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Abstract

In this paper, we propose a robust solver for the finite element discrete problem of the
stationary incompressible magnetohydrodynamic (MHD) equations in three dimensions. By
the mixed finite element method, both the velocity and the pressure are approximated by
H1(Ω)-conforming finite elements, while the magnetic field is approximated by H(curl,Ω)-
conforming edge elements. An efficient preconditioner is proposed to accelerate the convergence
of the GMRES method for solving the linearized MHD problem. We use three numerical
experiments to demonstrate the effectiveness of the finite element method and the robustness
of the discrete solver. The preconditioner contains the least undetermined parameters and is
optimal with respect to the number of degrees of freedom. We also show the scalability of the
solver for moderate physical parameters.

Key words. Incompressible magnetohydrodynamic equations, mixed finite element method, preconditioner,
parallel computing.

1 Introduction

Magnetohydrodynamics (MHD) has broad applications in our real world. It describes the inter-
action between electrically conducting fluids and magnetic fields. It is used in industry to heat,
pump, stir, and levitate liquid metals. Incompressible MHD model also governs the terrestrial
magnetic filed maintained by fluid motion in the earth core and the solar magnetic field which gen-
erates sunspots and solar flares [5]. The incompressible MHD model consists of the incompressible
Navier-Stokes equations and the quasi-static Maxwell equations. The magnetic field influences the
momentum of the fluid through Lorentz force, and conversely, the motion of fluid influences the
magnetic field through Faraday’s law. In this paper, we are studying the efficient iterative solver
for the stationary MHD equations

u · ∇u+∇p−R−1
e ∆u− S curlB ×B = f in Ω, (1a)

curl
(
B × u+R−1

m curlB
)

= 0 in Ω, (1b)

divu = 0, divB = 0 in Ω, (1c)

where u is the velocity of the fluid, p is the hydrodynamic pressure, B is the magnetic flux density
or the magnetic field provided with constant permeability, Re is the fluid Reynolds number, Rm
is the magnetic Reynolds number, S is the coupling constant concerning the Lorentz force, and
f ∈ L2(Ω) stands for the external force. We assume that Ω is a bounded Lipschitz domain. The
system of equations are complemented with Dirichlet boundary conditions

u = g, B × n = Bs × n on Γ := ∂Ω. (2)

There are extensive papers in the literature to study numerical solutions of incompressible MHD
equations (cf. e.g. [13,14,16,18,21,24,26–28,31] and the references therein). In [18], Gunzburger et al
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studied well-posedness and the finite element method for the stationary incompressible MHD equa-
tions. The magnetic field is discretized by the H1(Ω)-conforming finite element method. Strauss
et al studied the adaptive finite element method for two-dimensional MHD equations [21]. Very re-
cently, based on the nodal finite element approximation to the magnetic field, Philips et al proposed
a block preconditioner based on an exact penalty formulation of stationary MHD equations [31].
We also refer to [14] for a systematic analysis on finite element methods for incompressible MHD
equations. When the domain has re-entrant angle, the magnetic field may not be in H1(Ω). It is
preferable to use noncontinuous finite element functions to approximate B, namely, the so-called
edge element method [10, 25]. In 2004, Schötzau proposed a mixed finite element method to solve
the stationary incompressible MHD equations where edge elements are used to solve the magnetic
field. To our knowledge, efficient solvers for three-dimensional (3D) MHD equations are still rare
in the literature, particularly, for large Reynolds number Re and large coupling number S. An
efficient solver should possess two merits:

1. the convergence rate is independent of the mesh or the number of degrees of freedom (DOFs);

2. the algorithm is robust with respect to the physical parameters.

The objective of this paper is to propose a preconditioned GMRES method to solve the linearized
discrete problem of (1)–(2). We shall adopt the mixed finite element method proposed in [32] and
study efficient preconditioners for the linearized problem.

Over the past three decades, fast solvers for incompressible Navier-Stokes equations are rela-
tively well-studied in the literature (cf. e.g. [6–8, 29, 33, 34]). For moderate Reynolds number, the
Picard iteration for stationary impressible Navier-Stokes equation is stable and efficient. At each
iteration, one needs to solve the linearized problem, the Oseen equations

w · ∇u+∇p−R−1
e ∆u = f in Ω, (3a)

divu = 0 in Ω, (3b)

u = g on Γ, (3c)

where w is the approximate solution at the previous step. Iterative methods for discrete Oseen
equations mainly consist of Krylov subspace methods, multigrid methods, or their combinations.
In terms of parallel computing and practical implementation, it is preferable to use Krylov sub-
space method combined with an effective preconditioner. Among them, the pressure convection-
diffusion (PCD) preconditioner [19], the least-squares commutator (LSC) preconditioner [6–8], and
the augmented Lagrangian(AL) preconditioner [1,2,30] prove robust and efficient for relatively large
Reynolds number. In this paper, we shall study the AL finite element method for the stationary
MHD equations. Based on a Picard-type linearization of the disrecte problem, we develop an effi-
cient preconditioner for solving the linear problem. The preconditioner proves to be robust when
the Reynolds number and the coupling number are relatively large and to be optimal with respect
to the number of DOFs.

