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abstract

Among numerical methods for partial differential equations arising from steepest
descent dynamics of energy functionals (e.g., Allen-Cahn and Cahn-Hilliard equa-
tions), the convex splitting method is well-known to maintain unconditional energy
stability for a large time step size. In this work, we show how to use the convex
splitting idea to find transition states, i.e., index-1 saddle points of the same en-
ergy functionals. Based on the iterative minimization formulation (IMF) for saddle
points (SIAM J. Numer. Anal., vol. 53, p1786, 2015), we introduce the convex
splitting method to minimize the auxiliary functional at each cycle of the IMF.
We present a general principle of constructing convex splitting forms for these aux-
iliary functionals and show how to avoid solving nonlinear equations. The new
numerical scheme based on the convex splitting method allows for large time step
sizes. The new methods are tested for the one dimensional Ginzburg-Landau en-
ergy functional in the search of the Allen-Cahn or Cahn-Hilliard types of transition
states. We provide the numerical results of transition states for the two dimensional
Landau-Brazovskii energy functional for diblock copolymers.

Keywords: transition state, saddle point, convex splitting method, iterative
minimization formulation

Mathematics Subject Classification (2010) Primary 65K05, Secondary
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1. Introduction

For an energy functional, both its local minimizers and its unstable saddle points
have important physical meanings for many problems in physics, chemistry, biology
and material sciences. The local minimizers correspond to the stable configurations
in physical models, and they manifest themselves as steady states of the gradient
flow driven by the energy. For the spatially extended systems, these flows appear
mathematically as the time-dependent partial differential equations(PDEs). These
PDEs reflect the true physical dynamics of relaxations and they also serve as a
convenient computational model to calculate the stable steady states. For instance,
as the well-known phase separation and transition models, the Allen-Cahn (AC)
[1] and Cahn-Hillian (CH) [4] equations are the steepest descent dynamics of the
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Ginzburg-Landau energy functional under L2 andH−1 norms, respectively. Besides
the local minima, the other critical points on an energy surface also play crucial roles
for certain problems, such as the energy-barrier activated processes which escape
from local minima by crossing saddle points. The infrequent hoppings between
neighbouring local minima, although randomly, occur in a quite certain style of
travelling through transition states. These transition states, as the bottlenecks on
the pathways of activated processes, belong to a class of saddle points with index
one, i.e., the unstable critical point whose Hessian has only one negative eigenvalue.

In this paper, we are interested in how to find these index-1 saddle points for
a given smooth energy functional. The search for transition states, or index-1
saddle points, faces many challenges. A large number of numerical methods have
been proposed and developed to address these challenges. There are also many
applications of these algorithms in computational chemistry and material sciences.
Refer to [33, 41] for review of this topic. One class of numerical methods is to
search the so-called minimum energy path (MEP). The points along an MEP with
locally maximal energy value are then the index-1 saddle points. These path-
finding methods include [8, 9] and [23, 20]. The other class of methods is to evolve
a single state on the potential energy surface. The essential question is how to
define some dynamics on the energy surface to converge to index-1 saddle points
without knowing multiple local minima a prior. The intuitive idea of using the
softest direction (corresponding to the minimal eigenvalue of the Hessian) to invert
the force component along this min-mode direction proves very useful ([21, 32]) and
it was proposed probably as early as in 1970s in [7, 6]. Many well-known algorithms
and softwares such as the dimer method ([18, 24, 40]) or the activation-relaxation
techniques ([31, 30, 5]) are based on this min-mode-following idea.

The underlying dynamics of these min-mode-following algorithms has been rig-
orously formulated and analyzed in [10]. This dynamics, with the name “gentlest
ascent dynamics” (GAD), simultaneously evolves both a position variable and a
direction variable. By analyzing the eigenvalue of the GAD, [10] proved the lo-
cally linear convergence to saddle point. To accelerate the convergence rate, a
discrete iterative mapping, named the “iterative minimization formulation” (IMF),
has been proposed in [14]. IMF has three advantageous features: (1) it has the
quadratic convergence rate for non-degenerate saddle points; (2) it turns the prob-
lem of searching unstable saddle points into a series of minimization subproblems;
(3) there is no restriction for numerical methods to solve minimization subproblems
in the IMF. The only important issue in practice for better efficiency is to use the
adaptive stopping rule in solving the subproblems. For a thorough discussion of
the practical algorithms based on the IMF, the readers can refer to [15].

The advantages and flexibilities offered by the IMF immediately provide many
new opportunities to explore the existing methods which were designed for searching
local minima. The convex splitting method, originally proposed in [12], successfully
gives unconditionally energy stable schemes to ensure a large time step size. The
effectiveness of this method in resolving gradient dynamics as well as calculating the
minimizers has been demonstrated by a vast number of applications, for example,
the phase field model in [13], the phase field crystal model in [38], the thin film
epitaxy model in [34], the binary fluid surfactant model in [16], as well as many
others ([35, 36, 39, 22]).
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In this paper, our motivation is to test the performance of the convex splitting
method if this strategy is used to locate the saddle point. As we mentioned ear-
lier, the IMF solves the saddle point problem by solving a series of minimization
subproblems, and these subproblems can be solved by running the steepest decent
dynamics. Since the outer iteration of the IMF (referred as “cycle” in [14, 15]) is of
quadratic convergence rate and it usually only takes a few cycles in practice to reach
the desired accuracy, then one can expect that a better method for the subproblem
may gain a better speedup in efficiency. The benefit of the convex splitting idea
here is that the subproblems can be solved by a large time step size. Therefore it
takes less steps in each cycle to improve the overall efficiency of locating the saddle
point in the IMF.

The idea of the convex splitting method is quite simple, but there are two impor-
tant practical issues when applied to specific problems. The first is the construction
of a convex splitting form for a given energy functional. In theory([12]), there always
exists a convex splitting form for any continuous functional. The explicit decom-
position has to be sought for specific problems. The second is that one should try
best to construct a linear time-implicit term in the convex spitting scheme since
this can avoid solving a nonlinear system at each time step.

The contributions in our work of applying the convex splitting method to saddle
point search problems include the following: (1) for any given convex splitting form
of the original energy functional, we show how to obtain the corresponding convex
splitting form of the auxiliary functional in the IMF. This means that we design an
automatic procedure from the traditional convex splitting method for local mini-
mizers to the convex splitting method for saddle points; (2) we shall see later that
the auxiliary functional in the IMF consists of multiple terms involving the original
energy functional. By adapting different convex splitting forms for different terms
in the auxiliary functional, we can ensure the time-explicit discretization for non-
linear terms and obtain a linear system. We demonstrate how to achieve this by the
examples of Ginzburg-Landau energy functional and the Landau-Brazovskii energy
functional. The condition is that one need to know at least one convex splitting
form with the time-explicit nonlinear term for the original energy functional.

The rest of the paper is organized as follows. In Section 2, we review the IMF for
the saddle point search problem and the convex splitting method. In Section 3, we
construct the convex splitting method for saddle point search problems and discuss
numerical issues. Section 4 presents the detailed numerical schemes and substantial
numerical results for the Ginzburg-Landau energy functional in the L2 and H−1

metric, respectively, subject to the Neumann or periodic boundary condition and
the Landau-Brazovskii energy functional with periodic boundary condition. The
conclusion is drawn in Section 5.

2. Review

In this section, we review two foundations of our method, which were born
apparently from two different areas.

2.1. The IMF for the saddle point search. We first recall the iteration mini-
mization formulation (IMF) in [14]. Let M be a Hilbert space equipped with the
norm ‖·‖ and the inner product 〈·, ·〉. Suppose that V (x) : M → R is a sufficiently
smooth potential function, then the IMF is the following iteration for the position
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variable x and the direction variable v



v(k+1) = argmin
‖u‖=1

〈
u,H(x(k))u

〉
, (2.1)

x(k+1) = argmin
y

L(y;x(k), v(k+1)), (2.2)

where
H(x(k)) = ∇2V (x(k)),

and

L(y;x(k), v(k+1)) = (1− α)V (y) + αV
(
y − (v(k+1) ⊗ v(k+1))(y − x(k))

)

− βV
(
x(k) + (v(k+1) ⊗ v(k+1))(y − x(k))

)
.

