25)

with τ
A
≡ c

A
/a being the reference Alfvén time and Γ noting Euler’s Gamma-

function. The scaling in the different ∆′ regimes can be estimated from this
expression (see Appendix C of Ref.[31] for a brief review and discussion of
this technique).

In particular, the scalings of the maximally growing mode satisfying
∆′(kMa)δ(kM , de) ' 1 in the asymptotic limit of a sufficiently large aspect
ratio current sheet, generally depend on the choice of the equilibrium profile.
For the equilibrium choice considered in the following numerical examples
(cf. Eq.(36) next) these scalings would read [18]:

k
M
a ∼

(
de
a

) 1
2

, γ
M
τ
A
'
(
de
a

) 3
2

,
δ
M

a
∼ de

a
. (26)

When applying Eq.(25) to a continuum wave-length spectrum, the LD (∆′δ �
1) and SD (∆′δ � 1) conditions would imply a restriction to the wavelength
ranges kya � (de/a)1/2 and kya � (de/a)1/2 respectively. In these regimes
Eq.(25) can be approximated as [17, 79]

γ
LD
τ
A
' kde, γ

SD
τ
A
'
(

Γ(1/4)

2πΓ(3/4)

)2
kd3

e

a2
(∆′a)2. (27)
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The respective width of the current layers generated by the reconnecting
instability during the linear phase are estimated to be [17, 79]

δ
LD

a
∼ de

a
,

δ
SD

a
∼ ∆′de

a
. (28)

For ρs 6= 0, instead, the analytical expression replacing (25) in the “warm”
Hamiltonian limit is much more cumbersome [84]. Moreover, its simplified
rewriting in some restricted wave-length ranges [32] gives estimations of the
dispersion relations, whose validity in the parameter space is a priori not
so easily recognizable [24]. Therefore, in this “warm” case, as well as, more
generally, when the value of de/a is not sufficiently small, both for null and
non-null values of ρs, it is better to rely on a numerical solution of the
eigenvalue problem in order to compute the growth rates of the reconnecting
instabilities.

To this purpose, we numerically compute the growth rate of each unstable
mode of the type f(x)eikyeγt in a similar way as in the CFL analysis Appendix
B by considering:

ψ(x, y) = ψeq(x) + ψ̃(x)eikyeγt, (29)

F (x, y) = Feq(x) + f̃(x)eikyeγt, (30)

ϕ(x, y) = ϕ̃(x)eikyeγt, (31)

U(x, y) = ũ(x)eikyeγt, (32)

and by solving the eigen-value problem below (with normalized quantities as
in Eqs.(1–3))

γ2 ϕ̃ = −k2A−1B C−1D ϕ̃ (33)

with

A = ∂2
x − k2, B = ψ′eq∂

2
x − k2ψ′eq − ψ′′′eq, (34)

C = 1 + k2d2
e − d2

e∂
2
x, D = F ′eq + ρ2

sk
2ψ′eq − ρ2

sψ
′
eq∂

2
x, (35)

while using a non regular grid on the x-axis in order to refine the approxi-
mation near zero at the singularity.

4. Numerical experiments in the Hamiltonian limit

In order to test the performances of the code we have run numerical
simulations of collision-less reconnecting instabilities on a square simulation
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box of dimension [−Lx/2, Lx/2] × [−Ly/2, Ly/2], with a = 0.5 and Lx =
Ly = 2π or a = 1 and Lx = Ly = 4π, for different values of the ratio ρs/de
and for the equilibrium profile [85]

ψeq(x) = −1

2

1

cosh2(x/a)
, ∆′a = 2

(
−(kya)4 + 2(kya)2 + 15

(kya)2
√

4 + (kya)2

)
. (36)

This has been chosen in place of the more customary Harris-pinch profile
[86], B0

y(x) = B0
y tanh(x/a), whose instability parameter is ∆′a = 2(1/(kya)−

kya), because of the numerical constraint given by the periodic boundary con-
ditions. Although equilibrium (36) formally has three null lines, respectively
at x = 0 and at x = ±∞, only the former is of practical relevance due to the
vanishing current density at x = ±∞. This profile has been much exploited
for numerical studies of “fast” reconnection in the LD regime due to the large
values of the ∆′ parameter that can be achieved with relatively small values
of the ratio Ly/a.