The paper is organized as follows: In section 2, we introduce some notations for Sobolev spaces.
A mixed finite element method is proposed to solve the AL formulation of the stationary MHD
equations. In section 3, we introduce a Picard-type linearization for the discrete MHD problem and
devise an efficient preconditioner for solving the linear discrete problem. A preconditioned GMRES
algorithm is also presented for the implementation of the discrete solver. In Section 4, we present
three numerical experiments to verify the optimal convergence rate of the mixed finite element
method, to demonstrate the optimality and the robustness of the MHD solver, and to demonstrate
the scalability for parallel computing. Throughout the paper we denote vector-valued quantities
by boldface notation, such as L2(Ω) := (L2(Ω))3.

2 Mixed finite element method for the MHD equations

First we introduce some Hilbert spaces and Sobolev norms used in this paper. Let L2(Ω) be the
usual Hilbert space of square integrable functions equipped with the following inner product and
norm:

(u, v) :=

∫
Ω

u(x) v(x)dx and ‖u‖L2(Ω) := (u, u)1/2.
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Let the quotient space of L2(Ω) be defined by

L2
0(Ω) :=

{
v ∈ L2(Ω) :

∫
Ω

v(x)dx = 0

}
= L2(Ω)/R .

Define Hm(Ω) := {v ∈ L2(Ω) : Dξv ∈ L2(Ω), |ξ| ≤ m} where ξ represents non-negative triple
index. Let H1

0 (Ω) be the subspace of H1(Ω) whose functions have zero traces on Γ.
We define the spaces of functions having square integrable curl by

H(curl,Ω) := {v ∈ L2(Ω) : curlv ∈ L2(Ω)},
H0(curl,Ω) := {v ∈H(curl,Ω) : n× v = 0 on Γ},

which are equipped with the following inner product and norm

(v,w)H(curl,Ω) := (v,w) + (curlv, curlw), ‖v‖H(curl,Ω) :=
√

(v,v)H(curl,Ω) .

Here n denotes the unit outer normal to Γ.
With a Lagrange multiplier r, we can rewrite (1) into an AL form

u · ∇u+∇p− γ∇ divu−R−1
e ∆u− S curlB ×B = f in Ω, (4a)

S curl
(
B × u+R−1

m curlB
)

+∇r = 0 in Ω, (4b)

divu = 0, divB = 0 in Ω, (4c)

u = g, B × n = Bs × n, r = 0 on Γ. (4d)

where γ > 0 is the stabilization parameter or penalty parameter. Taking divergence on both sides
of (4b) and using (4d) yields

∆r = 0 in Ω, r = 0 in Γ.

This means r = 0 in Ω actually. Note that divu = 0, thus (4) is equivalent to (1)–(2). In the rest
of this paper, we are going to study the augmented problem (4) instead of the original problem.

A weak formulation of (4) reads: Find (u,B) ∈H1(Ω)×H(curl,Ω) and (p, r) ∈ L2
0(Ω)×H1

0 (Ω)
such that u = g and B × n = Bs × n on Γ and

A((u,B), (v, ϕ)) +O((u,B); (u,B), (v,ϕ))− B((p, r), (v,ϕ)) = (f ,v), (5a)

B((q, s), (u,B)) = 0, (5b)

for all (v, ϕ) ∈ H1
0(Ω) ×H0(curl,Ω) and (q, s) ∈ L2

0(Ω) × H1
0 (Ω), where the bilinear forms and

trilinear form are defined respectively by

A((u,B), (v, ϕ)) = R−1
e (∇u,∇v) + γ(divu,div v) + SR−1

m (∇×B,∇×ϕ),

O((w,ψ); (u,B), (v, ϕ)) = (w · ∇u,v)− S [(curlB,ψ × v)− (ψ × u, curlϕ)] ,

B((p, r), (v,ϕ)) = (p, div v) + (∇r,ϕ).

Assuming small data, Schötzau proved the existence and uniqueness of the solution to (5) without
the penalized term γ(divu,div v). The purpose of this paper is to propose a robust solver for the
discrete problem. This extra term in the new formula makes the discrete problem more well-defined
for high Reynolds number [30].

