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Abstract

In this paper, we study periodic wave solutions of coupled KdV-type equa-
tions. We present a numerical process to calculate the N -periodic waves based
on the direct method of calculating periodic wave solutions proposed by Akira
Nakamura. Particularly, in the case of N = 1, 2, 3, we give some detailed exam-
ples to show the N-periodic wave solutions to a coupled Ramani equation.
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1 Introduction

In this paper, we focus on numerical calculation of N -periodic wave solutions to
coupled KdV-type soliton equations. The periodic solution mentioned here represents
periodic analogue of soliton solution, and in general case N -periodic wave solution is
a periodic generalization of N -soliton solution or multiple collision of N solitons [18].

Much work has already been done on periodic waves. The pioneering work was
made by Novikov and Dubrovin [2–4], Lax [5], Its and Matveev [6], McKean and Mo-
erbeke [7] in 1970s. After that, some classical methods such as the inverse scattering
method [8–10], the algebro-geometric approach [11–17] and the direct method [18–23],
are applied to solve periodic waves. However, comparing with soliton waves, the pe-
riodic waves are more complicated and it is difficult to give some detailed explicit
expressions. Therefore, many researchers turn to numerical calculations. Recent work
includes the numerical approach via Riemann-Hilbert problem [24, 25] and spectral
method [26–28]. Here we will calculate the periodic waves numerically based on the
direct method [1, 18–20].

In Refs. [18]- [19], Nakamura first proposed the conditions for having N -periodic
waves to nonlinear evolution equation which can be reduced to some certain type of
bilinear equations, such as KdV, mKdV, NLS and some other equations. And then
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in Ref. [20], Hirota suggested researchers investigate whether the soliton equations
written in bilinear form exhibit 3-periodic wave solutions or not by this condition.

In this paper, we will apply the conditions to coupled KdV-type equations and give
a numerical procedure to calculate their N -periodic wave solutions. Here “coupled
KdV-type” means that, with some suitable variable transformations and auxiliary
variables, equation can be transformed into the following bilinear form

F1(Dt,Dz ,Dx, · · · , c1)f · f = 0, (1.1)

F2(Dt,Dz ,Dx, · · · , c2)f · f = 0, (1.2)

where F1, F2 are even functions of Dt,Dz,Dx, · · · , c1, c2 are integral constants, and
the D operator [1] is defined by

Dm
t Dn

xa(t, x) · b(t, x)

=
∂m

∂sm
∂n

∂yn
a(t+ s, x+ y)b(t− s, x− y)|s=0,y=0,

m, n = 0, 1, 2, · · · . (1.3)

Many soliton equations can be viewed as coupled KdV-type equations. For ex-
ample, the coupled Ramani equation [31]

uxxxxxx + 15uxxuxxx + 15uxuxxxx + 45u2xuxx

−5(uxxxt + 3uxxut + 3uxuxt)− 5utt + 18vx = 0, (1.4)

vt − vxxx − 3vxux − 3vuxx = 0, (1.5)

can be transformed into the bilinear form

(D6
x − 5D3

xDt − 5D2
t + 9DxDz + c1)f · f = 0, (1.6)

(DzDt −DzD
3
x − 6v0D

2
x + c2)f · f = 0, (1.7)

by the dependent variable transformation

u = u0 + (lnf)xx, v = v0 + (lnf)xz, (1.8)

where z is an auxiliary variable and c1, c2 are integral constants. This type of equa-
tions also include the Hirota-Satsuma coupled KdV equation [32], the Camassa-Holm
equation [33,34], the semi-discrete KdV equation [35] and some other discrete soliton
equations [36,37].

In the case of single KdV-type bilinear equations, as shown by Nakamura [18] and
Hirota [20], there are always exactly 1- and 2- periodic wave solutions and if N ≥ 3,
we need solve an over-determined nonlinear algebraic system to obtain a N -periodic
wave. However, the situation of coupled KdV-type equations is different. In this
case, there are only exactly 1-periodic wave solutions and if N ≥ 2, it is necessary
for us to deal with an over-determined algebraic system to solve N -periodic wave
solutions( see Sect. 2 for details).

