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S. Busto1, J. L. Ferŕın2, E. F. Toro3, M. E. Vázquez-Cendón4
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Abstract

In this paper the projection hybrid FV/FE method presented in [5] is extended to account for species
transport equations. Furthermore, turbulent regimes are also considered thanks to the k − ε model.
Regarding the transport diffusion stage new schemes of high order of accuracy are developed. The CVC
Kolgan-type scheme and ADER methodology are extended to 3D. The latter is modified in order to profit
from the dual mesh employed by the projection algorithm and the derivatives involved in the diffusion
term are discretized using a Galerkin approach. The accuracy and stability analysis of the new method
are carried out for the advection-diffusion-reaction equation. Within the projection stage the pressure
correction is computed by a piecewise linear finite element method. Numerical results are presented,
aimed at verifying the formal order of accuracy of the scheme and to assess the performance of the
method on several realistic test problems. Keywords: incompressible flows; k−ε species transport; finite

volume method; LADER; finite element method.

1 Introduction

Finite volume methods combined with approximate Riemann solvers have been successfully developed for
different kinds of flows in the 1980’s (see, [44] and the references therein). Focusing on the incompressible
case, pressure results in a Lagrange multiplier that adapts itself to ensure that the velocity satisfies
the incompressibility condition. In order to handle this situation, the typical explicit stage of finite
volume methods has to be complemented with the so-called projection stage where a pressure correction
is computed in order to get a divergence-free velocity. Many papers exist in the literature devoted to
introduce and analyse projection finite volume methods for incompressible Navier-Stokes equations (see,
for instance, [1] or [31]). In order to get stability, staggered grids have been used to discretize velocity and
pressure. While this can be done straightforwardly in the context of structured meshes, the adaptation
to unstructured meshes is more challenging (see [4], [19], [20], [32], [51], [52]).

On the other hand, projection methods have been also used in combination with finite element dis-
cretizations (see [22]). Within this approach, the divergence-free condition for the velocity is replaced by
an equation prescribing the divergence of the linear momentum density which is a conservative variable.

The scope of this paper is to extend the hybrid FV/FE projection method introduced in [5] for both
laminar and turbulent flows considering also transport of species. Furthermore, new methods to increase
the accuracy of the methodology are developed.

Starting from a 3D tetrahedral finite element mesh of the computational domain, the equation of the
transport-diffusion stage is discretized by a finite volume method associated with a dual finite volume
mesh where the nodes of the volumes are the barycentre of the faces of the initial tetrahedra. These
volumes, which allow us for an easy implementation of flux boundary conditions, have already been used,
among others, for the 2D shallow water equation (see [4]), for solving conservative and non conservative
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systems in 2D and 3D (see [46] and [17]) and for DG schemes employed to solve compressible Navier-
Stokes equations (see [39]). For time discretization we use the explicit Euler scheme. The convective
term is upwinded using the Rusanov scheme (see [44] and [55]). Concerning the projection stage, the
pressure correction is computed by continuous piecewise linear finite elements associated with the initial
tetrahedral mesh. The use of the above “staggered” meshes together with a simple specific way of passing
the information from the transport-diffusion stage to the projection one and vice versa leads to a stable
scheme. The former is done by redefining the conservative variable (i.e. the momentum density) constant
per tetrahedron. Conversely, the finite element pressure correction is redefined to constant values on the
faces of the finite volumes and then used in the transport-diffusion stage.

The coupling of Navier-Stokes equations and the turbulence model introduces turbulent viscosity
which is typically computed by solving an additional pair of advection-diffusion-reaction equations, that is
equations for the turbulent kinetic energy and the dissipation rate. One issue here is the time dependency
of the viscous terms. This requires the use of methods that are at least second-order accurate in space
and time for all terms involved (see [10] and [34]).

For advection equations, several approaches for constructing high-order methods have been put for-
ward. A classical example is the Lax-Wendroff scheme (see [26] and [27]). This scheme is linear in the
sense of Godunov and thus oscillatory, according to Godunov’s theorem, [21]. A major step forward in
this direction was the work of Kolgan [25], who introduced, for the first time, a numerical scheme that
circumvents Godunov’s theorem, via the construction of a non-linear scheme using non-linear reconstruc-
tions (see [6]). Following these works, a new Kolgan-type method has been presented for the shallow
water equations in [12]. In what follows, we will refer to this scheme as the CVC Kolgan-type scheme.

In the present paper, the CVC Kolgan-type scheme is analysed and implemented at the transport-
diffusion stage for the convective terms of the considered conservation laws: momentum conservation,
transport equations and k-ε model. The obtained scheme, second order in space and first order in time is
combined with a Galerkin approach of the gradients involved in the viscous term. An alternative option
will be the decomposition of the diffusion term into its orthogonal and non-orthogonal parts as introduced
in [5].

More advanced non-linear methods for advection dominated problems have appeared in the literature
since the introduction of Kolgan scheme. Some of them are: Total Variation Diminishing Methods (TVD),
Flux Limiter Methods, MUSCL-Hancock, semi-discrete ENO or WENO (see, for instance, [53], [54], [37],
[53], [23], [9], [36] and [29]). Comprehensive reviews are found in [44] and [28], for example. Focusing
on high order in time and space methodologies, we highlight the ADER approach, first put forward in
[47]. It is also a fully discrete approach that relies on non-linear reconstructions and the solution of the
generalised Riemann problem, to any order of accuracy. The resulting schemes are arbitrarily accurate
in both space and time in the sense that they have no theoretical accuracy barrier. An introduction to
ADER schemes is found in Chapters 19 and 20 of [44]. Further developments and applications are found,
for example, in [48], [18], [40], [49], [41], [45], [50], [42], [38], [43], [57], [15], [16], [14], [24], [7], [30].

In [8] an extension of ADER methodology to solve the advection-diffusion-reaction equation, admitting
space and time dependent diffusion coefficients was introduced. The present work includes a modification
of this scheme, the Local ADER method (LADER), which profits from the dual mesh. Moreover, an
ENO-based reconstruction is considered in order to prevent spurious oscillations.

To asses the performance of the methodology different manufactured solution tests are introduced and
the numerical results obtained with the developed computer code are shown. Furthermore, several clas-
sical test problems from fluid mechanics are presented and some results are compared with experimental
data (see [34] and [5]).

The paper is organized as follows. In Section 2 the mathematical model for incompressible flows is
recalled. Then, the RANS k−εmodel for the turbulence and the species transport equations are described.
In Section 3 the numerical discretization is detailed. Special attention is paid to the description of the
finite volume algorithm. Aiming to achieve a high order scheme, two different methodologies for the flux
terms are developed: the CVC Kolgan-type method, second order in space and first order in time, and the
LADER methodology, second order in space and time. The needed modifications on the approximation
of remaining terms of the equations to achieve a high order scheme are also presented and a Galerkin
approach to compute the diffusion terms is introduced. Finally, in Section 4 some of the numerical results
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obtained with the developed code are shown. On the one hand, the order of convergence of the method is
analysed using the method of manufactured solutions. On the other hand, several classical test problems
are analysed. The appendix includes the theoretical analysis of the LADER numerical method applied
to the one-dimensional advection-diffusion-reaction equation.

2 Governing equations

In this section, the system of equations to be solved is introduced. The model for incompressible newtonian
fluids, recalled in [5], is extended considering a turbulent regime and taking into account the transport
of species.

2.1 Mass conservation and momentum equations

The incompressible Navier-Stokes equations reduce to the mass conservation equation and the momentum
equation. Hence, the system of equations written in conservative variables reads

divwu = 0, (1)

∂wu

∂t
+ divFwu(wu) +∇π − div(τ) = fu. (2)

Standard notation is used:

• ρ is the density (kg/m3),

• p = π + π is the pressure (N/m2),

– π is the mean pressure,

– π is the pressure perturbation,

• u = (u1, u2, u3)t is the velocity vector (m/s),

• wu := ρu is the vector of the conservative variables related to the velocity (kg/s m2),

• Fwu is the flux tensor:

Fwu
i (wu) =

1

ρ
wiwu = uiwu, i = 1, 2, 3,

• τ is the viscous part of the Cauchy stress tensor,

• fu is a generic source term used for the manufactured test problems.

