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Abstract

A moving mesh finite element method is studied for the numerical solution of a phase-

field model for brittle fracture. The moving mesh partial differential equation approach is

employed to dynamically track crack propagation. Meanwhile, the decomposition of the strain

tensor into tensile and compressive components is essential for the success of the phase-field

modeling of brittle fracture but results in a non-smooth elastic energy and stronger nonlinearity

in the governing equation. This makes the governing equation much more difficult to solve

and, in particular, Newton’s iteration often to fail to converge. Three regularization methods

are proposed to smooth out the decomposition of the strain tensor. Numerical examples of

fracture propagation under quasi-static load demonstrate that all of the methods can effectively

improve the convergence of Newton’s iteration for relatively small values of the regularization

parameter but without comprising the accuracy of the numerical solution. They also show that

the moving mesh finite element method is able to adaptively concentrate the mesh elements

around propagating cracks and handle multiple and complex crack systems.
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1 Introduction

Brittle fracture is the fracture of a metallic object or other elastic material where plastic deformation

is strongly limited. It usually occurs very rapidly and can be catastrophic in engineering practice;

e.g., see Pokluda and Šandera [48]. Understanding the initiation and propagation of brittle fracture

and preventing fracture failure are vital to the engineering design, where numerical simulation of

fracture processes has become a powerful tool. Computational approaches for studying brittle

fracture can be roughly categorized into two groups, discrete crack models and smeared crack
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models. In the former group, discontinuous fields are introduced into the numerical model and

cracks are described as moving boundaries. One major challenge for those models is to track

moving boundaries. A commonly used strategy is to change the mesh geometry by introducing

new boundaries at each time step together with adaptive remeshing; e.g., see [6, 12, 30, 47]. The

mesh regenerating and boundary updating not only increase computational cost but also further

complicate the implementation of boundary conditions. In order to avoid complex remeshing, Moës

et al. [43, 44] propose the extended finite element method, which enriches the finite element spaces

with discontinuous fields based on the partition-of-unity concept and allows the propagation of

cracks along element interfaces. A drawback for the method is that it requires explicit description

of crack patterns and thus has difficulty in dealing with complex cracks and unforeseen patterns of

crack propagation.

In the second group of computational approaches, smeared crack models approximate cracks

with continuous fields and do not rely on explicit description of cracks. The phase-field model

based on the variational approach proposed by Francfort and Marigo [17] is a commonly used

type of smeared crack model. In the phase-field modeling, a phase-field variable d, which depends

on a parameter l describing the actual width of the smeared cracks, is introduced to indicate

where the material is damaged. One of the major advantages of this model is that the initiation

and propagation of cracks are completely determined by a coupled system of partial differential

equations based on the energy functional. Another advantage is that the generation and propagation

of fracture networks do not require explicitly tracking fracture interfaces. The phase-field modeling

is used in this work.

The phase-field modeling has been successfully applied in many other fields including image

segmentation [2], dendritic crystal growth [31, 56], and multiple-fluid hydrodynamics [34, 50, 51, 59].

Since its first application in brittle fracture simulation by Bourdin et al. [13], significant progress

has been made in this area; e.g., see [3, 9, 11, 32, 35, 38, 40, 42, 45, 53]. However, there still

exist challenges. In particular, the strain tensor has to be decomposed along eigen-directions into

tensile and compressive components in the presence of cracks, with only the former component

contributing to generation and propagation of cracks. This decomposition of the strain tensor is

introduced by Miehe et al. [40] to account for the reduction of the stiffness of the elastic solid by

cracks and to rule out unrealistic branching. Unfortunately, it also makes the elastic energy non-

smooth and increases the nonlinearity of the governing equation. As a consequence, the Jacobian

matrix of the governing equation may not exist at places and Newton’s iteration can often fail to

converge [35, 45].

The phase-field modeling is governed by a coupled system for the phase-field variable d and the

displacement u which can be solved in the monolithic or staggered approach. In the monolithic

approach (e.g., see [19, 57, 58]), the system is solved simultaneously for both d and u, and it is often

challenging to obtain a convergent solution due to the non-convexity nature of the energy functional.

A damped Newton method with linear search [19] and an error-oriented Newton method [57] have

been developed to overcome convergence issues while a modified Newton scheme with Jacobian

modification has been proposed by Wick [58]. The staggered approach solves the coupled system

sequentially for d and u and has been used by a number of researchers; e.g., see [1, 3, 18, 40, 42].

By fixing one variable such as the phase-field d, the underlying problem becomes convex in the

other unknown variable u. Since d and u are not coupled, the procedure becomes simpler and
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more robust. The main disadvantage of this approach is that at a loading step many staggered

iterations are required to reach convergence, which can be costly. The effects of the number of

staggered iterations in relation to the size of the loading increment has been studied by Ambati

et al. [1]. Their results show that an insufficient number of d-u iterations can lead to inaccurate

results when large loading increments are used. However, the number of staggered iterations usually

has relatively little performance impact on the shape of the load-displacement curves when loading

increments are sufficiently small. This implies that the staggered approach without iteration can

be used as long as small loading increments are taken. Since our focus in this work is on mesh

adaptation and convergence of Newton’s iteration, we use the staggered approach without iteration

for quasi-static brittle fracture problems with small loading increments.

It is worth mentioning that for the staggered approach with/without iteration, the equation for

u remains highly nonlinear due to the decomposition of the strain tensor, which can make Newton’s

iteration fail or be slow to converge; see [1] or the numerical results in Section 4. On the other

hand, like implicit schemes versus explicit schemes for ordinary differential equations, the staggered

approach with iteration or the monolithic approach can be more robust than the staggered approach

without iteration which is used in the current work. Comparison of their performances with mesh

adaptation and regularization of the decomposition of the strain tensor (see discussion below) can

be an interesting topic for future investigations.

The model parameter that describes the width of smeared cracks is needed to be small for

the phase-field model to be a reasonably accurate approximation of the original problem. This in

turn requires that the mesh elements be small at least in the crack regions, meaning that mesh

adaptation is necessary to improve the computational accuracy and efficiency. The mesh adaptation

should be dynamical too since cracks can propagate under continuous load.

Moving mesh methods are well suited for the numerical simulation of the phase-field modeling

of brittle fracture. Although they have been successfully applied to phase-field models for other

applications, e.g., see [16, 36, 49, 54, 60, 61], they have not been employed for brittle fracture

simulation, which has distinguished challenges associated with the above mentioned decomposition

of the strain tensor. As a matter of fact, mesh adaptation has rarely been employed in brittle

fracture simulation so far and there are only a few published studies on the topic. Noticeably,

Heister et al. [20] develop a predictor-corrector local mesh adaptivity scheme that allows the mesh

to refine around cracks. Artina et al. [5] present an a posteriori error estimator for anisotropic

mesh adaptation that generates thin, anisotropic elements around cracks and isotropic elements

away from the cracks, but they use an early model that does not decompose the strain tensor and

therefore does not distinguish between fracture caused by tension and compression.

The objective of this paper is twofold. The first is to study the MMPDE (moving mesh partial

differential equation) moving mesh method [14, 26, 27, 28] for the phase-field modeling of brittle

fracture. The MMPDE method is a type of dynamic mesh adaptation method specially designed

for time dependent problems. It employs a mesh PDE to move the mesh continuously in time

to follow and adapt to evolving structures in the solution. A new formulation of the MMPDE

method was developed recently in [24], which provides a simple, compact analytical formula for

the nodal mesh velocities (cf. (23) below), and this makes its implementation relatively easy. It

is also shown in [25] that the mesh governed by the underlying mesh equation stays nonsingular if

it is nonsingular initially. The MMPDE moving mesh method is combined with a piecewise linear
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finite element discretization to solve the governing equation in a quasi-static condition, with the

quasi-time being introduced to represent the load increments.