The paper is organized as follows. In Sect. 2, we will review the conditions given
by Nakamura and apply them to the coupled KdV-type bilinear Eqs. (1.1)-(1.2). In
Sect. 3, we will propose a numerical procedure by using Gauss-Newton method based
on the condition. Section 4 devotes to some numerical results of the coupled Ramani
Eqs. (1.6)-(1.7). Some conclusions and discussions will be given in Sect. 5.
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2 Condition for N-periodic wave solutions

Firstly, we review the Riemann’s θ-function defined by

θ(η; s|τ ) =
∑

m1

∑

m2

· · ·

∞
∑

mN=−∞

exp[i

N
∑

j=1

(mj + sj)ηj

−
1

2

N
∑

j,k=1

(mj + sj)τj,k(mk + sk)], (2.9)

where ηj , sj and τj,k are the elements of the vector η, s and the symmetric matrix τ

respectively, and ηj is defined by

ηj = ωjt+ kjx+ · · · + η0j , j = 1, 2, · · ·N. (2.10)

Here kj , ωj , η
0
j , the diagonal elements τjj and off-diagonal elements τjk, j 6= k are

parameters corresponding to the wave numbers, the frequencies, the phase positions,
the amplitudes and the interactions respectively.

2.1 Single KdV-type bilinear equations

For a single KdV-type bilinear equation

F (Dt,Dx, · · · , λ)f · f = 0, (2.11)

the condition for having N -periodic wave solutions was first proposed by Nakamura
[18].

Lemma 2.1 For the Riemann’s θ-function defined by (2.9), θ(η;0|τ ) is a N -periodic

wave solution of the single bilinear equation (2.11) if

∑

m1

∑

m2

· · ·

∞
∑

mN=−∞

F [2i

N
∑

j=1

(mj − µj/2)ωj , 2i

N
∑

j=1

(mj − µj/2)kj , · · · , λ]

× exp[−

N
∑

j,k=1

(mj − µj/2)τj,k(mk − µk/2)] = 0, (2.12)

for all possible combinations µ1 = 0, 1, µ2 = 0, 1, · · · , µN = 0, 1.

The proof of this lemma can be found in Refs. [18, 20,29] .
Note that there are 2N equations of type (2.12), and the total number of param-

eters ωj, kj(j = 1, 2, · · · , N), λ, and τj,k(1 ≤ j, k ≤ N) is 2N + 1 + N(N + 1)/2.
Generally, the diagonal elements τjj which influence the amplitudes, and the wave
numbers kj(or frequencies ωj) are taken to be given parameters. Thus we have 2N

equations with 1 + N(N + 1)/2 unknowns. In the case of N = 1, 2, we have the
equal number of equations and unknown parameters while in the case of N ≥ 3, the
number of equations is larger than the number of unknown parameters, which means
that this is an over-determined system.
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2.2 Coupled KdV-type bilinear equations

We apply Lemma 2.1 to coupled KdV-type bilinear Eqs. (1.1)-(1.2). Note that,
there is an auxiliary variable z in this system. Therefore, the ηj in the Riemann’s
θ-function (2.9) is defined by

ηj = ωjt+ ljz + kjx+ · · ·+ η0j , j = 1, 2, · · ·N. (2.13)

We have the following theorem.

Theorem 2.2 For the Riemann’s θ-function defined by (2.9)-(2.13), θ(η;0|τ ) is a

N -periodic wave solution of the coupled bilinear equation (1.1)-(1.2) if

∑

m1

∑

m2

· · ·

∞
∑

mN=−∞

F1[2i

N
∑

j=1

(mj − µj/2)ωj ,

2i

N
∑

j=1

(mj − µj/2)lj , 2i

N
∑

j=1

(mj − µj/2)kj , · · · , c1]

× exp[−
N
∑

j,k=1

(mj − µj/2)τj,k(mk − µk/2)] = 0, (2.14)

∑

m1

∑

m2

· · ·

∞
∑

mN=−∞

F2[2i

N
∑

j=1

(mj − µj/2)ωj ,

2i
N
∑

j=1

(mj − µj/2)lj , 2i
N
∑

j=1

(mj − µj/2)kj , · · · , c2]

× exp[−

N
∑

j,k=1

(mj − µj/2)τj,k(mk − µk/2)] = 0, (2.15)

for all possible combinations µ1 = 0, 1, µ2 = 0, 1, · · · , µN = 0, 1.