2.2 Turbulence model

Special care for the viscous part of Cauchy stress tensor, τ , is required for turbulent regimes. In order to
avoid the high computational cost of a direct simulation of the turbulence, the k − ε standard model is
used (see [3] and [13]). The Reynolds-averaged viscous stress tensor is given by

τ = τu + τR. (3)

Denoting µ the laminar viscosity (kg/(m s)), the averaged stress tensor, τu, reads

τu = µ
(
∇u +∇uT

)
. (4)

The fluctuation, τR, called the Reynolds tensor, is given by

τR = µt
(
∇u +∇uT

)
− 2

3
ρkI. (5)
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To obtain the turbulent viscosity,

µt = ρCµ
k2

ε
, (6)

two new variables are introduced: the turbulent kinetic energy, k (J/kg), and the energy dissipation rate,
ε (J/(kg s)). They are computed from a new pair of partial differential equations, namely,

∂wk
∂t

+ divFwk (wk,u)− div

[(
µ+

µt
σk

)
∇
(
wk
ρ

)]
+ wε = Gk + fk, (7)

∂wε
∂t

+ divFwε (wε,u)− div

[(
µ+

µt
σε

)
∇
(
wε
ρ

)]
+ C2ε

w2
ε

wk
= C1ε

wε
wk

Gk + fε, (8)

where

• wk (J), wε (J/s) are the conservative variables corresponding to k and ε, that is

wk := ρk, wε := ρε,

• Fwk , Fwε are the fluxes related to the turbulence variables,

Fwk
i (wk,u) = uiwk, Fwε

i (wε,u) = uiwε,

• Gk is the term of kinetic energy production, due to the mean velocity gradients, of the Reynolds
stress tensor,

Gk =
µt
2

 3∑
i=1

3∑
j=1

(
∂ui
∂xj

+
∂uj
∂xi

)2

, (9)

• fk, fε are the source terms related to manufactured solutions for analytical tests; they have zero
value in physical problems,

• σk = 1.0, σε = 1.3 are the turbulent Prandtl numbers,

• Cµ = 0.09, C1ε = 1.44, C2ε = 1.92 are the closure coefficients of the model whose values were taken
from the literature.

2.3 Species transport

The equations of transport of species are also included in the system to be solved:

∂wy

∂t
+ divFwy (wy,u)− div

[(
ρD +

µt
Sct

)
∇
(

1

ρ
wy

)]
= fy, (10)

with

• y = (y1, . . . , yNe)
T

the mass fraction vector of the species to be considered. yi corresponds to
species i and Ne is the total number of species to be considered,

• wy := ρy the conservative variable vector related to the mass fraction vector,

• Fwy the flux,
F

wy

i (wy,u) = uiwy

• D the mass diffusivity coefficient (m2/s),

• Sct = 0.7 the turbulent Schmidt number,

• fy the source term for manufactured test problems.
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2.4 Complete system

The complete system of equations to be solved is

divwu = 0, (11)

∂wu

∂t
+ divFwu(wu) +∇π − div(τ) = fu, (12)

∂wk
∂t

+ divFwk (wk,u)− div

[(
µ+

µt
σk

)
∇
(
wk
ρ

)]
+ wε = Gk + fk, (13)

∂wε
∂t

+divFwε(wε,u)−div

[(
µ+

µt
σε

)
∇
(
wε
ρ

)]
+C2ε

w2
ε

wk
=C1ε

wε
wk

Gk+fε, (14)

∂wy

∂t
+ divFwy (wy,u)− div

[(
ρD +

µt
Sct

)
∇
(

1

ρ
wy

)]
= fy. (15)

Moreover, the vector of the conservative variables is w = (wu, ŵ)T , with ŵ the vector of the conservative
variables related with turbulence, and species, i.e., ŵ = (wk, wε,wy)T . The flux tensor of the complete
system has three components:

F = (F1|F2|F3)(3+2+Ne)×3 , Fi (w) =
wi
ρ
w, i = 1, 2, 3. (16)

3 Numerical discretization

The numerical discretization of the complete system is performed by extending the projection method
first put forward in [5]. The developed numerical method solves, at each time step, equations (12)-(15)
with a finite volume method (FVM) and, so, an approximation of w is obtained. The next step is applying
projection to system (11)-(12). The pressure correction is provided by a piecewise linear finite element
method (FEM). In the post-projection step, an approximation of wu verifying the divergence condition,
(11), is obtained. Furthermore, the production terms of the turbulence equations are also computed
in this step to account for the corrected velocities. The reaction terms are treated via a semi-implicit
method.

We start by considering a two-stage in time discretization scheme: in order to get the solution at time
tn+1, we use the previously obtained approximations Wn of the conservative variables w(x, y, z, tn), Un

of the velocity u(x, y, z, tn) and πn of the pressure perturbation π(x, y, z, tn), and compute Wn+1 and
πn+1 from the following system of equations:

1

∆t

(
W̃n+1

u −Wn
u

)
+ divFwu(Wn

u) +∇πn − div(τn) = fnu , (17)

1

∆t

(
Wn+1

u − W̃n+1
u

)
+∇(πn+1 − πn) = 0, (18)

divWn+1
u = 0, (19)

1

∆t

(
W̃n+1
k −Wn

k

)
+ divFwk (Wn

k ,U
n)− div

[(
µ+

µt
σk

)
∇W

n
k

ρ

]
= 0, (20)

1

∆t

(
Wn+1
k − W̃n+1

k

)
+Wn

ε −Gn+1
k = fnk , (21)

1

∆t

(
W̃n+1
ε −Wn

ε

)
+ divFwε (Wn

ε ,U
n)− div

[(
µ+

µnt
σε

)
∇W

n
ε

ρ

]
= 0, (22)

1

∆t

(
Wn+1
ε − W̃n+1

ε

)
+ C2ε

Wn+1
ε Wn

ε

Wn
k

− C1ε
Wn
ε

Wn
k

Gn+1
k = fnε , (23)

1

∆t

(
W̃n+1

y −Wn
y

)
+divFwy

(
Wn

y,U
n
)
−div

[(
ρD +

µnt
Sct

)
∇
(

1

ρ
Wn

y

)]
= 0, (24)
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1

∆t

(
Wn+1

y − W̃n+1
y

)
= fny . (25)

Concerning the discretization of mass conservation and momentum equations, by adding equations (17)-
(18), we easily see that the scheme is actually implicit for the pressure term. However, the writing above
shows that the pressure and the velocity can be solved in three uncoupled stages. The first of them
corresponds to equation (17) and will be called the transport-diffusion stage; it is explicit and allows

us to compute the intermediate approximation of the conservative variables W̃n+1
u (we notice that, in

general, this approximation does not satisfy the divergence condition (19)). The second one, to be called
the projection stage, is implicit; it consists of solving the coupled equations (18) and (19) with a finite
element method to obtain the pressure correction δn+1 := πn+1−πn. The last one is the post-projection
stage; the intermediate approximation for the velocity conservative variables is updated with the pressure
correction providing the final approximations Wn+1

u and πn+1 (see [5] for further details).
As a novelty in this paper, for the remaining conservation laws the approximation of the conservative

variables is obtained in two steps. At the transport-diffusion stage we compute an approximation of

the conservative variables, W̃n+1
k , W̃n+1

ε and W̃n+1
y , taking into account the corresponding flux and

diffusion terms. Let us remark that at this stage the update of the approximations involves all the
neighbouring nodes of the finite volume Ci. On the other hand, the discretization of the source terms
related to manufactured solutions or other production terms in equations (21), (23) and (25) involves
pointwise evaluations at the cell Ci which will be computed at the post-projection stage. Furthermore, the
production terms of the turbulence equations are computed taking into account the updated velocities
and the reaction terms are treated via a semi-implicit method. As a result, we obtain the updated

conservative variables W̃n+1
k , W̃n+1

ε and W̃n+1
y .

Summarizing, the overall method consists of:

• Transport-diffusion stage: equations (17), (20), (22) and (24) are solved by a FVM.

• Projection stage: the pressure correction δn+1 := πn+1 − πn is obtained by solving equations (18)
and (19) with a FEM.

• Post-projection stage: the W̃n+1
u computed at the first stage is updated by using δn+1 in order to

obtain another approximation Wn+1
u , satisfying the divergence condition (19). Next, the turbulence

and species variables are updated from equations (21), (23) and (25), respectively.

3.1 A dual finite volume mesh

For the space discretization we consider a 3D unstructured tetrahedral finite element mesh {Tk, i =
1, . . . , nel}. From this mesh we build a dual finite volume mesh as introduced in [5] and [4]. The nodes,
to be denoted by {Ni, i = 1, . . . , nvol}, are the barycenters of the faces of the initial tetrahedra. In Figure
1 node Ni is the barycenter of the face defined by vertices V1, V2 and V3 (see Figure 1). This is why we
will call this finite volume of face-type.
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V2

V3

V1

V4

V ′4

B

B′
Ni

V2

V3

V1

V4

B

Ni

Figure 1: Interior (left) and boundary (right) finite volumes of the face-type.

The notation employed is as follows:

• Each interior node Ni has as neighboring nodes the set Ki consisting of the barycentres of the faces
of the two tetrahedra of the initial mesh to which it belongs.

• The face Γij is the interface between cells Ci and Cj . Nij is the barycentre of the face.

• The boundary of Ci is denoted by Γi =
⋃

Nj∈Ki

Γij .

• Finally, η̃ij represents the outward unit normal vector to Γij . We define ηij := η̃ij ||ηij ||, where,
||ηij || := Area(Γij).