The condition ∆′a > 0 for the equilibrium described by Eqs.(36) corre-
sponds to unstable modes satisfying 0 < kya <

√
5. This condition translates

on a constraint about the number of oscillations m ≡ kyLy/(2π) of the modes
which can be destabilized in a simulation box with finite size Ly, which reads

m ≤ int

(√
5

2π
Ly

)
. (37)

Finally note that, by construction, the aspect ratio of the equilibrium
current sheet subject to the first reconnection process is L/a = Ly/a. In
the following the adjective “classical” is meant for usual tearing-type insta-
bilities with a as macroscopic length, in contraposition to configurations in
which L/a � 1 and the macroscopic reference length is L = Ly (case, for
instance, of the “ideal” tearing, of the plasmoid instability or of Sweet-Parker
reconnection).

In Sec.4.1 we discuss an example of simulation in the “cold” regime
(ρs = 0), which emphasizes the usefulness of the AMR algorithm to fol-
low the spatial filamentation and turbulent dynamics typical of this case,
and highlights the influence of the latter in the loss of integral conservations
(e.g., energy) and in the breaking of spatial symmetries of the linear eigen-
functions. The choice of the non-ideal parameters is the same as previous
simulations available in literature, to which the result will be compared, al-
though mainly from a qualitative point of view: due to a peculiar choice of
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the initialization of the perturbation, the example here presented aims indeed
to highlight some delicate issues about the interpretation of the appearance
of “plasmoids” during the nonlinear stage of a primary reconnecting mode.

In Sec.4.2 we provide an example of linear validation of the code in the
warm ρs 6= 0 regime, by comparing some growth rates, measured after in-
tegration of the RMHD set, with the values reported in previous studies
available in literature, as well as with the values obtained by numerical so-
lution of the eigenvalue problem (Sec.3.3). We then discuss an example of
nonlinear simulation in which the ratio ρs/de > 1 makes the turbulent dy-
namics be replaced by the laminar evolution first evidenced in Refs.[25, 27].
The numerical results here presented for this explorative simulation indicate
however that, also in the late nonlinear stage of this warm regime, fluid in-
stabilities, which at the best of the knowledge of the authors have never been
evidenced before in this parameter range, may develop.

4.1. Test case (1): “classical” tearing with ρs = 0

As a first benchmark test we have run simulations using the equilibrium
of Eq.(36) for de = 0.3a and ρs = 0. This is the case studied in Ref.[20], in
which the vorticity and current sheets, developed along the neutral line by
the primary reconnecting mode, become rapidly unstable to secondary fluid
instabilities, especially of KH-type. This makes the numerical simulation of
this nonlinear dynamics particularly challenging. The large value of de/a also
implies relatively large growth rates, approaching values comparable to the
Alfvénic time scale τ−1

A .
Regarding the AMR parameters (cf. Sec.2.4) the refinement criterion

wλ ≥ 2αj−1ε (38)

is here applied with α = 1.3 and ε = 1.125e− 5 (empirically defined) to both
the functions F and U through the value wλ =

∑
κ∈{−1,0,1}2 vλ+κ (cf. Eq.(7)),

where
vλ =

√
dλ(F )2 + dλ(U)2 (39)

and dλ is the residual of the second order interpolation performed from the
coarser level (actual value at level j minus value interpolated from level
j− 1). Moreover we take jlim = 12. This choice of α and ε allows to run this
experiment for t ∈ [0, 30] in a few hours on a 8-cores computer node.

First we validate the fourth order accuracy for the AMR Poisson Solver
(Sec.2.5) for Eqs.(3) and the third order accuracy of the whole scheme for
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Eqs.(1,2). The advection terms in Eqs.(1,2) are computed with an upwind
third order scheme.

For the test of the Poisson solver, we solve ∇2u = sin(6πx) sin(6πy) on a
grid containing three different levels of refinement and we double the accuracy
six times to measure the convergence (Fig. 2 left). For the whole scheme,
we run the “classical” tearing test case in the linear regime of the growth of
reconnection, we stop at t = 10 and we compute the error on F (t = 10) by
comparing to a reference solution on the finest mesh containing four different
levels of refinement. We sequentially double mesh sizes and observe the third
order of convergence (Fig. 2 right).
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Figure 2: Test of convergence on non-uniform grids by means of accuracy doubling. The
error is represented in log-scale amplitude. L1, L2 and Linf label the errors measured
with respect to the norms ‖ · ‖L1 , ‖ · ‖L2 and ‖ · ‖L∞ norms, and “4th order” and “3rd
order” mean the functions f(h) = C h4 and f(h) = C h3 respectively. Left: test of the
AMR Collatz solver. Right: test of the whole scheme, error on F (t = 10).

