
Second order finite-difference ghost-point multigrid methods for elliptic

problems with discontinuous coefficients on an arbitrary interface

Armando Coco, Giovanni Russo

January 6, 2018

Abstract

In this paper we propose a second-order accurate numerical method to solve elliptic problems with discontinuous
coefficients (with general non homogeneous jumps in the solution and its gradient) in 2D and 3D. The method
consists of a finite-difference method on a Cartesian grid in which complex geometries (boundaries and interfaces)
are embedded, and is second order accurate in the solution and the gradient itself. In order to avoid the drop
in accuracy caused by the discontinuity of the coefficients across the interface, two numerical values are assigned
on grid points that are close to the interface: a real value, that represents the numerical solution on that grid
point, and a ghost value, that represents the numerical solution extrapolated from the other side of the interface,
obtained by enforcing the assigned non-homogeneous jump conditions on the solution and its flux. The method is
also extended to the case of matrix coefficient. The linear system arising from the discretization is solved by an
efficient multigrid approach. Unlike the 1D case, grid points are not necessarily aligned with the normal derivative
and therefore suitable stencils must be chosen to discretize interface conditions in order to achieve second order
accuracy in the solution and its gradient. A proper treatment of the interface conditions will allow the multigrid to
attain the optimal convergence factor, comparable with the one obtained by Local Fourier Analysis for rectangular
domains. The method is robust enough to handle large jump in the coefficients: order of accuracy, monotonicity of
the errors and good convergence factor are maintained by the scheme.

1 Introduction

Elliptic equations with discontinuous coefficients arise from the mathematical modelling of a large number of real-
life applications. Examples include the steady-state solution of diffusion problems, for instance in the context of
solidification processes of materials with different diffusion coefficients across a complex interface [64]; the Poisson
equation arising from the projection method for incompressible two-phase fluids with different physical characteris-
tics [59]; the study of electrostatic phenomena such as those encountered in the simulation of biomolecules’ electric
potential [42], and many more [40, 13]. All these problems may be characterized by complex moving interfaces
across which the jump of the solution and its flux must be prescribed for well-posedness. While for interfaces
aligned with the grid lines the discretization results straightforward, for complex interfaces it is necessary to adopt
a suitable numerical approach.

Among the different approaches that have been proposed to numerically solve this problem, interface-fitted grid
methods such as those based on the finite element methods (FEM) [6, 7, 33, 31, 19, 27, 17] are computationally
expensive especially for complex moving geometries, since at each time step a new mesh fitting the moving interface
must be generated. The computational burden is even more exasperated in three dimensions. This negative aspect
is partially alleviated by adopting XFEM methods [16, 35, 24, 37, 29], where the solution space for elements crossed
by the interface includes discontinuous functions. For complex moving interfaces a suitable re-meshing procedure

1

still encumber the computational cost, and therefore the problems of this class are most efficiently approached by
methods that embed the interface in a fixed Cartesian grid.

The Immersed Boundary Method [51] is a pioneering work for this class of numerical methods, where Peskin
proposed a first-order accurate method derived from the discretization of the δ-function to model blood flows in
the heart.

An extension of [51] to second order accuracy is proposed first by LeVeque and Li in [36] (Immersed Interface
Methods), where the authors use a suitable six-point stencil to discretize the elliptic operator in grid points close
to the interface and find the coefficients of the stencil by Taylor expansion of the solution. The jump condition of
the solution is used to modify the coefficients related to nodes close to the interface in order to attain second-order
accuracy overall. Second order accuracy using boundary integral techniques was achieved also by Mayo in [43] to
solve Poisson (and biharmonic) equations on complex geometries.

More recently, Fedkiw et al. introduced the Ghost-Fluid Method in [22], where the authors solve a two-phase
problem with an irregular interface between the two phases. In this method, the values on the grid points on the
other side of the interface (ghost points) is not the physical value (which refers to the other phase of the problem,
leading to a discontinuity in the stencil), but a fictitious value (ghost value) found by a continuous extrapolation.
The problem is finally reduced to two sub-problems by adopting a multi-domain formulation, and each sub-problem
is solved by the same technique adopted to solve a single problem with Dirichlet or Neumann boundary conditions.

Liu et al. [41] developed a first-order accurate ghost-fluid method for the elliptic equations in the presence
of an irregular interface across which the variable coefficient, the solution and its derivative may have jumps.
The discretization of the equation results in a symmetric linear system, thus allowing the use of fast iterative
solvers. In the case of Dirichlet boundary conditions, instead of interface jump conditions, a second-order symmetric
discretization of the ghost-fluid method is proposed by Gibou et al. in [25]. A fourth-order (non-symmetric) version
can be found in [26], and several features concerning the ghost-fluid method to solve Poisson problems on complex
domains with Dirichlet boundary conditions are detailed in [45].

In [46] the authors studied a simple and efficient method for the Navier-Stokes equations on arbitrary shaped
domains. Sharp-edge interface problems are also solved by other techniques such as the matched interface and
boundary (MIB) method [65], the finite volume method [48], and the non-symmetric positive definite finite element
method for matrix coefficient [32]. Other methods accounting for complex interfaces are the arbitrary Lagrangian
Eulerian method (ALE) [23, 18], the penalization methods [55, 5, 10] and the class of Immersed Finite Volume
Methods (IFVM) [21].

Variable high-jump coefficients across the interface have been presented in recent methods, where only numerical
tests with jump ratio up to the order of one thousand have been explored [38, 65, 47, 48], although they show some
unsolved robustness issues (lack of monotonicity of the error when the grid is refined [38] or accuracy lower than
second order [65]). Jump ratios up to one million may occur in some applications, for example in the fluid-structure
interaction where the structure is modelled as an extremely high viscosity fluid.

In some applications it is desirable to achieve higher accuracy in the gradient of the solution as well, as for exam-
ple in the case of the Stefan problem, where the gradient drives the motion of the interface, or in the incompressible
Navier-Stokes equations, where the gradient of the pressure is used to enforce the incompressibility condition in
the projection method [11, 44]. In [50] Gibou et al. propose an efficient finite-volume discretization for Neumann
boundary conditions based on cut-cell methods. The method is second-order accurate for the Poisson and heat
equation, while it downgrades to first-order accuracy for the Stefan-type problem. In [28] the authors introduce
the Voronoi Interface Method to solve elliptic equation with discontinuous coefficients in arbitrary domains. The
Cartesian grid is modified close to the interface by adopting a Voronoi mesh in order to discretize straightforwardly
normal derivatives. The final linear system arising form the discretization is symmetric positive definite and the ac-
curacy is second order for the solution and first order for the gradient. In [12] the authors introduce additional grid
points on the intersections between Cartesian lines and interface to discretize the jump conditions in the solution
and its flux adopting a dimension-by-dimension approach, attaining second order accuracy.

Second order accuracy in both the solution and in the gradient is achieved in [15], where we present a ghost-point
method to solve elliptic problems in arbitrary domains with mixed (Dirichlet and Neumann) boundary conditions.
Some extensions to the case of sharp-edge boundary and variable matrix coefficient is also presented. A suitable

2

geometric multigrid approach is introduced to solve the problem, based on a proper relaxation of the boundary
conditions on ghost points, with a relaxation parameter chosen in order to achieve the convergence of the iterative
method. The extension of the method for the discontinuous coefficient case in one dimension is presented in [14].

Multigrid method is among the most efficient iterative numerical methods to solve the linear system that arises
from the discretization of a class of partial differential equations. Initially designed for elliptic problems, nowadays
multigrid methods have been adopted to solve a large variety of problems [8, 61, 30]. Regarding the scope of this
paper, namely multigrid for elliptic equations with discontinuous coefficients, a detailed survey can be found in [9].
Several methods have been proposed for the simpler case where the interface is aligned with grid lines. As example,
we mention [4, 34], where an operator-dependent interpolation is performed assuming the continuity of the flux
(instead of the solution gradient), and [53], where an algebraic multigrid method is proposed based on Galerkin
Coarse Grid Operator. For Cartesian grids and arbitrary interfaces, i.e. not aligned with grid lines, we mention
the paper [3], where a multigrid approach for solving the linear system arising from the discretization of interface
conditions described in [3, 39] is provided. In this multigrid technique a black-box multigrid interpolation is used
for grid points away from the interface, while the interpolation weights for grid points near the interface are derived
from a Taylor expansion (with a change of coordinates). In [1] this multigrid has been improved by modifying
the interpolation and restriction operators in such a way the coarse-grid matrices are M-matrices. A comparison
of both geometric multigrid methods [3, 1] with Algebraic Multigrid solvers is performed in [2] for the underlying
discretization, showing that the multigrid in [1] is the most efficient. Other recent developments of multigrid solvers
for non-smooth coefficients can be found in [62], where a geometric multigrid method for multiple interfaces in higher
dimensions is proposed, where an accurate interpolation captures the correct boundary conditions at the interfaces
via a level set function, and the issues coming from the storage of the coarse-grid matrix are avoided. In [63] the
coarse grid points are selected in such a way the irregular interfaces are resolved as much as possible: only linear
interpolation is needed to obtain fast convergence.

In this paper, the method proposed in [15] for continuous coefficients is extended to the case of discontinuous
coefficients across an arbitrary interface, with general non homogeneous jumps in the solution and its gradient. The
method is also extended to the case of matrix coefficient. Boundary and interface are implicitly described by level-
set functions. The resulting linear system is not symmetric, and a proper multigrid solver is proposed. Numerical
results show that second-order accuracy is achieved in both the solution and its gradient. Unlike other existing
methods in the literature and mentioned above, variable high-jump coefficients do not affect (i) the monotonic
decreasing of the error, which decays with second order accuracy in both the solutions and its gradient, or (ii) the
multigrid efficiency, where the convergence factor does not depend on the coefficient ratio.

The plan of the paper is the following: in the next section we describe the model problem for the 2D problem
and introduce the level-set function and some notation. The third section is devoted to the description of the
discretization of the model problem, with particular attention to the discretization of the boundary and interface
conditions. Section 4 describes the multigrid approach with all the multigrid ingredients, consisting mainly of the
relaxation scheme and the transfer (restriction and interpolation) operators. Section 5 presents the extension to
the matrix coefficient case. Section 6 discuss the extension of the method for 3D problems. The last Sections are
devoted to numerical tests, showing the second-order accuracy of the method and the optimal convergence factor
of the multigrid approach, and limitations and conclusions.

2 Model Problem

In this paper we mostly refer to the 2D case, although the method can be easily extended to higher dimensions,
as described in Sect. 6 and 7.6. Let D = (−1, 1)2 be the computational domain and Ω ⊂ D be a domain such
that ∂Ω ∩ ∂D = ∅. Let us consider a partition Ω =

{
Ω+,Ω−

}
, i.e. Ω+ and Ω− are two non-empty domains such

that Ω+ ∩ Ω− = ∅ and Ω = Ω
+ ∪ Ω

−
, where Ω

±
denotes the closure of Ω±. We restrict our study to the case

∂Ω− ∩ ∂Ω = ∅ (see Fig. 1). Let Γ be the interface separating the two subdomains, i.e. Γ = ∂Ω− ∩ ∂Ω+, while the

3

Ω

Γ
+

-

nΓ

nΩ

Ω

Fig. 1: Domain partition Ω = Ω− ∪ Ω+ and the interface Γ separating the two subdomains along which we impose the jump
conditions.

boundary of Ω is ∂Ω. We assume that both ∂Ω and Γ are smooth curves. Consider the following problem:
−∇ ·

(
β±∇u±

)
= f± in Ω±

[[u]] = gD on Γ[[
β
∂u

∂nΓ

]]
= gN on Γ

u = g on ∂Ω

(1)

where β− and β+ are positive smooth functions bounded away from zero, and nΓ is the normal vector to Γ
pointing from Ω− to Ω+. We denote by [[·]] the jump across the interface Γ, i.e.

[[ω]] (x̄, ȳ) = lim
Ω+3(x,y)→(x̄,ȳ)

ω+(x, y)− lim
Ω−3(x,y)→(x̄,ȳ)

ω−(x, y).

for any (x̄, ȳ) ∈ Γ.

Remark 1 Although we assign Dirichlet boundary conditions on ∂Ω, the numerical method proposed in this paper
can be easily extended to the more general case of Neumann or Robin boundary conditions, as proposed in [15].
Since the main focus of this paper is on interface conditions on Γ, we prescribe only Dirichlet boundary conditions
on ∂Ω.

2.1 Level-set functions

The domains and the interface are implicitly known by two level set functions φ and φΓ in such a way:

Ω = {(x, y) : φ(x, y) < 0} ,

Ω− =
{

(x, y) : φΓ(x, y) < 0 and φ(x, y) < 0
}
,

Ω+ =
{

(x, y) : φΓ(x, y) > 0 and φ(x, y) < 0
}
,

Γ =
{

(x, y) : φΓ(x, y) = 0 and φ(x, y) < 0
}
.

(2)

Level set methods for tracking interfaces are introduced and largely discussed, for example, in [49, 57]. For a
fixed geometry, the level-set functions are not uniquely defined. A particular case of level-set function is the signed

4

distance function:

φ(x, y) =

{
−d ((x, y), ∂Ω) if (x, y) ∈ Ω,
d ((x, y), ∂Ω) if (x, y) /∈ Ω,

where d ((x, y), ∂Ω) = inf
(x̄,ȳ)∈∂Ω

de ((x, y), (x̄, ȳ)) is the distance between a point and the set ∂Ω (de is the Euclidean

distance between points). The signed distance function φ can be obtained, for example, by the reinitialization
approach [58, 54, 20], namely as the steady-state solution of the following problem

∂φ

∂t
= sign(φ0) (1− |∇φ|) , φ = φ0 at t = 0, (3)

where φ0 is a generic level-set function representing Ω, and t a fictitious time that represents an iterative parameter.
A signed distance function is usually numerically more stable than a generic level-set function, since the latter may
develop too steep (or too shallow) gradients. From now on we assume that φ is the signed-distance function,
possibly computed by Eq. (3). We observe that it is sufficient to solve Eq. (3) only for a few time steps, since we
need to know the distance function only in a narrow band surrounding the interface/boundary.

The same argument can be repeated for the level-set function φΓ, referred to the interface Γ.
The normal unit vectors to ∂Ω and Γ are, respectively:

n =
∇φ
|∇φ| , nΓ =

∇φΓ

|∇φΓ| ,

where φ and φΓ are generic level-set functions (not necessarily signed distance functions).