3.2 Finite volume discretization

The discrete approximation of the conservative variables is taken to be constant per finite volume, as it
represents an integral average. By integrating (17), (20), (22) and (24), on Ci and applying the Gauss
Theorem, we get

1

∆t

(
W̃n+1

u, i −Wn
u, i

)
+

1

|Ci|

∫
Γi

Fwu (Wn
u) η̃idS +

1

|Ci|

∫
Ci

∇πndV − 1

|Ci|

∫
Γi

(τn) η̃idS =
1

|Ci|

∫
Ci

fnudV,

(26)

1

∆t

(
W̃n+1
k, i −W

n
k, i

)
+

1

|Ci|

∫
Γi

Fwk (Wn
k ,U

n) η̃idS− 1

|Ci|

∫
Γi

[(
µ+

µnt
σk

)
∇W

n
k

ρ

]
η̃idS = 0, (27)

1

∆t

(
W̃n+1
ε, i −W

n
ε, i

)
+

1

|Ci|

∫
Γi

Fwε (Wn
ε ,U

n) η̃idS− 1

|Ci|

∫
Γi

[(
µ+

µnt
σε

)
∇W

n
ε

ρ

]
η̃idS = 0, (28)

1

∆t

(
W̃n+1

y, i −Wn
y, i

)
+

1

|Ci|

∫
Γi

Fwy
(
Wn

y,U
n
)
η̃idS− 1

|Ci|

∫
Γi

[(
ρD +

µnt
Sct

)
∇
(

1

ρ
Wn

y

)]
η̃idS = 0,

(29)

where |Ci| denotes the volume of Ci and η̃i is the outward unit normal of Γi at each point. Within the
following sections we will detail how to approximate the former integrals.
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3.3 Numerical flux

We define the global normal flux on Γi as Z(Wn, η̃i) := F(Wn)η̃i. Thanks to the shape of the convective
terms in equations (26)-(29) their integrals can be computed globally. We first split Γi into the cell
interfaces Γij , namely ∫

Γi

F(Wn)η̃i dS =
∑
Nj∈Ki

∫
Γij

Z(Wn, η̃ij) dS. (30)

Then, in order to obtain a stable discretization, the integral on Γij is approximated by an upwind scheme
using a numerical flux function φ:∫

Γij

Z(Wn, η̃ij)dS ≈ φ
(
Wn

i ,W
n
j ,ηij

)
. (31)

The expression of φ depends on the upwind scheme. In this paper, we consider the Rusanov scheme (see
[33]):

φ
(
Wn

i ,W
n
j ,ηij

)
=

1

2
(Z(Wn

i ,ηij) + Z(Wn
j ,ηij))

−1

2
αRS(Wn

i ,W
n
j ,ηij)

(
Wn

j −Wn
i

)
, (32)

where the coefficient αRS can be computed in a coupled way for all the equations, so that, it is defined
by

αRS(Wn
i ,W

n
j ,ηij) := max

{
2 |Un

i · ηij | , 2
∣∣Un

j · ηij
∣∣} (33)

or, we can consider

αwu

RS(Wn
i ,W

n
j ,ηij) := max {2 |Ui · ηij | , 2 |Uj · ηij |} (34)

for the momentum equation and

α̂RS(Wn
i ,W

n
j ,ηij) := max {|Ui · ηij | , |Uj · ηij |} (35)

for the remaining equations.
Directly using the value obtained for the conservative variables at each node at the previous time

step, Rusanov scheme is first order in space and time. Two different methodologies will be introduced in
order to obtain second order schemes: the Kolgan-type scheme and the LADER scheme.

3.3.1 Kolgan-type scheme

Kolgan, [25], introduced for the first time a non linear high order scheme that circumvents Godunov’s
theorem. In order to do that, he proposed the use of limited slopes in the reconstruction of the conservative
values used to build the flux function. Following this work the CVC Kolgan-type scheme was introduced
in [11] and [12] for the shallow water equations. The new scheme, which is second order accuracy in space
and first order in time, can be extended to the resolution of the Navier-stokes equations. This method is
based on the idea of replacing the conservative values Wn

i , Wn
j in the numerical viscosity by improved

interpolations given by Wn
iL, Wn

jR at both sides of each face Γij ,

Wn
iL = Wn

i + ∆ijL, Wn
jR = Wn

j −∆ijR,

where ∆ijL and ∆ijR are the left and right limited slopes at the face defined through the Galerkin
gradients computed on the upwind tetrahedra, TijL and TijR, respectively (see Figure 2 for the 2D case).
Moreover, we avoid spurious oscillations by taking into account a minmod-type limiter (see [25]):

∆ijL = Lim

(
1

2
(∇Wn)TijL

NiNj ,W
n
j −Wn

i

)
, (36)
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Figure 2: Construction of a dual 2D mesh and auxiliary triangles. Left: Finite elements of the original
triangular mesh (black). Centre: Finite volume Ci (purple). Right: Upwind triangles (green).

∆ijR = Lim

(
1

2
(∇Wn)TijR

NiNj ,W
n
j −Wn

i

)
. (37)

Following [12], this high-order extrapolation is used only in the upwind contribution of the numerical
flux retaining the conservative variables in the centred part. So that, the numerical flux reads

φ
(
Wn

i ,W
n
j ,W

n
iL,W

n
jR,ηij

)
=

1

2

(
Z(Wn

i ,ηij) + Z(Wn
j ,ηij)

)
− 1

2
αRS

(
(Wn

iL,W
n
jR,ηij

) (
Wn

jR −Wn
iL

)
. (38)

3.3.2 LADER

ADER methodology, first put forward in [47] for the linear advection equation on Cartesian meshes
and extended, for the one-dimensional case, in [8] to account for the diffusion and reaction terms, is
applied in order to obtain a second order in time and space scheme. More precisely, a modification of
the method is proposed to profit from the dual mesh structure to reduce the size of the stencil and,
hence, the computational cost. Due to the small neighbourhood involved on the calculations related
to each node, we will name this new scheme as LADER. The LADER scheme for the one-dimensional
advection-diffusion-reaction equation is presented in A; the stability and truncation error analysis are
also given.

To extend LADER to the three dimensional case four relevant issues must be taken into account:

1. The advection depends on the diffusion terms. That is, within the computation of the flux we
will use Cauchy-Kovalevskaya procedure to obtain evolved values for the variables which contain
information from both terms.

2. The evolved variables obtained for computing the diffusion term neglect the presence of the advec-
tion term.

3. As a consecuence of 1 and 2, advection and diffusion terms need to be computed using the proper
evolved variables, which will be different for each of them.

4. To compute the gradients needed to obtain the evolved variables we can profit from the FE mesh
and use a Galerkin approach.

In this section, for ease of comprehension, we will assume that the diffusion term only accounts for the
velocity gradient, the remaining terms can be computed analogously. Let us consider W an approximation
of a scalar conservative variable and α the related diffusion coefficient, the proposed method includes the
following steps:
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Step 1. Data reconstruction. Reconstruction of the data in terms of first degree polynomials is consid-
ered. At each finite volume we define four polynomials each of them at the neighbourhood of one
of the boundary faces. Focusing on a face Γij its two related reconstruction polynomials are

piij(N) = Wi + (N −Ni) (∇W )
i
ij , pjij(N) = Wj + (N −Nj) (∇W )

j
ij . (39)

A possible election of the gradients is

(∇W )
i
ij = ∇WTijL

, (∇W )
j
ij = ∇WTijR

. (40)

which will result on a linear reconstruction as it is based on a fixed stencil.

In order to circumvent Godunov’s theorem and prevent spurious oscillations, a non-linear recon-
struction is considered (see [44]). More precisely, the ENO (Essentially Non-Oscillatory) interpola-
tion method is applied. The slopes are adaptively chosen as follows:

(∇W )
i
ij =


(∇W )TijL

if
∣∣∣(∇W )TijL

· (Nij −Ni)
∣∣∣ ≤ ∣∣∣(∇W )Tij

· (Nij −Ni)
∣∣∣ ,

(∇W )Tij
if
∣∣∣(∇W )TijL

· (Nij −Ni)
∣∣∣ > ∣∣∣(∇W )Tij

· (Nij −Ni)
∣∣∣ ;

(∇W )
j
ij =


(∇W )TijR

if
∣∣∣(∇W )TijR

· (Nij −Nj)
∣∣∣ ≤ ∣∣∣(∇W )Tij

· (Nij −Nj)
∣∣∣ ,

(∇W )Tij
if
∣∣∣(∇W )TijR

· (Nij −Nj)
∣∣∣ > ∣∣∣(∇W )Tij

· (Nij −Nj)
∣∣∣ ;

where (∇W )Tij
is the gradient of the velocity at the auxiliary tetrahedra which intersects the face.