The value of the non-ideal parameter ε = de/a allowing reconnection
has been chosen for comparison with the simulations run in Refs.[20, 87].
However, the different choice of the box dimensions, Lx = 2Ly = 4πa in
the latter case, in contrast to the Lx = Ly = 4πa case considered here,
implies important differences on the number of magnetic islands (i.e. the
mode number m) generated by the most unstable mode: for Ly = 2πa, just
the modes m = 1 and m = 2 result unstable, respectively corresponding to
kya = 1 and kya = 2; for the case Ly = 4πa, instead, the modes m = 1, 2, 3
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and 4 are unstable, respectively corresponding to kya = 0.5, 1, 1.5 and 2.
Moreover, the relatively large value chosen for de/a makes the linear ana-

lytical estimation (25) not accurate (cf. Fig.1 of Ref.[58]), and therefore also
Eqs.(26-28) result inappropriate.

The values of the growth rate γeig of the unstable wave-vectors kya, ob-
tained by numerical solution of the eigenvalue problem as described at the
end of Sec.3.3, are compared in Table 2, in which they are written together
with the corresponding values of the normalized ∆′ parameter.

Table 2: Growth rates and values of the ∆′ parameter as a function of the normalized wave-
vector kya, for the mode numbers unstable when Ly = 2πa and Ly = 4πa respectively.

m for Ly = 2πa − 1 − 2
m for Ly = 4πa 1 2 3 4

kya 0.5 1 1.5 2
∆′(kya) 59.90 14.31 2.20 1.23

γeig(kya)τ
A

0.103 0.125 0.070 0.008

As shown in Fig.3, where the growth of the Fourier transform of the un-
stable modes (averaged with respect to the x-variable) is represented in time,
the simulation we have run has been initialized by perturbing the equilibrium
of Eq.(36) with a function of the kind

ψ̃(x, y) = ε cos(y/2), (40)

thus exciting only the m = 1 mode with an amplitude ε = 10−5. This
mode is responsible of the growth of the first magnetic island, well visible in
Fig.4 since time t = 25τ

A
. As first evidenced in Ref.[20] and re-discussed in

Ref.[57], the nonlinear dynamics of the current layers is driven in this regime
by the evolution of the vorticity sheets, which advect the field Jz: this induces
the appearance of secondary fluid instabilities both of Kelvin-Helmholtz-type,
which start affecting the current sheets inside the island since t = 26.6, and of
“interchange” type (i.e., Rayleigh-Taylor/Richtmyer-Meshkov instabilities),
related to the characteristic mushroom patterns visible since t = 26.6 and to
the subsequent perturbations on their surface, shown since t = 27.2 (Fig.5).
This dynamics rapidly leads to a turbulent regime inside the magnetic island,
which is associated to the generation of increasingly smaller spatial scales, as
evidenced by the level of refinement necessary to follow this dynamics, which
has been quantified in Figs.4-5 (second row of each figure) and in Fig.6. It
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is however worth remarking that, even before the onset of turbulence, the
increase of the grid refinement is required by the spatial filamentation, which
is an intrinsic feature of this Hamiltonian system: this is exemplified by the
progressive thinning of the current sheet Jz along the neutral line [17, 19],
whose evolution in time at y = 3Ly/8 = 3π/4 is shown in Fig.7.

The nonlinear cascade towards small spatial scales associated to this tur-
bulent regime leads to a rapid deterioration of the integral conservations by
numerical dissipation, which can be delayed only at the price of an enor-
mous computational effort −we recall indeed that the increase in the grid
refinement couples with more severe CFL conditions, as it is expressed by
Eqs.(13-14): having fixed, in this numerical example, the maximum refine-
ment to hlim = 2−12L, the total energy, perfectly conserved according to
Eq.(18) until t ' 27, looses about 14% of its initial value by time t = 30 and
drops down to 65% of its initial value by time t = 50 (see Fig.8).