(2.3)

α and β are two parameters and α+β > 1. Two special choices for α and β are: (i)
(α, β) = (2, 0), then L(y;x, v) = −V (y)+2V (y− (v⊗v)(y−x)); (ii) (α, β) = (0, 2),
then L(y;x, v) = V (y)− 2V (x+ (v ⊗ v)(y − x)). So, the general form of L in (2.3)
should be a linear combination of three terms involved in these two extreme cases
and furthermore the coefficient of the first term V (y) is determined to be 1 − α
by examining the Hessian ∇2

yL(y = x;x, v). The main properties of the auxiliary
objective function L(y;x, v) when α+ β > 1 are listed here for reference.

Theorem 1 ([14]). Suppose that x∗ is a (non-degenerate) index-1 saddle point
of a C4−function V (x), i.e., its all eigenvalues are λ1 < 0 < λ2 ≤ · · · , and the
auxiliary function L is defined by (2.3) with α+ β > 1, then
(1) there exists a neighbourhood U of x∗ such that for any x ∈ U , L(y;x, v) is
strictly convex in y ∈ U and thus has a unique minimum in U ;
(2) define the mapping Φ : x ∈ U → Φ(x) ∈ U to be the unique minimizer of L in
U for any x ∈ U . Then the mapping Φ has only one fixed point x∗;
(3) the mapping x→ Φ(x) has a quadratic convergence rate.

The IMF includes two-level iterations. The top level is x → Φ(x), referred
as “cycle”. The k-th cycle means the step of x(k) → x(k+1) = Φ(x(k)), which in
practice consists of a second-level iterative procedure to solve (2.1) for the min-mode
(the so-called “rotation step”) and (2.2) to update the position(“translation step”).
The rotation step is a classical numerical eigenvector problem, for which many
methods have been constructed such as the power method ([10]), the conjugate
gradient method([19, 21]), the Lanczos algorithm([31, 30, 5]) and the LOR in [26].

We are interested in spatially extended systems, i.e., M is a function space and
V is actually a functional on M. As a convention, we use F (φ) rather than V (x)
below to represent the functional of a spatial function φ.

2.2. Convex splitting method. Let φ(x, t) : [0, 1]× R
+ → R be the solution of

the following PDE driven by the gradient flow

∂φ

∂t
= −

δF

δφ
(φ), (2.4)

subject to certain boundary condition at x = 0 and 1. F is a sufficiently smooth free
energy functional bounded from below. δF

δφ
is the first order variational derivative

of F (φ) with respect to φ. A convex splitting form of F (φ) means that two convex
functionals exist, denoted by Fc and Fe, such that

F (φ) = Fc(φ)− Fe(φ), (2.5)
4



where “c” (“e”) refers to the contractive (expansive) part of the energy ([12]). Then
the convex splitting scheme for (2.4) is

φn+1 − φn

∆t
= −

(
δFc
δφ

(
φn+1

)
−
δFe
δφ

(φn)

)
, (2.6)

where φn ≈ φ(tn) is the numerical solution at the n-th time level tn = n∆t and
∆t is the time step size. The time-discrete scheme (2.6) has the property of the
so-called unconditional energy stability, as stated in the following theorem.

Theorem 2 ([38]). Suppose the free energy functional F (φ) can be split into two
parts F (φ) = Fc(φ) − Fe(φ) as in (2.5). Then the time-discrete scheme (2.6) is
unconditionally energy stable, meaning that for any time step size ∆t > 0,

F (φn+1) ≤ F (φn), n = 0, 1, 2, · · · .

The convexity of Fc and Fe do not have to be valid in the whole configuration
space. In practical applications, it only requires the convexity in bounded subsets
of the configuration space, where the solution is known to be in.

3. Main method

Consider the 1-D spatial domain (a, b). The high dimensional case follows exactly
the same idea. Let M be a function space on the interval [a, b]. For example, M is
the Hilbert space H1([a, b]) or some other subspaces of L2([a, b]). Our goal is to
find the transition states of the energy functional F on M.

Assume that the second order variational derivative (Hessian) of F inM, denoted

by H(φ) := δ2F (φ)
δφ2 , exists. We rewrite the IMF in Section 2.1:






v(k+1) = argmin
‖v‖=1

〈
v,H(φ(k))v

〉
, (3.1)

φ(k+1) = argmin
φ

L(φ;φ(k), v(k+1)), (3.2)

where the auxiliary functional L is

L(φ;φ(k), v(k+1)) = F (φ) − αF (φ) + αF (φ− φ̃)− βF (φ(k) + φ̃), (3.3)

where we define

φ̃ := (v(k+1) ⊗ v(k+1))(φ− φ(k)) (3.4)

to ease the notation. The min-mode v(k+1) belongs to TM, the tangent space of
M. u⊗ v denotes the tensor defined by (u ⊗ v)φ = 〈v, φ〉u for u, v ∈ TM.

3.1. Convex splitting method for minimizing the auxiliary functional L.
We shall approximate the solution of the variational subproblem (3.2)

min
φ
L
(
φ; φ(k), v(k+1)

)

at the k-th IMF cycle by the steady solution of the gradient flow associated with
L,

∂φ

∂t
= −

δL

δφ
. (3.5)

Note φ(k) and v(k+1) are fixed here. The solution at infinite time is well-defined if
the lowest eigenvalue of L at φ = φ(k) is negative ([14, 15]).
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Next, we show how to construct the convex splitting scheme for equation (3.5).
Our starting point is that a convex splitting form for F (φ) has been given, say,

F (φ) = Fc(φ)− Fe(φ). (3.6)

By substituting (3.6) into (3.3), we find the following convex splitting form for L

L(φ; φ(k), v(k+1)) = Lc(φ; φ
(k), v(k+1))− Le(φ; φ

(k), v(k+1)), (3.7)

where

Lc(φ;φ
(k), v(k+1)) =






Fc(φ) + αFe(φ) + αFc(φ− φ̃) + βFe(φ
(k) + φ̃), if α ≥ 0, β ≥ 0;

Fc(φ) + αFe(φ) + αFc(φ− φ̃)− βFc(φ
(k) + φ̃), if α ≥ 0, β ≤ 0;

Fc(φ)− αFc(φ) − αFe(φ− φ̃) + βFe(φ
(k) + φ̃), if α ≤ 0, β ≥ 0,

(3.8)

and Le(φ;φ
(k), v(k+1)) is defined likewise by exchanging the subindices “e” and “c”

in (3.8). Note that φ̃ has been defined in (3.4).

Property 3. Lc(φ; φ
(k), v(k+1)) and Le(φ; φ

(k), v(k+1)) defined above are all convex
with respect to φ for any φ(k) and any v(k+1).

Proof. We only prove the case when α ≥ 0, β ≥ 0 since the other two cases can
be proved similarly. The proofs of the convexity for Lc and Le are the same, thus
it suffices to only show that two special terms Fc(φ − φ̃) and Fe(φ

(k) + φ̃) in (3.8)
are both convex in terms of φ. Denote the Hessian of Fc(φ) and Fe(φ) by Hc and
He, respectively, then both Hc and He are semi-positive definite by the property of
convexity. By the definition of φ̃ in (3.4), the second order derivatives of Fc(φ− φ̃)

and Fe(φ
(k)+ φ̃) are [I−(v⊗v)]Hc(φ− φ̃)[I−(v⊗v)] and (v⊗v)He(φ

(k)+ φ̃)(v⊗v),
respectively, where v = v(k+1). Since v is nonzero, these two (projected) Hessians
are also semi-positive definite. This completes our proof. �

We now present our time-discrete numerical scheme for (3.5) based on the con-
vex splitting idea in Section 2.2. Here we only consider the case α ≥ 0, β ≥ 0. To
simplify the notation, we drop out the parameters φ(k) and v(k+1) in the expres-
sions of L(φ, φ(k), v(k+1)), Lc(φ, φ

(k), v(k+1)) and Le(φ, φ
(k), v(k+1)). Let φn be the

numerical solution at the time level tn. Our scheme is

φn+1 − φn

∆t
= −

[
δLc
δφ

(φn+1)−
δLe
δφ

(φn)

]
, (3.9)

with initial φ0 = φ(k). The first order variational derivative of Lc is

δLc
δφ

(φ)=
δFc
δφ

(φ)+α
δFe
δφ

(φ)

+ α
(
I − (v(k+1) ⊗ v(k+1))

)δFc
δφ

(
φ− (v(k+1) ⊗ v(k+1))(φ− φ(k))

)

+β(v(k+1) ⊗ v(k+1))
δFe
δφ

(
φ(k)+(v(k+1) ⊗ v(k+1))(φ−φ(k))

)
,

and δLe

δφ
(φ) has the similar form by switching subindices “c” and “e”.