Step 2. Computation of boundary extrapolated values at the barycenter of the faces, Nij :

WiNij
= piij(Nij) = Wi + (Nij −Ni) (∇W )

i
ij , (41)

Wj Nij
= pjij(Nij)Wj + (Nij −Nj) (∇W )

j
ij . (42)

Step 3. Computation of the flux terms with second order of accuracy using the mid-point rule. Taylor
series expansion in time and Cauchy - Kovalevskaya procedure are applied to locally approximate
the conservative variables at time ∆t

2 . This methodology accounts for the contribution of the
advection and diffusion terms to the time evolution of the flux term. The resulting evolved variables
read

WiNij
= WiNij

− ∆t

2Lij

(
Z(WiNij

,ηij) + Z(Wj Nij
,ηij)

)
+

∆t

2L2
ij

(
αiNij

(∇W )
i
ij ηij + αjNij

(∇W )
j
ij ηij

)
, (43)

Wj Nij = Wj Nij −
∆t

2Lij

(
Z(WiNij ,ηij) + Z(Wj Nij ,ηij)

)
+

∆t

2L2
ij

(
αiNij (∇W )

i
ij ηij + αjNij (∇W )

j
ij ηij

)
. (44)

We have denoted Lij = min
{
|Ci|

S(Ci)
,
|Cj |

S(Cj)

}
with S(Ci) the area of the surface of cell Ci. Two

different options will be considered in the scheme concerning the evolved variables. The first one
corresponds to the previous definition of the evolved variables. Meanwhile, the second one neglects
the evolution of the diffusion term.

Step 4. Computation of the numerical flux considering Rusanov scheme.

φ
(
Wn
iNij

,Wn
j Nij

,ηij

)
=

1

2

(
Z
(
Wn
iNij

,ηij

)
+ Z

(
Wn
j Nij

,ηij

))
−1

2
αRS

(
Wn
iNij

,Wn
j Nij

,ηij

)(
Wn
j Nij

−Wn
iNij

)
. (45)
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3.4 Viscous terms

We come next to describe the computation of the integrals involving the viscous terms. First, applying
Gauss’ theorem we relate the volume integral of the diffusion term with a surface integral over the
boundary, Γi. Next, this integral is split into the integrals over the cell interfaces Γij . Thus, the viscous
term of the momentum conservation equation reads∫

Ci

divτndV =
∑
Nj∈Ki

∫
Γij

τnη̃ij dS

=
∑
Nj∈Ki

∫
Γij

[
(µ+ µnt )

(
∇Un + (∇Un)

T
)
− 2

3
ρKnI

]
η̃ij dS. (46)

Two different approaches can be considered in order to compute the above integral.
On the one hand, decomposition with semi-implicit and explicit discretizations can be applied when

using the CVC Kolgan-type scheme. This methodology splits the diffusion flux into its orthogonal and
non-orthogonal parts and relax the stability condition on the time step size (see [5] for further details).

On the other hand, the dual mesh ease the use of Galerkin approach to compute the derivatives
involved in (46). We introduce a numerical diffusion function ϕu such that∫

Γij

(µ+ µnt )∇Unη̃ijdS ≈ ϕu

(
Un
i ,U

n
j , µ

n
t, i, µ

n
t, j ,ηij

)
(47)

and we consider

ϕu

(
Un
i ,U

n
j , µ

n
t, i, µ

n
t, j ,ηij

)
=
(
µ+ µnt, ij

)
(∇Un)Tij

ηij , (48)

with

µnt, ij =
1

2

(
µnt, i + µnt, j

)
. (49)

Since we know the value of the turbulent kinetic energy at the nodes of the finite volumes, we approximate
the turbulent kinetic energy term as the average of the values obtained at the two nodes related to the
face

−
∫

Γij

2

3
Wn
k η̃ijdS = −1

3

(
Wn
k, i +Wn

k, j

)
ηij . (50)

Finally, the viscous terms for the remaining equations are obtained equally to the gradient term of
the momentum equation:∫

Ci

1

ρ
div
(
Dn∇Ŵn

)
dV =

1

ρ

∑
Nj∈Ki

∫
Γij

Dn∇Ŵn η̃ij dS, (51)

where

Dn =

 Dn
k 0 0

0 Dn
ε 0

0 0 Dn
y

 =


µ+

µnt
σk

0 0

0 µ+
µnt
σε

0

0 0 ρD +
µnt
Sct

. (52)

Thus, we can introduce the diffusion flux function, ϕŵ, verifying∫
Γij

Dn∇Ŵnη̃ijdS ≈ ϕŵ

(
Ŵn

i ,Ŵ
n
j , µ

n
t, i, µ

n
t, j ,ηij

)
,

ϕŵ

(
Ŵn

i ,Ŵ
n
j , µ

n
t, i, µ

n
t, j ,ηij

)
= Dn

ij

(
∇Ŵn

)
Tij

ηij (53)

The above methodologies are used to approximate the viscous terms when choosing a first order
method or the CVC Kolgan-type scheme to compute the advection term. Nevertheless, the LADER
methodology requires a special treatment.
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3.4.1 LADER approach: the viscous terms

As was already introduced in Section 3.3.2, to apply LADER and to obtain a second order in space
and time scheme, instead of computing the diffusion flux functions, ϕu and ϕ

Ŵ
, with the value of the

variables at the previous time step, Un, Kn, En and Yn, its is necessary to use some evolved values,
Un, Kn, En and Yn.

It is important to remark that the former evolved variables do not match the already computed ones
for the flux term (see A for a detailed analysis of the scalar advection-diffusion-reaction equation). Taylor
series expansion in time and Cauchy-Kovalevskaya procedure are applied neglecting the advection term
so that a second order in space and time scheme is attained:

Un = Un +
∆t

2

{
div

[
(µ+ µnt )∇Un − 2

3
ρKnI

]}
, (54)

Kn = Kn +
∆t

2

[(
µ+

µnt
σk

)
∇Kn

]
, (55)

En = En +
∆t

2

[(
µ+

µnt
σε

)
∇En

]
, (56)

Yn = Yn +
∆t

2

[(
ρD +

µnt
Sct

)
∇Yn

]
. (57)

In what follows, we describe the computation of the evolved velocities at an arbitrary node Ni:

1. The gradients of the original variables are computed at each auxiliary tetrahedra of the FE mesh,
Tij (see, on the 2D representation in Figure 2, the triangle with green contour). The value of
the gradient at each node, Ni, is obtained as the average of the values on the two tetrahedra
containing the node, TijL (green filled triangle in Figure 2) and Tij . Taking into account the
viscosity coefficients and the turbulent kinetic energy term, we introduce the auxiliary variable:

Vn
i :=

(
µ+ µnt, i

) 1

2

(
(∇Un)TijL

+ (∇Un)Tij

)
− 2

3
ρKn

i I. (58)

2. The divergence is computed as the average of the divergences of Vn obtained on the auxiliary
tetrahedra:

Un
i = Un

i +
∆t

4
tr
(

(∇Vn)TijL
+ (∇Vn)Tij

)
. (59)

3. The diffusion function ϕu is evaluated on the evolved variables:

ϕu

(
Un
i ,U

n
j , µ

n
t, i, µ

n
t, j ,ηij

)
=
(
µ+ µnt, ij

) (
∇Un

)
Tij

ηij . (60)

The remaining evolved variables are similarly obtained. Hence the related diffusion function reads

ϕŵ

(
Ŵn

i ,Ŵ
n
j , µ

n
t, i, µ

n
t, j ,ηij

)
= Dn

ij

(
∇Ŵn

)
Tij

ηij . (61)

3.5 Pressure term

For the integral of the pressure gradient we follow [5]. We split the boundary Γi into the cell interfaces
Γij using Gauss’ theorem and we compute the pressure as the arithmetic mean of its values at the
three vertices of face Γij and the barycentre of the tetrahedra to which the face belongs. Then, the
corresponding approximation of the integral is given by∫

Γij

πn η̃ijdS ≈
[

5

12
(πn(V1) + πn(V2)) +

1

12
(πn(V3) + πn(V4))

]
ηij . (62)
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3.6 Projection stage

Within the projection stage, the pressure is computed using a standard finite element method. The
incremental projection method presented in [22] is adapted to solve (18)-(19) obtaining the following
weak problem:

Find δn+1 ∈ V0 :=
{
z ∈ H1(Ω) :

∫
Ω
z = 0

}
verifying∫

Ω

∇δn+1 · ∇z dV =
1

∆t

∫
Ω

W̃n+1 · ∇z dV − 1

∆t

∫
∂Ω

Gn+1z dS ∀z ∈ V0, (63)

where δn+1 := πn+1 − πn (see [5] for further details).

3.7 Post-projection stage

Once the pressure is computed, we can update Wn+1
u with ∇δn+1

i , that is,

Wn+1
u, i = W̃n+1

u, i + ∆t∇δn+1
i . (64)

The previous computation of the updated velocities allows for an implicit approach of the production
term Gk on the turbulence equations. Meanwhile, for the dissipative terms a semi-implicit scheme is
used:

Wn+1
k, i − W̃

n+1
k, i

∆t
+Wn

ε, i −Gk, i(Un+1) = fnk, i, (65)

Wn+1
ε, i − W̃

n+1
ε, i

∆t
+ C2ε

Wn
ε, i

Wn
k, i

Wn+1
ε, i − C1ε

Wn
ε, i

Wn
k, i

Gk, i(U
n+1) = fnε, i (66)

where the derivatives involved in the production term, Gk, i(U
n+1), are computed as the averaged of the

auxiliary tetrahedra related to the node Ni. Finally, the source terms fŵ are pointwise evaluated.