Now we introduce the finite element approximation to (5). Let Th be a quasi-uniform and shape-
regular tetrahedral mesh of Ω. Let h denote the maximal diameter of all tetrahedra on the mesh.
For any T ∈ Th, let Pk(T ) be the space of polynomials of degree k ≥ 0 on K and P k(T ) = (Pk(T ))

3

be the corresponding space of vector polynomials. Define the Lagrange finite element space of the
k-th order by

V (k, Th) =
{
v ∈ H1(Ω) : v|T ∈ Pk+1(T ), ∀T ∈ Th

}
.

First we choose the well-known Taylor-Hood P2-P1 elements [3, Page 217-219] for the discretization
of (u, p), namely,

V h := V (2, Th)3 ∩H1
0(Ω), Qh := V (1, Th) .

3



From [3, Page 255-258], the discrete inf-sup condition holds

sup
06=v∈V h

(q,div v)

‖v‖H1(Ω)

≥ Cu ‖q‖L2(Ω) ∀ q ∈ Qh, (6)

where Cu is the inf-sup constant independent of the mesh size. We shall also use V h = V (k, Th)3.
The finite element space for B is chosen as Nédélec’s edge element space of the first order in

the second family [25], namely,

Ch = {v ∈H(curl,Ω) : v|T ∈ P 1(T ), ∀T ∈ Th} , Ch = Ch ∩H0(curl,Ω).

The finite element space for r is defined by

Sh = V (2, Th) ∩H1
0 (Ω).

Since ∇Sh ⊂ Ch, we easily get the inf-sup condition for the pair of finite element spaces Ch × Sh

sup
06=v∈Ch

(∇s,v)

‖v‖H(curl,Ω)

≥ |s|H1(Ω) ≥ Cb‖s‖H1(Ω) ∀ s ∈ Sh, (7)

where Cb > 0 is the Poincáre constant depending only on Ω.
The finite element approximation to (5) reads: Find (uh,Bh) ∈ V h×Ch and (ph, rh) ∈ Qh×Sh

such that

A((uh,Bh), (v,ϕ)) +O((uh,Bh); (uh,Bh), (v,ϕ))− B((ph, rh), (v,ϕ)) = (f ,v), (8a)

B((q, s), (uh,Bh)) = 0, (8b)

for all (v,ϕ) ∈ V h ×Ch and (q, s) ∈ Qh × Sh. From (6) and (7) we know that the bilinear form
B(·, ·) satisfies the discrete inf-sup condition

sup
(vh,ϕh)∈V h×Ch

B((qh, sh), (vh,ϕh))

‖(vh,ϕh)‖V h×Ch

≥ min(Cu, Cp) ‖(qh, sh)‖Qh×Sh
∀ (qh, sh) ∈ Qh × Sh , (9)

where

‖(vh,ϕh)‖V h×Ch
:=
√
‖vh‖2H1(Ω) + ‖ϕh‖

2
H(curl,Ω) , ‖(qh, sh)‖Qh×Sh

:=
√
‖qh‖2L2(Ω) + ‖sh‖2H1(Ω) .

Based on the assumption of small data, we can prove that the discrete problem (8) has a unique
solution. Again we do not elaborate on the details and pay our attention to fast solvers of the
discrete solution (8).

3 A preconditioner for the linearized finite element problem

In this section, we are going to study the solution of the nonlinear discrete problem (8). First we
propose a Picard-type iterative method for solving (8). At each nonlinear iteration, the linearized
problem consists of an AL Oseen equation with Lorentz force and a Maxwell equation coupled
with the fluid. The preconditioner for the linearized MHD equation depends crucially on the
preconditioner for the penalized Navier-Stokes equations and the preconditioner for the Maxwell
equations in mixed forms.

3.1 Picard-type method for the discrete MHD equations

In this subsection, we consider the Picard linearization of (8). For convenience, we rearrange the
order of variables as (Bh, rh,uh, ph) in the linearized problem. Let (Bk, rk,uk, pk) ∈ Ch × Sh ×
V h ×Qh be the approximate solutions of (8) from the previous iteration. The error equation for
these approximate solutions reads: Find (δBk, δrk, δuk, δpk) ∈ V h ×Qh ×Ch × Sh such that

SR−1
m (curl δBk, curlϕ) + (∇δrk,ϕ) + S(Bk × δuk, curlϕ) = Rb(ϕ), (10a)

(δBk,∇s) = Rr(s), (10b)

−S(curl δBk,Bk × v) + F(uk; δuk,v)− (δpk,div v) = Ru(v), (10c)

−(div δuk, q) = Rp(q), (10d)

4



where the trilinear form F represents the convection-diffusion part of the fluid equation

F(uk; δuk,v) := R−1
e (∇δuk,∇v) + (uk · ∇δuk,v) + γ(div δuk,div v),

and the residual functionals are defined by

Rb(ϕ) = −SR−1
m (curlBk, curlϕ)− (∇rk,ϕ)− S(Bk × uk, curlϕ),

Rr(s) = −(Bk,∇s),
Ru(v) = (f ,v)−F(uk;uk,v) + S(curlBk,Bk × v) + (pk,div v),

Rp(q) = (divuk, q).