2.2 Notation

Let N ≥ 1 be an integer and h = 2/N the spatial step. Let Dh =
{
jh, j = (i, j) ∈ {−N,−N + 1, . . . , N − 1, N}2

}
be the discrete versions of D. Dh is the set of the grid points. Let Ω+

h = Ω+ ∩ Dh and Ω−h = Ω− ∩ Dh be the
discrete versions of Ω+ and Ω− respectively. Let ∂Ω+

h be the set of the ghost points for Ω+, namely the grid points
outside Ω+ and such that one of the four neighbour grid points is inside Ω+, i.e.:

(x, y) ∈ ∂Ω+
h ⇐⇒ (x, y) ∈ Dh\Ω+

h and {(x± h, y), (x, y ± h)} ∩ Ω+
h 6= ∅.

Similarly, we define ∂Ω−h the set of the ghost points for Ω−, and ∂Ωh the set of the ghost points for Ω. Let us define
Γ−h = ∂Ω−h \∂Ωh and Γ+

h = ∂Ω+
h \∂Ωh. We call N+

i =
∣∣Ω+
h

∣∣, N+
g =

∣∣Γ+
h

∣∣, N−i =
∣∣Ω−h ∣∣, N−g =

∣∣Γ−h ∣∣, Ng = |∂Ωh|.
Refer to Fig. 2 for clarity. Since ∂Ω− ∩ ∂Ω = ∅ (see Fig. 1), we have Γ−h = ∂Ω−h . We will use the following notation
for discrete functions: wi,j ≈ w(i h, j h), wP ≈ w(P).

3 Discretization of the problem

The final linear system coming from the discretization of the problem will consist of a (N+
i + N+

g + N−i + N−g +
Ng) × (N+

i + N+
g + N−i + N−g + Ng) linear system. The N−i equations coming from the grid points of Ω−h are

obtained discretizing the first Eq. of (1) by usual central differences:

β−i+1/2,j

(
u−i,j − u

−
i+1,j

)
+ β−i−1/2,j

(
u−i,j − u

−
i−1,j

)
+ β−i,j+1/2

(
u−i,j − u

−
i,j+1

)
+ β−i,j−1/2

(
u−i,j − u

−
i,j−1

)
= f−i,j h

2 (4)

where β−i±1/2,j = (β−i,j + β−i±1,j)/2, β−i,j±1/2 = (β−i,j + β−i,j±1)/2. Similarly, we write an equation for each grid point

of Ω+
h :

β+
i+1/2,j

(
u+
i,j − u

+
i+1,j

)
+ β+

i−1/2,j

(
u+
i,j − u

+
i−1,j

)
+ β+

i,j+1/2

(
u+
i,j − u

+
i,j+1

)
+ β+

i,j−1/2

(
u+
i,j − u

+
i,j−1

)
= f+

i,j h
2 (5)

Therefore, to close the linear system, we must write an equation for each ghost point G ∈ Γ+
h ∪ Γ−h ∪ ∂Ωh.

5

Ω+

Ω-

Fig. 2: Inside grid points and ghost points introduced in Sect. 2.2. In particular, the dot grid points inside Ω− represent
the grid points of Ω−h , the dot grid points inside Ω+ and outside Ω− represent the grid points of Ω+

h , the unfilled circle grid

points inside Ω− represent the grid points of Γ+
h , the unfilled circle grid points inside Ω+ and outside Ω− represent the grid

points of Γ−h , the unfilled circle grid points outside Ω− and Ω+ represent the grid points of ∂Ωh.

G

I
Ω Ω- +

i i+ 1i-1

j

j+ 1

j-1

i-2

j-2

nG
Γ

Fig. 3: In this figure G ∈ Γ−h . The nine-point stencil

contained in Ω+
h ∪ Γ+

h that serves to interpolate ũ+ is
represented by unfilled squares (modified with respect
to the standard central stencil); the nine-point stencil
contained in Ω−h ∪ Γ−h that serves to interpolate ũ− is
represented by filled circles. Interface point I is repre-
sented by a filled square.

G

I

Ω

Ω
-

+

i i+ 1i-1

j

j+ 1

j-1

j-2

i-2

Fig. 4: In this figure G ∈ Γ−h . The nine-point stencil

contained in Ω+
h ∪Γ+

h serving to interpolate ũ+ has been
reduced to the three-point stencil represented by unfilled
squares.

3.1 Discretization of the interface conditions

Let G ∈ Γ−h ∪ Γ+
h . In order to find an extrapolated value for G, we discretize the interface conditions (second and

third equations of (1)). Let us explain such discretization in detail.

6

ii-1i-2

j

j-1

j-2

j-3

j-4

i+1

j+1

Ω+

n
G
Γ

G

I

Ω-

Fig. 5: In this figure G ∈ Γ−h . The nine-point stencil

contained in Ω+
h ∪Γ+

h that serves to interpolate ũ+ is
represented by unfilled squares; the nine-point sten-
cil contained in Ω−h ∪ Γ−h that serves to interpolate

ũ− is modified with respect to the standard upwind
stencil and is represented by filled circles.

G

Ω

ii-1

j

j-1

i+1

j+1

-
Ω+

I

Fig. 6: In this figure G ∈ Γ−h . The nine-point

stencil contained in Ω−h ∪ Γ−h serving to interpolate

ũ− has been reduced to the three-point stencil (filled
circles).

First, we compute an approximation of the unit normal vector to Γ in G pointing from Ω− to Ω+, that is
nΓ
G = (nΓ

G,x, n
Γ
G,y) =

(
∇φΓ/

∣∣∇φΓ
∣∣)∣∣

G
, using a central finite-difference approximation for ∇φΓ. Since φΓ is the

signed distance function, the closest interface point to G, that we call I, is approximated by:

I = G− nΓ
G · φΓ(G). (6)

Then, the equation of the linear system for the ghost point G is obtained discretizing one of the jump conditions
(second and third equation of (1)): more precisely, if G ∈ Γ−h we use one of the two jump conditions, while if
G ∈ Γ+

h we use the other jump condition. Which jump condition has to be used in each case constitutes a choice,
that can be based, for example, on the condition number of the resulting linear system. In fact, it is preferred
to use the jump in the flux (third equation in (1)) if G is the ghost point for the domain where the coefficient β
is greater, in order to obtain a better conditioned linear system. To explain this fact, let us suppose we want to
discretize the equation for the ghost point G ∈ Γ− and that β− < β+. If we discretize the jump in the flux (third
equation of (1)) to construct the equation of the linear system, then the diagonal entry is multiplied by β−, while
some of the off-diagonal entries are multiplied by β+ > β−. The presence of larger off-diagonal values may lead to
an ill-conditioned system.

Therefore:

• if
{
G ∈ Γ+

h and β+(I) < β−(I)
}

or
{
G ∈ Γ−h and β+(I) > β−(I)

}
, then the equation for the ghost point G is

obtained from [[u]] (I) = gD(I):

ũ+
h (I)− ũ−h (I) = gD(I) (7)

7

• otherwise, it is obtained from

[[
β
∂u

∂n

]]
(I) = gN (I):

(
β+∇ũ+

h − β
−∇ũ−h

)∣∣
I
·

 ∇φ̃Γ
h∣∣∣∇φ̃Γ
h

∣∣∣
∣∣∣∣∣∣

I

= gN (I) (8)

where ũ+
h (resp. ũ−h) is the biquadratic interpolant of u+

h (resp. u−h) in a suitable nine-point stencil contained in
Ω+
h ∪ Γ+

h (resp. Ω−h ∪ Γ−h), and φ̃Γ
h is the biquadratic interpolant of φΓ in a nine-point stencil surrounding I. What

is left is the choice of the nine-point stencils contained in Ω−h ∪ Γ−h and Ω+
h ∪ Γ+

h .
Let us recall that the biquadratic interpolant of a function ω(x, y) is a polynomial:

ω̃(x, y) = a1x
2y2 + a2x

2y + a3xy
2 + a4x

2 + a5y
2 + a6xy + a7x+ a8y + a9

whose coefficients ai are obtained imposing ω̃(x̄, ȳ) = ω(x̄, ȳ), for each (x̄, ȳ) belonging to the nine-point stencil.

3.1.1 Choice of the stencil

Let us suppose that G ∈ Γ−h (if G ∈ Γ+
h the procedure is the same, provided that subscripts + and − are

interchanged).

3.1.1.1 Stencil contained in Ω−h ∪ Γ−h . The nine-point stencil contained in Ω−h ∪ Γ−h is chosen in upwind
direction, using the same technique described in [15, 13], i.e.:

StU9 =
{
G+ h(sx k1, sy k2) : (k1, k2) ∈ {0, 1, 2}2

}
, (9)

where sx = sign(xI − xG) and sy = sign(yI − yG), with G ≡ (xG, yG) and I ≡ (xI , yI). We call the nine-point
stencil (9) standard upwind stencil and it is contained in Ω−h ∪Γ−h provided that the grid is sufficiently fine (i.e. the
spatial step h is sufficiently small) with respect to the curvature of the interface (such as in Fig. 3). For coarser
grids (that must be considered in the multigrid approach, see Sect. 4), it may happen that the stencil is not entirely
contained in Ω−h ∪Γ−h (see Fig. 5). In this case, a modified nine-point stencil is chosen when available (Fig. 5), or in
the worst case the stencil is reduced to a first-order accurate three-point stencil (Fig. 6), as explained later. Since
this latter reduction occurs quite rarely in a fine grid, the overall second-order accuracy is not affected (as shown
in numerical tests).

Assuming nΓ
G,x > 0 and nΓ

G,y > 0 (the other cases are treated similarly), the (modified) nine-point stencil is
chosen using the following algorithm. If |xI −xG| < |yI − yG| (as in Fig. 5), the nine-point stencil will be composed
by three points of each of the columns i, i− 1 and i− 2; while if |xI − xG| ≥ |yI − yG| it will be composed by three
points of each of the rows j, j − 1 and j − 2. Let us suppose |xI − xG| < |yI − yG| (the opposite case is treated
similarly).

• The three points of the column i are:

(i, j)h, (i, j − 1)h, (i, j − 2)h.

These three points belong to Ω−h ∪ Γ−h , since (i, j − 1)h ≡ G ∈ Ω−h .

• The three points of the column i− 1 are

(i− 1, j)h, (i− 1, j − 1)h, (i− 1, j − 2)h

if they belong to Ω−h ∪ Γ−h , otherwise we choose:

(i− 1, j − 1)h, (i− 1, j − 2)h, (i− 1, j − 3)h (10)

if they belong to Ω−h ∪ Γ−h , otherwise we reduce the stencil as described later.

8

• The three points of the column i− 2 are

(i− 2, j)h, (i− 2, j − 1)h, (i− 2, j − 2)h

if they belong to Ω−h ∪ Γ−h , otherwise we choose:

(i− 2, j − 1)h, (i− 2, j − 2)h, (i− 2, j − 3)h

if they belong to Ω−h ∪Γ−h , otherwise, if the three points for the column i− 1 were those indicated in Eq. (10),
we choose:

(i− 2, j − 2)h, (i− 2, j − 3)h, (i− 2, j − 4)h

if they belong to Ω−h ∪ Γ−h (this is the case illustrated in Fig. 5), otherwise we reduce the stencil as described
later.

Reduction of the stencil contained in Ω−h ∪ Γ−h . If it is not possible to build the nine-point stencil, we
revert to a more robust (less accurate) three-point stencil (Fig. 6):

(i, j)h, (i− 1, j)h, (i, j − 1)h.

In this case a linear interpolation is used instead of a biquadratic interpolation. Note that these three points belong
to Ω−h ∪ Γ−h , since G ≡ (i, j − 1)h ∈ Ω−h .

3.1.1.2 Stencil contained in Ω+
h ∪ Γ+

h . The nine-point stencil contained in Ω+
h ∪ Γ+

h is:

StC9 =
{
G+ h(k1, k2) : (k1, k2) ∈ {−1, 0, 1}2

}
, (11)

We call the nine-point stencil (11) standard central stencil (see Figs. 5 and 6). If it is not contained in Ω+
h ∪ Γ+

h ,
a modified nine-point stencil is chosen (Fig. 3) or, in the worst case, the stencil is reduced to a three-point stencil
(Fig. 4).

The (modified) nine-point stencil contained in Ω+
h ∪Γ+

h will be set as follows: if |xG−xI | ≥ |yG− yI | (as in Fig.
3) it will be composed by three points of each of the rows j − 1, j and j + 1; while if |xG − xI | < |yG − yI | it will
be composed by three points of each of the columns i − 1, i and i + 1. Let us suppose |xG − xI | ≥ |yG − yI | (the
opposite case is treated similarly). Then:

• The three points of the row j are:
(i− 1, j)h, (i, j)h, (i+ 1, j)h.

Since (i, j)h ≡ G ∈ Ω+
h , such three points belong to Ω+

h ∪ Γ+
h .

• The three points of the row j + 1 are

(i− 1, j + 1)h, (i, j + 1)h, (i+ 1, j + 1)h

if all of them belong to Ω+
h ∪ Γ+

h , otherwise we choose one of the following two triples:

{(i− 2, j + 1)h, (i− 1, j + 1)h, (i, j + 1)h} or

{(i, j + 1)h, (i+ 1, j + 1)h, (i+ 2, j + 1)h}
if one of them is contained in Ω+

h ∪ Γ+
h , otherwise we reduce the stencil as described later.

• The three points of the row j − 1 are

(i− 1, j − 1)h, (i, j − 1)h, (i+ 1, j − 1)h

if all of them belong to Ω+
h ∪ Γ+

h , otherwise we choose one of the following two triples:

{(i− 2, j − 1)h, (i− 1, j − 1)h, (i, j − 1)h} or

{(i, j − 1)h, (i+ 1, j − 1)h, (i+ 2, j − 1)h}
if one of them is contained in Ω+

h ∪ Γ+
h , otherwise we reduce the stencil as described later.

9

Reduction of the stencil contained in Ω+
h ∪ Γ+

h . If it is not possible to build the nine-point stencil, we
revert to a more robust (less accurate) three-point stencil (Fig. 4):

(i, j)h, (i− 1, j)h, (i, j − 1)h.

Note that these three points belong to Ω+
h ∪ Γ+

h , since G ≡ (i, j)h ∈ Ω+
h .