The proof of this theorem is similar to that of Lemma 2.1 which is to substitute
θ(η;0|τ ) into the coupled bilinear system (1.1)-(1.2) and simplify the formula with
some bilinear identities and tedious calculations. We omit the details here.

Note that there are 2N+1 equations, and the total number of parameters ωj, lj , kj(j =
1, 2, · · · , N), c1, c2, and τj,k(1 ≤ j, k ≤ N) is 3N + 2+N(N + 1)/2. With kj and τjj
given, we obtain a nonlinear algebraic system of 2N+1 equations with N +2+N(N+
1)/2 unknowns. Thus, for 1-periodic waves, we need to solve 4 parameters from 4
equations while for 2- and 3-periodic waves, we have to solve 7 and 11 parameters
from 8 and 16 equations respectively.

3 Numerical scheme

In this section, we will introduce our numerical procedure to solve the unknown
parameters from the nonlinear algebraic system(2.14)-(2.15). The main idea is to
formulate the problem as a nonlinear least square problem and then use the Gauss-
Newton method [43] to solve it.

For simplicity, we rewrite Eqs. (2.14)-(2.15) as

H(x) = (H1,H2, · · · ,H2N+1)T = 0, (3.16)
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where Hi = 0(i = 1, 2, · · · , 2N+1) is one of the equations in system (2.14)-(2.15) and
x is a vector whose elements are the unknown parameters ωj, lj , τij(i < j) and c1, c2.
The objective function of the nonlinear least square problem is

S(x) =
1

2

2N+1
∑

n=1

H2
n(x) =

1

2
H(x)TH(x), (3.17)

Starting with an initial guess x[0], the Gauss-Newton method proceeds by the itera-
tions

x[j+1] = x[j] − (JTJ)−1JTH |
x=x

[j] , (3.18)

where x[j] (j ≥ 1) is the j-th iterative output and J is the Jacobian matrix of H, i.e.

J =

[

∂Hi

∂xj

]

i=1,...,2N+1;j=1,...,N+2+N(N+1)/2

(3.19)

This iterate process makes the objective function S(x) decay to zero. In the numer-
ical experiments, if JTJ is near singular, change it to JTJ + 10−6E to modify the
singularity, where E is the unit matrix.

The key of the procedure is the choice of initial guess x[0]. We suggest the
following guidance to determine the initial guess. For given kj , solve the initial guess

ω
[0]
j and l

[0]
j from the equations

F1(iω
[0]
j , il

[0]
j , ikj , · · · , c

[0]
1 ) = 0, (3.20)

F2(iω
[0]
j , il

[0]
j , ikj , · · · , c

[0]
2 ) = 0, (3.21)

where the initial guess of c
[0]
1 ,c

[0]
2 are generally taken to be ±1. In fact, if the initial

guess x[0] satisfies Eqs. (3.20)-(3.21), the objective function S(x) will have a smaller
initial value.

4 Numerical results

In this section, we use the numerical scheme to calculate 1-, 2- and 3-periodic wave
solutions of the coupled Ramani Eqs. (1.4)-(1.5). This system was first proposed in
Ref. [31], and its N -solitons was known to be expressed by Pfaffians [38]. Some other
properties and generalizations can be found in Refs. [39–42]. As far as we know,
there is no results about the periodic waves of this equation. It is worth mentioning
that when v = 0, the coupled Ramani equation reduces to the following Ramani
equation [30].

uxxxxxx + 15uxxuxxx + 15uxuxxxx + 45u2xuxx

−5(uxxxt + 3uxxut + 3uxuxt)− 5utt = 0. (4.22)

Note that there are two constants u0 and v0 in the variable transformation (1.8)
and u0 makes no difference to the bilinear equations while v0 does. Thus the numerical
experiments will be carried out with v0 = 0 and v0 = 1 respectively. When plotting
the profile of u and v, we will take u0 = 0, η0j = 0 and z = 0 without loss of generality.