After solving (10), the approximate solutions will be updated by

Bk+1 = Bk + θδBk, rk+1 = rk + θδrk, uk+1 = uk + θδuk, pk+1 = pk + θδpk (11)

with a relaxation factor 0 < θ ≤ 1.
To devise the preconditioner, we write problem (10) into an algebraic form

Ax = b , (12)

where the solution vector x consists of the degrees of freedom for (δBk, δrk, δuk, δpk) respectively,
b is the residual vector, and A is the stiffness matrix. In block forms, they can be written as

x =


xb
xr
xu
xp

 , b =


Rb
Rr
Ru
Rp

 , A =


C G> J> 0
G 0 0 0
−J 0 F B>
0 0 B 0

 . (13)

Let {vi : 1 ≤ i ≤ NV }, {ϕi : 1 ≤ i ≤ NC}, {qi : 1 ≤ i ≤ NQ}, {si : 1 ≤ i ≤ NS} be the bases of
V h, Ch, Qh, and Sh respectively. Then the entries of all block matrices are defined by

Cij = SR−1
m (curlϕj , curlϕi) ,

Gij = S(ϕj ,∇si) ,
Jij = S(curlϕj ,Bk × vi)
Fij = F(uk;vj ,vi) ,

Bij = −(div vj , qi) .

Clearly the block matrices represents the differential operators appearing in the Navier-Stokes
equations and the Maxwell equation on various finite element spaces

C⇔ SR−1
m curl curl, G⇔ −div on Ch,

G> ⇔ ∇ on Sh,

F⇔
(
−R−1

e ∆ + uk · ∇ − γ∇ div
)
, B⇔ −div on V h,

B> ⇔ ∇ on Qh.

Here −div is understood as the dual operator of ∇|Sh
or ∇|Qh

. Moreover, J, J> are algebraic repre-
sentations of the two multiplication operators which couple the magnetic field and the conducting
fluid. For any given w ∈ V h and ψ ∈ Ch, we have

J> ⇔ S curl(Bk ×w) on Ch, J⇔ S curlψ ×Bk on V h. (14)

The relationships between these operators play an important role in devising a robust precondi-
tioner for the linearized problem.

3.2 Preconditioning for the linearized MHD equations

Let Lr be the stiffness matrix of −∆ on Sh and let σ > 0 be a constant. First we post-multiply
the second column of A by σL−1

r G and add it to the first column. This yields a matrix

A1 =


C + σSr G> J> 0

G 0 0 0
−J 0 F B>
0 0 B 0

 , Sr := G>L−1
r G.

5



Next, pre-multiplying the first row of A1 by −G(C + σSr)−1 and adding it to the second row, we
get a matrix

A2 =


C + σSr G> J> 0

0 −G(C + σSr)−1G> −G(C + σSr)−1J> 0
−J 0 F B>
0 0 B 0

 .

Note that G(C + σSr) represents the operator div
(
SR−1

m curl curl+σ∇∆−1 div
)
. Since

div
(
SR−1

m curl curl+σ∇∆−1 div
)

= σ∆∆−1 div = σ div,

formally we have

div
(
SR−1

m curl curl+σ∇∆−1 div
)−1

= σ−1 div .

This means that

G(C + σSr)−1 ≈ σ−1G.

Since J> represents the coupling term curl(SBk × vh), we have GJ> ≈ 0. Therefore,

G(C + σSr)−1J> ≈ 0.

Moreover, from [17], we know that C + σM is equivalent to C + σG>L−1
r G in spectrum where M

is the mass matrix on Ch. So one gets the approximation

A2 ≈ A3 :=


C + σM G> J> 0

0 −σ−1Lr 0 0
−J 0 F B>
0 0 B 0

 .

Next, pre-multiplying the first row of A3 by J(C + σM)−1 and adding it to the third row, we
get a matrix

A4 =


C + σM G> J> 0

0 −σ−1Lr 0 0
0 J(C + σM)−1G> F + J(C + σM)−1J> B>
0 0 B 0

 .

