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Abstract 11 

This paper develops a recently proposed GPU based two-dimensional explicit meshless 12 

method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit 13 

algorithm to further improve the computational efficiency. The capability of the original 2D 14 

meshless code is extended to deal with 3D complex compressible flow problems. To resolve the 15 

inherent data dependency of the standard LU-SGS method, which causes thread-racing 16 

conditions destabilizing numerical computation, a generic rainbow coloring method is 17 

presented and applied to organize the computational points into different groups by painting 18 

neighboring points with different colors. The original LU-SGS method is modified and 19 

parallelized accordingly to perform calculations in a color-by-color manner. The CUDA 20 

Fortran programming model is employed to develop the key kernel functions to apply boundary 21 

conditions, calculate time steps, evaluate residuals as well as advance and update the solution in 22 
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the temporal space. A series of two- and three-dimensional test cases including compressible 23 

flows over single- and multi-element airfoils and a M6 wing are carried out to verify the 24 

developed code. The obtained solutions agree well with experimental data and other 25 

computational results reported in the literature. Detailed analysis on the performance of the 26 

developed code reveals that the developed CPU based implicit meshless method is at least four 27 

to eight times faster than its explicit counterpart. The computational efficiency of the implicit 28 

method could be further improved by ten to fifteen times on the GPU. 29 

 30 

Keywords: Implicit meshless; GPU computing; LU-SGS; Rainbow coloring; Euler equations 31 

 32 

 33 
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1. Introduction 34 

In recent years, graphics processing unit (GPU) computing technology has become 35 

increasingly popular in scientific research and engineering applications due to its rapidly 36 

growing performance and memory bandwidth. The fast development of this new technology 37 

provides tremendous computing power with Tera-scale floating operations per second to 38 

computational fluid dynamics (CFD), which requires intensive calculation for complex flow 39 

problems such as the fine-scale turbulence simulation of a complete fixed-wing aircraft [1], the 40 

aero-elasticity and stability of rotorcraft [2]and the hydrodynamic response of ships and 41 

offshore floating platforms subjected to extreme wave loadings [3]. 42 

In early days, programming on GPUs used to be a complicated exercise involving the use 43 

of low-level languages/techniques. This has been much improved with the development of 44 

high-level programming languages such as CUDA [4], OpenCL [5] and OpenACC [6]. With 45 

the emerge of these languages, more and more researchers in CFD have started to pay attention 46 

to GPU computing. Some important works, which successfully accelerate mesh based 47 

numerical methods including finite difference [7, 8], finite volume [9-13], finite element [14] 48 

and discontinuous Galerkin [15-17], have been reported in the literature. 49 

Compared to the vast amount of effort that has been made to port mesh based methods for 50 

compressible flows from CPU to GPU, the attention paid to the implementation of meshless 51 

methods on GPUs for solving high-speed flows is still limited. Meshless methods, in contrast to 52 

mesh methods using strictly closed grid elements, only utilize clouds of points to discretize the 53 

computational domain. This provides much greater flexibility to accommodate complex 54 
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aerodynamic configurations [18-22]. Parallelization of these new methods on many-core 55 

graphics processors to calculate complex compressible flows more efficiently will undoubtedly 56 

be beneficial to scientific research and engineering applications. Recently some researchers 57 

have attempted to implement explicit meshless methods on GPUs to calculate 2D compressible 58 

flows [23, 24]. However, it remains obscure whether implicit meshless methods, which 59 

converge much faster than explicit meshless methods on CPUs, would be able to be ported to 60 

GPUs to achieve further acceleration. 61 

One of the biggest challenges in realizing implicit methods on the GPU is these methods’ 62 

inherent data dependency characteristics, which will inevitably cause thread-racing conditions 63 

that could corrupt the data on the computer [24]. It is relatively easy to modify explicit 64 

algorithms to avoid thread-racing conditions, but it is much harder to achieve the same 65 

objective for implicit methods. 66 

This paper presents an effort to develop a recently proposed GPU based two-dimensional 67 

explicit meshless method for compressible flows reported by Ma et al. [23]. An efficient 68 

parallel LU-SGS implicit algorithm is devised and utilized to further improve the 69 

computational efficiency. The capability of the original 2D meshless code is extended to deal 70 