3.2 Discretization of the boundary conditions

Let G ∈ ∂Ωh. In order to find an extrapolated value for G, we discretize the boundary condition on Ω, i.e. the fourth
equation of (1). First, we approximate the outward unit normal in G by the formula nG = (nxG, n

y
G) = ∇φ/ |∇φ|,

where ∇φ is discretized by central difference in G. Then, the closest boundary point to G, that we call B, is
computed similarly to (6):

B = G− φ(G)nG. (12)

Finally, the equation of the linear system related to the ghost point G is:

ũ(B) = g(B) (13)

where ũ is the biquadratic interpolant of u on the upwind nine-point stencil StU9 :

StU9 =
{
G+ h(sx k1, sy k2) : (k1, k2) ∈ {0, 1, 2}2

}
, (14)

where sx = sign(xB − xG) and sy = sign(yB − yG), with G ≡ (xG, yG) and B ≡ (xB , yB). This stencil may not be
contained entirely in Ω+

h ∪ Γ+
h . In such cases it is modified in the same way as in Sect. 3.1.1.1.

4 Multigrid approach

The discretization presented in Sect. 3 leads to a sparse non-symmetric linear system that will be solved efficiently
by a multigrid approach. We refer the reader to [61] for a comprehensive presentation of multigrid methods. In
this paper we confine the description on how the ingredients of standard multigrid (relaxation scheme, transfer
operators) are modified for this specific problem. The first step consists of providing a proper relaxation scheme.
Gauss-Seidel and (weighted) Jacobi schemes do not converge for this specific problems unless a special treatment
is performed for the relaxation scheme on the ghost points, as described in the following section.

4.1 Relaxation scheme

The relaxation scheme aims at maintaining a Jacobi- or Gauss-Seidel-like iteration scheme for internal points, and
propose a proper relaxation scheme for ghost points. For the clarity of description, we describe the scheme for
the Jacobi-like scheme (for internal points), although easy generalization can be obtained for weighted-Jacobi or
Gauss-Seidel schemes (which are the schemes that we use in practice, since they are more suitable for multigrid
techniques due to the smoothing property, see [61, Ch. 2.1]). The whole scheme is obtained discretizing the following
associate time-dependent problem in space and (fictitious) time:

∂u±

∂t
= µ±

(
f± +∇ ·

(
β±∇u±

))
in Ω±

∂us1

∂t
= µD (gD − [[u]]) on Γ

∂us2

∂t
= µN

(
gN −

[[
β
∂u

∂n

]])
on Γ

∂u

∂t
= µB (g − u) on ∂Ω

(15)

10

where s1, s2 ∈ {−,+} and s1 6= s2. The choice of s1 and s2 depends on the value of β in order to have a better
preconditioner for the linear system, as explained in Sect. 3.2. In detail:

s1 = +, s2 = − if β+ ≤ β−,

s1 = −, s2 = + if β+ > β−.

Let us describe this relaxation scheme in detail. For a grid point (i, j)h ∈ Ω−h , the iterative scheme is obtained
discretizing the first equation of (15) by forward Euler in time and by (4) in space:

u
− (n+1)
i,j = u

− (n)
i,j + µ−i,j ∆t f−i,j +

µ−i,j ∆t

h2

(
β−i+1/2,j

(
u
− (n)
i,j − u− (n)

i+1,j

)
+ β−i−1/2,j

(
u
− (n)
i,j − u− (n)

i−1,j

)
+β−i,j+1/2

(
u
− (n)
i,j − u− (n)

i,j+1

)
+ β−i,j−1/2

(
u
− (n)
i,j − u− (n)

i,j−1

))
(16)

where µ−i,j is chosen in such a way (16) becomes a Jacobi-like scheme, i.e.:

µ−i,j∆t =
h2

β−i−1/2,j + β−i+1/2,j + β−i,j−1/2 + β−i,j+1/2

. (17)

If (i, j)h ∈ Ω+
h the iteration scheme is similar and is obtained by replacing the subscript − with +:

u
+ (n+1)
i,j = u

+ (n)
i,j + µ+

i,j ∆t f+
i,j +

µ+
i,j ∆t

h2

(
β+
i+1/2,j

(
u

+ (n)
i,j − u+ (n)

i+1,j

)
+ β+

i−1/2,j

(
u

+ (n)
i,j − u+ (n)

i−1,j

)
+β+

i,j+1/2

(
u

+ (n)
i,j − u+ (n)

i,j+1

)
+ β+

i,j−1/2

(
u

+ (n)
i,j − u+ (n)

i,j−1

))
(18)

We observe that in practice we do not need to define both values µ−i,j and ∆t for Eqs. (16), (18), but only the

product µ±∆t
i,j : = µ±i,j ∆t according to Eq. (17).

Now, let us consider a ghost point G ∈ ∂Ωh. The iterative scheme for G is obtained discretizing the fourth
equation of (15) by forward Euler in time and by (13) in space:

u
(n+1)
G = u

(n)
G + µB ∆t

(
g(B)− ũ(n)(B)

)
, (19)

where B is the projection point on the boundary ∂Ω obtained by (12).
If G ∈ Γ−h , the iterative scheme for G is obtained discretizing the second or third equation of (15), more precisely,

the second equation if s1 = −, the third equation if s2 = −. This choice is in accord with the discretization of the
interface conditions described in Sect. 3.2. Recalling the choice (7) or (8), and the (6), we summarize the iteration
as follows:

• if β+(I) > β−(I), then the iteration for the ghost point G ∈ Γ−h is:

u
− (n+1)
G = u

− (n)
G + µD ∆t

(
gD(I)−

(
ũ

+ (n)
h (I)− ũ− (n)

h (I)
))

(20)

• otherwise, it is:

u
− (n+1)
G = u

− (n)
G + µN ∆t

gN (I)−
(
β+∇ũ+ (n)

h − β−∇ũ− (n)
h

)∣∣∣
I
·

 ∇φ̃Γ
h∣∣∣∇φ̃Γ
h

∣∣∣
∣∣∣∣∣∣

I

 (21)

On the contrary, the iterative equation for a ghost point G ∈ Γ+
h will be set as follows.

11

• if β+(I) > β−(I), then the equation for the ghost point G ∈ Γ+
h is:

u
+ (n+1)
G = u

+ (n)
G + µN ∆t

gN (I)−
(
β+∇ũ+ (n)

h − β−∇ũ− (n)
h

)∣∣∣
I
·

 ∇φ̃Γ
h∣∣∣∇φ̃Γ
h

∣∣∣
∣∣∣∣∣∣

I

 (22)

• otherwise, it is:

u
+ (n+1)
G = u

+ (n)
G + µD ∆t

(
gD(I)−

(
ũ

+ (n)
h (I)− ũ− (n)

h (I)
))

(23)

Up to now, nothing has been said about the sign of the constants µD, µN and µB . This is a crucial point in
order to make the whole iterative process convergent. What we request for stability is, in fact, that the derivative
of the right-hand side of (20)-(23) with respect to u

± (n)
G is positive and less than one. For example, considering

the iteration (20), the derivative of the right-hand side, that we call c−G, is:

c−G = 1 + µD ∆t
∂ ũ−h (I)

∂ u
− (n)
G

.

The stability is attained for 0 < c−G ≤ 1. It can be proved that see (Eq. (69) in Appendix 1)

∂ ũ−h (I)

∂ u
− (n)
G

≥ 0. (24)

Therefore, the condition c−G ≤ 1 is ensured by µD < 0, while the condition 0 < c−G implies

|µD| ∆t <

(
∂ ũ−h (I)

∂ u
− (n)
G

)−1

.

This condition must hold for every possible value of
∂ ũ−h (I)

∂ u
− (n)
G

, which in fact depends on the vector G− I. It can be

shown that (see Eq. (70) in Appendix 1):

sup
|G−I|≤h

(
∂ ũ−h (I)

∂ u
− (n)
G

)
= 1 (25)

and then the stability conditions for (20) finally read:

µD < 0, |µD|∆t < 1. (26)

Let us now consider the iteration (21). The derivative c−G of the right-hand side with respect to u
− (n)
G is:

c−G = 1 + µN ∆t
∂
(
β−∇ũ−h (I) · ñΓ

I

)
∂ u
− (n)
G

. (27)

where ñΓ
I =

∇φ̃Γ
h(I)∣∣∣∇φ̃Γ
h(I)

∣∣∣ . The stability condition is 0 < c−G ≤ 1. Since ñΓ
I points from Ω− to Ω+ and the stencil is

chosen in upwind direction, then it can be shown that (see Eq. (72) in Appendix 1)

∂
(
β−∇ũ−h (I) · ñΓ

I

)
∂ u
− (n)
G

≥ 0. (28)

12

Therefore, the condition c−G ≤ 1 is satisfied when µN < 0. Condition 0 < c−G implies

|µN |∆t <

(
∂
(
β−∇ũ−h (I) · ñΓ

I

)
∂ u
− (n)
G

)−1

.

As before, this condition must be satisfied for each possible value of
∂
(
β−∇ũ−h (I) · ñΓ

I

)
∂ u
− (n)
G

, that depends on G− I.

It can be shown that (see Eq. (73) in Appendix 1):

sup
|G−I|≤h

(
∂
(
β−∇ũ−h (I) · ñΓ

I

)
∂ u
− (n)
G

)
≤ 3β−√

2h
. (29)

Finally, the stability conditions for (21) read:

µN < 0,
|µN |∆t

h
<

√
2

3β−
. (30)

By the same arguments, the stability conditions for the iteration (22) are:

µN < 0,
|µN |∆t

h
<

√
2

3β+
., (31)

while, for the iteration (23) are:
µD > 0, µD ∆t < 1. (32)

Finally, observe that the conditions on µB are (see (19)):

µB > 0, µB ∆t < 1. (33)

4.1.1 Changing of notation

For simplicity, we want to keep a suitable notation such that constants µD and µN are always positive. To this
purpose, we change the associate time-dependent problem (15) as follows:

∂u±

∂t
= µ±

(
f± +∇ ·

(
β±∇u±

))
in Ω±

∂us1

∂t
= s1 µD (gD − [[u]]) on Γ

∂us2

∂t
= µN

([[
β
∂u

∂n

]]
− gN

)
on Γ

∂u

∂t
= µB (g − u) on ∂Ω.

(34)

The iteration equations of the interface conditions (20)-(23) become:

• if β+(I) > β−(I), then the equation for the ghost point G ∈ Γ−h is:

u
− (n+1)
G = u

− (n)
G − µD ∆t

(
gD(I)−

(
ũ

+ (n)
h (I)− ũ− (n)

h (I)
))

(35)

• otherwise, it is:

u
− (n+1)
G = u

− (n)
G − µN ∆t

gN (I)−
(
β+∇ũ+ (n)

h − β−∇ũ− (n)
h

)∣∣∣
I
·

 ∇φ̃h∣∣∣∇φ̃h∣∣∣
∣∣∣∣∣∣

I

 (36)

13

• if β+(I) > β−(I), then the equation for the ghost point G ∈ Γ+
h is:

u
+ (n+1)
G = u

+ (n)
G − µN ∆t

gN (I)−
(
β+∇ũ+ (n)

h − β−∇ũ− (n)
h

)∣∣∣
I
·

 ∇φ̃h∣∣∣∇φ̃h∣∣∣
∣∣∣∣∣∣

I

 (37)

• otherwise, it is:

u
+ (n+1)
G = u

+ (n)
G + µD ∆t

(
gD(I)−

(
ũ

+ (n)
h (I)− ũ− (n)

h (I)
))

(38)

4.1.2 Choosing constants µB, µD and µN

According to the new notation introduced in the previous section 4.1.1, the conditions (26), (30), (31) and (32) on
the constants µD and µN become:

µD ∆t < 1,
µN ∆t

h
<

√
2

3β±
. (39)

The conditions on the positive constant µB remain the (33).
We observe that in practice we do not need to define all four values µD, µN , µB and ∆t for Eqs. (19), (35),

(36), (37), (38), but only the products µ∆t
B = µB ∆t, µ∆t

D = µD ∆t and µ∆t
N = µN ∆t. In the numerical tests of

Sect. 7 we use µ∆t
B = µ∆t

D = 0.9 and µ∆t
N = 0.9

√
2h

3 max {β+, β−} (that satisfy the stability conditions (33), (39)).

4.1.3 Smoothing property

As mentioned at the beginning of Sect. 4.1, it is known that the Jacobi scheme is not a proper smoother for
the multigrid algorithm (see, for instance, [61, Ch. 2.1]). Therefore, we need to replace the Jacobi-like scheme
introduced in Sect. 4.1 with a relaxation scheme that holds the smoothing property, such as the Gauss-Seidel
scheme or the weighted Jacobi scheme (with weight ω = 4/5 in 2D). In the following, we revert as example to a
Gauss-Seidel relaxation scheme. The smoothing property of the Gauss-Seidel scheme depends on the order chosen
for the variables. It is well known (see [61, Ch. 2.1]) that the Gauss-Seidel Red-Black (GS-RB) scheme is a better
smoother with respect to the Gauss-Seidel Lexicographic (GS-LEX) scheme. Anyway we study for simplicity the
smoothing properties of the GS-LEX scheme and we compare the convergence factor with the one predicted by
the Local Fourier Analysis for rectangular domains (see [61, Ch. 4.6.1] for more details), since the main goal of
this paper is to show the efficiency of the method for complex geometries and not the choice of the best relaxation
scheme. In order to obtain a more efficient multigrid method, a GS-RB can be easily employed instead of the
GS-LEX (this is behind the scope of the paper).

Finally, we switch from the relaxation scheme described in Sect. 4.1 to a Gauss-Seidel version, namely we
update the variable on which we are iterating and we use such updated value for the following iterations on the
other variables. The only thing is left to choose is the order of the iterations. We use a lexicographic order for
inner equations, and any order for interface and boundary conditions.

In detail, we order the grid points according to the following list:{
∂Ωh,Γ

−
h ,Γ

+
h ,Ω

−
h ,Ω

+
h

}
.

The order within any set of grid points of this list is arbitrary, except for grid points of Ω−h and Ω+
h , where the

lexicographic order is used, i.e.:

(x′, y′) ≤ (x′′, y′′)⇐⇒

x′ < x′′

or
x′ = x′′ and y′ < y′′.

14

In order to avoid that the boundary effects degrade the convergence factor, we perform some extra-relaxations
on two suitable layers surrounding respectively the interface and the boundary. In detail, we choose a positive
integer λ and a positive parameter δ, and we introduce two additional sets of grid points:

Ω
(δ)
h = {P ∈ Ωh such that d(P, ∂Ω) < δ} ,

Ω
± (δ)
h =

{
P ∈ Ω±h such that d(P,Γ) < δ

}
.