It is noted that a number of other moving mesh methods have also been developed in the past

and there is a large literature in the area. The interested reader is referred to the books or review

articles [7, 8, 14, 28, 52] and references therein.

The second goal of the paper is to investigate the convergence of Newton’s iteration used

for solving the nonlinear algebraic system resulting from the finite element discretization of the

displacement equation.

As mentioned above, Newton’s iteration often fails to converge due to the non-existence of

the Jacobian matrix and nonlinearity of the governing equation caused by the decomposition of

the strain tensor. To avoid this difficulty, we propose to smooth out the decomposition with

regularization and discuss three regularization methods. Numerical examples show that all of them

can effectively improve the convergence of Newton’s iteration for relatively small values of the

regularization parameter but without comprising the accuracy of the numerical solution. Note

that no special treatment is needed for Newton’s iteration to guarantee its convergence. This is in

contrast to previous works such as [19, 57, 58] where modified Newton’s schemes are used along

with some modification in the computation of the Jacobian matrix. Our numerical results also

show that the proposed moving mesh finite element method improves the computational accuracy

and efficiency and is able to handle multiple and complex crack systems.

The rest of this paper is organized as follows. Section 2 provides a brief introduction of the phase-

field model for brittle fracture. The moving mesh finite element method and the three regularization

methods for the decomposition of the strain tensor are described in Section 3. Numerical results

obtained for three two-dimensional examples are presented in Section 4, and conclusions are drawn

in Section 5.

2 Phase-field models for brittle fracture

2.1 Variational approach to elasticity models without cracks

We first describe small strain isotropic elasticity models without cracks. We consider an elastic

body occupying a bounded domain Ω ⊂ R2 with the boundary ∂Ω = ∂Ωt ∪ ∂Ωu, where the surface

traction t is specified on ∂Ωt and the displacement u is given on ∂Ωu. The strain tensor is given by

ε =
1

2

(
∇u+ (∇u)T

)
,

where ∇u is the displacement gradient tensor. For isotropic material without damage, the elastic

energy per unit volume, or strain energy density, is given by Hooke’s law as

We(ε) =
λ

2
(tr(ε))2 + µ tr(ε2), (1)

where λ and µ are the Lamé constants. The stress tensor is given by the derivative of the strain

energy with respect to the strain tensor, i.e.,

σ :=
∂We

∂ε
= λ tr(ε)I + 2µε, (2)
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where the symbol := stands for “definition”. Then the total strain energy stored in the elastic solid

is given by

We(ε) =

∫
Ω
We(ε) dΩ. (3)

The variation of We is

δWe =

∫
Ω

∂We

∂ε
: δε dΩ =

∫
Ω
σ : ε(δu) dΩ, (4)

where A : B is the inner product of tensors A and B, i.e., A : B =
∑
i,j
Ai,jBi,j . Define the function

spaces

Vu =
{
ϕ | ϕ ∈ H1(Ω), ϕ = u on ∂Ωu

}
,

V 0
u =

{
ϕ | ϕ ∈ H1(Ω), ϕ = 0 on ∂Ωu

}
,

where H1(Ω) is a Sobolev space, viz.,

H1(Ω) =

{
ϕ |

∫
Ω
ϕ2 dΩ < +∞,

∫
Ω

(∇ϕ)2 dΩ < +∞
}
.

If we add the boundary traction t and body force f , then the variational formulation of the elasticity

model is to find u ∈ Vu such that∫
Ω
σ : ε(δu) dΩ =

∫
∂Ωt

t · δu dS +

∫
Ω
f · δu dΩ, ∀ δu ∈ V 0

u . (5)

2.2 Phase-field approach to elasticity models with cracks

We now consider the situation with cracks in the elastic body. We use the approach proposed by

Francfort and Marigo [17] where the total energy of the body with a given crack Γ is given by

W(ε,Γ) =We(ε,Γ) +Wc(Γ) :=

∫
Ω\Γ

We(ε,Γ) dΩ +

∫
Γ
gc dS,

where We(ε,Γ) represents the energy stored in the bulk of the elastic body, Wc(Γ) is the energy

required to create the crack according to the Griffith criterion, and gc is the fracture energy density

(also referred to as the fracture toughness) which is the amount of energy needed to create a unit

area of fracture surface.

In the phase-field modeling, the fracture surface is approximated by a phase-field variable d(x, t),

which depends on a parameter l describing the width of the smooth approximation of the crack.

This function is smooth with the value 0 or close to 0 near the crack and 1 away from the crack

(see Fig. 1). The fracture energy Wc(Γ) is approximated by the smeared total fracture energy [13]

as

W l
c =

∫
Ω

gc
4l

(
(d− 1)2 + 4l2|∇d|2

)
dΩ. (6)

The elastic energy We(ε,Γ) needs to be modified to reflect the loss of material stiffness in the

damage zone. We follow the approach by Miehe et al. [40]. Define the decomposition of a scalar

function f as

f = f+ + f−, f+ =
f + |f |

2
, f− =

f − |f |
2

.
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(a) sharp crack Γ in the solid

d = 0

d = 12l

(b) regularized crack Γl(d) by the

phase-field approximation

Figure 1: A sketch of the problem setting for brittle crack.

Assuming that the strain tensor has the eigen-decomposition ε = Qdiag(λ1, ..., λn)QT , we define

ε = ε+ + ε−, ε+ = Qdiag(λ+
1 , ..., λ

+
n )QT , ε− = Qdiag(λ−1 , ..., λ

−
n )QT . (7)

The tensile strain component, ε+, contributes to the damage process resulting in crack initiation

and propagation whereas the compression strain component, ε−, does not contribute to the damage

process. A commonly used damage model is given as

We = g(d)Ψ+(ε) + Ψ−(ε), (8)

where g(d) is a degradation function that describes the reduction of the stiffness of the bulk of the

solid and

Ψ+(ε) =
λ

2

(
(tr(ε))+

)2
+ µ tr((ε+)2), Ψ−(ε) =

λ

2

(
(tr(ε))−

)2
+ µ tr((ε−)2).

The degradation function g(d) is required to satisfy the property (e.g., see [33])
g(0) = 0 : Damage occurred for d = 0 and this part should vanish;

g(1) = 1 : No damage occurs for d = 1;

g′(0) = 0 : No more changes after the fully broken state;

g′(1) 6= 0 : The damage has to be initiated at the onset.