All computations are carried out in Matlab R2013b on a computer with a 2.83
GHz CPU and 8 GB main memory. The termination condition for stopping the
numerical iterative is ||x[j+1] − x[j]||2 < 10−14 and ||H||2 < 10−14 where ||·||2 means
2-norm.
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4.1 1-periodic waves

In the case of N = 1, according to Theorem 2.1, the problem is for given k1 and
τ11, to solve ω1, l1, c1 and c2 from a nonlinear algebraic system of 4 equations. Note
that the coupled Ramani equation (1.4)-(1.5) are linear in c1 and c2, and include
terms D2

t and DzDt. Thus after a tedious calculation, the nonlinear algebraic system
reduces to a cubic equation of ω1. Therefore, although very tediously but possibly,
we are able to write out the exact solutions.

Here, instead of giving the exact expressions, we will present some 1-periodic wave
solutions numerically by using the numerical scheme given in Sect. 3. When N = 1,
the Jacobian matrix J is 4× 4 and the Gauss-Newton iteration (3.18) reduces to the
Newton iteration

x[j+1] = x[j] − J−1H |
x=x

[j] . (4.23)

The numerical experiments are successful and the errors of ||H||2 = 0 hold within
∼ 10−15. See Tables 1-2 for several detailed examples. Fig. 1 shows the profiles of
u and v of the first example in Table 1. This 1-periodic wave solution is periodic
both in time and space. Actually, its spatial and temporal periods are 2π

k1
= 10 and

2π
l1

= 44.1235 respectively. As shown in the Fig. 1, the profiles at t = 0 and t = 44.1
almost coincide for both u and v.

In the case of v0 = 0, the numerical experiments may give some solutions of l1 =
0(see the second example in Table 1) which means that the Riemann’s θ-function is
independent on z. With the variable transformation (1.8), we have v = 0. Therefore,
in this case, the solution u reduces to the solution of the Ramani equation (4.22).
The same goes in the numerical experiments of 2-periodic and 3-periodic waves which
will be given below.

k1 τ11 c
[0]
1 c

[0]
2

1× 2π
10 0.46 × 2π 1 1

ω1 l1 c1 c2
0.1424 0.0921 0.8494 0.0419

k1 τ11 c
[0]
1 c

[0]
2

1× 2π
10 1.86 × 2π 1 1

ω1 l1 c1 c2
−0.0423 0 0.00005 0

Table 1: 1-periodic waves: examples with v0 = 0

k1 τ11 c
[0]
1 c

[0]
2

1× 2π
10 0.46 × 2π 1 1

ω1 l1 c1 c2
1.3800 1.9139 3.6650 0.8708

k1 τ11 c
[0]
1 c

[0]
2

1× 2π
10 1.86 × 2π 1 1

ω1 l1 c1 c2
1.4071 1.4312 0.0004 0.0001

Table 2: 1-periodic waves: examples with v0 = 1
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Figure 1: Profile of u and v of the first example of Table 1. Figure left: u-profile;
Figure right: v-profile

4.2 2-periodic waves

In this case, the nonlinear algebraic system (2.14)-(2.15) is an over-determined
system of 8 equations with 7 unknowns. In our numerical experiments, the errors of
||H||2 = 0 also hold within ∼ 10−15. See the detailed examples in Tables 3-4 and
Figs. 2-3. These waves are periodic in space but only quasi-periodic in time. We also
give an example of lj = 0(j = 1, 2)(see the last example in Table 3).