One single relaxation includes some over-relaxations on Ω
(δ)
h and Ω

± (δ)
h and is represented by the Algorithm 1.

Similarly to [15], we experienced that a good choice is:

λ = 5, δ = 5 h. (40)

4.2 Multigrid components

Let us extend the notation of Sect. 2.2. For a grid with spatial step h, we denote:

Ω−−h = Ω−h ∪ Γ−h , Ω++
h = Ω+

h ∪ Γ+
h .

Let us define the set of functions defined on a subset Ih of the grid:

S(Ih) = {wh : Ih → R} , for any Ih ⊆ Dh,

and then the set of functions defined on internal points:

S̄(Ωh) = S(Ω−h ∪ Γ−h)× S(Ω+
h ∪ Γ+

h).

The discrete differential operators of the elliptic equation can be expressed by:

L−h : S(Ω−−h)× S(Ω−−h)→ S(Ω−h) such that

L−h (β−h , u
−
h)i,j =

1

h2

(
β−i+1/2,j

(
u−i,j − u

−
i+1,j

)
+ β−i−1/2,j

(
u−i,j − u

−
i−1,j

)
+β−i,j+1/2

(
u−i,j − u

−
i,j+1

)
+ β−i,j−1/2

(
u−i,j − u

−
i,j−1

))
for any (i, j)h ∈ Ω−,

L+
h : S(Ω++

h)× S(Ω++
h)→ S(Ω+

h) such that

L+
h (β+

h , u
+
h)i,j =

1

h2

(
β+
i+1/2,j

(
u+
i,j − u

+
i+1,j

)
+ β+

i−1/2,j

(
u+
i,j − u

+
i−1,j

)
+β+

i,j+1/2

(
u+
i,j − u

+
i,j+1

)
+ β+

i,j−1/2

(
u+
i,j − u

+
i,j−1

))
for any (i, j)h ∈ Ω+,

and then they can be summarized as a unique operator Lh:

Lh : S̄(Ωh)× S̄(Ωh)→ S(Ωh) such that

Lh(βh, uh)(P) =

{
L−h (β−h , u

−
h) if P ∈ Ω−h

L+
h (β+

h , u
+
h) if P ∈ Ω+

h

where βh = (β−h , β
+
h), uh = (u−h , u

+
h).

15

Algorithm 1 One single relaxation includes some over-relaxations in the vicinity of the inter-
face and boundary.

for i = 1→ λ do

for all G ∈ ∂Ωh do
perform the iteration equation (19);

end for
for all G ∈ Γ−h do

perform the iteration equation (35) or (36);
end for
for all G ∈ Γ+

h do
perform the iteration equation (37) or (38);

end for
for all P ∈ Ω

− (δ)
h do

perform the iteration equation (16);
end for
for all P ∈ Ω

+ (δ)
h do

perform the iteration equation (18);
end for

end for

for all G ∈ ∂Ωh do
perform the iteration equation (19);

end for
for all G ∈ Γ−h do

perform the iteration equation (35) or (36);
end for
for all G ∈ Γ+

h do
perform the iteration equation (37) or (38);

end for
for all P ∈ Ω−h do

perform the iteration equation (16);
end for
for all P ∈ Ω+

h do
perform the iteration equation (18);

end for

The discrete jump operators become:

[·, ·]−h : S̄(Ωh)× S̄(Ωh)→ S(Γ−h) such that

[βh, uh]−h (G) =

ũ+
h (I)− ũ−h (I)
or(
β+∇ũ+

h − β
−∇ũ−h

)∣∣
I
·

 ∇φ̃Γ
h∣∣∣∇φ̃Γ
h

∣∣∣
∣∣∣∣∣∣

I

for any G ∈ Γ−h , according to the choice (7) or (8),

16

[·, ·]+h : S̄(Ωh)× S̄(Ωh)→ S(Γ+
h) such that

[βh, uh]+h (G) =

ũ+
h (I)− ũ−h (I)
or(
β+∇ũ+

h − β
−∇ũ−h

)∣∣
I
·

 ∇φ̃Γ
h∣∣∣∇φ̃Γ
h

∣∣∣
∣∣∣∣∣∣

I

for any G ∈ Γ+
h , according to the choice (7) or (8).

Discrete right-hand sides of the jump conditions are summarized by a grid function g+
h ∈ S(Γ+

h) [g−h ∈ S(Γ−h)] such
that g+

h (G) = gD(I) or gN (I) [g−h (G) = gD(I) or gN (I)], for any G ∈ Γ+
h [G ∈ Γ−h], according to the choice (7) or

(8). Discrete boundary condition operator can be expressed by:

Bh : S̄(Ωh)→ S(∂Ωh) such that Bh(uh) = ũ(B) according to the Eq. (13),

and the respective discrete right-hand side is a grid function gh ∈ S(∂Ωh) such that gh(G) = g(B) according to
the Eq. (13). With this notation, we can write the linear system on the grid with spatial step h in the following
compact form:

Lh(βh, uh) = fh

[βh, uh]−h = g−h

[βh, uh]+h = g+
h

B(uh) = gh

(41)

In order to describe the multigrid algorithm, we first introduce the extension operator and the transfer (restric-
tion and interpolation) operators.

4.2.1 Extension operator

Let us consider the whole domain Ω (the argument can be easily repeated with the two subdomains Ω− and Ω+).
This domain is defined by a level-set function φ and it defines a set of inner grid points Ωh and a set of ghost
points ∂Ωh. Let us suppose we know a grid function ωh only on grid nodes of ∂Ωh (i.e. ωh ∈ S(∂Ωh)) and we
want to extend ωh in the whole domain Dh\Ωh, namely we want to obtain a new grid function ωexth ∈ S(Dh\Ωh).
The function ωexth can be obtained by extrapolating ωh constant along the normal direction to ∂Ω, i.e. solving the
transport equation

∂ω

∂τ
+∇ω · n = 0 (42)

for a few steps of a fictitious time τ , where ω = ωh in ∂Ωh, and n ≡ (nx, ny) = ∇φ/|∇φ| is the unit normal vector.
The procedure is analogous to the one presented in [15] for the case of continuous coefficients.

Finally, we can resume the extension process introducing an extension operator, which in practice depends only
on the set of ghost point ∂Ωh and on the discretized signed distance function φh. Therefore:

E [∂Ωh;φh] : S(∂Ωh) −→ S(Dh\Ωh). (43)

4.2.2 Restriction operator

We want to define a suitable restriction operator:

Ih2h : S(Zh)→ S(Z2h), where Zh ⊆ Dh, Z2h = Zh ∩D2h.

17

We perform the usual full-weighting restriction away from the boundary/interface, while we modify the restriction
for inner equations close to the boundary/interface and for the boundary conditions. We recall the full-weighting
restriction operator (see [61, Ch. 2.3.3]):

Ih2h =
1

16

 1 2 1
2 4 2
1 2 1

h
2h

. (44)

In general, by the stencil notation

Ih2h =

...
...

...
· · · t−1,−1 t−1,0 t−1,1 · · ·
· · · t0,−1 t0,0 t0,1 · · ·
· · · t1,−1 t1,0 t1,1 · · ·

...
...

...

h

2h

we will intend the restriction operator Ih2h defined by:

Ih2hwh(x, y) =
∑

(i,j)∈Rk

ti,jwh(x+ jh, y + ih),

where only a finite number of coefficients ti,j is different from zero, and Rk ≡ {−k, . . . , k}2 for some positive integer
k. In practice, k = 1 allows second order restriction operator.

Following the same technique of [15], we modify the restriction operator when we are close to the inter-
face/boundary in such a way we only use values coming from the same side of the interface/boundary. The
modified restriction operator acting on a general subset Zh ⊆ Dh is therefore defined as follows. Let (x, y) ∈ Z2h

and let N (x, y) = {(x + jh, y + ih) : j, i = −1, 0, 1} be the neighborhood of (x, y). We define T as the maximum
full rectangle with vertices belonging to N (x, y) and such that T ∩ Dh ⊆ Zh (see Fig. 7, where Zh = Ω−h). The
stencil used in (x, y) to transfer wh to a coarser grid depends on the size of T . In particular, if T ∩Dh is a 3 × 3
point stencil (i.e. N (x, y) ⊆ Zh), then we can use the standard full-weighting stencil (44). Now let T ∩ Dh be a
3× 2 point stencil (the case 2× 3 is similar). Without loss of generality, we can suppose that the vertices of T are
(x+ jh, y + ih), with j ∈ {−1, 0}, i ∈ {−1, 1}. In this case, the restriction operator is:

(
Ih2hwh

)
(x, y) =

1

16

 2 2 0
4 4 0
2 2 0

h
2h

(x, y), (45)

while, if T is a 2× 2 point stencil, with vertex (x+ j h, y + i h), j, i ∈ {−1, 0}, the restriction operator is:

(
Ih2hwh

)
(x, y) =

1

16

 0 0 0
4 4 0
4 4 0

h
2h

(x, y), (46)

These three cases are summarized in Fig. 7 (where Zh = Ω−h).
The restriction of the boundary/interface conditions is performed similarly, provided extending the defect of

the boundary/interface conditions away from the boundary/interface (by the procedure described in Sect. 4.2.1)
and then performing the same restriction procedure, using only the values coming from the same side of the
boundary/interface. The procedure will be described in detail in Sect. 4.2.4.

18

Ω-
Ω+

Ω-
Ω+

Ω-
Ω+

1

16

 1 2 1
2 4 2
1 2 1

h
2h

1

16

 2 2 0
4 4 0
2 2 0

h
2h

1

16

 0 0 0
4 4 0
4 4 0

h
2h

Fig. 7: Top: nine point stencil N (x, y) (circles) and the boundary of the rectangle T (bold line). The bold
circle is on both the coarser and finer grids, while the smaller circles are only on the finer grid. The arrows
represent the action of the restriction operators. Bottom: the respective stencils in matrix form used by the
restriction operator.

4.2.3 Interpolation operator

The interpolation operator of the multigrid algorithm acts on the error, which is continuous across the bound-
ary/interface. Therefore, we do not need to modify the stencil for particular cases and we are allowed to use the
standard linear interpolation operator:

I2h
h =

1

4

 1 2 1
2 4 2
1 2 1

2h

h

. (47)

4.2.4 Two-Grid Correction scheme

Let us suppose we have an exact solver S of the linear system (41) for a grid with an arbitrary spatial step h:

uh = S(βh, f
−
h , f

+
h , g

−
h , g

+
h , gh).

Now, in order to describe the multigrid technique to solve the linear system (41), it is sufficient to describe the
TGCS (Two-Grid Correction Scheme), since any other multigrid algorithm (such as for example V -cycle, W -cycle,
Full Multigrid) can be easily derived from it (see [61, Ch. 2.4, 2.6] for more details). The TGCS consists into the
following algorithm:

1. Set initial guess uh = 0;

2. Relax ν1 times (by the Algorithm 1) on the grid with spatial step h

3. Compute the following defects:

rΩ−
h = f−h − L

−
h (β−h , u

−
h)

rΩ+

h = f+
h − L

+
h (β+

h , u
+
h)

rΓ−
h = g−h − [βh, uh]−h

rΓ+

h = g+
h − [βh, uh]+h

r∂Ω
h = gh − B(uh)

19

4. Extend the defects rΓ−
h , rΓ+

h and rΓ
h using the extension operator defined in (43):

rΓ−,ext
h = E [Γ−h ;φΓ

h](rΓ−
h),

rΓ+,ext
h = E [Γ+

h ;−φΓ
h](rΓ+

h),

r∂Ω,ext
h = E [∂Ωh;φh](r∂Ω

h).

5. Transfer these defects to a coarser grid with spatial step 2h by the restriction operator defined in Sect. 4.2.2:

rΩ−
2h = Ih2h

(
rΩ−
h

)
rΩ+

2h = Ih2h

(
rΩ+

h

)
rΓ−
2h = Ih2h

(
rΓ−,ext
h

)
rΓ+

2h = Ih2h

(
rΓ+,ext
h

)
r∂Ω
2h = Ih2h

(
r∂Ω,ext
h

)
6. Solve the residual problem in the coarser grid

e2h = S(β2h, r
Ω−
2h , r

Ω+

2h , r
Γ−
2h , r

Γ+

2h , r
∂Ω
2h)

7. Transfer the error to the finer grid by the interpolation operator (47):

eh = I2h
h (e2h)

8. Correct the fine-grid approximation
uh : = uh + eh

9. Relax ν2 times (by the Algorithm 1) on the grid with spatial step h.

As mentioned above, the other multigrid algorithms are based on the recursive application of the TGCS. For
example, the V−cycle algorithm is obtained by substituting the exact solver of step 6 with the application of the
TGCS in the coarser grid. The recursive procedure continues until a suitable coarse grid is reached, where the
exact solver is employed.

One multigrid iteration consists of an entire V−cycle. Iterations are performed until a suitable tolerance is
satisfied, chosen in such a way the algebraic error (due to this stopping criterion) is negligible with respect to the
discretization error.

5 Matrix coefficient

In this section we discuss the extension of the numerical method to the case of matrix coefficients. Numerical tests
are provided in Sect. 7.5. The problem reads:

−∇ ·
(
β±∇u±

)
= f± in Ω±

[[u]] = gD on Γ[[
β∇u · nΓ

]]
= gN on Γ

u = g on ∂Ω

, (48)

where β± is a symmetric positive definite matrix

β± = β±(x, y) =

(
β±11(x, y) β±12(x, y)
β±12(x, y) β±22(x, y)

)
, (49)

20

i.e. β±11 > 0 and β±11β
±
22 > (β±12)2. Observe that β∇u · nΓ = ∇u · (β nΓ) (since β is symmetric), and therefore the

interface condition
[[
β∇u · nΓ

]]
= gN may be written[[

nΓ
co · ∇u

]]
= gN ,

where nΓ±
co = β± nΓ is the co-normal vector. For simplicity, we omit the Γ superscript in the notation of this

section, though we always refer to the normal to the interface Γ.
We follow the same idea of [15] to discretize (48). In particular, we expand the first equation of (48)

−
(
∂β±11

∂x

∂u±

∂x
+
∂β±12

∂x

∂u±

∂y
+
∂β±12

∂y

∂u±

∂x
+
∂β±22

∂y

∂u±

∂y
+ β±11

∂2u±

∂x2
+ 2β±12

∂2u±

∂x∂y
+ β±22

∂2u±

∂y2

)
= f±

and we discretize the derivatives using standard central difference. Special attention must be posed to the mixed

derivative
∂2u±

∂x∂y
. In detail, we use standard central difference away from the interface

∂2u

∂x∂y
≈ 1

4 h2

 1 0 1
0 0 0
1 0 1

ui,j =
ui+1,j+1 + ui−1,j−1 − ui+1,j−1 − ui−1,j+1

4 h2
,

and a modified stencil near the interface (in order to maintain the same set of ghost points as in the scalar coefficient
case):

∂2u

∂x∂y
≈ 1

2 h2

 −1 1 0
1 −2 1
0 1 −1

ui,j
if nx · ny ≥ 0, and

∂2u

∂x∂y
≈ 1

2 h2

 0 1 1
−1 2 1

1 −1 0

ui,j
if nx · ny < 0, where n = (nx, ny). An example is shown in Fig. 8. An explanation of these discretizations can be
found, for example, in [61, page 264].