We take a commonly used quadratic degradation function g(d) = d2 in our computation. Combining

(6) and (8), we obtain the total energy as

W l =We +W l
c =

∫
Ω

(
(d2 + kl)Ψ

+(ε) + Ψ−(ε) +
gc
4l

(
(d− 1)2 + 4l2|∇d|2

))
dΩ, (9)

where kl � l is the (small) regularization parameter for avoiding degeneracy. The variation of the

energy is

δW l =

∫
Ω

∂W

∂d
δd dΩ +

∫
Ω

∂W

∂∇d · ∇δd dΩ +

∫
Ω

∂W

∂ε
: ε(δu) dΩ

where

W = (d2 + kl)Ψ
+(ε) + Ψ−(ε) +

gc
4l

(
(d− 1)2 + 4l2|∇d|2

)
.
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The weak formulation is to find d ∈ Vd = H1(Ω) (with d satisfying a homogeneous Neumann

boundary condition) and u ∈ Vu such that∫
Ω

((
2dH+

gc(d− 1)

2l

)
δd+ 2gcl∇d · ∇δd

)
dΩ = 0, ∀ δd ∈ Vd (10)∫

Ω
σ : ε(δu)dΩ =

∫
Ωt

t · δu dS +

∫
Ω
f · δu dΩ, ∀ δu ∈ V 0

u (11)

where H = Ψ+(ε) and

σ :=
∂W

∂ε
= (d2 + kl)

(
λ(tr(ε))+I + 2µε+

)
+
(
λ(tr(ε))−I + 2µε−

)
. (12)

To ensure crack irreversibility in the sense that the cracks can only grow, we replace H = Ψ+(ε) in

(10) by

H = max
s≤t

Ψ+(ε)(s), (13)

where t is the quasi-time corresponding to the load increments.

In addition to the above described decomposition by Miehe et al. [40], there is another often-

used decomposition by Amor et al. [3] that is based on the split of the strain tensor into volumetric

and deviatoric parts. Discussion of the advantages and disadvantages of both decompositions can

be found in [1, 9].

3 The moving mesh finite element approximation

3.1 Finite element discretization and solution procedure

We consider a simplicial mesh Th for the domain Ω and denote the number of its elements and

vertices by N and Nv, respectively. The piecewise linear approximations of the function spaces Vd,

Vu and V 0
u are given by

V h
d =

{
ϕh | ϕh ∈ C0(Ω) ∩ Vd; ϕh|K ∈ P1(K), ∀K ∈ Th(Ω)

}
,

V h
u =

{
ϕh | ϕh ∈ C0(Ω) ∩ Vu; ϕh|K ∈ P1(K), ∀K ∈ Th(Ω)

}
,

V 0,h
u =

{
ϕh | ϕh ∈ C0(Ω) ∩ V 0

u ; ϕh|K ∈ P1(K), ∀K ∈ Th(Ω)
}
,

where P1(K) is the set of polynomials of degree less than or equal to 1 defined on K. The linear

finite element approximation of the phase-field problem (10) and (11) is to find dh ∈ V h
d and

uh ∈ V h
u such that∫

Ω

((
2dhH+

gc(dh − 1)

2l

)
ϕh + 2gcl∇dh · ∇ϕh

)
dΩ = 0, ∀ ϕh ∈ V h

d (14)∫
Ω
σ(uh) : ε(ϕh)dΩ =

∫
Ωt

t · ϕh dS +

∫
Ω
f · ϕh dΩ, ∀ ϕh ∈ V 0,h

u . (15)

Note that uh and dh are strongly coupled through (14) and (15). Common procedures for solving

these equations can be roughly categorized into two groups, simultaneous (or called monolithic)

solution and alternating (or called staggered) solution. In the former group (such as see [19, 20,

57, 58]) the phase-field variable and displacement are solved simultaneously often by Newton’s
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method. This procedure has to deal with a large system and the highly nonlinear coupling between

dh and uh. Moreover, the decomposition of the strain tensor further increases the nonlinearity (see

Section 3.2 for detailed discussion). It is still challenging to obtain a convergent solution using the

simultaneous solution procedure. The second solution procedure (such as see [1, 3, 40, 42]) is to

solve (14) for dh and (15) for uh alternatingly. One of the advantages of this approach is that dh
and uh are not coupled. Moreover, (14) is linear about dh and its solution does not need Newton’s

iteration.

In our computation, we use the alternating solution procedure and consider the problem in

a quasi-static condition. The quasi-time t is introduced to represent the load increments. The

solution procedure from tn to tn+1 is described as follows.

(i) We assume that the mesh T nh at time tn and the history field Hnh in (13) (defined on T nh ) are

given.

(ii) Compute the phase-field variable dn+1
h and new mesh T n+1

h as follows.

• Set T n+1,1
h = T nh ;

• For k = 1 : kk

- Compute H on T n+1,k
h using linear interpolation of Hnh;

- Compute dn+1,k
h using (14) and H on T n+1,k

h ;

- If k < kk, compute the new mesh T n+1,k+1
h by the MMPDE moving mesh method

based on T n+1,k
h and dn+1,k

h . (See Section 3.3)

• Set T n+1
h = T n+1,kk

h and dn+1
h = dn+1,kk

h .

(iii) Compute the displacement field un+1
h by solving the nonlinear system (15) based on dn+1

h and

T n+1
h . (See Section 3.2)

(iv) Compute Ψ+,n+1
h (ε(un+1

h )) and interpolate Hnh from the old mesh T nh to the new mesh T n+1
h

using linear interpolation and denote it by H̃n+1
h . Let Hn+1

h = max{Ψ+,n+1
h (ε(un+1

h )), H̃n+1
h }.

In the above procedure, the parameter kk can affect the adaptivity of the mesh T n+1
h to the

phase-field variable dn+1
h . From our computational experience, we choose kk = 5, for which we

have found that T n+1
h is sufficiently adaptive to dn+1

h but without compromising the computational

efficiency too much.

3.2 Convergence of Newton’s iteration

We recall that the strain tensor is decomposed into tensile and compressive components (cf. (7)),

with only the former component contributing to generation of cracks. The tensile and compressive

components are nonsmooth functions of the displacement, which has two major effects on Newton’s

iteration applied to the solution of the equation (15), the existence and computation of the Jacobian

matrix and the convergence of Newton’s iteration. As can be seen in Fig. 2(a) and Fig. 2(b), the

Jacobian matrix of equation (15) does not exist in the places where any of the eigenvalues vanishes.

In other places where the eigenvalues do not vanish, the computation of the Jacobian matrix can

also be tricky. In principle, the analytical expressions of the derivatives of ε+ and ε− with respect
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to ε can be obtained through the derivatives of the eigenvalues and eigenvectors with respect to ε

(e.g, see [37]). However, these expressions are too complicated to be used in practical computation.

Special algorithms are needed to compute these derivatives using analytical formulas; see Miehe

[39] and Miehe and Lambrecht [41].

Another effect of the decomposition of the strain tensor is that Newton’s iteration often fails

to converge; see the numerical examples in Section 4.1.1. The degeneracy of the equation (15)

can further complicate the situation. In principle, the regularization parameter kl can be chosen

sufficiently large to make Newton’s iteration to converge. However, a large value of kl will smear

the crack and lead to an unphysically overestimated bulk energy.

To overcome the above mentioned difficulties, we propose to smooth out the decomposition

(7) and compute the Jacobian matrix of the equation (15) using finite differences. The latter is

straightforward so we will not elaborate it here. For the former, there are a variety of regularization

methods. We consider here three of these methods where the positive and negative eigenvalue

functions are smoothed using a switching technique or convolution with a smoothed delta function

(or a mollifier).

• The sonic-point regularization method. We first consider the so-called eigenvalue-switching

technique which is used to obtain a smooth transition of the solution through the sonic

point [4] in computational fluid dynamics. The regularized positive and negative eigenvalue

functions are defined as

λ+
α =

λ+
√
λ2 + α2

2
, λ−α =

λ−
√
λ2 + α2

2
,

where α > 0 is the regularization parameter.

• The exponential convolution method. The second regularization method is to take the convo-

lution of λ+ and λ− with the exponential delta function

δα(λ) =
1√
2πα

e−
λ2

2α2 .