3.8 Boundary conditions

The boundary conditions were defined following [5]:

• Dirichlet boundary conditions for inviscid fluids: the normal component of the conservative variable
is set at the boundary nodes.

• Dirichlet boundary conditions for viscous fluids: the value of the conservative variable is imposed
at the boundary nodes.

• Neumann boundary conditions: the definition of W̃n+1 takes into account the inflow/outflow
boundary condition with no need for any additional treatment.

Moreover, in the manufactured tests designed to analyse the order of accuracy of the numerical discretiza-
tions, it is a usual practice to impose the values of the exact solution at the boundary nodes. This practice
avoids that the accuracy of the method can be affected by the treatment of the boundary conditions.
From the mathematical point of view, it is like considering Dirichlet boundary conditions.

4 Numerical results

In this section, we present the results obtained for several test problems. In order to define the time step,
two different options are implemented in the code. On the one hand, we can simply introduce a fixed
time step. On the other hand, we can provide the CFL from which the code will compute the time step
at each time iteration. The latest option is the one chosen to run the test cases presented in this paper.
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Therefore, to determine the time step at each time iteration, we compute a local value for the time step
at each cell Ci,

∆tCi
=

CFLL2
i

2 |Ui|Li + max

{
µ+ µt, i, ρD +

µt, i
Sct

} (67)

with Li := |Ci|
S(Ci)

. Finally, as global time step at each time iteration, ∆t, we choose the minimum time

steps obtained at each cell.

Remark 1. The above definition of ∆tCi
is valid if the transport of species equation is solved, otherwise

its value is given by

∆tCi =
CFLL2

i

2 |Ui|Li + µ+ µt, i
. (68)

4.1 Manufactured test 1. Laminar flow

The first test to be posed was obtained using the method of the manufactured solutions (MMS). We

consider the domain Ω = [0, 1]
3

and we assume the flow being defined by

ρ = 1, (69)

π(x, y, z, t) = cos(πt(x+ y + z)), (70)

u(x, y, z, t) =
(
sin(πyt) cos(πzt), − cos(πz3t), exp(−2πxt2)

)T
, (71)

with µ = 10−2. The related source terms are included in C.
To perform the error and order of accuracy analysis we employ the three uniform meshes with different

cell sizes presented in Table 1. We have denoted N + 1 the number of points along the edges, h = 1/N ,

Mesh N Elements Vertices Nodes V mh (m3) VMh (m3)

M1 4 384 125 864 6.51E − 04 1.30E − 03
M2 8 3072 729 6528 8.14E − 05 1.63E − 04
M3 16 24576 4913 50688 1.02E − 05 2.03E − 05

Table 1: Manufactured test 1. Laminar flow. Mesh features.

V mh the minimum volume of the finite volumes and VMh the maximum volume of the finite volumes.
Four different methods are used to solve the problem: the first order method presented in [5], CVC

method with an orthogonal decomposition of the diffusion term (CVC-orth), CVC method combined
with a Galerkin approach for the diffusion term (CVC-G) and LADER. The errors and orders, depicted
in Table 2, were computed as follows:

E(π)Mi
= ‖π − πMi

‖l2(L2(Ω)) E(wu)Mi
= ‖wu −wuMi

‖l2(L2(Ω)3) , (72)

oπMi/Mj
=

log
(
E(π)Mi

/E(π)Mj

)
log
(
hMi

/hMj

) , owuMi/Mj
=

log
(
E(wu)Mi

/E(wu)Mj

)
log
(
hMi

/hMj

) . (73)

We can observe that CVC-G method provides an order of convergence close to two. This is in accordance
with the theoretical order of this scheme, first order in time and second order in space, and the high time-
dependency of the solution. Whereas, with LADER the expected second order of accuracy is achieved.
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Method Variable EM1
EM2

EM3
oM1/M2

oM2/M3

Order 1
π 1.24E − 01 5.70E − 02 2.96E − 02 1.12 0.95
wu 6.40E − 02 3.32E − 02 1.78E − 02 0.95 0.90

CVC-orth.
π 6.30E − 02 1.91E − 02 8.84E − 03 1.72 1.11
wu 5.51E − 02 2.06E − 02 8.95E − 03 1.42 1.20

CVC-G
π 5.98E − 02 1.58E − 02 4.58E − 03 1.92 1.78
wu 5.41E − 02 1.88E − 02 6.52E − 03 1.52 1.53

LADER
π 4.10E − 02 8.74E − 03 2.03E − 03 2.23 2.11
wu 2.61E − 02 5.76E − 03 1.24E − 03 2.18 2.22

Table 2: Manufactured test1. Laminar flow. Observed errors and convergence rates. CFL = 1.

4.2 Manufactured test 2. Turbulent flow with species transport

The second academic test to be considered is a modification of Test 1 to account for the turbulence and
species transport equations. Let us define the flow as

ρ = 1, (74)

π(x, y, z, t) = cos(πt(x+ y + z)), (75)

u(x, y, z, t) =
(
sin(πyt) cos(πzt), − cos(πz3t), exp(−2πxt2)

)T
, (76)

k(x, y, z, t) = sin(πxt) + 2, (77)

ε(x, y, z, t) = exp(−πzt) + 1, (78)

y(x, y, z, t) = sin(πxt) + 2. (79)

with parameters µ = 10−2, D = 10−3. For the exact solution to verify the equations, taught expressions
of the source terms have to be taken. They have been included in C.

We consider the meshes already defined in Table 1 and a CFL = 10 ( the reason why this large
value of CFL is admitted was studied in [8]). Dirichlet boundary conditions are set for all the equations
on the boundary. The computed errors are presented in Table 3. The results obtained for CVC-orth
confirm that using only second order in space for computing the flux terms and neglecting the non
orthogonal component will not capture properly the turbulence. Second order in space must also be used
to approximate the diffusion terms and the whole flux should be computed. Furthermore, a second order
in time scheme improves the results and order attained.

4.3 Test 3. Gaussian sphere

The next problem to be analysed is the Gaussian sphere test introduced in [2] and [34]. We consider a
normal distribution function in the domain Ω = [−0.9, 0.9]× [−0.9, 0.9]× [−0.3, 0.3] with standard devi-
ation 0.08 and mean 0.25. The density is one, the velocity vector is defined as u(x, y, z, t) = (−y, x, 0)T

and we assume that the diffusion matrix is given by D = µ. Hence, the solution of the problem is given
by

y(x, y, z, t) =

(
σ0

σ(t)

)3

exp

(
−r

2σ(t)2

)
(80)

with

r(x, y, z, t) = (x̄+ 0.25)
2

+ ȳ2 + z2, σ(t) =
√
σ2

0 + 2tD, (81)

x̄ = x cos(t) + y sin(t), ȳ = −x sin(t) + y cos(t). (82)

The flow definition is completed setting the source terms

fu(x, y, z, t) = (−x,−y, 0)T , fy(x, y, z, t) = 0, (83)
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Method Variable EM1
EM2

EM3
oM1/M2

oM2/M3

Order 1

π 6.97E − 01 5.52E − 01 4.93E − 01 0.34 0.16
wu 4.40E − 02 2.80E − 02 2.18E − 02 0.65 0.36
wk 3.85E − 02 2.45E − 02 2.09E − 02 0.65 0.23
wε 1.53E − 02 8.47E − 03 6.40E − 03 0.85 0.40
wy 2.93E − 02 2.04E − 02 1.76E − 02 0.52 0.21

CVC-orth.

π 6.23E − 01 5.13E − 01 4.75E − 01 0.28 0.11
wu 4.08E − 02 2.65E − 02 2.10E − 02 0.62 0.33
wk 3.18E − 02 2.13E − 02 1.95E − 02 0.58 0.13
wε 1.51E − 02 8.17E − 03 6.15E − 03 0.89 0.41
wy 2.51E − 02 1.85E − 02 1.68E − 02 0.44 0.14

CVC-G

π 2.70E − 01 7.60E − 02 2.09E − 02 1.83 1.86
wu 1.50E − 02 5.18E − 03 1.49E − 03 1.54 1.80
wk 1.54E − 02 3.24E − 03 8.22E − 04 2.25 1.98
wε 1.06E − 02 2.39E − 03 6.35E − 04 2.15 1.91
wy 7.27E − 03 1.89E − 03 4.86E − 04 1.94 1.96

LADER

π 2.68E − 01 7.61E − 02 2.10E − 02 1.82 1.86
wu 1.51E − 02 5.17E − 03 1.50E − 03 1.55 1.79
wk 1.37E − 02 2.51E − 03 5.89E − 04 2.45 2.09
wε 9.87E − 03 1.80E − 03 4.09E − 04 2.46 2.14
wy 7.25E − 03 1.60E − 03 3.79E − 04 2.18 2.08

Table 3: Manufactured test 2. Turbulent flow. Observed errors and convergence rates. CFL = 10.
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and considering Dirichlet boundary conditions.
In order to analyse the accuracy in time and space, five structured meshes were generated. The

properties of these meshes can be seen in Table 4, where h denotes the size of the cubes used to generate
the tetrahedra of the finite element mesh.