Finally note that the AMR algorithm we have discussed allows to preserve
the spatial symmetry of the fields also in the nonlinear stage, in principle as
long as the grid refinement can accurately describe the generation of small
spatial scales: during the nonlinear stage, as soon as the current sheets mov-
ing inside the magnetic island from the two X-points “collide” and bend
(Fig.4, at t = 26.6), the distinct x ↔ −x and y ↔ −y symmetry invari-
ances of the linear eignemodes merge into a central symmetry by rotation
around the magnetic island’s O-point (i.e., an invariance with respect to
(x, y) ↔ (−x,−y) transformations). This central symmetry is however lost
as soon as numerical errors at grid scale cumulate (cf. Fig.1 of Ref.[20]).
In the simulation we have presented we see that it is only when the grid
refinement becomes appreciably insufficient to grant energy conservation (cf.
Fig.8 for t ' 30) that the central symmetry is broken (Fig.5, t = 32.4).

We conclude this section with a brief comparison with the simulations
of Refs.[20, 87] and a comment about the particular choice of initialization
expressed by Eq.(40). We first note that the time scales of the simulations
of Refs.[20, 87] and those here discussed are appreciably different mainly
because of differences due to initialization of the perturbations, which im-
plies quite different transient times (also because of the role played by the
spectral-like filters, used in the simulations of Refs.[20, 87] to prevent alias-
ing problems). Then, as evidenced in Table 2, the m = 1 mode excited in
Ref.[20] corresponds to kya = 1, whereas, in the simulations here reported,
it corresponds to kya = 0.5. However, while the growth rates of kya = 1 and
kya = 0.5 are comparable, the m = 2 mode has a negligible growth rate in
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the case studied in Ref.[20], whereas in the simulations shown in Figs.(4-5)
is dominant and is responsible of the appearance of the second island at the
edges of the simulation box (well visible at t = 28.4 in Fig.5). Therefore, as
evidenced by the Fourier spectrum displayed in Fig.3, this second island can
not be interpreted as related to a secondary reconnecting instability of the
kind discussed in Refs.[18, 46, 31, 21] or in the framework of the plasmoid
instability scenario [42, 40, 41], since its appearance is not due to the gener-
ation, by the primary tearing mode, of a new current sheet profile on which
new modes can be destabilized: the particular choice of the perturbation (40)
makes the m = 2 mode grow even faster than the initially excited m = 1
perturbation on this equilibrium profile. However, as appears evident from
Fig.3, the initial relative amplitude of the m = 1 and m = 2 modes is such
that the m = 1 mode saturates and reaches a macroscopic size while the
m = 2 mode still behaves as a linear perturbation with respect to the equi-
librium profile, so that the linear growth rate of the latter results strongly
perturbed by the nonlinear interaction with the former, already at t ' 23.
Also, the dynamics at the O-point of the m = 1 island is (non evidently,
from Figs.4-5) perturbed by the contribution of one of the nascent m = 2
islands growing in the same position. These complex features, not easy to
be discerned when a large spectrum of modes with comparable initial ampli-
tudes are excited, possibly also with different phases, are likely to influence
the number of plasmoids observed both in reconnection of large aspect ratio
current sheets and in simulations of secondary reconnection to a primary
tearing-type mode.
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Figure 3: Time evolution for t ≤ 28.2 of the log-scale amplitude, averaged over the x
coordinate, of the first three ky-modes corresponding to m = 1, 2 and 3 respectively
(equilibrium quantities have log-scale amplitude 0). Simulation parameters: a = 0.5,
de = 0.3a, Lx = Ly = 2π.

28



t = 0 t = 25 t = 26.6

min 0 max

4 5 6 7 8 9 10 11 12

Figure 4: First row: contour plots of the field F at times t = 0, t = 25, t = 26.6. Second
row: the adaptive grid at the same times, with colors corresponding to the refinement
h = 2−jL for 4 ≤ j ≤ 12. Simulation parameters: a = 0.5, de = 0.3a, Lx = Ly = 2π.
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t = 27.2 t = 28.4 t = 32.4

Figure 5: Same as figure 4 but for times t = 27.2, t = 28.4, t = 32.4. First row: F . Second
row: the adaptive grid.
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Figure 6: Total number of points in the adaptive grid as a function of time for the simu-
lation of Figs.3-5.