For the same reason in Theorem 2, the following unconditional energy stability
holds for the scheme (3.9). The proofs are straightforward and skipped.
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Lemma 4. Suppose that φ, ψ : [a, b]×R
+ → R are two periodic functions. If L(φ)

in (3.3) has the convex splitting form L(φ) = Lc(φ) − Le(φ) given in (3.7). Then

L(φ)− L(ψ) ≤ 〈δφLc(φ)− δφLe(ψ), φ− ψ〉
L2 ,

where δφLc and δφLe represent the first order variational derivatives of Lc and Le
with respect to φ, respectively.

Theorem 5. If the energy functional F (φ) has the convex splitting form F = Fc−
Fe, then the time-discrete scheme (3.9) is unconditionally energy stable, meaning
that for any time step size ∆t > 0, we have

L(φn+1) ≤ L(φn), n = 0, 1, 2, · · · ,

in each k-th cycle.

3.2. Avoid the time-implicit nonlinear term and construct the linear sys-
tem. In many cases, several convex splitting forms for F may be found. Assume
F (φ) has two forms of convex splitting with the following properties:

F (φ) = F l
c(φ)− F n

e (φ), (3.10)

and

F (φ) = F̃ n
c (φ)− F̃ l

e(φ), (3.11)

where the superscripts “l” and “n” mean that the first order variational derivative
is linear or nonlinear in φ, respectively. Accordingly, two convex splitting schemes
exist to solve the gradient flow ∂φ

∂t
= − δF

δφ
:

φn+1 − φn

∆t
= −

δF l
c

δφ
(φn+1) +

δF n
e

δφ
(φn), (3.12)

and

φn+1 − φn

∆t
= −

δF̃ n
c

δφ
(φn+1) +

δF̃ l
e

δφ
(φn). (3.13)

Both schemes satisfy the unconditional energy stability. The difference is that
the nonlinear terms are handled differently. The scheme (3.12) is time-explicit in
nonlinear term and hence solves a linear system to generate φn+1 at the next time
level. But the scheme (3.13) requires to solve a nonlinear equation for φn+1. If
one has a very efficient nonlinear solver, such as the multi-grid method in [25] for
vector-valued Allen-Cahn equation, then the scheme (3.13) is also a good choice.
In other cases, the linear scheme (3.12) is usually preferred.

In the context of the IMF, our proposed convex splitting scheme for the saddle
point problem faces the same difficulty of possible emergence of nonlinear time-
implicit term. If only one convex splitting form is available, then the convex split-
ting form of the auxiliary functional L specified by (3.8) inevitably runs into this
trouble. Either Lc or Le includes both Fc and Fe, which leads to the appearance
of at least one nonlinear term at the implicit time level. However, if one has both
(3.10) and (3.11), then this difficulty can be circumvented by combining them to-
gether. Take α, β ≥ 0 as an example again. Substituting (3.10) into the first and
the third terms on the right hand side of (3.3) and substituting (3.11) into the sec-
ond and the fourth terms on the right hand side of (3.3), then we have the following
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decomposition of L:

L(φ) = F l
c(φ) − F n

e (φ) − α
[
F̃ n
c (φ)− F̃ l

e(φ)
]

+ α
[
F l
c(φ− φ̃)− F n

e (φ− φ̃)
]
− β

[
F̃ n
c (φ

(k) + φ̃)− F̃ l
e(φ

(k) + φ̃)
]

=
[
F l
c(φ) + αF̃ l

e(φ) + αF l
c(φ− φ̃) + βF̃ l

e(φ
(k) + φ̃)

]

−
[
F n
e (φ) + αF̃ n

c (φ) + αF n
e (φ − φ̃) + βF̃ n

c (φ
(k) + φ̃)

]

=: Lc(φ)− Le(φ),

where φ̃ = (v(k+1) ⊗ v(k+1))(φ − φ(k)). It is easy to see that both Lc and Le are
convex with respect to φ. The proof is exactly the same as that for Property 3.
Theorem 5 in Section 3.1 also holds true in this case.

In constructing two convex splitting forms satisfying the above conditions, we
do not require the convexity holds for the whole configuration space. In fact, for
many examples, the global convexity for all four functions in (3.10) and (3.11) is
not possible. We only need the convexity properties valid locally for a certain range
of the values of φ in which the solution of interest does not violate.

In summary, the semi-discrete scheme for (3.5) by using the two forms of convex
splitting of F (φ), (3.10) and (3.11), has the following expression:

φn+1 − φn

∆t
= −

[
δLc
δφ

]n+1

+

[
δLe
δφ

]n
, (3.14)

where
[
δLc
δφ

]n+1

=
δF l

c

δφ
(φn+1) + α

δF̃ l
e

δφ
(φn+1)

+ β(v(k+1) ⊗ v(k+1))
δF̃ l

e

δφ

(
φ(k) + (v(k+1) ⊗ v(k+1))(φn+1−φ(k))

)

+ α(I − (v(k+1) ⊗ v(k+1)))
δF l

c

δφ

(
φn+1 − (v(k+1) ⊗ v(k+1))(φn+1 − φk)

)
,

[
δLe
δφ

]n
=
δF n

e

δφ
(φn) + α

δF̃ n
c

δφ
(φn)

+ β(v(k+1) ⊗ v(k+1))
δF̃ n

c

δφ

(
φ(k) + (v(k+1) ⊗ v(k+1))(φn − φ(k))

)

+ α(I − (v(k+1) ⊗ v(k+1)))
δF n

e

δφ

(
φn − (v(k+1) ⊗ v(k+1))(φn − φ(k))

)
,

and the initial value φ0 = φ(k). α ≥ 0, β ≥ 0 and α + β > 1. It is easy to see that[
δLc

δφ

]n+1

is linear and
[
δLe

δφ

]n
is nonlinear. So the scheme (3.14) indeed corresponds

to a linear system.

4. Applications

4.1. 1D example: Ginzburg-Landau free energy. We apply our method to
the Ginzburg-Landau free energy on [0, 1],

F (φ) =

∫ 1

0

[κ2
2
(
∂φ

∂x
)2 + f(φ)

]
dx, (4.1)
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where φ(x) is an order parameter representing for example the concentration of
one of the component in a binary alloy. The mobility parameter κ > 0. f(φ) =
(φ2 − 1)2/4. If we consider the gradient flow of F in the L2([0, 1]) space with the
standard L2 inner product 〈· , ·〉L2 , then we obtain the (non-conserved) Allen-Cahn
(AC) equation

∂φ

∂t
= −

δF

δφ
(φ) = κ2∆φ− f ′(φ) = κ2∆φ− (φ3 − φ), (4.2)

where ∆ = ∂xx. If the gradient flow is defined in the H−1 metric 〈· , ·〉H−1 , then
we have the (conserved) Cahn-Hilliard (CH) equation

∂φ

∂t
= ∆

δF

δφ
= −κ2∆2φ+∆(φ3 − φ). (4.3)

We are interested in the unstable index-1 saddle point of the Ginzburg-Landau
free energy (4.1). These saddle points correspond to the “spike-like” stationary
solutions, or “canonical nuclei” discussed in [3]. Similarly to the AC and CH equa-
tions, which arise in L2 metric and H−1 metric, respectively, we search for the
saddle points of F both in L2 and in H−1 metrics. The calculations of transition
states and transition rates for the CH equation have already been done in [42, 28]
by using the string method ([8]) and the GAD([10]).