Then the regularized positive and negative eigenvalue functions are given by

λ+
α =

∫ ∞
−∞

λ+(η)δα(λ− η)dη =
λ

2

(
1 + erf

(
λ√
2α

))
+

α√
2π
e−

λ2

2α2 ,

λ−α =

∫ ∞
−∞

λ−(η)δα(λ− η)dη =
λ

2

(
1 + erf

(
− λ√

2α

))
− α√

2π
e−

λ2

2α2 .

• The smoothed 2-point convolution method. The third method is similar to the exponential

convolution method but with a localized, smoothed 2-point delta function

δα(λ) =


1
α

(
3
4 − λ2

α2

)
, for |λ| 6 0.5α

1
α

(
9
8 − 3

2
|λ|
α + 1

2
λ2

α2

)
, for 0.5α 6 |λ| 6 1.5α

0, for |λ| > 1.5α.
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We then have

λ+
α =



0, for λ 6 −1.5α
1
α

(
1

24α2λ
4 + 1

4αλ
3 + 9

16λ
2 + 9α

16λ+ 27α2

128

)
, for − 1.5α 6 λ 6 −0.5α

1
α

(
− 1

12α2λ
4 + 3

8λ
2 + α

2λ+ 13α2

64

)
, for − 0.5α 6 λ 6 0.5α

1
α

(
1

24α2λ
4 − 1

4αλ
3 + 9

16λ
2 + 7α

16λ+ 27α2

128

)
, for 0.5α 6 λ 6 1.5α

λ, for λ > 1.5α

λ−α =



λ, for λ 6 −1.5α
1
α

(
− 1

24α2λ
4 − 1

4αλ
3 − 9

16λ
2 + 7α

16λ− 27α2

128

)
, for − 1.5α 6 λ 6 −0.5α

1
α

(
1

12α2λ
4 − 3

8λ
2 + α

2λ− 13α2

64

)
, for − 0.5α 6 λ 6 0.5α

1
α

(
− 1

24α2λ
4 + 1

4αλ
3 − 9

16λ
2 + 9α

16λ− 27α2

128

)
, for 0.5α 6 λ 6 1.5α

0, for λ > 1.5α.

It is remarked that all of the above regularization methods satisfy

λ = λ+
α + λ−α (16)

and thus

ε = ε+α + ε−α . (17)

Moreover, as can be seen in Fig. 2(c), all of the methods provide a smooth transition around zero

for both positive and negative eigenvalue functions. Furthermore, the sonic-point and exponential

convolution methods have global effects whereas the smoothed 2-point convolution method only

changes the values near λ = 0. Finally, for a fixed value of the regularization parameter, α =

3 × 10−3, in terms of the closeness of the curve of λ+
α (λ−α ) to that of λ+ (or λ−) the best is the

smoothed 2-point convolution and then the exponential convolution and sonic-point methods.

The effects of these regularization methods on the the convergence of Newton’s iteration and

on the numerical solution will be discussed in Section 4.1.1. It is worth mentioning that we have

tried a few other regularization methods which only modify the local behavior of the eigenvalue

function near the origin. Since they do not satisfy (16) in general and are much less effective in

making Newton’s iteration convergent than the above methods, we choose not to report them here

to save space.

3.3 The MMPDE moving mesh method

In this section we describe the MMPDE moving mesh method [26, 28] for generating the new

mesh T n+1
h (as mentioned in Section 3.1). The method takes the M-uniform mesh approach where

a nonuniform mesh is viewed as a uniform one in the metric specified by a tensor M. In our

computation, we choose the metric tensor as

M = det(I + |H(dh)|)− 1
6 (I + |H(dh)|), (18)

where H(dh) is a recovered Hessian of dh and |H(dh)| = Qdiag(|λ1|, ..., |λ2|)QT , assuming that the

eigen-decomposition of H(dh) is Qdiag(λ1, ..., λ2)QT . The recovered Hessian of dh at a vertex is
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Figure 2: Decomposition and regularization of eigenvalue function with the regularization param-

eter α = 3× 10−3.

obtained by twice differentiating a local quadratic polynomial fitting in the least-squares sense to

the nodal values of dh at the neighboring vertices. The form of (18) is known optimal in terms

of the L2 norm of linear interpolation error on triangular meshes (e.g., see [29]). Notice that M
is symmetric and uniformly positive define on Ω. It will be used to control the shape, size, and

orientation of mesh elements through the so-called equidistribution and alignment conditions (to

be discussed below). Since (18) is based on the Hessian of the phase-field variable d, we may expect

that the mesh elements are concentrated in the crack regions where the curvature of d is large.

Let x1, ...., xNv be the coordinates of the vertices of Th. We choose the very initial physical

(simplicial) mesh as the reference computational mesh which is denoted by T̂c,h = {ξ̂1, ..., ξ̂Nv}.
For the purpose of mesh generation, we need an intermediate simplicial mesh which we refer to

as a computational mesh, Tc,h = {ξ1, ..., ξNv}. We assume that Th, T̂c,h, and Tc,h have the same

number of elements and vertices and the same connectivity. As a consequence, there exists a unique

element Kc ∈ Tc,h corresponding to any element K ∈ Th. The affine mapping between Kc and K

is denoted by FK and its Jacobian matrix by F ′K . Let the coordinates of the vertices of K and Kc

be xK0 , x
K
1 , x

K
2 and ξK0 , ξ

K
1 , ξ

K
2 , respectively. Then we have

FK(ξKi ) = xKi , i = 0, 1, 2

F ′K(ξKi − ξK0 ) = xKi − xK0 , i = 1, 2.

From this we get

F ′K = EKÊK
−1
, (F ′K)−1 = ÊKE

−1
K ,

where EK and ÊK are the edge matrices of K and Kc defined as

EK = [xK1 − xK0 , xK2 − xK0 ], ÊK = [ξK1 − ξK0 , ξK2 − ξK0 ].

The objective of the MMPDE moving mesh method is to generate an adaptive mesh as a

uniform one in the metric M. Such an M-uniform mesh requires that (i) the ratio of the area of K

in the metric M to the area of Kc in the Euclidean metric stay constant for all elements and (ii)

K measured in the metric M be similar to Kc measured in the Euclidean metric for all elements.

These two requirements can be expressed mathematically as the equidistribution and alignment

conditions (e.g., see [23, 28]),

|K|
√

det(MK) =
|Ωh| |Kc|
|Ωc|

, ∀K ∈ Th (19)
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1

2
tr
(
(F ′K)TMKF

′
K

)
= det

(
(F ′K)TMKF

′
K

) 1
2 , K ∈ Th (20)

where |K| and |Kc| denote the area of K and Kc, respectively, MK is the average of M over K,

det(·) and tr(·) denote the determinant and trace of a matrix, and

|Ωh| =
∑
K∈Th

|K|
√

det(MK), |Ωc| =
∑

Kc∈Tc,h

|Kc|.

An energy functional based on these conditions has been proposed by Huang [21] as

Ih(Th; Tc,h) =
∑
K∈Th

|K|G(JK , det(JK),MK), (21)

where JK = (F ′K)−1 and

G(JK ,det(JK),MK) = θ
√

det(MK)
(
tr(JKMKJTK)

)p
+ (1− 2θ)2p

√
det(MK)

(
det(JK)√
det(MK)

)p
.

Here, 0 < θ ≤ 1
2 and p > 1 are two dimensionless parameters. We use θ = 1

3 and p = 3
2 , which are

known experimentally to work well for most problems.