Since div
(
SR−1

m curl curl+σI
)

= σ div, formally we have div
(
SR−1

m curl curl+σI
)−1

= σ−1 div.
Here I is the identity operator. This means

G(C + σM)−1J> ≈ 0 or J(C + σM)−1G> ≈ 0.

So one obtains an approximation of A4 as follows

A4 ≈ A5 :=


C + σM G> J> 0

0 −σ−1Lr 0 0
0 0 F + J(C + σM)−1J> B>
0 0 B 0

 . (15)

This means that A−1
5 is actually a natural preconditioner for A, except for the difficulties in

computing the inverse of the block F + J(C + σM)−1J>. In the next subsection, we are going to
derive a good approximation of F + J(C + σM)−1J> so that its approximation inverse is easy to
compute iteratively.

3.3 An efficient preconditioner for the magnetic field-fluid coupling
block

From (15), the key step to compute A−1
5 is how to precondition the 2× 2 block

X =

(
C + σM J>

0 F + J(C + σM)−1J>
)
. (16)

6



We note that F + J(C + σM)−1J> is the precise Schur complement of the following matrix which
accounts for the coupling between Bh and uh

X̂ =

(
C + σM J>
−J F

)
. (17)

Remember from (14) that J> and J represent, respectively, the two multiplication operators
S curl(Bk × w) and S curlψ × Bk for any given w and ψ. So J(C + σM)−1J>w is the alge-
braic representation of

S curl
{(
SR−1

m curl curl+σI
)−1

S curl(Bk ×w)
}
×Bk (18)

Since (SR−1
m curl curl+σI)−1 commutates with curl, then (18) becomes

S2
{(
SR−1

m curl curl+σI
)−1

curl curl(Bk ×w)
}
×Bk

For σ > 0 sufficiently small, we adopt the following approximation

curl curl ≈ S−1Rm(SR−1
m curl curl+σI).

This yields an approximation of (18)

S2
{(
SR−1

m curl curl+σI
)−1

curl curl(Bk ×w)
}
×Bk ≈ SRm(Bk ×w)×Bk. (19)

Therefore, we get an approximation of the Schur complement

F + J(C + σM)−1J> ≈ S,

where S is the stiffness matrix associated with the bilinear form

F(uk;u,v) + SRm(Bk × u,Bk × v).

This should yield a good preconditioner of X, that is,(
C + σM J>

0 F + J(C + σM)−1J>
)
∼
(

C + σM J>
0 S

)
. (20)

Remark 3.1 In [31], Philips et al studied the preconditioner for two-dimensional MHD equations
where the magnetic field is discretized with H1(Ω)-conforming finite elements. Based on an exact
penalty formulation, they propose to approximate the coupling effect between magnetic field and
velocity by

βSRm(Bk ×w)×Bk,

where β > 0 is a parameter depending on the mesh size and the magnitude of Bk.
Compared with [31], for the 3D MHD equations and the H(curl,Ω)-conforming approximation

of B, our approximation to the coupling effect in the preconditioner level does not need the extra
parameter and has more advantages in practical computations such as adaptive computing, though
they are similar.

Now we demonstrate numerically the robustness of the preconditioner in (20) with respect to
the parameter σ and the mesh size h. Since it is the approximation J(C + σM)−1J> ≈ S that
is concerned here, we fix Re = 1.0 and γ = 1.2 and test the efficiency of the preconditioner for
different values of S and Rm.

We consider the system of linear equations: Find δu ∈ V h and δB ∈ Ch such that

−S(curl δB,B0 × v) + F(u0; δu,v) = (f ,v) ∀v ∈ V h, (21a)

SR−1
m (curl δB, curlϕ) + σ(δB,ϕ) + S(B0 × δuk, curlϕ) = 0 ∀ϕ ∈ Ch, (21b)

where

f = (1, sin(x), 0), u0 = (y, sin(x+ z), 1), B0 = (sin(y) + cos(z), 1− sin(x), 1).

7



Clearly the stiffness matrix of (21) is X̂ which is given in (17). In the following, we test three cases
of σ

σ = 1, 10−2, 10−4,

and three cases of physical parameters

S = Rm = 1, 10, 100.

The computational domain is the unit cube, namely, Ω = (0, 1)3.