We consider both the Neumann and periodic boundary condition. The Neu-
mann boundary condition is ∂xφ(0) = ∂xφ(1) = 0 for the AC equation and
∂xφ(0) = ∂xφ(1) = ∂3xφ(0) = ∂3xφ(1) = 0 for the CH equation. The periodic
boundary condition simply means that φ(x) = φ(x+ 1), ∀x ∈ [0, 1], which induces
a degeneracy at any stationary solution corresponding to the translation invari-
ance in the spatial variable φ(x) → φ(x + c). This means that the second smallest
eigenvalue of the index-1 saddle points is zero. The degeneracy from the peri-
odic boundary condition does not affect the quadratic convergence rate of the IMF

([17]). It is also noted that the mass
∫ 1

0 φ(x)dx is conservative in H−1 metric and
any stationary solution is still stationary if an arbitrary constant is added. This
degeneracy can be eliminated by restricting the solutions in the space where the
mass is chosen beforehand; for the same reason, any eigenvectors or perturbations
should be restricted to having zero mass. We refer the reader to [2, 3] and references
therein on the existence of index-1 saddle point for sufficient small κ. We restrict
our calculation to the case of not too large domain, i.e., the parameter κ in (4.1) is
not too small, but small enough to posses saddle points.

Now we discuss some details of our method. In the IMF, the auxiliary functional
L given by (3.3) (setting α = 0, β = 2) is

L(φ;φ(k), v(k+1)) = F (φ) − 2F (φ̂) (4.4)

with

φ̂ := φ(k) + φ̃ = φ(k) + (v(k+1) ⊗ v(k+1))(φ− φ(k)), (4.5)

where (v ⊗ v)u = 〈v, u〉v, ∀u, v, is associated with either L2 metric or H−1 metric.
So the formal notation 〈· , ·〉 means either 〈· , ·〉L2 (AC–type) or 〈· , ·〉H−1 (CH–
type). Next, we give two convex splitting forms of F (φ) as discussed in (3.10) and
(3.11). The convex splitting form F (φ) = F l

c − F n
e can be taken as

F l
c(φ) =

∫ 1

0

[κ2
2
(
∂φ

∂x
)2 + φ2 +

1

4

]
dx, F n

e (φ) =

∫ 1

0

−
1

4
φ4 +

3

2
φ2 dx. (4.6)
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and the convex splitting form F (φ) = F̃ n
c − F̃ l

e is chosen as

F̃ n
c (φ) =

∫ 1

0

[κ2
2
(
∂φ

∂x
)2 +

1

4
φ4 +

1

4

]
dx, F̃ l

e(φ) =

∫ 1

0

1

2
φ2 dx. (4.7)

Remark 1. The functionals in (4.7) are always convex but the second functional
F n

e in (4.6) are convex only in the region φ ∈ [−1, 1]. In general, when the global
convexity is not available, to obtain the locally contractive Fc and expansive Fe, one
usually has to introduce a sufficiently large positive constant C. For instance the
quadratic term −φ2 in (4.1) can be written as Cφ2 − (1/2+C)φ2, then the convex
region of F n

e is φ2 ≤ (2C + 1)/3. The form (4.6) corresponds to C = 1.
The L2 gradient flow of the Ginzburg-Landau functional ensures that the solution

φ(t) always remains in [−1, 1] by the maximum principle if the initial |φ(0)| ≤ 1;
however, the H−1 Cahn-Hillard flow may not always satisfy this condition. It is
not a trivial work to obtain such L∞ bounds a prior and to derive an implementable
optimal choice of C. Refer to [11] for the theoretic investigation on a convex splitting
scheme for a phase field crystal model. In our numerical simulations, we choose the
minimal C such that the local convexity holds for the initial and it happens that we
did not observe unstable phenomena from our empirical results of two applications
tested here. However, it should be noted that this choice has no theoretic foundation
and is not guaranteed to work in any situation.

4.1.1. Saddle points in L2 metric. The second-order variational operator H(φ)
of the energy functional F , evaluated at φ, is H(φ)ψ = δ2φF ψ = −κ2∆ψ +

f ′′(φ)ψ, ∀ψ ∈ H2([0, 1]), where H2 is the standard Soblev space. The eigenvalue
problem for this operator is defined by

H(φ)ψ = −κ2∆ψ + f ′′(φ)ψ = λψ, (4.8)

subject to boundary conditions, where λ is the eigenvalue. By the result of the
Rayleigh quotient, the eigen-pair for the min-mode, {λ1, ψ1}, solves the variational
problem

min
ψ∈H1([0,1])

R(ψ) :=
〈ψ,Hψ〉L2

‖ψ‖2
L2

=

∫ 1

0 κ
2 |∇ψ|

2
+ f ′′(φ)ψ2 dx

∫ 1

0
|ψ|2 dx

.

After the min-mode is obtained, the subproblem of minimizing the auxiliary
functional (4.4) is then solved by evolving the gradient flow

∂φ

∂t
= −

δL

δφ
(φ) = −

δF

δφ
(φ) + 2(v ⊗ v)

δF

δφ
(φ̂),

= κ2∆φ− φ3 + φ− 2(v ⊗ v)(κ2∆φ̂− φ̂3 + φ̂).

(4.9)

v = v(k+1) is the min-mode of H(φ(k)). φ̂ is defined in (4.5).

Convex Splitting Scheme. We apply (4.6) and (4.7) to the convex splitting of

L(φ), then L(φ) =
[
F l
c(φ) + 2 F̃ l

e(φ̂)
]
−
[
F n
e (φ) + 2 F̃ n

c (φ̂)
]
=: Lc(φ)−Le(φ), where

Lc(φ) =

∫ 1

0

[
κ2

2
(φx)

2 + φ2 +
1

4
+ φ̂2

]
dx,

Le(φ) =

∫ 1

0

[
−
1

4
φ4 +

3

2
φ2 + κ2(φ̂x)

2 +
1

2
φ̂4 +

1

2

]
dx.
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The first order variational derivatives of Lc(φ) and Le(φ) are, respectively,

δφLc(φ) = −κ2∆φ+ 2φ+ 2(v ⊗ v)φ̂,

δφLe(φ) = −φ3 + 3φ+ 2(v ⊗ v)
(
−κ2∆φ̂ + φ̂3

)
.

Therefore, the convex splitting scheme for (4.9) is written as

φn+1 − φn

∆t
=
[
κ2∆φ− 2φ− 2(v ⊗ v)φ

]n+1

+
[
−φ3 + 3φ+ 2(v ⊗ v)

(
− κ2∆φ̂+ φ̂3

)]n
,

(4.10)

after using 〈v, v〉L2 = 1 and (v ⊗ v)φ̂ = (v ⊗ v)φ.

Non-convex-splitting Scheme. We need a traditional semi-implicit scheme, which
is not derived from the convex splitting idea, as the benchmark for comparison.
The idea is to take out the linearized part of the nonlinear term in f ′ and make it
implicit together with the Laplace operator. Linearizing the cubic term φ3 in (4.9),
(φn+1)3 ≈ (φn)3 + 3(φn)2(φn+1 − φn), we then have the following scheme for (4.9)

φn+1 − φn

∆t
= κ2∆φn+1 −

[
(φn)3 + 3(φn)2(φn+1 − φn)

]
+ φn+1

− 2
[
〈v, κ2∆φ̂− φ̂3 + φ̂〉v

]n
. (4.11)
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Figure 1. Profiles of some saddle points (solid lines) of F (φ) in L2

metric computed from various initial states (dashed lines). (a)(b):
the Neumann boundary condition; (c): the periodic boundary con-
dition. The free energy F for these three plotted states from left
to right are 0.0094, 0.0188 and 0.0188, respectively. κ = 0.01.