The discretization of the interface conditions is a straightforward extension of the scalar coefficient case.
Some additional aspects must be discussed for the matrix coefficient case, i.e. the condition β+(I) > β−(I)

(to select between (7) and (8)) and the condition (39). Condition β+(I) > β−(I) was introduced to improve the
condition number of the linear system. The idea of ensuring that the diagonal term is greater than the off-diagonal
terms cannot be extended to the matrix coefficient case in a straightforward manner. A possible solution, that is
confirmed by numerical tests, is to compare (upper bounds of) the coefficients of u−G and u+

G in Eq. (8) (see (70)
and (73) for the case of scalar coefficient), which in this case can be written as:(∥∥ñ+

co

∥∥
2
∇ũ+

h · ˆ̃n
+
co −

∥∥ñ−co

∥∥
2
∇ũ−h · ˆ̃n

−
co

)∣∣∣
I

= gN (I)

where

ñ±co = β±
∇φ̃Γ

h∣∣∣∇φ̃Γ
h

∣∣∣ .
is the approximation of the co-normal vector and ˆ̃n±co is the corresponding unit vector. Absolute value of the
coefficients of u±G are then expressed by

∂
(∥∥ñ±co

∥∥
2
∇ũ±h · ˆ̃n

±
co

)
∂u±G

(50)

21

1

4 h2

 1 0 1
0 0 0
1 0 1

ui,j 1

4 h2

 −1 1 0
1 −2 1
0 1 −1

ui,j 1

4 h2

 0 1 1
−1 2 1

1 −1 0

ui,j
Fig. 8: The stencil for the mixed derivative changes accordingly to the distance from the boundary and to the
normal direction.

We observe that Eq. (73) of Appendix 1 is valid for a generic unit vector, and therefore can be applied in (50)
with the unit vector ˆ̃n±co. Therefore, using Eq. (73) and the bound

∥∥ñ±co

∥∥
2

=
∥∥β± ñ±

∥∥
2
≤
∥∥β±∥∥

2
, we obtain the

following bound for (50) ∥∥β±∥∥
2

3√
2h

.

Therefore, the condition β+(I) > β−(I) now reads:∥∥β+
∥∥

2
>
∥∥β−∥∥

2
.

Since β± is a symmetric positive definite matrix, then
∥∥β±∥∥

2
corresponds to the dominant eigenvalue, which can

be easily computed by hand, leading to the final condition:

λ+
β > λ−β ,

where

λ±β =
β±11 + β±22 +

√
(β±11 − β

±
22)2 + 4(β±12)2

2

is the dominant eigenvalue of β±. Observe that this condition reverts to β+(I) > β−(I) in the case of scalar
coefficient (since β11 = β22 and β12 = 0).

Regarding the multigrid approach, condition (39) must be modified accordingly. In particular, We observe that
the 9-point stencil for the discretization of the interface conditions (jumps in the solution and in the flux) is chosen
in the Upwind direction, which may not correspond to the co-normal direction. For this reason, condition (28) is
not guaranteed and an additional check on the sign of (71) must be carried out in order to corresponding sign of
µN and ensuring that c−G ≤ 1 in (71). Finally, Eq. (29) can be easily extended by using (73) (by the same argument
described above) and then condition (39) now reads

µD ∆t < 1,
µN ∆t

h
<

√
2

3λ±β
.

22

6 Extension to the 3D case

Although the numerical method has been entirely described for 2D problems, the extension to 3D problems is
mostly straightforward and one test is presented in this paper (Sect. 7.6). Some crucial aspects of the method must
be adapted to the 3D case with care. For example, 3D versions of central difference discretizations (4) and (5) use
7-point stencils rather than 5-point stencils, while the stencils (9) and (11) used to discretize the interface/boundary
conditions have 33 = 27 points in 3D rather than 32 = 9 points (in general, the stencil is made by 3d points in d
dimensions), and can be expressed by:

StU27 =
{
G+ h(sx k1, sy k2, sz k3) : (k1, k2, k3) ∈ {0, 1, 2}3

}
, (51)

StC27 =
{
G+ h(k1, k2, k3) : (k1, k2, k3) ∈ {−1, 0, 1}3

}
, (52)

where sx = sign(xI − xG), sy = sign(yI − yG) and sz = sign(zI − zG), with G ≡ (xG, yG, zG) (ghost point) and
I ≡ (xI , yI , zI) (interface point).

Moreover, the choice of the different discretization configurations of the interface stencils presented in Sec-
tions 3.1.1.1 and 3.1.1.2 (Figs. 3 and 5) can be extended to the 3D case as follows. For simplicity, we only describe
the case of the stencil (51), since the case of the stencil (52) can be implemented similarly.

Let G be a ghost point and sijk the compact representation of the stencil (51), where i = j = k = 0 refer to
the ghost point G (see Fig. 15 for a 2D version of the stencil). Without loss of generality, assume that the normal
vector n = (nx, ny, nz) is such that nx, ny, nz < 0 (as in Fig. 15). Observe that in 2D the stencil may be shifted
only in one direction with respect to the standard configuration 9, as can be seen in Fig. 5, where the unfilled
square stencil is shifted in the x−direction, or in Fig. 3, where the filled circle stencil is shifted in the y−direction.
In 3D the approach is analogous and the direction along which the stencil may be switched is chosen as follows: if
|xI − xG| > |yI − yG| and |xI − xG| > |zI − zG|, then the stencil is possibly shifted along the x−direction, else if
|yI − yG| > |zI − zG|, then the stencil is possibly shifted along the y−direction, else the stencil is possibly shifted
along the z−direction.

Assume that the direction along which the stencil may be shifted is the x−direction (the other instances are
analogous). In this case, the code checks that each point s0jk belongs to Ω−h ∪ Γ−h . If so, no shifting is performed.
If not, then the points s0j∗k∗ that do not belong to Ω−h ∪ Γ−h are marked and the stencil is shifted for each of these
points as described below. The stencil point s0j∗k∗ is overridden by:

s0j∗k∗ := s3j∗k∗ .

Then, the interpolation coefficients for the interface conditions, that are already computed for the standard non-
shifted configuration (51), must be updated as well. Referring to the notation adopted in (67) for the 2D case, we
update the coefficients by:

cxi := cxi + di c
x
0 , c′xi := c′xi + di c

′x
0 , i = 2, 1, 0,

where d0 = 1, d1 = 3 and d2 = −3.
In some cases, the point s1jk does not belong to Ω−h ∪ Γ−h either, and then the following additional update of

stencil and coefficients must be performed:
s1j∗k∗ := s4j∗k∗ .

cxi := cxi + d̃i c
x
0 , c′xi := c′xi + d̃i c

′x
0 , i = 2, 1, 0,

where d̃0 = −3, d̃1 = 1 and d̃2 = 3.
Once the stencil and coefficients are updated, then the standard interpolation formulas can be used:

ũh(I) =
∑

0≤i,j,k≤2

cxi c
y
j c

z
k uijk,

∂ũh(I)

∂x
=

∑
0≤i,j,k≤2

c′xi c
y
j c

z
k uijk,

∂ũh(I)

∂y
=

∑
0≤i,j,k≤2

cxi c
′y
j c

z
k uijk,

∂ũh(I)

∂z
=

∑
0≤i,j,k≤2

cxi c
y
j c
′z
k uijk,

(53)

23

where uijk is the grid function over the (updated) stencil sijk.
Although this strategy may seem cumbersome, from the implementation point of view it is very compact and

efficient.
Finally, observe that conditions (39) become:

µD ∆t < 1,
µN ∆t

h
<

2

3
√

3β±
, (54)

since the supremum of the 3D version of (71) is obtained for ϑx = ϑy = ϑz = 0 and |nx| = |ny| = |nz| =
√

3/3. In
the general d−dimensional case, the conditions are:

µD ∆t < 1,
µN ∆t

h
<

2

3
√
d β±

. (55)

7 Numerical tests

In this section we perform different numerical tests to show the second-order accuracy in the solution and its
gradient and the efficiency of the multigrid. The gradient is computed in the inner grid points with the regular
central difference approximation of the derivatives (eventually making use of the value computed at ghost points).
In detail, Examples 1 (circular domains) and 2 (flower-shaped domains) show the accuracy of the discretization.
The tolerance for the stopping criterion of the multigrid is small enough in order to make the error of the iterative
scheme negligible with respect to the one associated with the discretization error. Therefore, the error of the
numerical results is (almost) entirely due to the discretization error, which decays with second order accuracy.
Although second order accuracy in both the solution and the gradient is achieved, large errors are observed when
β− � β+ due to the artificiality of the numerical tests, as demonstrated in Example 3 (where more realistic data
is chosen). Example 4 is related to the efficiency of the multigrid for high-jump coefficients. In order to avoid
numerical instability associated with the machine precision, we test the multigrid efficiency on the homogeneous
problem (starting with an initial guess different from zero) and analyze the convergence factor towards the exact
(null) solution. Example 5 shows the performance of the method in the case of matrix coefficient, while Example
6 presents some results in 3D.

The implementation of the numerical method has been carried out in Matlab for 2D problems and C++ for 3D
problems.

7.1 Example 1: circular domains

Let us consider the model problem (1) with the following data:

φΓ(x, y) =
√

(x− x0)2 + (y − y0)2 −R1,

φ(x, y) =
√

(x− x0)2 + (y − y0)2 −R2,

β− = 106 + 105 sin(πx) cos(3πy), β+ = 1 + 0.5 sin(2πx) cos(4πy) (56)

or
β− = 1 + 0.5 sin(2πx) cos(4πy), β+ = 106 + 105 sin(πx) cos(3πy). (57)

Functions f±, gD, gN and g are chosen in such a way the exact solution is the following:

u− = sin(4πx) cos(6πy), u+ = cos(2πx) sin(3πy).

We choose x0 =
√

2/30, y0 =
√

3/40, R1 = 0.353 and R2 = 0.753. The domain is represented in Fig. 9 (left side).
We perform one test with (56) and one test with (57). In Tables 1 and 2 we list the errors of the solution and its
gradient in the L1 and L∞ norms, as well as the condition number κ of the linear system, while Fig. 10 shows the
related bestfit lines. Second order accuracy is attained in both the solution and its gradient, and the errors are
almost aligned with the best-fit line, highlighting the robustness of the method even with variable coefficients (with
jump ratio up to one million).

24

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ω-

Ω+

-1 -0.5 0 0.5 1
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Ω-
Ω+

Fig. 9: Domains Ω− and Ω+ of the Examples 7.1 and 7.3 (left), 7.2 and 7.4 (right).

7.1.1 Large errors in artificial tests

We observe in Table 1 that, although second order accuracy is observed, very large errors are actually displayed
compared to the exact solution, even for a reasonable number of grid points. This phenomenon is attributable to
the artificial aspects of the test rather than to an issue of the numerical method, since data f±, gD, gN and g are
defined artificially from the chosen exact solution. In fact, since we choose an exact solution u of O(1) and the
coefficient β− of the internal domain Ω− is much larger than the coefficient β+ of the domain Ω+, some data (such
as f) may develop high jumps across the interface, leading to large errors compared to the exact solution, although
decaying with second order of accuracy (a possible explanation is given in Appendix 2). This phenomenon is only
present when the coefficient β− of the internal domain Ω− is much larger than the coefficient β+ of the domain Ω+

(in fact it does not appear in Table 2). A similar behavior is observed, for example, in [47]. In real-life applications,
f±, gD, gN and g are set up according to the specific application and then they do not show high jumps (they are
usually of O(1)). In these cases, the phenomenon of large errors is not observed, as supported by the numerical
test proposed in Sect. 7.3.

7.2 Example 2: flower-shaped domains

Let us consider the general flower-shaped interface with parametric equations:

X(ϑ) = r(ϑ) cos(ϑ) + x0,

Y (ϑ) = r(ϑ) sin(ϑ) + y0,

with ϑ ∈ [0, 2π] and r(ϑ) = r0 + r1 sin(ωϑ). Let us consider ω = 5. The level-set representation of this interface is:

flower0(r0, r1, x0, y0;x, y) = r − r0 − r1
(y − y0)5 + 5(x− x0)4(y − y0)− 10(x− x0)2(y − y0)3

r5
.

25

Table 1: Example 7.1. Accuracy order in the solution (top) and in the gradient (bottom) for the case (56).

No. of points (n) L1 error of u order L∞ error of u order κ
32 × 32 8.34 ·103 - 7.70 ·104 - 6.98 ·108

64 × 64 2.07 ·103 2.01 1.85 ·104 2.06 2.43 ·109

128 × 128 5.79 ·102 1.84 5.10 ·103 1.86 9.21 ·1010

256 × 256 1.46 ·102 1.99 1.28 ·103 2.00 3.66 ·1010

No. of points (n) L1 error of |∇u| order L∞ error of |∇u| order κ/n2

32 × 32 1.46 ·105 - 3.90 ·105 - 6.82 ·105

64 × 64 3.49 ·104 2.06 1.06 ·105 1.88 5.94 ·105

128 × 128 9.56 ·103 1.87 2.96 ·104 1.84 5.62 ·105

256 × 256 2.39 ·103 2.00 7.45 ·103 1.99 5.58 ·105

Table 2: Example 7.1. Accuracy order in the solution (top) and in the gradient (bottom) for the case (57).