Our goal is to find a new physical mesh T n+1
h by minimizing Ih. We use an indirect approach

with which we take Th = T nh and then minimize Ih with respect to Tc,h. The minimization is carried

out by integrating the MMPDE (see (22) below) from tn to tn+1 with the reference computational

mesh T̂c,h as the initial mesh. The obtained computational mesh is denoted as T n+1
c,h . Notice

that T nh is kept unchanged during the integration and T n+1
c,h and T nh form a correspondence, i.e.,

T nh = Φh(T n+1
c,h ). The new physical mesh T n+1

h is then defined as

T n+1
h = Φh(T̂c,h),

which can be computed readily using linear interpolation. This procedure is explained in Fig. 3.

T n+1
c,hT̂c,h

T n
h T n+1

h = �h(T̂c,h)

�h

(
)

�!MMPDE
| �!

Figure 3: A sketch of the procedure for generating the new mesh.

We now describe the MMPDE moving mesh method [26, 27] for minimizing Ih. The MMPDE

is defined as a gradient system of Ih, i.e.,

dξj
dt

= −Pj
τ

(
∂Ih
∂ξj

)T
, j = 1, ..., Nv (22)
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where τ > 0 is a parameter used to adjust the time scale of mesh movement and Pj = det(M(xj))
p−1
2

is chosen such that (22) is invariant under the scaling transformation of M. The derivative of Ih
with respect to ξj is considered as a row vector and can be found analytically by the notion of

scale-by-matrix differentiation; see [24]. Using the analytical formula, we can rewrite (22) as

dξj
dt

=
Pj
τ

∑
K∈ωj

|K|vKjK , (23)

where ωj is the element patch associated with the j-th vertex, jK is its local index of the vertex on

K, and the local velocities vKjK are given by[
(vK1 )T

(vK2 )T

]
= −E−1

K

∂G

∂J
− ∂G

∂ det(J)

det(ÊK)

det(EK)
Ê−1
K , vK0 = −

2∑
i=1

vKj ,

where the derivatives of the function G are given by

∂G

∂J
= 2pθ

√
det(M)

(
tr(JM−1JT )

)p−1 M−1JT ,

∂G

∂ det(J)
= p(1− 2θ)2p det(M)

1−p
2 det(J)p−1.

MMPDE (23), with proper modifications for the boundary vertices to allow them only to slide on

the boundary, is integrated from tn to tn+1 with the initial mesh T̂c,h. Notice that the integration of

the MMPDE is equivalent to performing steepest descent for minimizing Ih. In our computation,

we use the Matlab R© function ode15s, a Numerical Differentiation Formula based integrator, for

the integration.

4 Numerical results

In this section we present numerical results obtained with the moving mesh finite element method

described in the previous section for three examples. The first two examples are benchmark prob-

lems commonly used in the existing literature to examine mathematical models for brittle fracture

and related numerical algorithms. The last example is chosen to test the ability of our method to

handle multiple and complex cracks. Special attention is paid to the demonstration of the effec-

tiveness of the MMPDE method to track crack propagation and the effects of the regularization

methods on the convergence of Newton’s iteration. In the results presented in this section, an

adaptive mesh of size N = 6, 400 and the sonic-point regularization method with α = 1× 10−3 are

used, unless stated otherwise.

4.1 Example 1. Single edge notched tension test

We first consider a single edge notched tension test from Miehe et al. [40], with the domain and

boundary conditions shown in Fig. 4(a). For the boundary conditions, the bottom edge of the

domain is fixed and the top edge is fixed along x-direction while a uniform y-displacement U is

increased with time to drive the crack propagation.

The solid is assumed to be homogeneous isotropic with elastic bulk modulus λ = 121.15 kN/mm2

and shear modulus µ = 80.77 kN/mm2. The fracture toughness is gc = 2.7 × 10−3 kN/mm. Two
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Figure 4: Domain and boundary conditions for single edge notched tests, (a) tension test for

Example 1 and (b) shear test for Example 2.

displacement increments have been prescribed for the computation, ∆U = 1× 10−5 mm is chosen

for the first 500 time steps and ∆U = 1 × 10−6 mm afterwards. We consider two values of l,

0.00375 mm and 0.0075 mm. An initial triangular mesh is constructed from a rectangular mesh by

subdividing each rectangle into four triangles along the diagonal directions.

Typical adaptive meshes and contours of the phase-field variable during crack evolution for

l = 0.00375 mm and 0.0075 mm are shown in Fig. 5 and Fig. 6, respectively. As can be seen,

the mesh points concentrate in the region around the crack, which demonstrates the effectiveness

of the mesh adaptation strategy for this tension test. Closer views around the crack and crack tip

are shown in Fig. 7(b) and Fig. 7(c). It can be observed that the mesh stays symmetric near the

crack for all time. For comparison purpose, we compute the surface load vector on the top edge as

F = (Fx, Fy) :=

∫
top edge

σ(u) · ndl,

where n is the unit outward normal to the top edge. Particularly, we are interested in Fy for tension

test and Fx for shear test. The load-deflection curves are shown in Fig. 8.

4.1.1 Effects of the regularization methods

We now investigate the effects of the regularization methods (cf. Section 3.2) on the convergence of

Newton’s iteration and load-deflection curves. For convergence, we consider the first displacement

increment (where ∆U = 1 × 10−5 mm is applied on the top edge) with kl = 0. The convergence

history of Newton’s iteration is shown in Fig. 9. As can be seen, Newton’s iteration fails to converge

without regularization on the decomposition of the strain tensor. On the other hand, convergence

is reached using the sonic-point regularization with α ≥ 1× 10−4 and exponential convolution and

smoothed 2-point convolution methods with α ≥ 4×10−4. Moreover, Newton’s iteration converges

faster for larger α for all of the three methods.

14



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(a) U = 1.0 × 10−3 mm

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(b) U = 5.2 × 10−3 mm

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) U = 5.5 × 10−3 mm

(d) U = 1.0 × 10−3 mm (e) U = 5.2 × 10−3 mm (f) U = 5.5 × 10−3 mm

Figure 5: Example 1. The mesh and contours of the phase-field distribution during crack evolution

for the tension test with l = 0.00375 mm. (N = 6, 400)
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Figure 6: Example 1. The mesh and contours of the phase-field distribution during crack evolution

for the tension test with l = 0.0075 mm. (N = 6, 400)
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Figure 7: Example 1. An adaptive mesh of N = 6, 400 and its close views near the crack and crack

tip (l = 0.00375 mm).
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(b) l = 0.0075 mm

Figure 8: Example 1. The load-deflection curves for the tension test with different values of l.

(N = 6, 400)

Next, we examine the effects of the regularization methods on load-deflection curves. We first

compare the three regularization methods (α = 1× 10−3, l = 0.0075 mm and kl = 1× 10−3). For

the computation without regularization (α = 0), kl = 1×10−3 is used to obtain convergent results.

The results are shown in Fig. 10(a). As we can see, there is no significant difference between the

regularization methods with α = 1 × 10−3 and without regularization, except at the beginning of

the load time.