Mesh Finite elements Vertices Nodes h

M1 11664 2527 24408 0.1
M2 18522 3872 38514 0.0857
M3 54000 10571 111000 0.06
M4 93312 17797 190944 0.05
M5 182250 33856 256711 0.04

Table 4: Test 3. Gaussian sphere. Mesh features.

Table 5 shows the results obtained for the test considering µ = 10−3. On the other hand, in Table 6
the errors and orders of accuracy for µ = 10−2 are presented. In both test cases we have assumed a final
time tend = 2π so that the sphere completes one revolution. Two different methodologies were considered
to run these tests: CVC-G and LADER. We can observe that for µ = 10−3 CVC-G scheme only achieves
first order and for µ = 10−2 the order obtained is a bit greater but still lower than two for the velocities
approach. Meanwhile, using LADER we obtain the expected second order in both tests cases and the
errors obtained decrease. These improvements are due to considering a second order method in time.
The high diffusivity of the test makes necessary to consider second order in both, time and space, to
achieve good approaches for all the unknowns of the problem.

The previous discussion is also consistent with the graphical results presented in Figures 3-8.

π wu wy

EMi
oMi−1/Mi

EMi
oMi−1/Mi

EMi
oMi−1/Mi

CVC-G

M1 7.48E − 02 1.33E − 01 4.00E − 02

M2 6.59E − 02 0.82 1.17E − 01 0.84 3.56E − 02 0.75

M3 4.75E − 02 0.92 8.52E − 02 0.89 2.63E − 02 0.85

M4 4.02E − 02 0.92 7.21E − 02 0.91 2.20E − 02 0.99

M5 3.24E − 02 0.96 5.82E − 02 0.96 1.73E − 02 1.08

LADER

M1 1.02E − 03 2.48E − 03 2.31E − 02

M2 7.25E − 04 2.19 1.81E − 03 2.02 1.83E − 02 1.50

M3 3.23E − 04 2.27 8.17E − 04 2.24 1.00E − 02 1.70

M4 2.12E − 04 2.32 5.41E − 04 2.26 7.11E − 03 1.88

M5 1.25E − 04 2.36 3.24E − 04 2.30 4.59E − 03 1.97

Table 5: Test 3. Gaussian sphere, µ = 10−3. Observed errors and convergence rates. CFL = 5 for
CVC-G and CFL = 0.5 for LADER.
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π wu wy

EMi
oMi−1/Mi

EMi
oMi−1/Mi

EMi
oMi−1/Mi

CVC-G

M1 3.31E − 02 5.13E − 02 2.19E − 03

M2 2.74E − 02 1.22 4.29E − 02 1.16 1.67E − 03 1.77

M3 1.72E − 02 1.31 2.74E − 02 1.26 9.02E − 04 1.73

M4 1.34E − 02 1.39 2.15E − 02 1.34 6.62E − 04 1.70

M5 9.69E − 03 1.44 1.57E − 02 1.40 4.54E − 04 1.69

LADER

M1 3.68E − 04 9.02E − 04 1.61E − 03

M2 2.54E − 04 2.41 6.24E − 04 2.02 1.16E − 03 2.12

M3 1.12E − 04 2.29 2.60E − 04 2.24 5.55E − 04 2.07

M4 7.57E − 05 2.15 1.66E − 04 2.26 3.85E − 04 2.01

M5 4.78E − 05 2.06 9.54E − 05 2.30 2.48E − 04 1.97

Table 6: Test 3. Gaussian sphere, µ = 10−2. Observed errors and convergence rates. CFL = 5 for
CVC-G and CFL = 0.5 for LADER.

wyexact wyLADER wyCVC-G

Figure 3: Test 3. Gaussian sphere, µ = 10−3. Contours of wy at plane z = 0 using Mesh M3. Left: exact
solution. Centre: LADER. Right: CVC-G.
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wyexact wyLADER wyCVC-G

Figure 4: Test 3. Gaussian sphere, µ = 10−3. Elevated surfaces of wy at plane z = 0 using Mesh M3.
Left: exact solution. Centred: LADER. Right: CVC-G.

Figure 5: Test 3. Gaussian sphere, µ = 10−3. Profile of the exact solution (blue) and the computed
solutions using LADER (green) and CVC-G (red) at plane y = 0.

wyexact wyLADER wyCVC-G

Figure 6: Test 3. Gaussian sphere, µ = 10−2. Contours of wy at plane z = 0 using Mesh M3. Left:
exact solution. Centre: LADER. Right: CVC-G.



20

wyexact wyLADER wyCVC-G

Figure 7: Test 3. Gaussian sphere, µ = 10−2. Elevated surfaces of wy at plane z = 0 using Mesh M3.
Left: exact solution. Centre: LADER. Right: CVC-G.

Figure 8: Test 3. Gaussian sphere, µ = 10−2. Profile of the exact solution (blue) and the computed
solutions using LADER (green) and CVC-G (red) at plane y = 0.

4.4 Test 4. Flow around a cylinder

We consider the steady-state problem of a flow around a cylinder which has been introduced in [35] and
employed, for instance, in [5] and [56] as a benchmark problem. The computational domain consists of a
solid cylinder surrounded by a rectangular channel in which the flow evolves (see Figure 9). The dynamic
viscosity of the fluid is µ = 10−3 and the inlet velocity has the form

u(x, y, z, t) =
(
16Uyz(H − y)(H − z)/H4, 0, 0

)T
, (84)

with U = 0.45, H = 0.41. Based on the viscosity, the cylinder diameter, D = 0.1, and an estimate of 0.2
for the mean inflow velocity, the flow has a Reynolds number of 20. At the outlet Neumann boundary
conditions are considered. The mesh employed to obtain the numerical solution consists of 449746 finite
elements and 909004 finite volumes.

The drag and lift coefficients for this problem are expressed by

cd =
500

0.41
Fd, cl =

500

0.41
Fl, (85)

where Fd and Fl are the drag and lift forces, respectively:

Fd =

∫
S

(
µ
∂uτ
∂nS

ny − πnx
)

dS, Fl =

∫
S

(
−µ∂uτ

∂nS
nx − πny

)
dS (86)

with nS = (nx, ny, 0)t the inward pointing unit normal with respect to Ω, S the surface of the cylinder,
and nτ = (ny,−nx, 0)t one of the tangential vectors, the other one being (0, 0, 1)T . The drag and lift



21

H=0.41m

D=0.1m

0.45m

1.95m

0.15m

0.16m

Inlet

Outlet

x

z

y

Figure 9: Test 4. Flow around a cylinder. Geometry.

Method
Time
iterations

CD CL Dπ

(min,max) (min,max) (min,max)

(6.05, 6.25) (0.008, 0.01) (0.165, 0.175)

1. Order 1 1745 6.79 0.0062 0.1656

2. CVC-orth 72442 6.2463 −0.00067 0.1651

3. CVC-G 73994 6.1619 0.01996 0.1616

4. LADER 85638 6.1249 0.0161 0.1662

Table 7: Test 4. Flow around a cylinder. Obtained values for the aerodynamic coefficients and the
pressure difference.

forces were computed following [5]. As convergence criterion, at iteration k, we consider,

1

∆t
‖Wk

M −Wk−1
M ‖L∞(Ω)3 ≤ 10−4. (87)

Four different simulations regarding the method employed were run:

Method 1: the first order method presented in [5], which considers the Rusanov scheme as the
numerical flux.

Method 2: the second order in space and first order in time CVC-orth.

Method 3: CVC-G, also second order in space and first order in time.

Method 4: the second order method given by LADER.

The numerical results are summarized in Table 7. Along with the aerodynamic coefficients, the pressure
difference Dπ between the points p1 = (0.45, 0.2, 0.205) and p2 = (0.55, 0.2, 0.205), has been computed.
We observe that the solutions obtained with the higher order method, as expected theoretically, are
the most accurate with respect to the reference intervals obtained from the experimental data on [35].
Finally, Figures 10, 11 and 12 show the results obtained using LADER methodology.
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Figure 10: Test 4. Flow around a cylinder. Pressure on z = 0.205.

Figure 11: Test 4. Flow around a cylinder. Velocity magnitude on z = 0.205.

Figure 12: Test 4. Flow around a cylinder. Pressure over the cylinder and streamlines.