No. of points (n) L1 error of u order L∞ error of u order κ
32 × 32 4.40 ·10−3 - 1.22 ·10−1 - 3.33 ·109

64 × 64 1.02 ·10−3 2.11 2.93 ·10−2 2.06 9.85 ·109

128 × 128 3.29 ·10−4 1.64 7.61 ·10−3 1.95 3.45 ·1010

256 × 256 8.24 ·10−5 2.00 2.14 ·10−3 1.83 1.29 ·1011

No. of points (n) L1 error of |∇u| order L∞ error of |∇u| order κ/n2

32 × 32 3.93 ·10−1 - 3.52 ·100 - 3.25 ·106

64 × 64 9.95 ·10−2 1.98 9.71 ·10−1 1.86 2.40 ·106

128 × 128 2.63 ·10−2 1.92 2.80 ·10−1 1.80 2.10 ·106

256 × 256 6.60 ·10−3 1.99 7.32 ·10−2 1.93 1.96 ·106

where r =
√

(x− x0)2 + (y − y0)2. A rotated version (counter-clockwise by an angle ϑ0) of this interface is obtained
by considering the following level-set function:

flower(r0, r1, x0, y0, ϑ0;x, y) = flower0(r0, r1, x0, y0;x∗, y∗),

where
x∗ = cos(ϑ0)x− sin(ϑ0)y,

y∗ = sin(ϑ0)x+ cos(ϑ0)y.

Let us consider the model problem (1) with the following data:

φΓ(x, y) = flower(0.45, 1/12, 0.01
√

3, 0.02
√

2,−π/12;x, y),

φ(x, y) = flower(0.75, 1/8, 0.01
√

3, 0.02
√

2, 0;x, y),

β− = 106 + 105 sin(πx) cos(3πy), β+ = 1 + 0.5 sin(2πx) cos(4πy) (58)

or
β− = 1 + 0.5 sin(2πx) cos(4πy), β+ = 106 + 105 sin(πx) cos(3πy). (59)

Functions f±, gD, gN and g are chosen in such a way the exact solution is the following:

u− = sin(4πx) cos(6πy), u+ = cos(2πx) sin(3πy),

26

Ln(N)

L
n

(e
rr

o
r)

1 1.5 2 2.5 3
1

2

3

4

5

6

7
L
∞
error in the gradient

bestfit slope=1.90
L

1
error in the gradient

bestfit slope=1.96
L
∞
error in the solution

bestfit slope=1.96
L

1
error in the solution

bestfit slope=1.93

Ln(N)

L
n

(e
rr

o
r)

1 1.5 2 2.5 3
-6

-5

-4

-3

-2

-1

0

1

2
L
∞
error in the gradient

bestfit slope=1.86
L

1
error in the gradient

bestfit slope=1.96
L
∞
error in the solution

bestfit slope=1.95
L

1
error in the solution

bestfit slope=1.89

Fig. 10: Example 7.1. Bestfit lines of the errors in the solution and in the gradient (Tables 1 and 2) in both
the L1 and L∞ norms. Left: β− and β+ are given by (56); Right: β− and β+ are given by (57).

The domain is represented in Fig. 9 (right side). We perform one test with (58) and one test with (59). In Tables
3 and 4 we list the errors of the solution and its gradient in the L1 and L∞ norms, as well as the condition number
κ of the linear system. Fig. 11 shows the related bestfit lines.

As in the previous case, also in the presence of complex interface/boundary the method is robust and second
order accurate in both the solution and its gradient. The phenomenon of large errors in Table 3 is similar to the
one observed in Example 1 and the explanation is given in Sect. 7.1.1 and Appendix 2. The numerical test in
Sect. 7.3 demonstrates that this issue is related with the artificial aspect of the numerical test rather than with the
discretization method.

Table 3: Example 7.2. Accuracy order in the solution (top) and in the gradient (bottom) for the case (58).

No. of points (n) L1 error of u order L∞ error of u order κ
32 × 32 6.99 ·103 - 5.77 ·104 - 4.53 ·108

64 × 64 1.17 ·103 2.58 9.27 ·103 2.64 1.66 ·109

128 × 128 5.69 ·102 1.04 4.32 ·103 1.10 6.01 ·109

256 × 256 7.61 ·101 2.90 5.65 ·102 2.93 2.39 ·1010

No. of points (n) L1 error of |∇u| order L∞ error of |∇u| order κ/n2

32 × 32 1.23 ·105 - 5.02 ·105 - 4.43 ·105

64 × 64 1.95 ·104 2.65 8.69 ·104 2.53 4.05 ·105

128 × 128 9.30 ·103 1.07 4.38 ·104 0.99 3.67 ·105

256 × 256 1.23 ·103 2.92 6.26 ·103 2.80 3.65 ·105

27

Table 4: Example 7.2. Accuracy order in the solution (top) and in the gradient (bottom) for the case (59).

No. of points (n) L1 error of u order L∞ error of u order κ
32 × 32 6.63 ·10−3 - 2.51 ·10−1 - 4.93 ·109

64 × 64 2.49 ·10−3 1.41 8.18 ·10−2 1.62 1.60 ·1010

128 × 128 5.02 ·10−4 2.31 1.66 ·10−2 2.30 5.83 ·1010

256 × 256 1.28 ·10−4 1.98 4.03 ·10−3 2.04 2.17 ·1011

No. of points (n) L1 error of |∇u| order L∞ error of |∇u| order κ/n2

32 × 32 6.70 ·10−1 - 4.30 ·100 - 4.82 ·106

64 × 64 1.91 ·10−1 1.81 1.19 ·100 1.86 3.91 ·106

128 × 128 4.64 ·10−2 2.04 3.31 ·10−1 1.84 3.56 ·106

256 × 256 1.18 ·10−2 1.97 1.23 ·10−1 1.43 3.31 ·106

Ln(N)

L
n

(e
rr

o
r)

1 1.5 2 2.5 3
0

1

2

3

4

5

6

7

L
∞
error in the gradient

bestfit slope=2.00
L

1
error in the gradient

bestfit slope=2.10
L
∞
error in the solution

bestfit slope=2.11
L

1
error in the solution

bestfit slope=2.06

Ln(N)

L
n

(e
rr

o
r)

1 1.5 2 2.5 3
-6

-5

-4

-3

-2

-1

0

1

2
L
∞
error in the gradient

bestfit slope=1.72
L

1
error in the gradient

bestfit slope=1.95
L
∞
error in the solution

bestfit slope=2.02
L

1
error in the solution

bestfit slope=1.94

Fig. 11: Example 7.2. Bestfit lines of the errors in the solution and in the gradient (Tables 3 and 4) in both
the L1 and L∞ norms. Left: β− and β+ are given by (58); Right: β− and β+ are given by (58).

7.3 Example 3: accuracy test with more realistic data f±, gD, gN and g

In this test we show that the large errors present in Tables 1 and 3 are actually a consequence of the artificial aspect
of the numerical tests rather than an issue of the discretization method itself. To this purpose, we choose more
realistic values for the right-hand sides f±, gD, gN and g, rather than computing them by the exact solution (which
can lead to high jumps in f and then to large numerical errors). In absence of the exact solution, we compute the
errors by comparing the numerical solution with a reference solution rather than with the exact solution (which is
not available here). In this test, the reference solution is the numerical solution with a sufficiently large number
of grid points (1024 × 1024 in our case). The reference gradient of the solution is computed by standard central
difference schemes on the reference solution.

28

Let us consider the model problem (1) with the following data:

φΓ(x, y) =
√

(x− x0)2 + (y − y0)2 −R1,

φ(x, y) =
√

(x− x0)2 + (y − y0)2 −R2,

β− = 106 + 105 sin(πx) cos(3πy), β+ = 1 + 0.5 sin(2πx) cos(4πy), (60)

f− = sin(4πx) cos(6πy), f+ = cos(2πx) sin(3πy),

gD = gN = g = 0.

As in Example 7.1, we choose x0 =
√

2/30, y0 =
√

3/40, R1 = 0.353 and R2 = 0.753 (the domain is represented in
Fig. 9, left side).

Table 5: Example 7.3. Accuracy order in the solution (top) and in the gradient (bottom).

No. of points (n) L1 error of u order L∞ error of u order
32 × 32 4.97 ·10−5 - 6.26 ·10−4 -
64 × 64 8.43 ·10−6 2.56 1.05 ·10−4 2.58

128 × 128 1.92 ·10−6 2.13 2.22 ·10−5 2.24
256 × 256 3.63 ·10−7 2.40 4.60 ·10−6 2.27

No. of points (n) L1 error of |∇u| order L∞ error of |∇u| order
32 × 32 1.88 ·10−3 - 1.30 ·10−2 -
64 × 64 4.52 ·10−4 2.06 4.76 ·10−3 1.45

128 × 128 1.10 ·10−4 2.04 1.06 ·10−3 2.17
256 × 256 2.57 ·10−5 2.09 2.48 ·10−4 2.09

As can be seen in Table 5, relative errors are now reasonable without compromising the second order accuracy
in the solution and the gradient. Fig. 12 (left) shows the associated bestfit lines. The reference solution (obtained
with 1024× 1024 grid points) is displayed in Fig. 12 (right).

7.4 Example 4: High-jump coefficients and multigrid efficiency

In this example we show that the asymptotic convergence factor of the multigrid algorithm does not depend on
the jump of the coefficient nor on the size of the problem. In particular, we will see that the convergence factor is
close to the one predicted by the Local Fourier Analysis for inner equations and detailed in Table 6. As we pointed
out in Sect. 4.1.3, we know that more efficient smoothers than GS-LEX exist (such as GS-RB), but the goal of this
work is to show that the optimal convergence factor is attained, regardless on the smoother adopted. The same
argument holds for the multigrid algorithm: even if the Full Multigrid is more efficient, we limit ourselves to study
the convergence factor for the W-cycle algorithm, in order to compare results with the well-known values of Table
6. However, we experienced that the convergence factor is close to the optimal one in the first few cycles of the
entire algorithm (say the first ten), while it slightly degrades when reaching asymptotic convergence.

Table 6: Predicted convergence factor ρloc by LFA for GS-LEX and FW restriction operator (see, for in-
stance, [61, Ch. 4.6.1]).

ν = ν1 + ν2 1 2 3 4

ρloc 0.400 0.193 0.119 0.084

29

Ln(N)

L
n

(e
rr

o
r)

1 1.5 2 2.5 3
-8

-7

-6

-5

-4

-3

-2

-1

0

L
∞
error in the gradient

bestfit slope=1.93
L

1
error in the gradient

bestfit slope=2.06
L
∞
error in the solution

bestfit slope=2.35
L

1
error in the solution

bestfit slope=2.34

Fig. 12: Example 7.3. Left: bestfit lines of the errors in the solution and in the gradient (Table 5) in both the
L1 and L∞ norms. Right: reference solution obtained with 1024× 1024 grid points.

Let us recall that we estimate the asymptotic convergence factor as:

ρ = lim
m→∞

ρ(m) = lim
m→∞

∥∥∥r(m)
h

∥∥∥
∞∥∥∥r(m−1)

h

∥∥∥
∞

,

where rh =
(
rΩ−
h , rΩ+

h , rΓ−
h , rΩ+

h , rΓ
h

)
. In practice, we compute ρ(m) until the following stopping criterion is satisfied:∣∣∣ρ(m) − ρ(m−1)

∣∣∣
ρ(m)

< 10−3. (61)

We compare this convergence factor with the average convergence factor of the first ten W -cycle iterations, computed
as follows:

ρ̄ = 9

√√√√ 10∏
m=2

ρ(m). (62)

In this example, we use the same geometry as in Example 7.2 (namely the flower-shaped domains), with
coefficients:

β− = 10p, β+ = 1.

We solve the homogeneous problem (starting with an initial guess different from zero), namely the Problem (1)
with f± = gD = gN = g = 0, in order to avoid numerical instability associated with the machine precision. We
use the W -cycle algorithm with ν1 = 2 pre-smoothing and ν2 = 1 post-smoothing relaxations (therefore ν = 3 in
Table 6), and with a coarsest grid of 16 × 16 grid points. Tables 7 and 8 show the estimated convergence factors
for different numbers of grid points and jumps in the coefficient. As we can see from Tables 7 and 8, the average

30

convergence factor of the method is almost comparable with the result predicted by the Local Fourier Analysis, and
then the method is very effective on such problems. We observe that in some cases the convergence factor is even
less than the predicted one. A possible explanation for this phenomenon lies in the choice of the parameter λ and δ
in Eq. (40). In fact, this choice is performed at every level of the multigrid, even for coarser grids, where the choice
δ = 5h leads to perform the extra-relaxation steps on the whole domain, and then the actual value of iteration
steps ν = ν1 + ν2 is higher than three on those coarser levels. This phenomenon improves the overall efficiency of
the multigrid with some extra computational cost.

Finally, it is worth to observe that if the choice (35)–(38) is performed in the opposite way (i.e. (36),(38) if
β+(I) > β−(I), and (35),(37) otherwise), then the convergence factor degrades to ρ ≈ 1 (not shown).

Table 7: Example 7.4. Asymptotic convergence factor, computed with the stop criterion (61) (ν = ν1 +ν2 = 3).

p -9 -7 -5 -3 -1
N2

322 0.0875 0.0875 0.0875 0.0872 0.1019
642 0.1723 0.1723 0.1722 0.1553 0.1103
1282 0.1616 0.1616 0.1616 0.1616 0.1616

p 1 3 5 7 9
N2

322 0.2302 0.2411 0.2411 0.2411 0.2411
642 0.2176 0.2442 0.2445 0.2445 0.2445
1282 0.1617 0.1618 0.1947 0.1947 0.1947

Table 8: Example 7.4. Average convergence factor for the first ten W -cycle iterations, computed by the formula
(62) (ν = ν1 + ν2 = 3).

p -9 -7 -5 -3 -1
N2

322 0.0776 0.0776 0.0776 0.0773 0.0486
642 0.0930 0.0930 0.0930 0.0930 0.1107
1282 0.1544 0.1544 0.1544 0.1544 0.1544

p 1 3 5 7 9
N2

322 0.1563 0.1586 0.1585 0.1585 0.1585
642 0.0931 0.1027 0.1029 0.1029 0.1029
1282 0.1543 0.1543 0.1544 0.1544 0.1544

7.5 Example 5: Matrix coefficient case

In this section we perform a numerical test in the case of a matrix coefficient (described in Sect. 5).
Let us consider the model problem (48) with the following data:

φΓ(x, y) =
√

(x− x0)2 + (y − y0)2 −R1,

φ(x, y) =
√

(x− x0)2 + (y − y0)2 −R2,

31

f− = sin(4πx) cos(6πy), f+ = cos(2πx) sin(3πy),

gD = gN = g = 0.