We then investigate the effects of the regularization parameter. The load-deflection curves for

the three regularization methods with various values of α (4×10−4, 1×10−3, 5×10−3, and 1×10−2)

are shown in Fig. 10(b), 10(c), 10(d), respectively. We can see that, for all three regularization

methods, when α is small (α ≤ 1×10−3), influence on the numerical solution is almost invisible. For

large α values (α ≥ 5× 10−3), all three regularization methods underestimate the load before the

crack starts propagating and overestimates afterwards. Moreover, the effects using the smoothed

2-point convolution method are less significant than those with the sonic-point method. The effects

of the exponential convolution method lie between those of the smoothed 2-point convolution and

sonic-point methods. Since the sonic-point method has the simplest form and is more economic
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to compute than the other two methods, and since all three methods give almost identical results

when α is small, we use the sonic-point method with α = 1× 10−3 for later computations.

4.1.2 Effects of mesh adaptivity

We now study the effects of mesh adaptivity on the numerical solution. We take l = 0.0075 mm

in the computation and compare the results with uniform meshes. As mentioned before, the mesh

should be sufficiently fine (h� l) to resolve the cracks. A uniform triangular mesh is obtained by

first partitioning the domain into a uniform rectangular mesh and then dividing each sub-rectangle

into four triangles using the diagonal lines and is represented by the number of sub-rectangles

in x− and y-directions. We consider different mesh sizes as 131 × 131 (N = 67, 600), 151 × 151

(N = 90, 000), 171 × 171 (N = 115, 600), 211 × 211 (N = 176, 400), 251 × 251 (N = 250, 000),

and 351× 351 (N = 490, 000). For adaptive meshes, we start with uniform meshes of size 31× 31

(N = 3, 600), 41 × 41 (N = 6, 400), and 51 × 51 (N = 10, 000). Fig. 11 shows the load-deflection

curves for different meshes. It clearly demonstrates the spatial convergence in terms of the number

of mesh elements for both uniform and adaptive meshes. Moreover, moving meshes use significantly

fewer elements to achieve the same accuracy, as can be seen from Fig. 11(b) and Fig. 12.

To verify the accuracy of the numerical solutions, the load-deflection curves with a uniform

mesh of 351 × 351 (N = 490, 000) and an adaptive mesh of 41 × 41 (N = 6, 400) are plotted

in Fig. 12. They are comparable with each other and agree very well with the result obtained

by Miehe et al. [40] where a mesh pre-refined around the regions of the crack and its expected

propagation path is used. The computation (with a Matlab R© implementation of the method)

takes about 1,339.7 seconds of CPU time (for one time step) on the machine with a single AMD

Opteron 6386 SE 2.80 GHz processor for the uniform mesh and about 141.07 seconds of CPU

time for the adaptive mesh. It is clear that the moving mesh method improves computational

efficiency significantly. The relative cost between moving mesh and solving u and d can be clearly

seen in Table 1. The CPU time for mesh movement takes a large proportion (73.58%) when the

moving mesh method described in the previous section was used. This can further be improved by

employing a two-level mesh movement strategy; e.g., see Huang [22].

Table 1: Average CPU time (in seconds) for one time step for solving for d, u and mesh.

Mesh size
CPU for d CPU for u CPU for mesh

Total CPU time
time % time % time %

Moving mesh 41× 41 5.39 3.82 31.89 22.61 103.79 73.58 141.07

Uniform mesh 351× 351 47.9 3.58 1291.8 96.4 1339.7

4.2 Example 2. Single edge notched shear test

In this example, we consider a single edge notched shear test, with the domain and boundary con-

ditions shown in Fig. 4(b). The bottom edge of the domain is fixed and the top edge is fixed along

y-direction while a uniform x-displacement U is increased with time to drive the crack propaga-

tion. The elastic bulk modulus is λ = 121.15 kN/mm2, the shear modulus is µ = 80.77 kN/mm2,
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and the fracture toughness is gc = 2.7 × 10−3 kN/mm. The displacement increment is chosen as

∆U = 1× 10−5 mm for the computation.

Typical adaptive meshes and contours of the phase-field variable during crack evolution for

l = 0.00375 mm and 0.0075 mm are shown in Fig. 13 and Fig. 14, respectively. The mesh

concentrates dynamically around the crack as it evolves under continuous load. Close views of the

meshes around the crack and crack tip are plotted in Fig. 15. The mesh concentration is adequate

especially during the turning process of the shear crack. This property is important for handling

large fracture networks with complex crack propagation such as joining, branching and nonplanar

propagation. Fig. 16 shows the load-deflection curves for the shear test with l = 0.00375 mm and

0.0075 mm using a moving mesh of N = 6, 400.

Next, we compare the regularization methods for the shear test problem. Fig. 17 shows the

convergence of Newton’s iteration using the three regularization methods. As we can see, all of the

methods make Newton’s iteration convergent for α ≥ 4 × 10−4. The convergence improves as α

increases. Moreover, Newton’s iteration converges even for α = 1× 10−4 when the sonic-point and

exponential convolution methods are used.

Lastly, the load-deflection curves for the shear test with l = 0.0075 mm and kl = 1 × 10−3

are shown in Fig. 18(a) for the regularization methods and without regularization. We can see

that the curves for the regularization methods with α = 1 × 10−3 are almost the same as that

without regularization. The load-deflection curves obtained using the three regularization methods

with various values of α are presented in Fig. 18(b), 18(c) and 18(d), respectively. For the sonic-

point regularization method, the load-deflection curve becomes unphysical when α ≥ 1 × 10−2.

It is also interesting to observe that the load for the exponential convolution and smoothed 2-

point convolution regularization is overestimated after crack starts propagating for large values of

α (α ≥ 5× 10−3). The effects of α are less significant with smoothed 2-point convolution than the

other two methods.

4.3 Example 3. Test with multiple cracks

In this example, we first consider two cracks in a square plate of width 2 mm, with the domain and

boundary conditions shown in Fig. 19(a), to test the modeling of the junction between two cracks.

Crack 1 is centered at (−0.2, 0) with length 0.6 mm and polar angle (relative to the horizontal

direction) 9◦, while Crack 2 is centered at (0.46, 0) with length 0.8 mm and polar angle 65◦. The

bottom edge of the domain is fixed and the top edge is fixed along x-direction while a uniform y-

displacement U is increased with time to drive the crack propagation. The material parameters are

the same as previous examples, that is, elastic constants λ = 121.15 kN/mm2, µ = 80.77 kN/mm2,

and the fracture toughness is gc = 2.7 × 10−3 kN/mm. The displacement increment is chosen as

∆U = 1 × 10−4 mm for the computation. The mesh consists of 10, 000 triangular elements and

the length scale parameter is chosen as l = 0.00375 mm. A similar configuration with different

boundary conditions has been used by Budyn et al. [15].

Typical adaptive meshes and contours of the phase-field variable during crack evolution are

shown in Fig. 20. As can be seen, the mesh adapts dynamically to capture the junction process of

the two cracks. As the load U increases, the evolution can be described as follows.

(a) U = 8× 10−3 mm: the tip of Crack 1 activates;
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(b) U = 8 × 10−3 to 1.0 × 10−2 mm: Crack 1 propagates along a curved path heading towards

Crack 2;

(c) U = 1.1× 10−2 mm: Crack 1 connects to Crack 2, and one of the tip for Crack 2 activates;

(d) U = 1.6× 10−2 mm: both Crack 1 and Crack 2 have propagated to the edge of the plate.

Since there is no analytical solution for this problem, we cannot compare the computed solutions

with the exact solution. Nevertheless, they can be justified in physics. In fact, it is known (e.g.,

see [46]) that the critical stress increases as the polar angle increases and cracks with large polar

angles are harder to initiate. Therefore, Crack 1, which is oriented with a smaller polar angle, is

the first to initiate and propagate. Moreover, the frequency of crack coalescence is strongly related

to the crack density (the crack size and their relative location) within the solid; e.g., see [55]. The

higher the crack density is, the more likely two cracks will merge. Since being close to Crack 2,

Crack 1 begins to merge with Crack 2 as it grows. At the same time, the other side of Crack 1 has

propagated to the edge of the plate, which causes the left of the plate to lose strength. At later

stages, the right side of the tip for Crack 2 activates and propagates to the edge of the plate.