Set the parameter κ = 0.01. The finite difference method is used for spatial
discretization with the mesh grid {xi = ih, i = 0, 1, 2, . . . , N}. h = 1/N. N = 200.
A finer mesh with N = 1000 is also used to verify all numerical results. There
are only two locally stable states in L2 metric. They are the two homogeneous
constant states: φ+(x) ≡ 1 and φ−(x) ≡ −1. For the Neumann boundary condition,
Figure 1a and Figure 1b show the transition states calculated from the convex
splitting scheme (4.10) with the initial conditions φ0(x) = cosπx and φ0(x) =
cos 2πx, respectively. For the periodic boundary condition, Figure 1c shows the
transition state obtained from the initial condition φ0(x) = sin 2πx, which looks
almost identical to the one in Figure 1b after a simple spatial translation.
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(a) Neumann boundary condition
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(b) Periodic boundary condition

Figure 2. The validation of the quadratic convergence rate of the
IMF mapping Φ by plotting the decay of the error, measured by
the force ‖δφF (φ

(k))‖L2 at each cycle k.

Next we present the numerical evidence on the performance of our numerical
method. We first validate the quadratic convergence rate of the IMF for both
boundary conditions. In this validation, which only cares about the rate of the
mapping φ → Φ(φ), we actually solve each subproblem with an extremely high
precision. The numerical results are presented in Figure 2 and are consistent with
Theorem 1.

Now we compare the performance of the convex splitting (“CS”) scheme (4.10)
against the non-convex splitting (“nCS”) scheme (4.11). Firstly, we examine their
performance for the subproblem, i.e., within a fixed cycle where only the inner itera-
tion is running. Take the first cycle for example, which is to solve minφ L(φ;φ

(0), v(1))

with the initial φ(t = 0) = φ(0). We measure the error by the gradient force
err := ‖δφL(φ

n)‖L2 and calculate the iteration number required to attain the given
error tolerance for the CS scheme (4.10) and the nCS scheme (4.11). The toler-
ances we tested are the following three values: err ≤ 1.0× 10−4, err ≤ 1.0× 10−6

and err ≤ 1.0 × 10−8. We can observe from Table 1 for this simple subproblem
that (1) the CS scheme obviously have much better stability than the nCS scheme
when the time step size is large (∞ in this table means that the numerical results
diverge); (2) For the small ∆t such that both schemes converge, both schemes have
the similar required number of iterations (i.e., the time steps) to decrease δφL to
certain accuracy. This is expected since both solves the same steepest descent flow
for L with the same step size.

Secondly, we show the comparison of the overall efficiency in locating the saddle
point. To be more transparent, we fix the number of iterations in each cycle and
count the required number of the outer cycles to reach some prescribed tolerance for
the error which is defined as

∥∥δφF (φ(k))
∥∥
L2
. The results are summarized in Table

2. The total iteration number, which is the indicator of the total computational
cost, is therefore equal to the number of cycles multiplied by the “iter#” specified
in the corresponding columns of Table 2. The key conclusions from this table, for
both Neumann and periodic boundary conditions, are the following: (1) for the CS
scheme, the larger the time step size is, the smaller the total computational cost
is; (2) for the nCS scheme, it is divergent when a large time step size is applied;

12



The required number of iterations

∆t
err = 10−4 err = 10−6 err = 10−8

(4.10) (4.11) (4.10) (4.11) (4.10) (4.11)
0.01 777 763 1092 1074 1407 1386
0.1 92 78 129 111 166 144
5.0 16 ∞ 23 ∞ 30 ∞
10 14 ∞ 21 ∞ 28 ∞

(a) Neumann boundary condition. The initial state is φ(0) = cos πx.

The required number of iterations

∆t
err = 10−4 err = 10−6 err = 10−8

(4.10) (4.11) (4.10) (4.11) (4.10) (4.11)
0.01 728 722 1043 1034 1358 1347
0.1 86 74 123 108 160 141
5.0 14 ∞ 22 ∞ 29 ∞
10 13 ∞ 20 ∞ 27 ∞

(b) Periodic boundary condition. The initial state is φ(0) = sin 2πx.

Table 1. The comparison of the CS scheme (4.10) and nCS
scheme (4.11) for the subproblem within the first cycle φ(0) →
φ(1) = Φ(φ(0)). The integers shown in the table are the re-
quired number of iterations for the CS scheme (4.10) and the nCS
(4.11) to achieve the three choices of the prescribed error tolerance
‖δφL(φ

n)‖L2 ≤ 10−4, 10−6 and 10−8.

The number of cycles

∆t
iter# = 50 iter# = 80 iter# = 100

(4.10) (4.11) (4.10) (4.11) (4.10) (4.11)
0.01 29 28 18 18 15 14
0.1 4 3 3 2 2 2
5.0 1 ∞ 1 ∞ 1 ∞

(a) Neumann boundary condition. The initial state is φ(0) = cos πx.

The number of cycles

∆t
iter# = 50 iter# = 80 iter# = 100

(4.10) (4.11) (4.10) (4.11) (4.10) (4.11)
0.01 28 27 17 17 14 14
0.1 4 3 3 2 2 2
5.0 1 ∞ 1 ∞ 1 ∞

(b) Periodic boundary condition. The initial state is φ(0) = sin 2πx.

Table 2. The comparison of the required number of outer cycles
for the CS scheme (4.10) and the nCS scheme (4.11) to attain the
given error tolerance ‖δφF (φ

(k))‖L2 ≤ 10−8 when the inner itera-
tion number is fixed as 50, 80 and 100, respectively, for different
choices of the time step size.
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(3) for the very small time step size such as 0.01, there is no much difference in the
computational cost of the CS and nCS schemes. The last observation is consistent
with the known empirical experience of the convex splitting schemes: when both
the CS and nCS converge, the decay rate of the objective function in the CS may
not be better.
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(a) Neumann boundary condition
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(b) Periodic boundary condition

Figure 3. The decay of the error measured by the gradient
‖δφF (φ

(k))‖L2 with the total iteration number (i.e., the cost) for
the CS scheme (4.10) (solid line) and the nCS scheme (4.11)
(dashed line). The inner iteration number in each cycle is fixed
as 100 and the time step sizes are ∆t = 5.0 and 0.1 for the CS and
nCS schemes, respectively.

To better visualize the improvement of the CS scheme over the nCS scheme, we
draw the decay of the error ‖δφF (φ)‖L2 with respect to the total iteration number
in Figure 3. This plot illustrates how much accuracy one can obtain (the vertical
axis) with the available total computational cost (the horizontal axis), in which the
solid lines are from the CS scheme and the dashed lines are from the nCS scheme.
Note that the step sizes for the CS and nCS are different in order to obtain this
efficiency gain.

4.1.2. Saddle points in H−1 metric. In this part, we study the transition state of
F (φ) in H−1 metric. Note that the inner product and the norm in H−1 metric can
be transformed to those in L2 metric as follows

‖φ‖
2
H−1 =

〈
(−∆)−1φ, φ

〉
L2
, 〈φ, ψ〉H−1 =

〈
(−∆)−1φ, ψ

〉
L2
, (4.12)

where (−∆)−1, a bounded positive self-adjoint linear operator, is the inverse of −∆
subject to certain boundary condition. Then the variational derivatives between
the L2 metric and the H−1 metric can be linked as follows:

δφF
∣∣∣
H−1

= −∆δφF, H̃ := δ2φF
∣∣∣
H−1

= −∆δ2φF,

where δφF and δ2φF represent respectively the first and the second order variational

derivatives of F (φ) in L2 metric.
The gradient flow ∂tφ = −(−∆δφF ) = −κ2∆2φ + ∆(φ3 − φ) is the CH equa-

tion (4.3). It is known that the solution φ(x, t) of the CH equation (4.3) satisfies
14



∫ 1

0 φ(x, t)dx ≡
∫ 1

0 φ(x, 0)dx, ∀t > 0. In our problem of finding the saddle point in

the H−1 metric, we choose a fixed mass m = 0.6 beforehand and we are interested

in the saddle points satisfying
∫ 1

0 φ(x)dx = m. We also require any eigenvectors

or perturbations to belong to the subspace
{
ψ :

∫ 1

0 ψ(x)dx = 0
}
. The eigenvalue

problem of H̃ is

{
H̃(φ)ψ = −∆(−κ2∆ψ + f ′′(φ)ψ) = λψ,∫ 1

0
ψ(x) dx = 0,

(4.13)

subject to the Neumann or periodic boundary condition. For nonzero eigenvalue,

the eigenvector ψ automatically satisfies
∫ 1

0
ψdx = 0; For zero eigenvalue, the con-

dition
∫ 1

0
ψdx = 0 needs to be imposed additionally. If we introduce the projection

Pu := u −
∫ 1

0 u(x) dx, then the eigen-problem (4.13) is equivalent to PH̃Pu = λu
for any u without the zero-mass constraint. The min-mode is then equal to u if the
eigenvalue is nonzero and equal to Pu if the eigenvalue is zero.