The matrix coefficient β is expressed by the following coefficients (see (49)):

β−11 = 106 + 105 sin(πx) cos(3πy), β−12 = 105 + 104 sin(3πx) cos(2πy), β−22 = 106 + 105 sin(2πx) cos(4πy),

β+
11 = 1 + 0.5 sin(2πx) cos(4πy), β+

12 = 0.1 + 0.05 sin(3πx) cos(2πy), β+
22 = 1 + 0.5 sin(4πx) cos(πy), (63)

or

β−11 = 1 + 0.5 sin(2πx) cos(4πy), β−12 = 0.1 + 0.05 sin(3πx) cos(2πy), β−22 = 1 + 0.5 sin(4πx) cos(πy),

β+
11 = 106 + 105 sin(πx) cos(3πy), β+

12 = 105 + 104 sin(3πx) cos(2πy), β+
22 = 106 + 105 sin(2πx) cos(4πy). (64)

As in Example 7.1, we choose x0 =
√

2/30, y0 =
√

3/40, R1 = 0.353 and R2 = 0.753 (the domain is represented in
Fig. 9, left side).

Table 9: Example 7.5. Accuracy order in the solution (top) and in the gradient (bottom) for the case (63).

No. of points (n) L1 error of u order L∞ error of u order κ
32 × 32 3.71 ·10−5 - 6.31 ·10−4 - 6.65 ·108

64 × 64 5.57 ·10−6 2.74 7.94 ·10−5 2.99 2.21 ·109

128 × 128 2.43 ·10−6 1.20 2.76 ·10−5 1.53 8.26 ·109

256 × 256 3.22 ·10−7 2.91 4.49 ·10−6 2.62 3.29 ·1010

No. of points (n) L1 error of |∇u| order L∞ error of |∇u| order κ/n2

32 × 32 1.69 ·10−3 - 1.39 ·10−2 - 6.49 ·105

64 × 64 3.96 ·10−4 2.10 5.28 ·10−3 1.39 5.41 ·105

128 × 128 1.00 ·10−4 1.98 1.26 ·10−3 2.07 5.04 ·105

256 × 256 2.27 ·10−5 2.14 4.09 ·10−4 1.62 5.02 ·105

Table 10: Example 7.5. Accuracy order in the solution (top) and in the gradient (bottom) for the case (64).

No. of points (n) L1 error of u order L∞ error of u order κ
32 × 32 4.53 ·10−6 - 4.91 ·10−4 - 3.45 ·109

64 × 64 1.02 ·10−6 2.16 1.15 ·10−4 2.10 1.03 ·1010

128 × 128 2.54 ·10−7 2.00 2.81 ·10−5 2.03 3.52 ·1010

256 × 256 6.13 ·10−8 2.05 6.65 ·10−6 2.08 1.34 ·1011

No. of points (n) L1 error of |∇u| order L∞ error of |∇u| order κ/n2

32 × 32 6.95 ·10−4 - 1.08 ·10−2 - 3.37 ·106

64 × 64 1.73 ·10−4 2.01 2.89 ·10−3 1.90 2.50 ·106

128 × 128 4.37 ·10−5 1.98 9.10 ·10−4 1.67 2.15 ·106

256 × 256 1.04 ·10−5 2.07 2.08 ·10−4 2.13 2.05 ·106

In Tables 9 and 10 we list the errors of the solution and its gradient in the L1 and L∞ norms, as well as the
condition number κ of the linear system, while Fig. 13 shows the related bestfit lines. The reference solution is the
numerical solution with a sufficiently fine grid (1024× 1024 grid points). Second order accuracy is attained in both
the solution and its gradient.

32

Fig. 13: Example 7.5. Bestfit lines of the errors in the solution and in the gradient (Tables 9 and 10) in both
the L1 and L∞ norms. Left: β− and β+ are given by (63); Right: β− and β+ are given by (64).

7.6 Example 6: A numerical test in 3D

In this section we consider the extension to the 3D case. The domains Ω− and Ω are two spheres and the respective
level set functions are expressed by:

φΓ(x, y, z) =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 −R1,

φ(x, y, z) =
√

(x− x0)2 + (y − y0)2 + (z − z0)2 −R2.

Let us consider the 3D version of the model problem (1) with the following data:

β− = 106 + 105 sin(πx) cos(3πy) sin(2πz), β+ = 1 + 0.5 sin(2πx) cos(4πy) sin(3πz) (65)

or
β− = 1 + 0.5 sin(2πx) cos(4πy) sin(3πz), β+ = 106 + 105 sin(πx) cos(3πy) sin(2πz). (66)

Functions f±, gD, gN and g are chosen in such a way the exact solution is the following:

u− = sin(3πx) sin(πy) sin(2πz), u+ = sin(πx) sin(4πy) sin(3πz).

We choose x0 = y0 = z0 = 0, R1 = 0.653 and R2 = 0.873. We perform one test with (65) and one test
with (66). Due to the high computational cost of 3D problems, numerical tests with many grid points can only
be investigated if the numerical method is implemented through parallel programming. The parallelization of the
numerical method is under investigation and beyond the scope of this paper. To investigate the numerical accuracy
using a non-parallel code, we do not use more than 1503 grid points. Therefore, in order to have a sufficient number
of tests to compute the accuracy order, we choose the number of grid points (N + 1)3 by the following formula:

N + 1 = d25× 1.4je, j = 0, . . . , 5,

33

Table 11: Example 7.6. Accuracy order in the solution (top) and in the gradient (bottom) for the case (65).

No. of points (n) L1 error of u order L∞ error of u order
25 × 25 × 25 2.99 ·10−3 - 1.06 ·10−1 -
35 × 35 × 35 1.43 ·10−3 2.18 5.07 ·10−2 2.20
49 × 49 × 49 7.11 ·10−4 2.08 2.58 ·10−2 2.01
69 × 69 × 69 3.57 ·10−4 2.05 1.24 ·10−2 2.17
97 × 97 × 97 1.82 ·10−4 2.00 6.56 ·10−3 1.90

135 × 135 × 135 9.86 ·10−5 1.83 3.47 ·10−3 1.89

No. of points (n) L1 error of |∇u| order L∞ error of |∇u| order
25 × 25 × 25 3.76 ·10−1 - 2.24 ·100 -
35 × 35 × 35 1.95 ·10−1 1.94 1.09 ·100 2.14
49 × 49 × 49 9.94 ·10−2 2.01 6.10 ·10−1 1.72
69 × 69 × 69 5.05 ·10−2 2.01 3.81 ·10−1 1.40
97 × 97 × 97 2.55 ·10−2 2.03 1.63 ·10−1 2.52

135 × 135 × 135 1.33 ·10−2 1.93 1.01 ·10−1 1.44

Table 12: Example 7.6. Accuracy order in the solution (top) and in the gradient (bottom) for the case (66).

No. of points (n) L1 error of u order L∞ error of u order
25 × 25 × 25 2.69 ·10−3 - 1.05 ·10−1 -
35 × 35 × 35 1.48 ·10−3 1.77 6.35 ·10−2 1.49
49 × 49 × 49 8.56 ·10−4 1.63 3.79 ·10−2 1.54
69 × 69 × 69 4.53 ·10−4 1.89 1.97 ·10−2 1.94
97 × 97 × 97 2.45 ·10−4 1.82 9.81 ·10−3 2.08

135 × 135 × 135 1.25 ·10−4 2.00 5.01 ·10−3 2.00

No. of points (n) L1 error of |∇u| order L∞ error of |∇u| order
25 × 25 × 25 4.18 ·10−1 - 2.14 ·100 -
35 × 35 × 35 2.10 ·10−1 2.04 1.17 ·100 1.80
49 × 49 × 49 1.11 ·10−1 1.89 8.13 ·10−1 1.08
69 × 69 × 69 5.58 ·10−2 2.05 3.66 ·10−1 2.37
97 × 97 × 97 2.86 ·10−2 1.99 2.15 ·10−1 1.58

135 × 135 × 135 1.46 ·10−2 2.01 1.16 ·10−1 1.85

where d·e is the ceiling function. The exponential formula guarantees that the values of N are almost uniformly
distributed in logarithmic scale (see Fig. 14).

In Tables 11 and 12 we list the errors of the solution and its gradient in the L1 and L∞ norms, while Fig.
14 shows the related bestfit lines. Second order accuracy is attained in both the solution and its gradient, and
the errors are almost aligned with the best-fit line, highlighting the robustness of the method even with variable
coefficients (with jump ratio up to one million).

8 Limitations and Conclusion

A ghost-point finite difference method to solve elliptic equations with discontinuous coefficients (with general non-
homogeneous jumps in the solutions and its gradient) is presented. The method is second order accurate both in the

34

Fig. 14: Example 7.6. Bestfit lines of the errors in the solution and in the gradient (Tables 11 and 12) in both
the L1 and L∞ norms. Left: β− and β+ are given by (65); Right: β− and β+ are given by (66).

solution and in the gradient, and therefore it is suitable for real-life applications that require additional accuracy
also in the gradient, such as Stefan problems or incompressible Navier-Stokes equations. The accuracy order is not
influenced by high-jump coefficients and can be straightforwardly increased by using a higher order interpolation
procedure on the interface and boundary. The linear system arising from the discretization is solved by a proper
multigrid approach, whose convergence factor is close to the optimal one achieved by the Local Fourier Analysis for
rectangular domain and it is not affected by high-jump coefficients. Numerous applications may benefit from the
higher accuracy of this method and the efficiency of the multigrid solver, such as those mentioned in the introduction,
especially for the 3D case. However, it is important to identify possible limitations of the numerical method in its
current form, in order to drive future developments of the code. For example, the second order accuracy is observed
only when the computational grid is sufficiently fine with respect to the interface and boundary curvatures. This
means that a very fine grid is needed for very complex geometries, such as the flower-shaped domain with much
sharper petals. The refined grid is needed only in the vicinity of the interface/boundary, and therefore an adaptive
mesh refinement approach can be adopted in this case [25, 28, 56]. Moreover, parallelization of the code can
drastically decrease the overall computational cost, especially for 3D problems. Cartesian meshes are well suitable
for parallel implementations [52], although some aspects of the multigrid approach and the interface discretizations
may need a dedicated development[60]. Extensions of the method to the case of adaptive Cartesian grids and High
Performance Computing is subject of future research.

Acknowledgment

The work of A. Coco has been partially supported by the London Mathematical Society Computer Science Small
Grants - Scheme 7. The work of G. Russo was supported in part by ITN-ETN Horizon 2020 Project ModCompShock,
Modeling and Computation on Shocks and Interfaces, Project Reference 642768.

35

Appendix 1: Upper bounds for 2D interpolation coefficients

G
I

n i = 1 2

1

2

0

j = 0

j =

j =

i = i =

Fig. 15: Generic 3 × 3 point stencil (circles) where a grid function uij is interpolated. Point G (ghost point) is at the
bottom-left corner point. Point I (square point) is where the interpolation and its derivatives are evaluated. Unit vector ñ
represents the normal vector in Sect. 3 and then is almost parallel to G− I. In the Appendix, point I is in the bottom-left
quadrant and n = (nx, ny) is such that nx, ny ≤ 0, but Eqs. (69), (70), (72), (73) are also valid in all the other three cases.

In this appendix we prove the equations (24), (25), (28) and (29). Let St9 be the 3× 3 point stencil of Fig. 15
(we assume that G is at the bottom left of the stencil, since the other three cases are analogous)

St9 =
{
G+ h(i, j) : (i, j) ∈ {0, 1, 2}2

}
,

and I ≡ (xI , yI) be a point such that xG ≤ xI ≤ xG + h, yG ≤ yI ≤ yG + h. Let uij , (i, j) ∈ {0, 1, 2}2, be
a grid function defined on the stencil St9 and ũh be the biquadratic interpolant of uij on the stencil St9. Let

ϑx =
xI − xG

h
and ϑy =

yI − yG
h

. Observe that 0 ≤ ϑx, ϑy ≤ 1. After some algebra, we have

ũh(I) =
∑

0≤i,j≤2

cxi c
y
j uij ,

∂ũh(I)

∂x
=

∑
0≤i,j≤2

c′xi c
y
j uij ,

∂ũh(I)

∂y
=

∑
0≤i,j≤2

cxi c
′y
j uij , (67)

where

(cx0 , c
x
1 , c

x
2) =

(
(1− ϑx)(2− ϑx)

2
, ϑx(2− ϑx),

(ϑx − 1)ϑx
2

)
,

(cy0 , c
y
1 , c

y
2) =

(
(1− ϑy)(2− ϑy)

2
, ϑy(2− ϑy),

(ϑy − 1)ϑy
2

)
,

(c′x0 , c
′x
1 , c

′x
2) =

1

h

(
ϑx −

3

2
, 2(1− ϑx), ϑx −

1

2

)
,

36

(c′y0 , c
′y
1 , c

′y
2) =

1

h

(
ϑy −

3

2
, 2(1− ϑy), ϑy −

1

2

)
.

Therefore (observe that uG = u00):

∂ũh(I)

∂uG
= cx0 c

y
0 =

(1− ϑx)(2− ϑx)(1− ϑy)(2− ϑy)

4
. (68)

Since ϑx, ϑy ≤ 1, we have:
∂ũh(I)

∂uG
≥ 0. (69)

The supremum of (68) is attained for ϑx = ϑy = 0. Therefore:

sup
|G−I|≤h

∂ũh(I)

∂uG
= 1. (70)

Now, consider a generic unit vector ñ = (nx, ny) pointing towards the bottom-left quadrant, i.e. nx, ny ≤ 0 and
n2
x + n2

y = 1. Then:

∂ (∇ũh(I) · ñ)

∂ uG
=

∂

∂ uG

(
∂ũh(I)

∂x
nx +

∂ũh(I)

∂y
ny

)
= c′x0 cy0 nx + cx0 c

′y
0 ny

=
1

h

(
(3− 2ϑx) (1− ϑy)(2− ϑy)

4
|nx|+

(1− ϑx)(2− ϑx) (3− 2ϑy)

4
|ny|

)
. (71)

Since ϑx, ϑy ≤ 1, we have:
∂ (∇ũh(I) · ñ)

∂ uG
≥ 0. (72)

The supremum of (71) is obtained for ϑx = ϑy = 0 and |nx| = |ny| =
√

2/2. Therefore

sup
|G−I|≤h

∂ (∇ũh(I) · ñ)

∂ uG
=

3√
2h

. (73)

Finally, we observe that the assumption that G is at the bottom-left corner does not lead the validity of Eqs. (69),
(70), (72), (73), which are valid also in the three other cases.