with 3D complex problems. To resolve the inherent data dependency of the standard LU-SGS 71 

method, which causes thread-racing conditions destabilizing numerical solution, a robust 72 

rainbow coloring method is presented and applied to organize the computational points into 73 

separate independent groups by painting neighboring points with different colors. The original 74 

serial LU-SGS method is modified and parallelized accordingly to perform calculations for all 75 

the computational points in a color-by-color independent manner. This method can deal with 76 
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both regularly and irregularly distributed points. It is more generic than the hyper-plane and 77 

pipeline methods [25, 26], which are only applicable to structured grids. The CUDA Fortran 78 

programming model [27] is employed to develop the important GPU kernels to apply boundary 79 

conditions, calculate time steps, evaluate residuals as well as advance and update the solution in 80 

temporal space. 81 

The rest of the paper is organized as follows. The numerical model, including governing 82 

equations and least-square curve fit based meshless discretization, is described in Section 2. 83 

The rainbow coloring method and the corresponding parallel LU-SGS algorithm, which are 84 

developed to avoid the data dependency of implicit methods, are addressed in Section 3. Key 85 

aspects of GPU implementation of the parallel algorithm including the development of 86 

computational kernels and the management of device memory are discussed in Section 4. The 87 

resulting GPU-based implicit meshless algorithm is firstly validated with typical 88 

two-dimensional flows over single- and multi-element airfoils and then used to accelerate the 89 

simulations of more complex three-dimensional flows in Section 5 to demonstrate the 90 

capability and performance of the algorithm. Finally, conclusions are drawn in Section 6. 91 

2. Spatial discretization 92 

In this section, a brief description of the numerical model, including the governing 93 

equations for inviscid compressible flows and the least-square meshless discretization, is 94 

presented for the sake of completeness. 95 

2.1 Governing equations 96 

The explicit GPU meshless method developed by Ma et al. [23] was only used to deal with 97 
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2D problems. It has not been addressed by these researchers whether this method could 98 

deal with complex 3D problems. In the present work we aim at solving three-dimensional 99 

compressible flows governed by the Euler equations, of which the differential form can be 100 

expressed as 101 

0
t


  



rW
F                                    (1) 102 

where W  and 
r
F  are the vector of conservative variables and the convective flux terms, 103 

respectively. The definitions of them are given by 104 
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where   is the density, p  is the pressure, u , v  and w  are the velocity components along 106 

x , y  and z  axes, respectively. The total energy per unit mass E  is given by 107 

2 2 21 1
( )

1 2

p
E u v w

 
   


                         (3) 108 

where   is the ratio of specific heat coefficients and 1.4   for air. 109 

2.2 Least-square curve fit based meshless discretization 110 

In meshless discretization [18-24] of the partial differential equations for CFD like 111 

Equation (1), the physical domain of the problem should be firstly discretized with scattered 112 

points. For each point in the domain as shown in Fig. 1, several surrounding points are chosen 113 

to form a local cloud of points, where the surrounding points are called as the satellites of the 114 

central point. The spatial derivatives in governing equation (1) are approximated in the 115 

meshless clouds of points. 116 
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    117 

(a) scattered points around an airfoil              (b) local cloud of point 118 

Fig. 1. Meshless discretization of a computational domain. 119 

For a given cloud of point iC , the spatial derivatives of a sufficiently differentiable 120 

function ( , , )x y z  located at the central point i  can be approximated by 121 
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where ij  is estimated at the midpoint of the virtual edge i j , and the condition ij C  123 

indicates that the summation should traverse all the satellites in iC . The derivative weight 124 

coefficients ij , ij  and ij  can be determined by various kinds of meshless treatments like 125 

least-square curve fit [18], radius basis functions [19], conservative meshless schemes [20]. In 126 

the present work, a weighted least-square curve fit based meshless method [28] is applied and 127 

the spatial derivative coefficients can be obtained by solving the following linear system 128 
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where the 3×3 matrix iA  and 3×1 matrix ijB  are given by 130 
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in which 
ik k ix x x   , 

ik k iy y y    and 
ik k iz z z    are the coordinate differences 132 

between the center point i  and satellite k , 
T

ij ij ij ija      
r

 is the vector of derivative 133 

weight coefficients. To emphasize the contribution of certain points in the cloud, a weighting 134 

function   is adopted, which usually takes the inverse square of its distance to the central 135 

point, with 
2

ij ijw r


 
r

. It can be noted that the derivative weight coefficients only depend on 136 

the nodal positions. Therefore, they are pre-computed and stored in the memory before other 137 

calculations. 138 

2.3 Evaluation of the convective flux 139 

Using the above mentioned derivative weight coefficients, the spatial derivative term in 140 