5 Summary and conclusions

In this paper a projection hybrid high order FV/FE method for incompressible flows has been presented.
Navier-Stokes equations have been coupled with the k−ε model in order to simulate turbulent flows. The
system to be solved was enlarged with respect to [5] considering species transport. High order of accuracy
has shown necessary for the proper computation of turbulent effects. Two different methodologies to
achieve second order were presented. Firstly, CVC Kolgan provided a second order in space and first
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order in time scheme. To attain second order in space and time a new method was proposed: LADER. The
corresponding accuracy and stability analysis were presented for the advection-diffusion-reaction equation.
Godunov’s theorem was circumvented thanks to an ENO-based approach. The computation of the
gradients involved on diffusion terms was done via Galerkin. The method was applied to manufactured
test problems in order to asses the accuracy. Furthermore, different benchmarks were considered and the
results obtained were successfully confronted with experimental data.
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[5] A. Bermúdez, J. L. Ferŕın, L. Saavedra, and M. E. Vázquez-Cendón. A projection hybrid finite
volume/element method for low-Mach number flows. J. Comp. Phys., 271:360–378, 2014.

[6] C. Berthon. Why the MUSCL-Hancock scheme is L1-stable. Numer. Math., 104:27–46, 2006.

[7] W. Boscheri and M. Dumbser. A direct arbitrary-lagrangian-eulerian ADER-WENO finite volume
scheme on unstructured tetrahedral meshes for conservative and non-conservative hyperbolic systems
in 3D. J. Comput. Phys., 275:484–523, 2014.

[8] S. Busto, E. F. Toro, and M. E. Vázquez-Cendón. Design and analisis of ADER–type schemes for
model advection–diffusion–reaction equations. J. Comp. Phys., 327:553–575, 2016.

[9] C. E. Castro and E. F. Toro. Solvers for the high-order Riemann problem for hyperbolic balance
laws. J. Comp. Phys., 227(4):2481–2513, 2008.

[10] L. Cea, J. R. French, and M. E. Vázquez-Cendón. Numerical modelling of tidal flows in complex
estuaries including turbulence: An unstructured finite volume solver and experimental validation.
Int. J. Numer. Meth. Engng., 67:1909–1932, 2006.

[11] L. Cea and M. E. Vázquez-Cendón. Unstructured finite volume discretization of two-dimensional
depth-averaged shallow water equations with porosity. Int. J. Numer. Methods Fluids, 63(8):903–930,
2010.

[12] L. Cea and M. E. Vázquez-Cendón. Analysis of a new Kolgan-type scheme motivated by the shallow
water equations. Appl. Num. Math., 62(4):489–506, 2012.



24

[13] T. Chacón and R. Lewandowski. Mathematical and numerical foundations of turbulence models and
applications. Modeling and simulation in science, engineering and technology. Birkhauser, 2014.

[14] M. Dumbser. Arbitrary high order PNPM schemes on unstructured meshes for the compressible
Navier-Stokes equations. Comput. Fluids, 39(1):60–76, 2010.

[15] M. Dumbser, D. S. Balsara, E. F. Toro, and C.-D. Munz. A unified framework for the construction
of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes. J. Comput.
Phys., 227(18):8209–8253, 2008.

[16] M. Dumbser, C. Enaux, and E. F. Toro. Finite volume schemes of very high order of accuracy for
stiff hyperbolic balance laws. J. Comput. Phys., 227(8):3971 – 4001, 2008.

[17] M. Dumbser, A. Hidalgo, M. Castro, C. Parés, and E. F. Toro. FORCE schemes on unstructured
meshes II: Non-conservative hyperbolic systems. Comput. Methods Appl. Mech. Eng., 199:625–647,
2010.

[18] M. Dumbser and C. D. Munz. ADER discontinuous Galerkin schemes for aeroacoustics. CR Acad.
Sci. II B, 333(9):683–687, 2005.
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A LADER

ADER methodology was successfully extended in [8] to solve advection-diffusion-reaction equations. The
developed method, ADER-ADRE, is of second order in space and time and stability can be ensured by
determining the time step taking into account the advection, diffusion and reaction coefficients. Despite
this method is easily programmed for the one dimensional code, the computation of the fluxes focusing
on a particular finite volume at each time is not suitable for the mesh structure we have in the three-
dimensional case. In this case, we would like to take profit from the loop on the faces of the finite volumes
and reduce the computational cost. To do that, the LADER method, which preserves the second order
and the stability of the ADER-ADRE method, was developed.

Let us consider the advection-diffusion-reaction equation

∂tq(x, t) + λ∂xq(x, t) = ∂x (α(x, t)∂xq(x, t)) + βq(x, t) (88)

where

• q(x, t) is the conservative variable,

• x, t are the spatial and temporal independent variables,

• λ is the characteristic speed,

• α(x, t) is the diffusion coefficient, a prescribed function,

• β is the coefficient of the reaction term.

Then, LADER method is divided into the following steps:
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Figure 13: Mesh and nomenclature.

Step 1. Polynomial reconstruction. We consider a reconstruction of the data in terms of piecewise
first-degree polynomials of the form

pi(x) =


pi L(x) = qni + ∆n

iL(x− xi), x ∈
(
xi− 1

2
, xi

]
,

pi R(x) = qni + ∆n
iR(x− xi), x ∈

[
xi, xi+ 1

2

)
,

(89)

where ∆n
iL, ∆n

iR denote the approximations of the spatial derivatives of q(x, t) at time tn related

to two auxiliary elements of volume Ci =
[
xi− 1

2
, xi+ 1

2

]
:

Ti−1i L = [xi, xi+1] , Tii+1R = [xi−1, xi] (90)

(see Figure 13).

Step 2. Solution of the generalized Riemann problem (GRP). To construct the numerical flux at xi+ 1
2

the following generalizations of the Classical Riemann Problem are made. On the one hand, the
initial condition is assumed to be a piecewise first-degree polynomial. On the other hand, the partial
differential equation accounts for the diffusion and reaction terms. That leads to the problem ∂tq (x, t) + λ∂xq (x, t) = ∂x (α∂xq) (x, t) + βq (x, t) ,

q(x, 0) =

{
pi R(x), x < 0,
pi+1L(x), x > 0.

(91)

Step 3. Diffusion and reaction terms. These terms are computed by approximating the integrals by the
mid-point rule in both space and time.

The solution of the GRP at the interface xi+ 1
2
, set in Step 2, is expressed as a Taylor series expansion

in time, namely,

qi+ 1
2

= q(0, 0+) + τ∂tq(0, 0+). (92)

The first term of the above equation is computed as the solution of the classical Rieman problem ∂tq (x, t) + λ∂xq (x, t) = 0,

q(x, 0) =

{
qi R, x < 0,
qi+1L, x > 0,

(93)
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where

qi R = qi +
∆x

2
∆n
iR = qi +

qi − qi−1

2
=

1

2
(3qi − qi−1) , (94)

qi+1L = qi+1 −∆n
i+1L = qi+1 −

qi+2 − qi+1

2
=

1

2
(3qi+1 − qi+2) . (95)

Then,

q (0, 0+) =

{
qi R, λ > 0,
qi+1L, λ < 0.

The second term is computed following the Cauchy-Kovalevskaya procedure which allows us to express
the time derivative of the conservative variable as a combination of the spatial derivatives,

∂tq(x, t) = −λ∂xq(x, t) + ∂x (α∂xq) (x, t) + βq (x, t) , (96)

so,

qi+ 1
2

= q(0, 0+) + τ [−λ∂xq(0, 0+) + ∂x (α∂xq) (0, 0+) + βq(0, 0+)] . (97)

For now on, we will focus on the scheme for λ > 0 (the case λ < 0 is analogous). Approximating

∂xq(0, 0+) = ∆n
i+ 1

2
≈ 1

∆x

(
qni+1 − qni

)
, (98)

∂x (α∂xq) (0, 0+) = (∆α∆)
n
i+ 1

2

≈ 1

∆x2

[
αni+1

(
qni+2 − qni+1

)
− αni

(
qni − qni−1

)]
(99)

and performing exact integration, the numerical flux reads

fni+ 1
2

= λqi− 1
2
n = λ

{
qniR +

∆t

2

[
−λ∆n

i+ 1
2

+ (∆α∆)
n
i+ 1

2
+ βqni

]}
= λ

{
qni +

1

2

(
qni − qni−1

)
− λ∆t

2∆x

(
qni+1 − qni

)
+

∆t

2∆x2

[
αni+1

(
qni+2 − qni+1

)
− αni

(
qni − qni−1

)]
+ β

∆t

2
qni

}
. (100)

For the diffusion and reaction terms computation we follow [8]. We consider the centred slopes

∆n
i =

qni+1 − qni−1

2∆x
, (101)

(∆α∆)
n
i =

αn
i+ 1

2

(
qni+1 − qni

)
− αn

i− 1
2

(
qni − qni−1

)
∆x2

(102)

and the upwind slope

∆̆n
i+ 1

2
= qni+1 − qni . (103)

Then, the evolved values of the diffusion and reaction terms read

(∆α∆)
n
i =

αn
i+ 1

2

∆i+ 1
2
− αn

i− 1
2

∆i− 1
2

∆x
=

1

∆x2

(
αn
i+ 1

2

∆̆n
i+ 1

2

− αn
i− 1

2

∆̆n
i− 1

2

)
=

1

∆x2

{[
αni+ 1

2
+

∆t

2
∂tα

n
i+ 1

2

][
∆̆n
i+ 1

2
+

∆t

2

(
(∆α∆)

n
i+1−(∆α∆)

n
i +β∆̆n

i+ 1
2

)]
+

[
αni− 1

2
+

∆t

2
∂tα

n
i− 1

2

][
−∆̆n

i− 1
2

+
∆t

2

(
(∆α∆)

n
i−1−(∆α∆)

n
i −β∆̆n

i− 1
2

)]}
, (104)

βqni = β

[
qni +

∆t

2
(−λ∆n

i + (∆α∆)
n
i + βqni )

]
(105)

with αn
i+ 1

2

and αn
i− 1

2

approximated likewise in [8].
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Remark 2. It is important to notice that the evolution of the diffusion term does not account for the
advection term. The local treatment proposed in LADER scheme produce a evolved flux which already
contains the whole contribution of the assembling of advection and diffusion terms. Hence, the second or-
der of accuracy in space and time will be attained only if we neglect the advection term in the computation
of the evolved diffusion.