Figure 7: Cut at y = 3Ly/8 of the current density Jz for the beginning of the experiment
(t ≤ 28.2) for −Lx/10 ≤ x ≤ Lx/10. The blue color is for t close to 0 and the red one for
t close to 28.2 (as time t advances, the Jz profile in x peaks at the middle of the domain).
Simulation case of Figs.3-5.
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4.2. Test case (2): classical tearing with ρs 6= 0

As a second case we consider reconnection in the Hamiltonian limit for
ρs 6= 0. Electron compressibility effects related to ρs play a stabilizing role
[20, 57] on the secondary fluid instabilities which are characteristic of the
“cold” collision-less regime (Sec.4.1), and the Lagrangian invariants described
by Eqs.(20) determine a laminar dynamics of nonlinear reconnection [25],
related to the phase-mixing of the scalar fields F ± deρsU [27].

As a linear benchmark of the code, we have reported in Table 4.2 a
few values of the linear growth rate of the mode kya = 1, at the varying
of ρs, evaluated both directly from simulations with the AMR code and
by numerical solution of the eigenvalue problem, following the procedure
described at the end of Sec.3.3. These values are further compared with
those reported in Ref.[24] and measured in simulations performed with the
pseudo-spectral code first used in Ref.[20].

Table 3: Parameters and linear growth rates of the mode kya = 1 for different values
of ρs and for Ly = 4πa, de = 0.3a, with a = 1. The growth rates γeig are numerically
computed as described at the end of Sec.3.3, whereas the values γnum in the third column
are estimated by tracing the time evolution of the relevant Fourier components ky of

the perturbed ψ̃, averaged over the x direction. In the last column, are reported the
analogous estimations from output data of simulations run with the pseudo-spectral code
used in Ref.[24] (cf. Table 2, there).

ρs γeig γnum γnum [24]

0.05 0.1268 0.127 0.127
0.1 0.1325 0.132 0.134
0.15 0.1408 0.139 0.140
0.2 0.1507 0.149 0.151
0.3 0.1732 0.170 0.175

As an example of the small scale generation which can be observed in the
nonlinear dynamics of this “warm” Hamiltonian regime, we finally present
the results of a simulation run for a = 0.5, de = 0.3a and ρs = 0.6a. For this
experiment, we take α = 1.3, ε = 1.125e−−5 and jlim = 11. Contourplots are
shown at different times for the quantity F , together with the fields U and G+

and with the corresponding levels of refinement of the grid (Fig.9 and 10).
The laminar filamentary structures generated by the spatial phase-mixing
process, first discussed in Ref.[27], is evidenced in all figures. Analogously
to the ρs = 0 example considered in case test (1), energy conservation (not
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shown here) is granted as long as the grid refinement keeps up with the
spatial filamentation. Again, the loss of spatial resolution also implies a loss
of the rotational invariance of the contours. For the choice of a maximal
refinement of hlim = 2−11L a loss of spatial resolution appears evident in the
three contour-plots at time t = 34.4.

We finally note that also in this “warm” ρs > de case, fluid instabilities of
interchange type set in, but this time along the x-axis (see the “mushroom”
patterns visible in the contourplots of F and U in Fig.10 after time t =
24.). Eventually, then, also KH-type instabilities appear to develop (Fig.10,
t = 34.4) on the nonlinearly generated, thin vorticity sheets, analogously to
what has been observed for some values of the ion-sound and ion Larmor
radius in Ref.[24], although for ρs < de. The role of flows in the onset of
fluid instabilities also in this warm ρs > de regime, which apparently has
not been pointed out in previous studies, deserves however a more specific,
dedicated study, as in the numerical experiment here presented the integral
conservations of the Hamiltonian model result too compromised at t = 34.4.
A more specific investigation, probably requiring a better optimized parallel
version of the code, would allow to ascertain the interesting possibility to
achieve a turbulent regime also in the advanced nonlinear stage of the ρs > de
case (which, e.g., is more typical of tokamak plasmas).
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t = 14 t = 16.8 t = 19.2

Figure 9: Contourplot of the fields F (first row), G+ (second row) and U (third row) and
of the adaptive grid (bottom row) at times t = 14, t = 16.8, t = 19.2. In this simulation
the mode m = 1 has been initially excited in a simulation box with Lx = Ly = 4πa, with
de = 0.3a, ρs = 0.6a and a = 0.5. 35



t = 24 t = 27.2 t = 34.4

Figure 10: Contourplot of the fields F (first row), G+ (second row) and U (third row) and
of the adaptive grid (bottom row) at times t = 24, t = 27.2, t = 34.4. Same simulation
run as Fig.9. 36



5. Comments and conclusions

The study of magnetic reconnection with the reduced magnetohydrody-
namic model offers a privileged framework for the development and appli-
cation of adaptive schemes. These allow in principle to explore parameter
ranges otherwise impossible to access with uniform grid schemes.