Equation (1) can be discretized in an arbitrary cloud iC  as 141 

i

i ij ij

j C

a


  
r r r
F F                                     (7) 142 

To estimate the convective flux ij ij ija 
r r

F F  on the virtual edge i j , the JST scheme 143 

[29] is employed, which can be expressed as 144 

 
1

( ) ( )
2

ij i j ij ija   
r r r

F F W F W D                             (8) 145 

where 
ijD  is the artificial dissipation consisting of a second-order and a fourth-order terms, 146 

and can be expressed as 147 

   (2) (4) 2 2

i ij ij j i ij ij j i      D W - W W W                     (9)  148 

where 
(2)  and 

(4)  denote the second- and forth-order adaptive coefficients, respectively. 149 

2  is the Laplace operator. The spectral radius   is also based on the meshless derivative 150 

weight coefficients, and given by 151 

2 2 2( )u v w p                                    (10) 152 

Additionally, the slip condition is enforced on all the solid wall boundaries, which means 153 
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that the normal velocity of the boundary points should be equal to zero. At the far field 154 

boundary, the non-reflecting condition is adopted to adjust the flow variables for all the 155 

boundary points. For more details on the parameters 
(2)  and 

(4)  and the far field 156 

boundary condition, readers can refer to the article [30]. 157 

3. Temporal discretization 158 

3.1 Implicit LU-SGS scheme 159 

The meshless method is used to evaluate the flux term given in Equation (8). By splitting 160 

the problem into the spatial and temporal spaces, Equation (1) can be re-written into a 161 

semi-discrete form for a meshless cloud iC  as 162 

i

i
ij

j C

d

dt 

 
W

F                                    (11) 163 

With a simple backward differential operator for dW  and a first-order Taylor expansion 164 

for F , the implicit form of Equation (11) can be expressed as [31] 165 
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where 1n n n  W W W  is the increment of the conservative variables, and t  denotes 167 

the time step. The superscript n  and 1n   denote the current and the next time steps, 168 

respectively. 




F

W
 is the Jacobian matrix with respect to the conservative variables for each 169 

local cloud of points. After moving the Jacobian matrix terms to the left side, the above 170 

equation can be written as 171 
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1
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Applying Equation (13) to all of the clouds of points in the domain and assembling these 173 

equations, we will obtain a system of block matrix equations given by 174 

( )n n n  A W W R                                   (14) 175 

in which, 176 
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       (15) 177 

The linear system of Equation (14) encapsulates the implicit iteration schemes, and it can 178 

be solved iteratively to converge to a steady state. The standard LU-SGS scheme consists of a 179 

forward iteration and a backward iteration sweeping through all the computational points in a 180 

sequential order [31], which can be written as 181 

1 *
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             (16) 182 

In the forward step of Equation (16), it can be seen that 
*

jW  on the right side should be 183 

calculated and prepared before computing the increment *

iW . The similar situation occurs in 184 

the backward step. The ordered forward and backward sweep of the standard LU-SGS scheme 185 

works well in serial computation. However, it is not applicable to multi- and many-core parallel 186 

computation. Because a computational point could be accessed simultaneously by several 187 

threads with conflicting writing operations, which could lead to an unstable solution that is 188 
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neither predictable nor reproducible. Therefore, the standard LU-SGS scheme cannot be 189 

directly used in GPU computing. 190 

3.2 Rainbow coloring method 191 

As mentioned before, data dependency impedes the parallel implementation of the 192 

standard LU-SGS algorithm. Some special strategies have been proposed in the past to 193 

undertake parallel computation on structured grids, which include the alternating direction 194 

implicit method [11], red-black ordering method [12], hyper-plane/hyper-line method [25] and 195 

pipeline methods [26]. Unfortunately, the application of these methods is limited to structured 196 