Next, we consider five initial cracks in the same domain and with the same boundary conditions

as for the two-crack problem, see Fig. 19(b). The material parameters are the same as previous

examples except gc = 2.7 × 10−4 kN/mm. The lengths of Crack 1, 2, 3, 4, and 5 are 0.3 mm,

0.35 mm, 0.35 mm, 0.5 mm, and 0.5 mm, centered at (−0.6, 0.3), (0, 0.5), (0.6, 0.5), (−0.5,−0.4),

and (0.5,−0.2), with polar angle 30◦, 45◦, 17◦, 28.6◦, and 9◦, respectively.

Typical adaptive meshes and contours of the phase-field variable during crack evolution are

shown in Fig. 21. The evolution can be described as follows.

(a) U = 4× 10−3 mm: the tips of Crack 3, 4 and 5 activate;

(b) U = 6 × 10−3 mm: Crack 4 connects to Crack 5, and Crack 3 has propagated to the right

edge of the plate;

(c) U = 1× 10−2 mm: Crack 3 joins Crack 2, and Crack 4 has propagated to the left edge of the

plate;

(d) U = 1.7× 10−2 mm: Crack 2 joins Crack 1.

Notice that the tips of Crack 3, 4, and 5 activate earlier due to their smaller polar angles.

Compared with other cracks, Crack 4 and 5 have longer length and a closer distance, which results

in the early crack merging. As the load increases, Crack 4 connects to Crack 5 and Crack 3 from

both ends. At later stages, Crack 2 begins to propagate after Crack 3 joining Crack 2. Throughout

the entire process, Crack 1 is limited to propagation due to its higher polar angle and the interaction

of other cracks.

Finally, we consider a more complex situation with ten initial cracks and with the same domain

and boundary conditions as for the two-crack problem; see Fig. 19(c). The material parameters are

the same as in the previous examples except gc = 2.7×10−4 kN/mm. All of Crack 1 through Crack

10 have the same length 0.1 mm. They are centered at (−0.5, 0.8), (0.2, 0.8), (−0.3, 0.3), (0.5, 0.5),

(0, 0), (−0.7,−0.2), (−0.5,−0.5), (−0.1,−0.8), (0.5,−0.75), and (0.7,−0.2), with polar angle 40◦,

45◦, 109◦, 132◦, 143◦, 40◦, 45◦, 120◦, 40◦, and 115◦, respectively. Typical adaptive meshes and

19



contours of the phase-field variable during crack evolution are shown in Fig. 22. The evolution can

be described as follows.

(a) U = 6× 10−3 mm: the tips of Crack 4, 5, 6, and 9 activate;

(b) U = 8× 10−3 mm: Crack 5 connects to Crack 6, and Crack 5 has propagated to the left edge

of the plate;

(c) U = 2.4× 10−2 mm: Crack 4 joins Crack 3, and Crack 4 has propagated to the right edge of

the plate.

The results for both the two-, five- and ten-crack problems also demonstrate that the MMPDE

moving mesh method captures the crack propagation successfully for multiple and complex crack

systems.

5 Conclusions

In the previous sections we have studied the moving mesh finite element solution of phase-field

models for brittle fracture and investigated regularization methods to improve the convergence of

Newton’s iteration for solving the nonlinear system resulting from finite element discretization.

The MMPDE moving mesh method has been used to track the crack propagation and improve the

computational efficiency. Numerical examples have been presented to demonstrate the effectiveness

of the moving mesh method to dynamically concentrate mesh elements around propagating cracks

and its ability to handle multiple and complex crack systems.

A distinguished feature in the numerical simulation of brittle fracture using phase-field mod-

eling is the decomposition of the strain tensor in the elastic energy which is necessary to account

for the reduction in the stiffness of an elastic solid due to the presence of cracks. The decom-

position makes the energy functional non-smooth and increases the nonlinearity of the governing

equation. Computationally, this causes the non-existence of the Jacobian matrix of the nonlinear

discrete equation (15) at some places and the failure of Newton’s iteration to converge (cf. Figs.

9(a) and 17(a)). Three methods, the sonic-point, exponential convolution, and smoothed 2-point

convolution, have been proposed in Section 3.2 to regularize the decomposition of the strain ten-

sor. Numerical examples have demonstrated that all of these methods can effectively improve the

convergence of Newton’s iteration for relatively small values of the regularization parameter α but

without compromising the accuracy of numerical simulation. Generally speaking, the larger α is,

the faster Newton’s iteration converges. The sonic-point method works with smaller α than the

other two methods while the smoothed 2-point convolution method has slightly smaller effects on

the load-deflection curves for the same α than the other two methods.

Another benefit of the regularization is that the finite-difference approximation of the Jacobian

matrix, which is known to work for smooth problems, also works well in the current situation with

regularization.
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[15] E. Budyn, G. Zi, N. Moës, and T. Belytschkoi. A method for multiple crack growth in brittle

materials without remeshing. Int. J. Numer. Mech. Engng., 61:1741–1770, 2004.

[16] Q. Du and J. Zhang. Adaptive finite element method for a phase field bending elasticity model

of vesicle membrane deformations. SIAM J. Sci. Comput., 30:1634–1657, 2008.

[17] G. A. Francfort and J. J. Marigo. Revisiting brittle fracture as an energy minimization problem.

J. Mech. Phys. Solids, 46:1319–1342, 1998.

[18] P. E. Farrell and C. Maurini. Linear and nonlinear solvers for variational phase-field models

of brittle fracture. Int. J. Numer. Meth. Engng., 109: 648–667, 2017.

[19] T. Gerasimov and L. D. Lorenzis. A line search assisted monolithic approach for phase-field

computing of brittle fracture. Comput. Methods Appl. Mech. Eng., 312:276–303, 2016.

[20] T. Heister, M. F. Wheeler, and T. Wick. A primal-dual active set method and predictor-

corrector mesh adaptivity for computing fracture propagation using a phase-field approach.

Comput. Methods Appl. Mech. Eng., 290:466–495, 2015.

[21] W. Huang. Variational mesh adaptation: isotropy and equidistribution. J. Comput. Phys.,

174:903–924, 2001.

[22] W. Huang. Practical aspects of formulation and solution of moving mesh partial differential

equations. J. Comput. Phys., 171:753–775, 2001.

[23] W. Huang. Mathematical principles of anisotropic mesh adaptation. Comm. Comput. Phys.,

1:276–310, 2006.

[24] W. Huang and L. Kamenski. A geometric discretization and a simple implementation for

variational mesh generation and adaptation. J. Comput. Phys., 301:322–337, 2015.

[25] W. Huang and L. Kamenski. On the mesh nonsingularity of the moving mesh pde method.

Math. Comp., (to appear).

[26] W. Huang, Y. Ren, and R. D. Russell. Moving mesh methods based on moving mesh partial

differential equations. J. Comput. Phys., 113:279–290, 1994.

[27] W. Huang, Y. Ren, and R. D. Russell. Moving mesh partial differential equations (mmpdes)

based upon the equidistribution principle. SIAM J. Numer. Anal., 31:709–730, 1994.