k1 k2 τ11 τ22 c
[0]
1 c

[0]
2 ω1 ω2 l1 l2 τ12 c1 c2

1 ×
2π
10

2 ×
2π
10

0.96 × 2π 1.23 × 2π 1 1 0.3556 −1.9620 0.0313 3.0793 0.9060 0.0460 0.0651

k1 k2 τ11 τ22 c
[0]
1 c

[0]
2 ω1 ω2 l1 l2 τ12 c1 c2

1 ×
2π
10

2 ×
2π
10

0.46 × 2π 1.03 × 2π 1 1 0.3724 −1.8403 0.2439 2.9825 1.0610 1.4268 0.3234

k1 k2 τ11 τ22 c
[0]
1 c

[0]
2 ω1 ω2 l1 l2 τ12 c1 c2

1 ×
2π
10

2 ×
2π
10

0.52 × 2π 1.13 × 2π 1 −1 −0.2612 −0.8778 0 0 −0.5938 0.3925 0

Table 3: 2-periodic waves: examples with v0 = 0

k1 k2 τ11 τ22 c
[0]
1 c

[0]
2 ω1 ω2 l1 l2 τ12 c1 c2

1 ×
2π
10

2 ×
2π
10

0.96 × 2π 1.23 × 2π 1 1 1.4078 3.3761 1.4515 1.7779 2.2216 0.6755 0.0575

k1 k2 τ11 τ22 c
[0]
1 c

[0]
2 ω1 ω2 l1 l2 τ12 c1 c2

1 ×
2π
10

2 ×
2π
10

0.46 × 2π 1.03 × 2π 1 1 1.3897 3.3863 1.9282 1.9582 1.9332 5.1707 0.9571

k1 k2 τ11 τ22 c
[0]
1 c

[0]
2 ω1 ω2 l1 l2 τ12 c1 c2

1 ×
2π
10

2 ×
2π
10

0.52 × 2π 1.13 × 2π 1 −1 1.3843 3.3920 1.7341 1.8698 2.0174 3.1582 0.5405

Table 4: 2-periodic waves: examples with v0 = 1

4.3 3-periodic waves

In the case of 3-periodic waves, the problem is a nonlinear system of 16 equations
with 11 unknowns. Some detailed numerical examples are given in Tables 5-6. As
shown in Figs. 4-5, the 3-periodic wave represents three waves interact with each
other repeatedly.

In some cases, the numerical experiments will produce results with lj = 0(see the
third example in Table 5). As we stated before, this kind of solutions will reduce
to the solutions of the Ramani equation (4.22). However, as the iterative output
x[j] tends to the exact solution, the corresponding matrix JTJ will be near-singular
which will result in accuracy degradation. Actually, in the third example of Table 5,
the error of ||H||2 = 0 only holds within ∼ 10−9 while in the other examples, the
errors hold within ∼ 10−14.
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Figure 2: The first example of Table 3. Top left: u-profile; Top right: contour plot
of u; Below left: v-profile; Below right: contour plot of v.

k1 k2 k3 τ11 τ22 τ33 c
[0]
1 c

[0]
2

1 ×
2π
10

2 ×
2π
10

3 ×
2π
10

0.67 × 2π 0.86 × 2π 1.02 × 2π 1 1

ω1 ω2 ω3 l1 l2 l3 τ12 τ13 τ23 c1 c2
0.4685 −0.8643 7.0815 −0.9501 1.0718 0.0183 −1.4992 1.0605 1.6167 24.5355 0.1485

k1 k2 k3 τ11 τ22 τ33 c
[0]
1 c

[0]
2

1 ×
2π
10

2 ×
2π
10

3 ×
2π
10

0.46 × 2π 1.02 × 2π 1.53 × 2π −1 1

ω1 ω2 ω3 l1 l2 l3 τ12 τ13 τ23 c1 c2
0.1981 2.1281 −2.8105 0.0942 0.0220 −0.1015 1.5832 −1.1454 1.2599 3.2383 0.0428

k1 k2 k3 τ11 τ22 τ33 c
[0]
1 c

[0]
2

1 ×
2π
10

2 ×
2π
10

3 ×
2π
10

0.53 × 2π 0.75 × 2π 1.13 × 2π 1 1

ω1 ω2 ω3 l1 l2 l3 τ12 τ13 τ23 c1 c2
0.8089 −1.0065 −0.1976 0 0 0 −1.5390 1.7911 3.1734 36.8174 0

k1 k2 k3 τ11 τ22 τ33 c
[0]
1 c

[0]
2

1 ×
2π
10

2 ×
2π
10

3 ×
2π
10

0.53 × 2π 0.75 × 2π 1.13 × 2π −1 1

ω1 ω2 ω3 l1 l2 l3 τ12 τ13 τ23 c1 c2
0.5147 1.6120 −2.7811 −0.7670 −0.1002 0.8148 1.7865 −1.6037 1.2270 23.1536 −0.1155