Table 1: Number of preconditioned GMRES iterations for σ = 1.
h S = Rm = 1 S = Rm = 10 S = Rm = 100

0.216506 4 14 91
0.108253 4 14 74
0.054127 4 14 64
0.027063 4 14 61

Table 2: Number of preconditioned GMRES iterations for σ = 10−2.
h S = Rm = 1 S = Rm = 10 S = Rm = 100

0.216506 4 14 91
0.108253 4 14 73
0.054127 4 14 64
0.027063 4 14 61

Table 3: Number of preconditioned GMRES iterations for σ = 10−4.
h S = Rm = 1 S = Rm = 10 S = Rm = 100

0.216506 4 14 91
0.108253 4 14 73
0.054127 4 14 64
0.027063 4 14 61

Table 4: Number of preconditioned GMRES iterations for σ = 10−4 with S = F.
h S = Rm = 1 S = Rm = 10 S = Rm = 100

0.216506 3 14 82
0.108253 4 14 92
0.054127 4 15 97
0.027063 4 15 98

We use preconditioned GMRES method to solve (21) and the preconditioner is set by (20).
This means that we need solve the residual equation at each GMRES iteration

Seu = ru, (C + σM)eb = rb − J>eu, (22)

where rb, ru stand for the residual vectors and eb, eu stand for the error vectors. The tolerance
for the relative residual of the GMRES method is set by 10−6. The tolerances for solving the
two sub-problems in (22) are set by 10−3. From Table 1–3, we find that the convergence of the
preconditioned GMRES is uniform with respect to both σ and h. An interesting observation is
that, for large S = Rm, the number of GMRES iterations even decreases when h→ 0. In this case,
the magnetic field-fluid coupling becomes strong.

8



Table 4 shows the number of preconditioned GMRES iterations where the approximate Schur
complement S in (20) is replaced with the matrix F. It amounts to devise a preconditioner of X by
dropping its left lower block(

C + σM J>
−J F

)
∼
(

C + σM J>
0 F

)
. (23)

This is the classical Riesz map preconditioning in [20] or the operator preconditioning in [11].
Comparing Table 3 with Table 4, we find that, for large S = Rm, the convergence of GMRES
method with this preconditioner becomes slower and deteriorates when h→ 0. This becomes even
more apparent when solving the whole MHD system (see Table 7 for the computation of driven
cavity flow).

3.4 A preconditioner for the augmented Navier-Stokes equations

Combining (15) and (20), we get a preconditioner of A, that is, the inverse of

A6 :=


C + σM G> J> 0

0 −σ−1Lr 0 0
0 0 S B>
0 0 B 0

 . (24)

It is left to study the preconditioner for the lower right 2× 2 block of A6, namely,(
S B>
B 0

)
.

It amounts to solve the saddle point problem: Find (δu, δp) ∈ V h ×Qh such that

F(uk; δu,v) + SRm(Bk × δu,Bk × v)− (δp,div v) = Ru(v) ∀v ∈ V h, (25a)

−(div δu, q) = Rp(q) ∀ q ∈ Qh. (25b)

In [1,2], Benzi et al studied the Osceen equation(namelyBk = 0) and proposed to use the following
preconditioner (

F B>

0 −
(
R−1
e + γ

)−1 Qp

)−1

, (26)

where Qp is the mass matrix on Qh. It is proved that the above preconditioner is efficient for
relatively large Reynolds number. With uk = Bk = 0, namely the Stokes equations, we refer
to [22, 23] for similar arguments. And with uk = 0 for the time-dependent incompressible MHD,
the work in [24] give useful insight using pressure mass matrix as a subblock. Inspired by them,
we propose to precondition(

S B>
B 0

)
by

(
S B>

0 −
(
R−1
e + γ

)−1 Qp

)−1

. (27)

3.5 A robust preconditioner for the linearized MHD problem

Using (24) and (27), a preconditioner for A is given by the inverse of
C + σM G> J> 0

0 −σ−1Lr 0 0
0 0 S B>

0 0 0 −
(
R−1
e + γ

)−1 Qp

 , (28)

where the parameter γ can be used to tune the efficiency of the preconditioner. According to our
experience, any value γ ∼ O(1) works well for high Reynolds and moderate S and Rm. Moreover,
to fix the parameter σ, we set σ = SR−1

m so that C + σM is associated with the bilinear form

SR−1
m [(curlu, curlv) + (u,v)] .
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This yields our final preconditioner for the stiffness matrix A, defined by

P =


C + SR−1

m M G> J> 0
0 −S−1RmLr 0 0
0 0 S B>

0 0 0 −
(
R−1
e + γ

)−1 Qp


−1

. (29)

Now we are in the position to present the preconditioned GMRES algorithm for solving the
linear system (12) of the MHD problem. The idea is to use an approximation of P to precondition
A. For convenience in notation, given a vector x which has the same size as one column vector of A,
we let (xb,xr,xu,xp) be the vectors which consist of entries of x and correspond to (Bh, rh,uh, ph)
respectively.