In this article, we have presented a multigrid adaptive method of high
order. We have detailed an original fourth-order multigrid Poisson solver
for fully threaded trees. We have accurately addressed the CFL stability of
the RMHD equation set, so to allow a remarkable economy of computational
resources at the beginning of the numerical experiments and to prevent the
onset of numerical instabilities. While the AMR code we have provided
is applicable to both the dissipative and strictly collision-less reconnection
regimes, we have here focussed on the latter, which is more challenging from
the computational point of view, due to the rapid nonlinear generation of
small spatial scales, in principle inferiorly unbounded due to the lack of a
physical dissipation scale.

We have then presented two numerical experiments performed in this
collision-less, Hamiltonian regime, in a parameter range comparable to that
of previous numerical results available in literature. Together with a lin-
ear validation of the code, performed by measuring some growth rates of a
primary tearing mode, we have discussed two examples of nonlinear simu-
lation with which we have addressed two issues of quite general interest in
reconnection problems: the role possibly played by the later appearance of
primary unstable modes in the interpretation of numerical studies of sec-
ondary reconnecting instabilities, and the possibility to achieve a turbulent
regime also in “warm” (ρs > de) Hamiltonian reconnection. The numerical
experiments here provided are however meant to be just preliminary exam-
ples, aimed to highlight the performances and the usefulness of the AMR
scheme. The physical issues we have addressed, as well as the applications to
the other compelling problems mentioned in Sec.1.1, will be the object of fu-
ture studies, to be performed with more specific and small ε physics-oriented
simulations.

A MPI parallelized version of this AMR algorithm is in progress. It relies
on a hash-table storage of the nodes which are unically designated thanks to
a 64-bits marker binded to the node position [88]. This allows the processors
to exchange node data without resorting to pointers.
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Appendix A. Algorithm for the Collatz multigrid solver

We recall that the continuous refinement domains Ωj of level j are em-
bedded: Ωj+1 ⊂ Ωj ⊂ · · · ⊂ Ω0 = [−L

2
, L

2
]2 with periodic boundary condi-

tions. The space step is given by hj = 2−j−1L, so the discretized domain
Ωj ⊂ {

(
−L

2
+ 2−j−1k1L,−L

2
+ 2−j−1k2L

)
, 0 ≤ k1, k2 < 2j+1} contains 22j+2

points or less.
We also distinguish the interior Ω̊j of the domain Ωj form its boundary

∂Ωj: Ωj = Ω̊j ∪ ∂Ωj. We denote xjκ ∈ Ωj the point at level j and position
−L

2
(1, 1) + L2−j−1κ for κ ∈ Z ∩ [0, 2j+1).
The algorithm of multigrid type uses auxiliary values r, w and s which

respectively stand for the residual, the Gauss-Seidel approximant and its
cumulation from the different levels. Then the algorithm unfolds as follows:

1. we compute the right member of Eq. (8). For each j and each point
xjκ ∈ Ω̊j we set the perturbed right member

f(xjκ) =
1

2

 0 1 0
1 8 1
0 1 0

 v(xjκ).

2. We do n iterations of the following loop, with n ∼ 8 starting from
an initial guess issued from the previous time step for instance. This
value of n secures the convergence of the iterative process with a final
residual much lower than the numerical error.