[28] W. Huang and R. D. Russell. Adaptive Moving Mesh Methods. Springer, New York, 2011.

Applied Mathematical Sciences Series, Vol. 174.

[29] W. Huang and W. Sun. Variational mesh adaptation II: error estimates and monitor functions.

J. Comput. Phys., 184:619–648, 2003.

[30] A. R. Khoei, H. Azadi, and H. Moslemi. Modeling of crack propagation via an automatic

adaptive mesh refinement based on modified superconvergent patch recovery technique. Eng.

Fract. Mech., 75:2921–2945, 2008.

22



[31] R. Kobayashi. Modeling and numerical simulations of dendritic crystal growth. Physica D,

63:410–423, 1993.

[32] C. Kuhn and R. Muller. A continuum phase field model for fracture. Eng. Frac. Mech.,

77:3625–3634, 2010.

[33] C. Kuhn, A. Schluter, and R. Muller. On degradation functions in phase field fracture models.

Comput. Materials Sci., 108:374–384, 2015.

[34] C. Liu and J. Shen. A phase field model for the mixture of two incompressible fluids and its

approximation by a Fourier-spectral method. Phys. D, 179:211–228, 2003.

[35] G. Liu, Q. Li, and Z. Zuo. Implementation of a staggered algorithm for a phase field model in

ABAQUS. C. J. Rock Mech. Eng., 35:1019–1030, 2016.

[36] J. A. Mackenzie and M. L. Robertson. A moving mesh method for the solution of the one-

dimensional phase-field equations. J. Comput. Phys., 181:526–544, 2002.

[37] J. R. Magnus. On differentiating eigenvalues and eigenvectors. Econometric Theory, 1:179–191,

1985.

[38] S. May, J. Vignollet, and R. de Borst. A numerical assessment of phase-field models for brittle

and cohesive fracture: Γ-convergence and stress oscillations. European J. Mech. A/Solids,

52:72–84, 2015.

[39] C. Miehe. Comparison of two algorithms for the computation of fourth-order isotropic tensor

function. Comput. Struct., 66:37–43, 1998.

[40] C. Miehe, M. Hofacker, and F. Welschinger. A phase field model for rate-independent crack

propagation: Robust algorithmic implementation based on operator splits. Comput. Methods

Appl. Mech. Eng, 199:2765–2778, 2010.

[41] C. Miehe and M. Lambrecht. Algorithms for computation of stresses and elasticity moduli

in terms of Seth-Hill’s family of generalized strain tensors. Commun. Numer. Meth. Engng.,

17:337–353, 2001.

[42] C. Miehe, F. Welschinger, and M. Hofacker. Thermodynamically consistent phase-field models

of fracture: Variational principles and multi-field FE implementations. Int. J. Numer. Meth.

Eng, 83:1273–1311, 2010.

[43] N. Moës and J. Dolbow and T. Belytschko. A finite element method for crack growth without

remeshing. Int. J. Numer. Methods Eng., 46:131–150, 1999.
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(e) Exponential convolution at step 1
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(g) Smoothed 2-point convolution at

step 1
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Figure 9: Example 1. Convergence of Newton’s iteration using different regularization methods

for the tension test where Diff denotes the L2 norm of the difference between two consecutive

approximations at steps 1 and 2. (N = 6, 400 and l = 0.0075 mm)

25



0 1 2 3 4 5 6

displacement U [mm] 10
-3

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

lo
a
d
 F

 [
K

N
]

no regularization

sonic-point

exponential convolution

smoothed 2-point convolution

(a) α = 10−3 for three regularization methods,

without regularization α = 0 (kl = 10−3)

0 1 2 3 4 5 6

displacement U [mm] 10
-3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

lo
a
d
 F

 [
K

N
]

 = 4 10
-4

 = 1 10
-3

 = 5 10
-3

 = 1 10
-2

(b) sonic-point (kl = 0)

0 1 2 3 4 5 6

displacement U [mm] 10
-3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

lo
a
d
 F

 [
K

N
]

 = 4 10
-4

 = 1 10
-3

 = 5 10
-3

 = 1 10
-2

(c) exponential convolution (kl = 0)

0 1 2 3 4 5 6

displacement U [mm] 10
-3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

lo
a
d
 F

 [
K

N
]

 = 4 10
-4

 = 1 10
-3

 = 5 10
-3

 = 1 10
-2

(d) smoothed 2-point convolution (kl = 0)

Figure 10: Example 1. The load-deflection curves for the regularization methods for the tension

test with l = 0.0075 mm and N = 6, 400. (a) Different regularization methods; (b) Sonic-point

method with various α; (c) Exponential convolution method with various α; (d) Smoothed 2-point

convolution method with various α.
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Figure 11: Example 1. The load-deflection curves for l = 0.0075 mm for meshes of different size:

(a) uniform mesh; (b) adaptive moving mesh.
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Figure 12: Example 1. The load-deflection curves for different meshes for the tension test with

l = 0.0075 mm.
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Figure 13: Example 2. The mesh and contours of the phase-field variable during crack evolution

for the shear test with l = 0.00375 mm and N = 6, 400.
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Figure 14: Example 2. The mesh and contours of the phase-field variable during crack evolution

for the shear test with l = 0.0075 mm and N = 6, 400.
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Figure 15: Example 2. The mesh and its close views for the shear crack problem. (l = 0.00375 mm

and N = 6, 400)
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Figure 16: Example 2. The load-deflection curves for the shear crack problem for different values

of l. (N = 6, 400)
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(d) Smoothed 2-point convolution

Figure 17: Example 2. Convergence of Newton’s iteration using different regularization meth-

ods for the shear test where Diff denotes the L2 norm of the difference between two consecutive

approximations. (l = 0.0075 mm and N = 6, 400)
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Figure 18: Example 2. The load-deflection curves for the regularization methods for the shear

test with l = 0.0075 mm and N = 6, 400. (a) Different regularization methods with α = 10−3;

(b) sonic-point method with various α; (c) exponential convolution method with various α; (d)

smoothed 2-point convolution method with various α.
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Figure 19: Example 3. Domain and boundary conditions for the test with multiple cracks. (a) two

cracks, (b) five cracks, (c) ten cracks.
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(d) U = 1.6 × 10−2 mm

(e) U = 1.0 × 10−3 mm (f) U = 1.0 × 10−2 mm (g) U = 1.1 × 10−2 mm (h) U = 1.6 × 10−2 mm

Figure 20: Example 3. The mesh and contours of the phase-field distribution during crack evolution

for the two-crack problem with l = 0.00375 mm and N = 10, 000.
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(d) U = 1.7 × 10−2 mm

(e) U = 4.0 × 10−3 mm (f) U = 6.0 × 10−3 mm (g) U = 1.0 × 10−2 mm (h) U = 1.7 × 10−2 mm

Figure 21: Example 3. The mesh and contours of the phase-field distribution during crack evolution

for the five-crack problem with l = 0.00375 mm and N = 10, 000.

(a) U = 1.0 × 10−3 mm (b) U = 7.0 × 10−3 mm (c) U = 8.0 × 10−3 mm (d) U = 2.4 × 10−2 mm

(e) U = 1.0 × 10−3 mm (f) U = 7.0 × 10−3 mm (g) U = 8.0 × 10−3 mm (h) U = 2.4 × 10−2 mm

Figure 22: Example 3. The mesh and contours of the phase-field distribution during crack evolution

for the ten-crack problem with l = 0.00375 mm and N = 40, 000.
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