For the periodic boundary condition, there exists one degenerate (λ = 0) direc-

tion ψ0 for the Hessian H̃(φ), which is the spatial derivative of φ, i.e.,

ψ0(x) = φx(x).

To see this, we just need verify (4.13) by using the periodic boundary condition:∫ 1

0
φx(x)dx = φ(1)− φ(0) = 0 and
∫ 1

0

−∆(−κ2∆φx + f ′′(φ)φx)dx =

∫ 1

0

κ2∂5xφ(x) − ∂2x(∂x(f
′(φ(x)))) dx = 0.

The Rayleigh quotient with respect to H−1 metric is

R̃(ψ) =

〈
ψ, H̃ψ

〉

H−1

‖ψ‖
2
H−1

=

∫ 1

0 κ
2 |∇ψ|

2
+ f ′′(φ)ψ2 dx

∫ 1

0
ψ∆−1ψdx

,

and thus the min-mode is the minimizer of the problem

argmin
ψ

{
R̃(ψ) :

∫ 1

0

ψ dx = 0, ‖ψ‖H−1 = 1

}
. (4.14)

For the IMF in this H−1 case, the subproblem of minimizing the auxiliary func-
tional L for a given φ(k) at cycle k is

φ(k+1) = argmin
∫

1

0
φ(x)dx=m

L(φ;φ(k), v(k+1)), (4.15)

where m =
∫ 1

0
φ(k)dx. This means that each IMF cycle φ(k) → φ(k+1) should also

conserve the mass. The expression of L(φ) is defined as (4.4), with the modification

of φ̂ as follows

φ̂ := φ(k) +
〈
v, φ− φ(k)

〉

H−1

v = φ(k) +
〈
−∆−1v, φ− φ(k)

〉

L2

v

= φ(k) +
〈
w, φ − φ(k)

〉

L2

v,
(4.16)

where

w := −∆−1v
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is the unique solution satisfying the equation −∆w = v and
∫ 1

0 w dx = 0. Then,

δφL(φ) = δφF (φ)− 2w
〈
δφF (φ̂), v

〉

L2

, and the H−1 gradient flow of L is

∂φ

∂t
= ∆

δL

δφ
(φ) = ∆

(
δF

δφ
(φ)

)
+ 2v

〈
δF

δφ
(φ̂), v

〉

L2

,

= −κ2∆2φ+∆(φ3 − φ) + 2v
〈
v,−κ2∆φ̂+ φ̂3 − φ̂

〉

L2

,

(4.17)

where v = v(k+1) refers to the min-mode of (4.13) at φ(k) (normalized under H−1

metric, i.e., ‖v‖H−1 = 1). Note that the scalar in the second line of (4.17) is the
L2 inner product due to the cancelation of ∆ and ∆−1 in the calculation, but the

variable φ̂ involves the H−1 metric via w. This suggests one more computational
cost of solving w = −∆−1v during the IMF subproblem than the GAD scheme

where φ̂ is actually just φ(k) ([15]). Our result (4.17) is consistent with the equation

(3.4) in [28] which was written for the GAD in the finite dimension, i.e., φ̂ = φ(k).

Remark 2. We show that the flow (4.17) conserves the initial mass
∫ 1

0 φ(x)dx,
sharing exactly the same property as the CH equation (4.3). So the constraint in
(4.15) holds automatically. This result immediately implies that the IMF mapping
φ(k) → φ(k+1) does not change the mass at each cycle k. To prove our conclusion,
after integrating the two sides of (4.17) and using the boundary conditions (either
Neumann or periodic), one remains to show the following condition for the eigen-

vector v:
∫ 1

0
v(x)dx = 0. This is exactly the condition that the min-mode v satisfies

in (4.13).

Convex splitting scheme. We now test the convex splitting form of (4.6),(4.7),

which corresponds to L(φ) = Lc(φ)−Le(φ), where Lc(φ) = F lc(φ)+2F̃ le(φ̂), Le(φ) =

Fne (φ) + 2F̃nc (φ̂), and φ̂ is defined in (4.16). Since δφLc(φ) = −κ2∆φ + 2φ +

2
〈
v, φ̂

〉

L2

w, and δφLe(φ) = −φ3 + 3φ+ 2
〈
−κ2∆φ̂+ φ̂3, v

〉

L2

w, then the convex

splitting scheme for (4.17) is for n ≥ 0

φn+1 − φn

∆t
=
[
−κ2∆2φn+1 + 2∆φn+1 − 2

〈
w, φn+1

〉
L2

〈v, v〉L2 v
]

− 2
〈
v, φ(k)

〉

L2

v + 2
〈
w, φ(k)

〉

L2

〈v, v〉L2 v

+
[
∆(φn)3 − 3∆φn + 2

〈
v,−κ2∆φ̂n + (φ̂n)3

〉

L2

v
]
,

(4.18)

where v = v(k+1), w = −∆−1v(k+1) and φ̂n is from (4.16) by letting φ = φn. On
the right hand side of this CS scheme (4.18), the first line is linear in the unknown
φn+1, the second line is independent of n, the third line is the nonlinear term in
φn.

Non-convex-splitting scheme. The same linearization trick used in (4.11) for the
previous AC type problem is applied here again to construct the following non-
convex splitting scheme for CH type equation for comparison:

φn+1 − φn

∆t
= − κ2∆2φn+1 −∆φn+1 +∆

[
(φn)3 + 3(φn)2(φn+1 − φn)

]

− 2
[
〈v, κ2∆φ̂− φ̂3 + φ̂〉v

]n
.

(4.19)
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The parameter κ = 0.04. We set the mesh grid {xi = ih, i = 0, 1, 2, . . . , N}. h =
1/N. N = 200. The function φ(x) is represented by φ = (φ0, φ1, φ2, · · · , φN )T for
the Neumann boundary condition and φ = (φ0, φ1, φ2, · · · , φN−1)

T for the periodic

boundary condition; φi ≈ φ(xi). The matrix form of the Hessian H̃ at the state

φ is H̃(φ) = A∇2Fh(φ), where ∇2Fh(φ) =
∂2Fn

∂φi∂φj
. A and Fh(φ) denote the dis-

cretized forms of the operator −∆ and the potential energy F (φ), respectively. The

min-mode v of the Hessian matrix H̃ can be calculated according to the Rayleigh
quotient (4.14).
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(a) Two locally stable states
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(b) Transition state

Figure 4. (Neumann boundary condition. H−1 metric.) (a): the

two stable stationary states of F (φ) with the mass
∫ 1

0 φdx = 0.6.
F = 0.10240 for the trivial constant state (the thick line) and
F = 0.03772 for the transition layer state (the thin line). (b): one
of the transition states (solid line) with the free energy 0.10241
whose first 3 eigenvalues are λ = −3.41, 3.91 and 18.14, calculated
from the initial condition (dashed line) whose first 3 eigenvalues
are λ = −10.97, 3.45 and 17.48. Note that the vertical axes in
subfigures are in different scales.