(a) Restriction: for j = jmax, . . . , 1, with h = 2−j−1L

i. for all xjκ ∈ Ω̊j such that xj+1 2κ /∈ Ω̊j+1, we compute the
residual at xjκ:

r(xjκ) = f(xjκ)− 1

h2

 1 4 1
4 −20 4
1 4 1

u(xjκ),

ii. we initialize an approximate of a solution to Eq. (8) with the
residual on the right side

w(xjκ) = −h
2

20
r(xjκ).
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iii. for all xjκ ∈ ∂Ωj, we set r(xjκ) = w(xjκ) = 0.

iv. we apply µ (= 2 here) Gauss-Seidel iterations on each point
xjκ ∈ Ω̊j in a multi-colored order similar to the red-black
order of the usual multi-grid Poisson solver i.e. (2`1, 2`2) then
(2`1 + 1, 2`2 + 1) then (2`1 + 1, 2`2) and then (2`1, 2`2 + 1):

w(xjκ) = w(xjκ)− 1

20

h2r(xjκ)−

 1 4 1
4 −20 4
1 4 1

w(xjκ)


v. we update the residual : for all the points xjκ ∈ Ω̊j,

r(xjκ) = r(xjκ)− 1

h2

 1 4 1
4 −20 4
1 4 1

w(xjκ),

u(xjκ) = u(xjκ) + w(xjκ) and s(xjκ) = w(xjκ).

vi. we restrain the residual to pass it to level j−1, for all xjκ ∈ Ω̊j

such that κ = (2`1, 2`2) = 2`,

w(xjκ) =
1

16

 1 2 1
2 4 2
1 2 1

 r(xjκ)

and then r(xj−1 `) = w(xjκ) and u(xj−1 `) = u(xjκ).

(b) at level j = 0, we solve the system exactly

1

h2

 1 4 1
4 −20 4
1 4 1

 s(x0κ) = r(x0κ),

we put u(x0κ) = s(x0κ) and in the periodic case we take away the
constant: for all j and κ, f(xjκ) = f(xjκ)− 〈r〉.

(c) Prolongation: for j = 1 . . . jmax
i. for all xjκ ∈ Ω̊j we add the approximation obtained at level
j − 1 to the solution u(xjκ) and to the loop approximant
s(xjκ):
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w(xj 2`) = s(xj−1 `), w(xj 2`+e1) = 1
2

(s(xj−1 `) + s(xj−1 `+e1))
and the same for e2 (with (e1, e2) the canonical basis of R2),

w(xj 2`+e1+e2) =
1

4
(s(xj−1 `) + s(xj−1 `+e1) + s(xj−1 `+e2) + s(xj−1 `+e1+e2)) ,

then u(xjκ) = u(xjκ) +w(xjκ) and s(xjκ) = s(xjκ) +w(xjκ).

ii. we interpolate u at the boundary ∂Ωj of the domain Ωj with
a sixth order centered scheme:
u(xj 2`) = u(xj−1 `) and

u(xj 2`+e1) =
1

256
[3 − 25 150 150 − 25 3]u(xj−1 `),

and the same for e2. Knowing that for symmetry reasons we
deactivated all the points of the type xj 2`+e1+e2 remaining to
the boundary ∂Ωj, we do not need to interpolate them.

3. in the periodic case at the end of the algorithm we subtract the average
of u: u(xjκ) = u(xjκ)− 〈u〉.

Appendix B. Von Neumann stability analysis

Let us write the von Neumann stability analysis of the RMHD equations
Eq. (1), (2) and (3) in the most general case. Then we will set η and ν to
zero.

We consider a perturbation (labelled by “˜”) of the initial solution and
consider the new numerical solution: F + F̃ , U + Ũ , φ+ φ̃, ψ+ ψ̃ and Jz + J̃z.
In order to explicit the bilinearity of the Poisson brackets, we introduce the
linear operator ∇⊥:

∇⊥ϕ ≡∇× (ϕez) = ez ×∇ϕ = (−∂yϕ, ∂xϕ), (B.1)

so
[f, g] = ∇⊥f ·∇g. (B.2)

Then, the linearized equations for the perturbed solutions are:

∂tF̃ +∇⊥ϕ ·∇F̃ +∇⊥ϕ̃ ·∇F = ρ2
s(∇⊥Ũ ·∇ψ +∇⊥U ·∇ψ̃)− ηJ̃z, (B.3)

∂tŨ +∇⊥ϕ ·∇Ũ +∇⊥ϕ̃ ·∇U = −∇⊥ψ ·∇J̃z−∇⊥ψ̃ ·∇Jz + ν∇2Ũ . (B.4)
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In the framework of von Neumann stability analysis, we assume for a given
k = (kx, ky) that F̃ (x, y) = F̃kx,kye

ikx x+iky y and Ũ(x, y) = Ũkx,kye
ikx x+iky y.