Algorithm 3.2 (Preconditioned GMRES Algorithm) Given the tolerances ε ∈ (0, 1) and
ε0 ∈ (ε, 1), the maximal number of GMRES iterations N > 0, and the initial guess x(0) for the solution
of (12). Set k = 0 and compute the residual vector

r(k) = b− Ax(k).

While
(
k < N &

∥∥r(k)
∥∥

2
> ε

∥∥r(0)
∥∥

2

)
do

1. Solve Qpep = −
(
R−1
e + γ

)
r

(k)
p by the CG method with the diagonal preconditioning and toler-

ance ε0 for the relative residual.

2. Solve Seu = r
(k)
u − B>ep by preconditioned GMRES method with tolerance 10−3. The precon-

ditioner is the one level additive Schwarz method with overlap = 2 [4].

3. Solve Lrer = −SR−1
m r

(k)
r by preconditioned CG method with tolerance ε0. The preconditioner

is the algebraic multigrid method (AMG) solver [9].

4. Solve (C + SR−1
m M)eb = r

(k)
b − J>eu −G>er by preconditioned CG method with tolerance ε0

and the Hiptmair-Xu preconditioner [12].

5. Update the solution: x(k+1) := x(k) + e(k) .

6. Set k := k + 1 and compute the residual vector r(k) = b− Ax(k).

End while.

4 Numerical experiments

In this section, we present three numerical experiments to verify the convergence rate of finite
element approximation to the augmented Lagrangian(AL) formulation of the MHD, to demonstrate
the robustness of the preconditioner, and to demonstrate the scalability of the parallel solver.
The parallel code is developed based on the finite element package—Parallel Hierarchical Grids
(PHG) [35,36].

example 4.1 This example is to verify the convergence rate of the finite element discrete problem
(8). The analytic solutions are chosen as

u =

 sin z
2 cosx

0

 , p = sin y + cos 1− 1, B =

 cos y
0
0

 , r = 0.

The parameters are set by Re = S = Rm = 1 and γ = 1.

From Table 5, we find that the convergence rates for uh, ph, Bh are given by

‖u− uh‖H1(Ω) ∼ O(h2), ‖p− ph‖L2(Ω) ∼ O(h2), ‖B −Bh‖H(curl,Ω) ∼ O(h).

Remember that we are using the second-order Lagrangian finite elements for discretizing u, the
first-order Lagrangian finite elements for discretizing p, and the first-order Nédélec’s edge elements
in the second family for discretizingB. This means that the optimal convergence rates are obtained
for all variables.
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Table 5: Convergence rate of the finite element discrete problem.
h ‖u− uh‖H1 order ‖p− ph‖L2 order ‖B −Bh‖H(curl) order

0.4330 2.893e-03 — 1.848e-03 — 4.811e-02 —
0.2165 7.071e-04 2.033 3.908e-04 2.242 2.378e-02 1.017
0.1083 1.745e-04 2.019 9.197e-05 2.087 1.182e-02 1.009
0.0541 4.335e-05 2.009 2.214e-05 2.055 5.893e-03 1.004

example 4.2 (Driven Cavity Flow) The example is the benchmark problem of a driven cavity
flow. The righthand side is given by f = 0 and the boundary conditions are given by g = (g1, 0, 0)>

and Bs = (1, 0, 0)> where g1 = g1(z) is a continuous function and satisfies

g1 = 1 if z = 1; g1 = 0 if 0 ≤ z ≤ h,

where h is the mesh size. The parameters are set by

Re = S = 100, Rm = 1, γ = 1.5.

The purpose of this example is to verify the effectiveness of the mixed finite element method
for engineering benchmark problem and demonstrate the robustness of the discrete solver with
respect to the mesh size h. The computational domain is set by Ω = (0, 1)3. We set the tolerances
by ε = 10−6 and ε0 = 10−3 in Algorithm 3.2. The tolerance is 10−4 for the relative residual of the
nonlinear iterations. Table 6 shows the mesh sizes and the numbers of DOFs on the meshes which
we are using.

Table 6: The mesh sizes and the numbers of DOFs.
Mesh h DOFs for (B, r) DOFs for (u, p)
T1 0.2165 13281 15468
T2 0.1083 97985 112724
T3 0.0541 752001 859812
T4 0.0271 5890817 6714692

Table 7: Average GMRES iteration number:Re = 100.0, S = 100.0, Rm = 1.0.
Mesh Npicard ×Ngmres with BuBv Npicard ×Ngmres without BuBv
T1 6× 51.5 7× 108.1
T2 6× 43.5 7× 102.3
T3 6× 36.8 7× 192.6
T4 6× 32.5 > 7× 200.0

Let Npicard denote the number of nonlinear iterations to reduce the relative residual by a factor
10−4. Let Ngmres denote the number of preconditioned GMRES iterations for solving the linearized
problem (12). Therefore, Npicard ×Ngmres represents the total computational quantity for solving
the nonlinear problem (8). Remember that the approximate Schur complement S in (29) is defined
by the bilinear form

F(uk;u,v) + SRm(Bk × u,Bk × v).