Appendix 2: Error upper bounds for 1D elliptic equations with
discontinuous coefficients

In this appendix we aim at justifying the large errors observed in Tables 1 and 3 (although they decay with second
order of accuracy). The focus of this section is on the behaviour of the errors in presence of high jumps in the
coefficients, which should not depend on the dimension of the problem (1D, 2D or 3D). Therefore, we simplify the
analysis by focussing on the 1D problem and computing an upper bound for the error of elliptic equations with
high jump coefficients.

Let us consider the 1D problem:

− d

dx

(
β±

du±

dx

)
= f± in Ω±

[[u]] = gD on x = −1 and x = 1[[
sign(x)β

du

dx

]]
= gN on x = −1 and x = 1

u = g on x = −2 and x = 2.

(74)

37

In this 1D problem we have Ω− = (−1, 1) and Ω+ = (−2, 2)\Ω−. Let uh be the discrete solution obtained by the
1D version of (41):

Lh(βh, uh) = fh

[βh, uh]−h = g−h

[βh, uh]+h = g+
h

B(uh) = gh

(75)

and eh = u− uh. Due to the linearity of the operators, we have:

Lh(βh, eh) = Lh(βh, u)− fh
[βh, eh]−h = [βh, u]−h − g

−
h

[βh, eh]+h = [βh, u]+h − g
+
h

B(eh) = B(u)− gh

(76)

Right-hand sides of Eq. (76) are the discretization errors of the operators. Therefore, eh is a numerical approximation
of the solution of the following problem:

− d

dx

(
β±

de±

dx

)
= β±C1 h

2 in Ω±

[[e]] = C2 h
3 on x = −1 and x = 1[[

sign(x)β
de

dx

]]
= max

{
β+, β−

}
C3 h

2 on x = −1 and x = 1

e = C4 h
3 on x = −2 and x = 2

(77)

Let us assume for simplicity that β+ and β− are two (possibly different) constants, and that the solution u of
Eq. (74) and its derivatives up to order four are of O(1), so that C1 − C4 are constants of O(1). Then, the exact
solutions of (77) are:

e+(x) = −C1 h
2

2
(2− |x|)2 + α(2− |x|)h2 + C4 h

3, e−(x) = −C1 h
2

2
x2 + (C4 − C2)h3 + αh2, (78)

with

α =
(β+ + β−)C1 −max

{
β+, β−

}
C3

β+
.

From (78) we can infer that the error is in general O(αh2). If β+ > β−, then α is O(1), while if β− > β+ we
observe that α is O(β−/β+). Finally, the error is O(h2) when β+ > β−, and O(β− h2) when β− > β+. If β− � β+

we observe that the error, although decays with second order of accuracy, may be very large for high value of h,
and this explain the results of Tables 1 and 3.

References

[1] L. Adams and T. P. Chartier. New geometric immersed interface multigrid solvers. SIAM Journal of Scientific
Computing, 25:1516–1533, 2004.

[2] L. Adams and T. P. Chartier. A comparison of algebraic multigrid and geometric immersed interface multigrid
methods for interface problems. SIAM Journal of Scientific Computing, 26:762–784, 2005.

[3] L. Adams and Z. Li. The immersed interface/multigrid methods for interface problems. Journal of Scientific
Computing, 24:463–479, 2002.

38

[4] R. E. Alcouffe, A. Brandt, J. Dendy, J. E., and J. W. Painter. The multigrid method for the diffusion equation
with strongly discontinuous coefficients. Journal on Scientific and Statistical Computing, 2:430–454, 1981.

[5] P. Angot, C.-H. Bruneau, and P. Fabrie. A penalization method to take into account obstacles in incompressible
viscous flows. Numer. Math., 81, 1999.

[6] I. Babuška. The finite element method for elliptic equations with discontinuous coefficients. Computing,
5:207–213, 1970.

[7] J. Bramble and J. King. A finite element method for interface problems in domains with smooth boundaries
and interfaces. Adv. Comput. Math., 6:109–138, 1996.

[8] W. L. Briggs, V. E. Henson, and S. F. McCormick. A Multigrid Tutorial. SIAM, 2000.

[9] T. F. Chan and W. Wan. Robust multigrid methods for nonsmooth coefficient elliptic linear systems. Journal
of Computational and Applied Mathematics, 123:323–352, 2000.

[10] F. Chantalat, C.-H. Bruneau, C. Galusinski, and A. Iollo. Level-set, penalization and cartesian meshes: A
paradigm for inverse problems and optimal design. Journal of Computational Physics, 228:6291–6315, 2009.

[11] A. Chorin. A numerical method for solving incompressible viscous flow problems. Journal of Computational
Physics, 135:115–125, 1997.

[12] M. Cisternino and L. Weynans. A parallel second order cartesian method for elliptic interface problems.
Communications in Computational Physics, 12(05):1562–1587, 2012.

[13] A. Coco, G. Currenti, C. D. Negro, and G. Russo. A Second Order Finite-Difference Ghost-Point Method for
Elasticity Problems on unbounded domains with applications to Volcanology. Communications in Computa-
tional Physics, 16:983–1009, 2014.

[14] A. Coco and G. Russo. Second order multigrid methods for elliptic problems with discontinuous coefficients
on an arbitrary interface, I: one dimensional problems. Numerical Mathematics: Theory, Methods and Appli-
cations, 5:19–42, 2012.

[15] A. Coco and G. Russo. Finite-Difference Ghost-Point Multigrid Methods on Cartesian Grids for Elliptic
Problems in Arbitrary Domains. Journal of Computational Physics, 241:464–501, 2013.

[16] J. Dolbow and T. Belytschko. A finite element method for crack growth without remeshing. International
journal for numerical methods in engineering, 46(1):131–150, 1999.

[17] J. Dolbow and I. Harari. An efficient finite element method for embedded interface problems. Int. J. for Num.
Meth. in Eng., 78(229–252), 2009.

[18] J. Donea. An arbitrary Lagrangian-Eulerian finite element method for transient fluid-structure interactions.
Computer Methods in Applied Mechanics and Engineering, 33:689–723, 1982.

[19] M. Dryja. A neumann-neumann algorithm for mortar discretization of elliptic problems with discontinuous
coefficients. Num. Math., 99(645–656), 2005.

[20] A. du Chéné, C. Min, and F. Gibou. Second-Order Accurate Computation of Curvatures in a Level Set
Framework Using Novel High Order Reinitialization Schemes. Journal of Scientific Computing archive, 35:114–
131, 2008.

[21] R. E. Ewing, Z. Li, T. Lin, and Y. Lin. The immersed finite volume element methods for the elliptic interface
problems. Mathematics and Computers in Simulation, 50(1):63–76, 1999.

[22] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A Non-Oscillatory Eulerian Approach to Interfaces in
Multimaterial Flows (The Ghost Fluid Method). Journal of Computational Physics, 152:457–492, 1999.

[23] L. Formaggia and F. Nobile. Stability analysis of second-order time accurate schemes for ALE-FEM. Computer
Methods in Applied Mechanics and Engineering, 193:4097–4116, 2004.

[24] T.-P. Fries and T. Belytschko. The intrinsic xfem: a method for arbitrary discontinuities without additional
unknowns. International journal for numerical methods in engineering, 68(13):1358–1385, 2006.

39

[25] F. Gibou and R. Fedkiw. A second-order-accurate symmetric discratization of the poisson equation on irregular
domains. Journal of Computational Physics, 176:205–227, 2002.

[26] F. Gibou and R. Fedkiw. A fourth order accurate discretization for the laplace and heat equations on arbitary
domains, with applications to the stefan problem. Journal of Computational Physics, 202:577–601, 2005.

[27] S. Gróı and A. Reusken. An extended pressure finite element space for two-phase incompressible flows with
surface tension. Journal of Computational Physics, 224(40–58), 2007.

[28] A. Guittet, M. Lepilliez, S. Tanguy, and F. Gibou. Solving elliptic problems with discontinuities on irregular
domains - the voronoi interface method. Journal of Computational Physics.

[29] G. Guyomarc’h, C.-O. Lee, and K. Jeon. A discontinuous galerkin method for elliptic interface problems with
application to electroporation. Communications in numerical methods in engineering, 25(10):991–1008, 2009.

[30] W. Hackbusch. Multi-grid methods and applications. Springer, 1985.

[31] A. Hansbo and P. Hansbo. A finite element method for the simulation of strong and weak discontinuities in
solid mechanics. Comput. Meth. in Appl. Mech. and Eng., 1993(3523–3540), 2004.

[32] S. Hou, W. Wang, and L. Wang. Numerical method for solving matrix coefficient elliptic equation with
sharp-edged interfaces. Journal of Computational Physics, 229:7162–7179, 2010.

[33] J. Huang and J. Zou. A mortar element method for elliptic problems with discontinuous coefficients. IMA J.
Numer. Anal., 22(549–576), 2001.

[34] J. J. E. Dendy. Black Box Multigrid. Journal of Computational Physics, 48:366–386, 1982.

[35] H. Ji and J. Dolbow. On strategies for enforcing interfacial constraints and evaluating jump conditions with the
extended finite element method. International Journal for Numerical Methods in Engineering, 61(14):2508–
2535, 2004.

[36] R. LeVeque and Z. Li. The immersed interface method for elliptic equations with discontinuous coefficients
and singular sources. SIAM J. Numer. Anal., 31:1019–1044, 1994.

[37] A. J. Lew and G. C. Buscaglia. A discontinuous-galerkin-based immersed boundary method. International
Journal for Numerical Methods in Engineering, 76(4):427–454, 2008.

[38] Z. Li. A fast iterative algorithm for elliptic interface problems. SIAM Journal of Numerical Analysis, 35:230–
254, 1998.

[39] Z. Li and K. Ito. Maximum principle preserving schemes for interface problems with discontinuous coefficients.
SIAM Journal of Scientific Computing, 23:339–361, 2001.

[40] Z. Li and K. Ito. The immersed interface method: numerical solutions of PDEs involving interfaces and
irregular domains. SIAM, 2006.

[41] X. Liu, R. Fedkiw, and M. Kang. A Boundary Condition Capturing Method for Poissons Equation on Irregular
Domains. Journal of Computational Physics, 160:151–178, 2000.

[42] B. Lu, Y. Zhou, M. Holst, and J. McCammon. Recent progress in numerical methods for the poisson-boltzmann
equation in biophysical applications. Commun Comput Phys, 3(5):973–1009, 2008.

[43] A. Mayo. The fast solution of Poisson’s and the biharmonic equations on irregular regions. SIAM J. Numer.
Anal., 21:285–299, 1984.

[44] C. Min and F. Gibou. A second order accurate projection method for the incompressible Navier-Stokes
equations on non-graded adaptive grids. J. Comput. Phys., 219:912–929, 2006.

[45] Y. T. Ng, H. Chen, C. Min, and F. Gibou. Guidelines for Poisson solvers on irregular domains with Dirichlet
boundary conditions using the ghost fluid method. J. Sci. Comput., 41:300–320, 2009.

[46] Y. T. Ng, C. Min, and F. Gibou. An efficient fluid-solid coupling algorithm for single-phase flows. J. Comput.
Phys., 228:8807–8829, 2009.

40

[47] M. Oevermann and R. Klein. A Cartesian grid finite volume method for elliptic equations with variable
coefficients and embedded interfaces. Journal of Computational Physics, 219:749–769, 2006.

[48] M. Oevermann, C. Scharfenberg, and R. Klein. A sharp interface finite volume method for elliptic equations
on Cartesian grids. Journal of Computational Physics, 228:5184–5206, 2009.

[49] S. Osher and R. Fedkiw. Level Set Methods and Dynamic Implicit Surfaces. Springer-Verlag New York, Applied
Mathematical Sciences, 2002.

[50] J. Papac, F. Gibou, and C. Ratsch. Efficient Symmetric Discretization for the Poisson, Heat and Stefan-Type
Problems with Robin Boundary Conditions. Journal of Computational Physics, 229:875–889, 2010.

[51] C. S. Peskin. Numerical analysis of blood flow in the heart. Journal of Computational Physics, 25:220–252,
1977.

[52] A. Raeli, M. Bergmann, and A. Iollo. A finite-difference method for the variable coefficient poisson equation
on hierarchical cartesian meshes. Journal of Computational Physics, 355:59–77, 2018.

[53] J. W. Ruge and Stüben. Multigrid methods, chapter Algebraic multigrid, pages 73–130. SIAM, Philadelphia,
1987.

[54] G. Russo and P. Smereka. A remark on computing distance functions. Journal of Computational Physics,
163:51–67, 2000.

[55] A. Sarthou, S. Vincent, J. Caltagirone, and P. Angot. Eulerian-Lagrangian grid coupling and penalty methods
for the simulation of multiphase flows interacting with complex objects. International Journal for Numerical
Methods in Fluids, 00:1–6, 2007.

[56] M. Semplice, A. Coco, and G. Russo. Adaptive mesh refinement for hyperbolic systems based on third-order
compact weno reconstruction. Journal of Scientific Computing, 66(2):692–724, 2016.

[57] J. Sethian. Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry,
Fluid Mechanics, Computer Vision and Materials Science. Cambridge University Press, 1999.

[58] M. Sussman, P. Smereka, and S. Osher. A level set approach for computing solutions to incompressible 2-phase
flow. Journal of Computational Physics, 114:146–159, 1994.

[59] M. Sussman, K. M. Smith, M. Y. Hussaini, M. Ohta, and R. Zhi-Wei. A sharp interface method for incom-
pressible two-phase flows. Journal of computational physics, 221(2):469–505, 2007.

[60] M. Theillard, C. H. Rycroft, and F. Gibou. A multigrid method on non-graded adaptive octree and quadtree
cartesian grids. Journal of Scientific Computing, 55(1):1–15, 2013.

[61] U.Trottenberg, C. Oosterlee, and A. Schuller. Multigrid. Academic Press, 2001.

[62] J. W. L. Wan and X.-D. Liu. A boundary condition-capturing multigrid approach to irregular boundary
problems. Journal of Scientific Computing, 25:1982–2003, 2004.

[63] W. L. Wan. Interface preserving coarsening multigrid for elliptic problems with highly discontinuous coeffi-
cients. Numer. Linear Algebra Appl., 7:727–741, 2000.

[64] Y. Yang and H. Udaykumar. Sharp interface cartesian grid method iii: Solidification of pure materials and
binary solutions. Journal of Computational Physics, 210(1):55–74, 2005.

[65] S. Yu, Y. Zhou, and G. Wei. Matched Interface and Boundary (MIB) method for elliptic problems with
sharp-edged interfaces. Journal of Computational Physics, 224:729–756, 2007.

41