Figure 4 and Figure 5 show some of the stationary states of F in H−1 metric for
the Neumann and periodic boundary conditions, respectively. The stationary points
identified by us agree with the result in [42]. Next we compare the performance
of the CS scheme (4.18) and the nCS shceme (4.19). We also start from their
performance for the subproblem in the first cycle as before. Table 3 compares
the number of inner iterations to attain the three error tolerances: ‖∆δφL‖H−1 ≤
10−4, 10−5 or 10−6. Basically we have the same observations as for the L2-metric
case. The CS scheme allows the step size as large as 0.1 but the nCS is not able in
this example. This table also shows that the nCS scheme, if it converges, requires
a less number of iterations to reach the tolerance, in particular for the periodic
boundary condition. This is possible because a scheme with a better stability does
not guarantee a faster convergence rate toward the minimum.

Table 4 shows the same quantities of the overall performance of the convex
splitting scheme in this H−1 metric as measured before in Table 2 in the L2 metric.
The conclusions we draw from this table are qualitatively the same as from Table
2. In the end, based on the experiments corresponding to Table 4, we plot the
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(b) Transition state

Figure 5. (Periodic boundary condition. H−1 metric.) (a): the
two stable stationary states of F (φ) in H−1 metric with the given

mass
∫ 1

0 φdx = 0.6. F = 0.10240 for the constant state and
F = 0.07510 for the other non-constant state. (b): one of the tran-
sition states (solid line) with the free energy 0.10285 whose first
three smallest (numerical) eigenvalues are −12.75,−1.86 × 10−7

(corresponding to theoretical zero eigenvalue) and 46.15. The ini-
tial state is shown as the dashed line in which the first 3 smallest
eigenvalues are λ = −27.13,−6.81 and 44.98.

The required number of iterations

∆t
err = 10−4 err = 10−5 err = 10−6

(4.18) (4.19) (4.18) (4.19) (4.18) (4.19)
10−3 2956 2647 3332 2993 3709 3339
10−2 550 273 617 308 685 343
10−1 283 ∞ 321 ∞ 360 ∞
1.0 14 ∞ 262 ∞ 298 ∞

(a) Neumann boundary condition.

The required number of iterations

∆t
err = 10−4 err = 10−5 err = 10−6

(4.18) (4.19) (4.18) (4.19) (4.18) (4.19)
10−3 1022 820 1163 939 1305 1057
10−2 281 77 316 88 351 99
10−1 208 ∞ 233 ∞ 257 ∞

(b) Periodic boundary condition.

Table 3. The comparison of the CS scheme (4.18) and nCS
scheme (4.19) for the subproblem φ(0) → φ(1) = Φ(φ(0)). The in-
tegers in the table are the required number of iterations to achieve
the three prescribed tolerances ‖∆δφL(φ

n)‖H−1 ≤ 10−4, 10−5 and
10−6.
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evolution of the error measured by the force ‖∆δφF (φ
(k))‖H−1 against the total

iteration number for the CS scheme and the nCS scheme by using their own optimal
time step sizes respectively. Refer to Figure 6. Here for the CH-type problem, in
order to illustrate that our results are robust with respect to the initial guess, we
added the random perturbation to generate multiple initial states so that multiple
lines are plotted for different initial guesses.

The number of cycles

∆t
iter# = 40 iter# = 50 iter# = 60

(4.18) (4.19) (4.18) (4.19) (4.18) (4.19)
10−3 118 102 95 82 79 69
10−2 28 ∞ 22 ∞ 16 ∞
10−1 16 ∞ 17 ∞ 16 ∞

(a) Neumann boundary condition.

The number of cycles

∆t
iter# = 50 iter# = 80 iter# = 100

(4.18) (4.19) (4.18) (4.19) (4.18) (4.19)
10−3 34 25 22 16 18 13
10−2 13 ∞ 7 ∞ 8 ∞
10−1 11 ∞ 8 ∞ 7 ∞

(b) Periodic boundary condition.

Table 4. The comparison of the number of outer cycles required
for the CS scheme (4.18) and the nCS scheme (4.19) to attain the
given error tolerance ‖∆δφF (φ

(k))‖H−1 ≤ 10−8, when the inner
iteration number is fixed for the different choices of the time step
size ∆t = 10−3, 10−2 and 10−1. The corresponding initial states
are specified in Figure 4b and Figure 5b, respectively.

4.2. 2D example: Landau-Brazovskii free energy. In this section, we study
the nucleation problem of phase transition in diblock copolymers ([29, 37]). The
model is described by the Landau-Brazovskii energy functional of the order param-
eter φ

F (φ) =

∫

Ω

ξ2

2
[(∆ + 1)φ(r)]2 +Φ(φ) d r, (4.20)

where Φ(φ) = τ
2φ

2 − γ
3!φ

3 + 1
4!φ

4. The parameters are τ = −0.15, ξ = 1.0, γ = 0.25.

We compute the transition state of this F in H−1 metric.
We consider the two dimensional domain Ω = [0, Lx] × [0, Ly] and the peri-

odic boundary condition. φ satisfies the mass conservation
∫
Ω
φ(r)dr = 0. The

eigenvalue problem in the IMF for this case then reads
{
H̃(φ)ψ = −∆

[
ξ2(∆ + 1)2 +Φ′′(φ)

]
ψ = λψ,

∫
Ω
ψ(r) dr = 0.

The min-mode v is the eigenvector of H̃ corresponding to the smallest eigenvalue.
The gradient flow associated with the minimization subproblem for L(φ;φ(k), v(k+1)) =
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Figure 6. The evolution of the errors measured by
‖∆δφF (φ)‖H−1 w.r.t. the total iteration number for the CS
scheme (4.18) (solid lines) and the nCS scheme (4.19) (dashed
lines). Different small perturbations around the initial condition
used in Table 4 are added as the new initial conditions here to
produce multiple lines. For the Neumann boundary condition in
(a), the inner iteration number is 40 and the time step sizes are
∆t = 10−1 and 10−3 for the CS and nCS schemes, respectively.
For the periodic boundary condition in (b), the inner iteration
number is 50 and the time step sizes are the same as in (a).

F (φ)− 2F (φ̂) is

∂φ

∂t
= ∆

δL

δφ
= ξ2∆(∆ + 1)2φ+∆Φ1(φ) + 2

〈
v, ξ2(∆ + 1)2φ̂+Φ1(φ̂)

〉

L2

v, (4.21)

where Φ1(φ) = Φ′(φ) = τφ− γφ2/2! + φ3/3! and φ̂ is defined the same as (4.16).

Convex-splitting scheme. We give two convex splitting forms of F as follows

F l
c(φ) =

∫

Ω

ξ2

2

[
(∆ + 1)φ

]2
+
τ + 22.75

2
φ2 dr, (4.22)

F n
e (φ) =

∫

Ω

[
−

1

4!
φ4 +

γ

3!
φ3 +

22.75

2
φ2

]
dr, (4.23)

and

F̃ n
c (φ) =

∫

Ω

ξ2

2
|∆φ|2 + (

1

4!
φ4 −

γ

3!
φ3 +

ξ2 + τ

2
φ2) dr, (4.24)

F̃ l
e(φ) =

∫

Ω

ξ2|∇φ|2 dr. (4.25)

By (4.22), (4.23) and (4.25), (4.25), and the convex splitting form of L(φ) =

Lc(φ)−Le(φ) with Lc(φ) = F l
c(φ) + 2F̃ l

e(φ̂) and Le(φ) = F n
e (φ) + 2F̃ n

c (φ̂), we have
the convex splitting scheme for (4.21) as follows

φn+1 − φn

∆t
= ∆[δφLc(φ)]

n+1 −∆[δφLe(φ)]
n,
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i.e.,

φn+1 − φn

∆t
=
[
ξ2∆(∆ + 1)2φ+ (τ + 22.75)∆φ

]n+1

+ 4ξ2
[
〈∆v, v〉 〈w, φ〉 v

]n+1

+ 4ξ2
[〈

∆φ(k), v
〉
−
〈
w, φ(k)

〉
〈∆v, v〉

]
v−∆

[
−

1

3!
φ3+

γ

2
φ2 + 22.75φ

]n

+ 2

〈
v, ξ2∆2φ̂+ (ξ2 + τ)φ̂ −

γ

2
φ̂2 +

1

3!
φ̂3

〉
v
]n
, (4.26)

where 〈·, ·〉 means 〈·, ·〉L2 .