As mentioned in the last paragraph of Subsection 3.3, dropping the second term gives S = F. In
Table 7, we show the effectiveness of the preconditioner P with and without the term BuBv :=
SRm(Bk×u,Bk×v) in S. An interesting observation is that, with BuBv, the number of GMRES
decays when the mesh is refined successively. However, without this term, the number of GMRES
iterations increases considerably.

Now we give the visualization of the simulation results. Firstly, Fig. 1 give the grayscale figure
of the magnitude of uh. Three 2D projection velocity streamlines of uh are show in Fig. 2. Fig. 3
shows the contour of the pressure ph.

Finally, Fig. 4 shows the distribution of of |Bh| on three cross-sections of Ω at x = 0.5, y = 0.5,
and z = 0.5 respectively.
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Figure 1: |uh| on three cross-sections x = 0.5, y = 0.5, and z = 0.5 respectively (from left to right).

Figure 2: Streamline of the projected velocity.Left: x = 0.5. Middle: y = 0.5. Right: z = 0.5.

Figure 3: The contour of the pressure ph. Left: x = 0.5. Middle: y = 0.5. Right: z = 0.5.

Figure 4: |Bh| on three cross-sections x = 0.5, y = 0.5, and z = 0.5 respectively (from left to
right).

example 4.3 (Scalability) This example also computes the driven cavity flow and is used to test
the scalability of the solver for moderate parameters. The physical parameters Re = S = Rm = 1,
and γ = 0.1.

The error tolerance of the nonlinear iteration is 10−4 relative to the initial residual. In step 2
of Algorithm 3.2, we replace the one level additive Schwarz preconditioner with the BoomerAMG
preconditioner [9]. This yields better parallel efficiency of the solver for moderate parameters. We
carried out the computations on 5 successively refined meshes. Table 8 shows the scalability of the
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discrete solver by parallel computing on five successively refined meshes. The parallel efficiencies
are above 35% and good for such a complex problem.

Table 8: Scalability for the discrete solver(Average Iter and Total time).
Mesh Total DOFs Cores Ngmres Time (s) Efficiency
T1 210709 1 16.3 106.6 —
T2 403221 2 14.5 128.2 83.2%
T3 850965 4 15.8 235.7 45.2%
T4 1611813 8 15.8 300.6 35.5%
T5 3151909 16 14.3 299.7 35.6%

For large Reynolds number, the main challenge for the scalability lies in step 2 of Algorithm 3.2,
that is, the solution of the system of algebraic equations

Seu = r(k)− B>ep.

We should admit that neither the one level additive Schwarz method nor the classical AMG method
can provide ideal scalability solely with our code. Multilevel-based preconditioning and stabiliza-
tions for the convection term should be resorted to. This will be our future work and will not be
discussed here.
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[25] J.C. Nédélec, A new family of mixed finite elements in R3, Numer. Math., 50 (1986), 57-81.

[26] M.-J. Ni and J.-F. Li, A consistent and conservative scheme for incompressible MHD flows at
a low magnetic Reynolds number. Part III: On a staggered mesh, J. Comp. Phys., 231 (2012),
281–298.

[27] M.-J. Ni, R. Munipalli, N.B. Morley, P. Huang, and M.A. Abdou, A current density conser-
vative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part I: On
a rectangular collocated grid system, J. Comp. Phys., 227 (2007), 174–204.

[28] M.-J. Ni, R. Munipalli, P. Huang, N.B. Morley, and M.A. Abdou, A current density conser-
vative scheme for incompressible MHD flows at a low magnetic Reynolds number. Part II: On
an arbitrary collocated mesh, J. Comp. Phys., 227 (2007), 205–228.

[29] M.A. Olshanskii, An iterative solver for the Oseen problem and numerical solution of incom-
pressible Navier-Stokes equations, Numer. Linear Algebra Appl., 6 (1999), 353–378.

[30] M.A. Olshanskii and A. Reusken, Grad-div stabilization for stokes equations, Math. Comp.,
73 (2004), 1699–1718.

[31] E.G. Philips, H.C. Elman, E.C. Cyr, J.N. Shadid, and R.P. Pawlowski, A block preconditioner
for an exact penalty formulation for stationary MHD, SIAM J. Sci. Comput., 36 (2014), 930-
951.
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