Finally, denoting c = λ∆t
∆x the Courant number and r = β∆t the reaction number, the finite volume

scheme for the advection-diffusion-reaction equation results

qn+1
i = qni − c

{
∆̆i− 1

2
+

1

2
∆̆n
i− 1

2
− c

2
∆̆n
i+ 1

2
+

∆t

2∆x2

[
αni+1∆̆n

i+ 3
2
− αni ∆̆n

i− 1
2

]
+
r

2
∆̆i− 1

2

−1

2
∆̆n
i− 3

2
+
c

2
∆̆n
i− 1

2
− ∆t

2∆x2

[
αni ∆̆n

i+ 1
2
− αni−1∆̆n

i− 3
2

]}
+

∆t

∆x2

{[
αni+ 1

2
+
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2
∂tα

n
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2

]
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Remark 3. The scheme for the advection-diffusion-reaction equation with constant diffusion coefficient
reads

qn+1
i = qni − c

[
∆̆n
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2
+

1

2
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2
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d
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+
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2
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[
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4

(
qni+1 − qni−1
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+
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2
∆̆n
i +

r

2
qni

]
(107)

where d = α∆t
∆x2 and ∆̆n

i = qni+1 − 2qni + qni−1.

Remark 4. There exist cM , dM , rm ∈ R such that the LADER scheme, (107), is stable in the 4-
orthotopes

OcM ,dM ,rm = {(θ, c, r, d) | θ ∈ [−π, π], c ∈ [0, cM ], d ∈ [0, dM ],

r ∈ [rm, 0], cM , dM ∈ R+, rm ∈ R−
}
. (108)

To represent a feasible 4-orthotope we consider the isosurface of level one of

mθ(c, d, r) = max
θ∈[−π,π]

‖A(θ, c, d, r)‖ (109)

where A(θ, c, d, r) is the function of the amplification factor of the scheme (see [8]). In Figure 14 we can
observe that the 4-orthotope defined by cM = 0.3, dM = 0.2 and rm = −0.5 is embedded in the stability
region.

Lemma B. LADER scheme, (106), is of second order in time and space.

Proof. To prove the accuracy of Scheme (106), we recall the analysis carried out for the ADER scheme
introduced in [8] and we detail the terms which have changed:

• Local truncation error contribution of the flux term neglecting the diffusion term contribution:
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Figure 14: Two different views of the isosurface of level one of function mθ, (109), (grey) and the 4-
orthotope of stability O0.3,0.2,−0.5 for the linear advection-diffusion-reaction equation (blue).
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• Local truncation error contribution of the diffusion term to the flux term:
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• Local truncation error contribution of the diffusion term:
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Finally, taking into account the truncation error of the remaining terms of the scheme and Cauchy-
Kovalevskaya equality, we get
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C Manufactured tests. Source terms

In this appendix we describe the source terms used in the manufactured test (see Sections 4.1 and 4.2):



32

• Manufactured test 1. Laminar flow.

fu1 (x, y, z, t) = πy cos(πty) cos(πtz)− πt sin(πt(x+ y + z))

−πz sin(πty) sin(πtz) + 2π2t2µ sin(πty) cos(πtz)

−πt cos(πtz3) cos(πty) cos(πtz)
−πt sin(πty) sin(πtz) exp(−2πt2x), (114)

fu2 (x, y, z, t) = πz3 sin(πtz3)− πt sin(πt(x+ y + z))− 6πtzµ sin(πtz3)

−9π2t2z4µ cos(πtz3) + 3πtz2 exp(−2πt2x) sin(πtz3), (115)

fu3 (x, y, z, t) = −πt sin(πt(x+ y + z))− 4π2t4µ exp(−2πt2x)

−4πtx exp(−2πt2x)

−2πt2 sin(πty) exp(−2πt2x) cos(πtz). (116)

• Manufactured test 2. Turbulent flow with species transport.

fu1 (x, y, z, t) = (2πt cos(πtx))/3− πt sin(πt(x+ y + z)) + πy cos(πty) cos(πtz)

−πz sin(πty) sin(πtz) + 2π2t2µ sin(πty) cos(πtz)

−πt cos(πtz3) cos(πty) cos(πtz)− πt sin(πty) sin(πtz) exp(−2πt2x)

+(2π2Cµt
2 sin(πty) cos(πtz)(sin(πtx) + 2)2)/(exp(−πtz) + 1)

+(π2Cµt
2 sin(πty) sin(πtz) exp(−πtz)

(sin(πtx) + 2)2)/(exp(−πtz) + 1)2, (117)

fu2 (x, y, z, t) = πz3 sin(πtz3)− πt sin(πt(x+ y + z))− 6πtzµ sin(πtz3)

9π2t2z4µ cos(πtz3) + 3πtz2 exp(−2πt2x) sin(πtz3)

−(9π2Cµt
2z4 cos(πtz3)(sin(πtx) + 2)2)/(exp(−πtz) + 1)

−(6πCµtz sin(πtz
3)(sin(πtx) + 2)2)/(exp(−πtz) + 1)

−(3π2Cµt
2z2 exp(−πtz) sin(πtz3)

(sin(πtx) + 2)2)/(exp(−πtz) + 1)2, (118)

fu3 (x, y, z, t) = (4π2Cµt
3 exp(−2πt2x) cos(πtx)(sin(πtx) + 2))/(exp(−πtz) + 1)

−4π2t4µ exp(−2πt2x)− 4πtx exp(−2πt2x)

−2πt2 sin(πty) exp(−2πt2x) cos(πtz)

−(4π2Cµt
4 exp(−2πt2x)(sin(πtx) + 2)2)/(exp(−πtz) + 1)

−πt sin(πt(x+ y + z)), (119)

fk(x, y, z, t) = exp(−πtz) + πx cos(πtx)

−(Cµ(sin(πtx) + 2)2(2πt2 exp(−2πt2x)

+πt sin(πty) sin(πtz))2)/(exp(−πtz) + 1)

+π2t2µ sin(πtx) + πt sin(πty) cos(πtx) cos(πtz)

−(9π2Cµt
2z4 sin(πtz3)2(sin(πtx) + 2)2)/(exp(−πtz) + 1)

−(π2Cµt
2 cos(πty)2 cos(πtz)2(sin(πtx) + 2)2)/(exp(−πtz) + 1)

−(2π2Cµt
2 cos(πtx)2(sin(πtx) + 2))/(σk(exp(−πtz) + 1))

+(π2Cµt
2 sin(πtx)(sin(πtx) + 2)2)/(σk(exp(−πtz) + 1)) + 1, (120)

fε(x, y, z, t) = (C2 ε(exp(−πtz) + 1)2)/(sin(πtx) + 2)− πz exp(−πtz)
−π2t2µ exp(−πtz)
−(C1 ε(exp(−πtz) + 1)((Cµ(sin(πtx) + 2)2(2πt2 exp(−2πt2x)

+πt sin(πty) sin(πtz))2)/(exp(−πtz) + 1)

+(9π2Cµt
2z4 sin(πtz3)2(sin(πtx) + 2)2)/(exp(−πtz) + 1)

+(π2Cµt
2 cos(πty)2 cos(πtz)2(sin(πtx)

+2)2)/(exp(−πtz) + 1)))/(sin(πtx) + 2)

−πt exp(−πtz) exp(−2πt2x)

−(π2Cµt
2 exp(−πtz)(sin(πtx) + 2)2)/(σε(exp(−πtz) + 1))

+(π2Cµt
2 exp(−2πtz)(sin(πtx) + 2)2)/(σε(exp(−πtz) + 1)2), (121)
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fy(x, y, z, t) = πx cos(πtx) + π2t2 sin(πtx)(D + (Cµ(sin(πtx)

+2)2)/(Sct(exp(−πtz) + 1)))

+πt sin(πty) cos(πtx) cos(πtz)

−(2π2Cµt
2 cos(πtx)2(sin(πtx) + 2))/(Sct(exp(−πtz) + 1)). (122)
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