The other perturbed functions ϕ̃, ψ̃ and J̃z are expressed in terms of F̃ and
Ũ by means of Eqs.(3,6):

ϕ̃ = − Ũ

|k|2
, ψ̃ =

F̃

1 + d2
e|k|2

, J̃z =
|k|2

1 + d2
e|k|2

F̃ , ∇f̃ = ikf̃ . (B.5)

Using ∇⊥f ·∇g = −∇⊥g ·∇f , we obtain the linear equation:

∂t

(
F̃

Ũ

)
= M

(
F̃

Ũ

)
(B.6)

where

M ≡

 −∇
⊥ϕ · ik +

ρ2
s∇⊥U · ik − η|k|2

1 + d2
e|k|2

−∇⊥F · ik
|k|2

− ρ2
s∇⊥ψ · ik

−|k|2∇⊥ψ · ik + ∇⊥Jz · ik
1 + d2

e|k|2
−∇⊥ϕ · ik − ∇⊥U · ik

|k|2
− |k|2ν

 .
(B.7)

Then we remove the viscous terms (i.e. η = ν = 0). Taking |(kx, ky)| � 1,
the matrix M simplifies to:

M ≡

 −∇
⊥ϕ · ik +

ρ2
s∇⊥U · ik
1 + d2

e|k|2
−∇⊥F · ik

|k|2
− ρ2

s∇⊥ψ · ik

−|k|2∇⊥ψ · ik
1 + d2

e|k|2
−∇⊥ϕ · ik

 . (B.8)

We assume ∇⊥ψ = ∇⊥F + ε with |ε| � |∇⊥F |, which is satisfied at the
beginning of the simulation since F = (1− d2

e∇2)ψ with de � 1, as required
by the ideal MHD limit and ψ smooth. This approximation does not impact
the stability condition and simplifies a lot the mathematical expressions.
Then the trace and the determinant of the matrix M of Eq.(B.8) satisfy

λ+ + λ− = Tr(M ) = −2∇⊥ϕ · ik +
ρ2
s∇⊥U · ik
1 + d2

e|k|2
, (B.9)
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λ+λ− = Det(M ) =
(
∇⊥ϕ · ik

)2 − ρ2
s∇⊥U · ik
1 + d2

e|k|2
∇⊥ϕ · ik −

(
∇⊥F · ik

)2

1 + d2
e|k|2

(B.10)

− ρ2
s

|k|2

1 + d2
e|k|2

(
∇⊥F · ik

)2
. (B.11)

Then, solving
X2 − Tr(M )X + Det(M) = 0, (B.12)

gives the discriminant:

∆ =
ρ4
s

(
∇⊥U · ik

)2

(1 + d2
e|k|2)2 + 4ρ2

s

|k|2

1 + d2
e|k|2

(
∇⊥F · ik

)2
+ 4

(
∇⊥F · ik

)2

1 + d2
e|k|2

. (B.13)

Hence, the eigenvalues of the matrix M are:

λ± = −∇⊥ϕ · ik +
ρ2
s∇⊥U · ik

2 (1 + d2
e|k|2)

±
√

∆

2
, (B.14)

that is, using
√
a2 + b2 ≤ |a|+ |b|, they locally satisfy:

|λ±| ≤ |∇⊥ϕ · ik|+
ρ2
s|∇⊥U · ik|
1 + d2

e|k|2
+

(
1 + ρ2

s|k|2

1 + d2
e|k|2

)1/2

|∇⊥F · ik|. (B.15)

Hence, the condition |λ±|∆t ≤ C for |k|`∞ ≡ 1/∆x, where C solely depends
on the type of spatial and temporal discretizations, provides the stability
condition on the whole domain, which is implied by:

∆t ≤ C
∆x

‖∇ϕ‖∞ +
ρ2
s∆x

2

∆x2 + d2
e

‖∇U‖∞ +

(
2ρ2

s + ∆x2

∆x2 + d2
e

)1/2

‖∇F‖∞

, (B.16)

where ‖ · ‖∞ = ‖ | · |`1‖L∞(Ω), and where we used |k|2 ≤ |k|2`∞ ≤ 2|k|2,
|∇f · ik| ≤ |∇f |`1|k|`∞ and ‖∇⊥f‖ = ‖∇f‖.
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