Remark 3. In (4.23), we choose the constant C = 22.75 in Remark 1, then the
convex region for (4.23) is [−6.5, 6.5]. One can see later that the local minimum and
the saddle point lie between −1.5 and 1.5. But our initial guess spans the interval
[−6.5, 6.5], so we use a large C = 22.75. Fortunately, we find that φ always locates
in [−6.5, 6.5] by tracking the numerical value of φ. Note that (4.22), (4.24) and
(4.25) are globally convex.

Non-convex-splitting scheme. This scheme is constructed by the same idea as
before by applying the Taylor expansion of the nonlinear term Φ1(φ

n+1) around
the solution at the old time step φn,

Φ1(φ
n+1) ≈ Φ1(φ

n) + Φ′
1(φ

n)(φn+1 − φn).

After simplification, we get the non-convex splitting scheme as follows:

φn+1 − φn

∆t
= ξ2∆(∆ + 1)

2
φn+1 +∆

(
τ − γφn +

1

2
[φn]2

)
φn+1

+∆

(
γ

2
[φn]2 −

1

3
[φn]

3

)
+ 2

[
〈v, ξ2(∆ + 1)2φ̂+Φ1(φ̂)〉v

]n
.

(4.27)

In the numerical simulation, we choose the domain Ω = [0, 16√
3
π]× [0, 8π] and set

the mesh gird {xi = ihx, i = 0, 1, 2, . . . , Nx.} and {yj = jhy, j = 0, 1, 2, . . . , Ny}.
hx = 1/Nx, hy = 1/Ny, Nx = Ny = 100. We first consider the gradient flow ∂tφ =
∆δφF = ∆[ξ2(∆ + 1)2φ + Φ1(φ)] to find the steady states of F (φ). The initial
conditions are chosen as equation (2.21) in [37]. For this steepest descent flow of F ,
we tested the convex splitting method based on (4.22) (4.23) (obtained by setting
v = 0 in (4.26)), and the semi-implicit scheme based on the Taylor expansion for
the nonlinear term (this scheme is obtained by directly setting v = 0 in (4.27) ).
The numerical results show that all schemes are stable with the time step sizes as
large as 50.

Figure 7(a) and Figure 7(c) are the two metastable states of the lamellar phase
and the cylindrical phase respectively. Figure 7(b) is the transition state ob-
tained by the IMF. The initial guess for the IMF in our test has the gradient
‖∆δφF (φ

0)‖H−1 = 10−2 and the minimal eigenvalue −2.0× 10−12.
Table 5 shows the number of inner iterations in the first cycle and the number

of outer cycles in the whole process for the CS scheme (4.26) and the nCS scheme
(4.27). For this particular example, we find that both schemes perform quite well
for large time step sizes and their performances are almost identically. So, in this 2D
example, the both schemes are quite successful. However, for the convex splitting
scheme, we have offered an automatic procedure from the decomposition of F to
the decomposition of L, so our CS scheme developed here inherits the advantage of
convex splitting method to allow large time step sizes. Note that the linearization
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Figure 7. Two stable stationary states (a) and (c) and the transi-
tion state (b) of the 2-D Landau-Brazovskii energy in H−1 metric.
Their free energies are −16.486, −16.447 and −17.290, from left
to right. Their smallest eigenvalues are 3.50× 10−6, −4.32× 10−6,
and 3.32× 10−6, respectively.

The required number of iterations

∆t
err = 10−2 err = 10−3 err = 2× 10−4

(4.26) (4.27) (4.26) (4.27) (4.26) (4.27)
0.1 127 126 1930 1928 10651 10645
1.0 14 14 192 190 1061 1055
10 3 3 18 16 105 99

(a) Inner iteration comparison

The number of cycles

∆t
iter# = 500 iter# = 800 iter# = 1000
(4.26) (4.27) (4.26) (4.27) (4.26) (4.27)

0.1 191 191 381 380 239 238
1.0 40 39 25 25 21 20
10 6 5 4 4 4 3

(b) Outer cycle comparison

Table 5. (a) The comparison of the CS (4.26) and nCS scheme
(4.27) for the subproblem of the first cycle. The integers shown are
the required number of iterations to achieve the three prescribed
tolerances ‖∆δφL(φ

n)‖H−1 ≤ 10−2, 10−3 and 2 × 10−4; (b) The
number of outer cycles required for (4.26) and (4.27) to attain the
given tolerance ‖∆δφF (φ

(k))‖H−1 ≤ 10−6.

idea of constructing semi-implicit scheme has shown the unconditionally stability in
search of local minimizers for this Landau-Brazovskii example. So for other schemes
which are not based on the convex splitting idea but have proven to work for F with
unconditional stability, one may also be able to construct some resemblant schemes
for L, such as the scheme (4.27) we derived above. Then what is not obvious is the
theoretic question on the stability of these new schemes for L. This could be left
as a future project to generalize our idea of testing the convex splitting method in
this article.
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4.3. Discussion. The choice of the initial guess is an important practical issue
for all existing numerical methods of calculating the saddle points. The GAD or
the IMF only has the local convergence and thus in extreme cases, one can easily
construct a special initial guess which does not have convergence. In addition, the
subproblem of minimizing the auxiliary functional is well-defined only when the
minimal eigenvalue of the original Hessian is negative; otherwise, it should not be
solved thoroughly, but limited to a fixed few number of iterations, such as in the
GAD. For the readers particularly interested in the practical convergence issue,
refer to the discussion in [15]. Most numerical results we reported here are for
one typical choice of initial conditions (except for Figure 6), but our unreported
numerical experiments by trying various initial guesses, still strongly support our
main conclusions.

Finally, we emphasize another critical implementation issue of selecting the cor-
rect “min-mode”. In theory, the calculation of the min-mode is straight forward
by minimizing the corresponding Rayleigh quotient. But if one starts from a lo-
cal minimizer of F , say φ̄, then the eigenvalues at this locally stable state are
{0 = λ1 < λ2 < . . .} for the periodic boundary condition and the min-mode is then
the zero eigenvector v1 = ∂xφ̄. However, taking ∂xφ̄ as the min-mode is a very
bad choice since it will not push the state away but only translate the state back
and forth in space. This pathological case could also appear for some special ini-
tial states in the convex region of F , for example, when the minimal eigenvalue
λ1 crosses over zero from positive to negative (from the convex region to the non-
convex region), i.e., near the so-called branching point. The remedy to avoid this
pathological situation in practice is simple: at a state φ, whenever the angle be-
tween v1 and ∂xφ is close to 0◦ or 180◦ (determined by a prescribed threshold), a
constraint is added to make sure that the min-mode v in use for the auxiliary func-
tional L must be orthogonal to ∂xφ. In this way, a strictly positive λ2 is selected
and accordingly, v2 is selected as the “min-mode”. As long as λ1 starts to take
a negative value, the angle defined above automatically becomes 90◦ and there is
no interference between the min-mode v1 and the translation direction ∂xφ. After
taking care of this issue, we found that for many initial guesses we tried, we did
observe the convergence of the algorithm.

5. Conclusion

We have demonstrated how the convex splitting method can improve the effi-
ciency of the transition-state calculation by allowing for the preferred large time
step size. For the 1-D Ginzburg-Landau energy, this new method has been applied
to find index-1 saddle points of the Allen-Cahn and Cahn-Hilliard types, i.e., under
the L2 and H−1 metrics, respectively. Besides, we also test this method for the 2-D
Landau-Brazovskii energy functional in H−1 metric. The main advantage of using
the convex splitting scheme is to avoid the instability when the time step size is
large. And it is also very inspiring that our extensive numerical studies in this paper
have shown the significant improvement of the computational efficiency. Therefore,
for spatially extended systems driven by an energy functional such as the phase field
models or the Kohn-Sham density functional ([27]), we have reasons to speculate
that many matured and excellent numerical methods for the traditional gradient
dynamics may be able to exhibit their new vitalities for saddle point calculation, if
they are correctly wrapped by the iterative minimization formulation.
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