Table 5: 3-periodic waves: examples with v0 = 0

k1 k2 k3 τ11 τ22 τ33 c
[0]
1 c

[0]
2

1 ×
2π
10

2 ×
2π
10

3 ×
2π
10

0.67 × 2π 0.86 × 2π 1.02 × 2π 1 1

ω1 ω2 ω3 l1 l2 l3 τ12 τ13 τ23 c1 c2
1.4388 3.1394 7.9404 1.6866 2.0555 1.5475 2.1251 1.2939 2.7630 24.0624 0.9121

k1 k2 k3 τ11 τ22 τ33 c
[0]
1 c

[0]
2

1 ×
2π
10

2 ×
2π
10

3 ×
2π
10

0.46 × 2π 1.02 × 2π 1.53 × 2π −1 1

ω1 ω2 ω3 l1 l2 l3 τ12 τ13 τ23 c1 c2
1.3915 3.3788 8.3344 1.9342 1.9653 1.5315 1.9341 1.2573 2.8808 6.0244 0.9791

k1 k2 k3 τ11 τ22 τ33 c
[0]
1 c

[0]
2

1 ×
2π
10

2 ×
2π
10

3 ×
2π
10

0.53 × 2π 0.75 × 2π 1.13 × 2π −1 1

ω1 ω2 ω3 l1 l2 l3 τ12 τ13 τ23 c1 c2
1.3608 2.4234 −3.9766 1.7988 2.3352 1.0781 2.0257 −1.9751 0.6098 44.3977 2.6950

Table 6: 3-periodic waves: examples with v0 = 1
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Figure 3: The first example of Table 4. Top left: u-profile; Top right: contour plot
of u; Below left: v-profile; Below right: contour plot of v.

5 Conclusion and discussion

A numerical process of calculating N -periodic waves is presented and some numer-
ical experiments are carried out with the coupled Ramani equation. The numerical
results show that the process is efficient in calculating 1-, 2- and 3-periodic waves.
Here we give two remarks.

Firstly, the numerical results are not unique since this is a nonlinear and over-
determined system. For instance, in the third and forth examples in Table 5, with
the same given parameters but the different initial guess, we obtain two different
3-periodic waves.

Secondly, there are many other soliton equations that can be transformed into
the coupled bilinear KdV-type systems. For instance, the Hirota-Satsuma coupled
KdV equation [32]

ut =
1

4
uxxx + 3uux + 3(−φ2 + ω)x, (5.24)

φt = −
1

2
φxxx − 3uφx, (5.25)

ωt =
1

2
ωxxx − 3uωx. (5.26)

can be transformed into the bilinear form

(DxDt −
1

4
D4

x −
3

4
D2

z)f · f = 0, (5.27)

Dz(Dt +
1

2
D3

x)f · f = 0, (5.28)
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Figure 4: The first example of Table 5. Top left: u-profile; Top right: contour plot
of u; Below left: v-profile; Below right: contour plot of v.

by the dependent variable transformation

u = (lnf)xx, φ =
1

2

fz
f
, ω =

1

2

fzz
f

(5.29)

where z is an auxiliary variable, and the Camassa-Holm equation [33,34]

ut + 2κ2ux + 3uux − uxxt = 2uxuxx+ uuxxx, (5.30)

can be transformed into

[Dy(Dt + 2κ3Dy − κ2D2
yDt)

+
1

3
κ2Dt(Dτ +D3

y)]f · f = 0, (5.31)

Dy(Dτ +D3
y)f · f = 0. (5.32)

with a so-called reciprocal transformation. Here τ is an auxiliary variable and coor-
dinate (y, t) is generated from the reciprocal transformation. See details in Ref. [34].

Some discrete systems can also be transformed into this kind of bilinear equations.
For example, the semi-discrete KdV equation given by Hirota and Ohta [35],

4

1 + a2un

d

dt
un = ∆3Mun + 6un∆Mun

+a2[∆M(un∆
2un) + 3(∆Mun)(∆

2un)], (5.33)
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Figure 5: The first example of Table 6. Top left: u-profile; Top right: contour plot
of u; Below left: v-profile; Below right: contour plot of v.

can be transformed into

[2aDz sinh(
Dn

2
)− cosh(

3Dn

2
) + cosh(

Dn

2
)]f · f = 0,

(5.34)

(4a2Dt + 3Dz) sinh(
Dn

2
)f · f = Dz sinh(

3Dn

2
)f · f, (5.35)

with transformation

un =
1

a2
(
fn+2fn−1

fn+1fn
− 1). (5.36)

Our numerical process may also be applied to these soliton equations to study
their N -periodic wave solutions if some additional terms with arbitrary integral con-
stants are introduced in these bilinear forms.
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