meshes only so that they are not suitable to other methods using irregularly distributed points 197 

and/or grids. Despite this limitation, a careful comparison of these methods gives us a hint that 198 

data independency for irregularly distributed meshless points and/or mesh cells can still be 199 

achieved if a proper treatment is used to separate them into several different groups. It is 200 

expected that all the points in the same group could be manipulated simultaneously by parallel 201 

threads without interfering each other. In addition, the underlying numerical algorithm needs to 202 

be modified properly to assure that write operations will be carried out in a group-by-group 203 

manner. These two conditions will guarantee that there will be no conflicting operations at a 204 

computational point at any time. Some researchers proposed a reordering method to paint 205 

unstructured meshes cells with different colors [32]. However, this technique has only been 206 

tested on multi-core CPUs so far and whether it could be applied to GPU computing remains 207 

unknown.  208 

In the current work, we develop and present a rainbow coloring method to organize 209 
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meshless clouds of point into independent groups for GPU computing. The whole procedure to 210 

paint all the computational points is described in Algorithm 1. The essential criterion of this 211 

coloring algorithm is that any two neighboring points are decorated with different colors. The 212 

central point must not have the same color with any of its satellite. In the computer program, we 213 

use integer numbers to represent different colors. For example, the red color is represented by 214 

index 1 and the blue color can be illustrated by index 2. 215 

 216 

The painting procedure given in Algorithm 1 is initialized by choosing a start point 0v  in 217 

the computational domain. Once the start point is selected, the corresponding color graph will 218 

be determined accordingly. In order to know whether different choices of the start point will 219 

have significant effect on the overall computational efficiency, we have tried choosing a start 220 

point randomly and found out that its influence is almost negligible. Therefore, in the present 221 

work the first point in the global array is always selected as the start node for the sake of 222 

convenience. Examples of the generated color graphs for both regularly and irregularly 223 

distributed meshless clouds are illustrated in Fig. 2. The dashed lines in the figure are not used 224 

in calculation, they are only used here to present a clear view of neighboring points. As shown 225 

in Fig. 2(a), a simple unique graph with two colors is obtained by using Algorithm 1 for 226 
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regularly distributed meshless. It can be seen that the implicit computing (see Equation (16)) of 227 

each red point (with color index 1) depends only on itself and the surrounding black points 228 

(with color index 2) in its local cloud, while the implicit computing of each black point only 229 

relies on itself and the surrounding red points. Therefore, algebraic operations at the points with 230 

the same color are independent with each other and they can be easily parallelized. Irregularly 231 

distributed meshless points can be treated in the same way, but more colors may be needed to 232 

paint these points due to the complex distribution as shown in Fig. 2(b). Obviously, the rainbow 233 

coloring method can deal with different types of point distribution, so it is more general than the 234 

ADI, red-black, hyper-plane and pipe-line methods, which can only be applied to regularly 235 

distributed points. 236 

    237 

(a) regular distribution                       (b) irregular distribution 238 

Fig. 2. Examples of color graphs. 239 

3.3 Parallel LU-SGS method 240 

The standard LU-SGS algorithm sweeps all the computational points in a sequential order, 241 

unfortunately this is not applicable to parallel computing. Here we modify it by using the 242 

rainbow coloring strategy so that the new algorithm traverses all the data points in a 243 



 

15 

 

group-by-group manner from the first color to the last color in the forward updating step, then it 244 

moves across the points from the last color to the first color in the backward iteration. The 245 

detailed procedure of the parallel LU-SGS method is presented in Algorithm 2, where the 246 

variable Ncolor indicates the total number of colors and Ls is a one-dimensional array storing all 247 

the colors used to paint the computational points. The data dependency issue can be 248 

successfully avoided by using this method. In the next section, we will discuss the 249 

implementation of the proposed parallel algorithm on the GPU. 250 

 251 

4. GPU implementation 252 

CUDA, OpenCL and OpenACC are three major programming models used to develop 253 

accelerator codes. The comparison of these models’ advantages and disadvantages is beyond 254 

the scope of the present work. Here we choose the CUDA Fortran language [27] to develop the 255 

parallel implicit meshless program on the GPU. 256 

4.1 Program framework 257 

In practical programming, the time-consuming parts are usually parallelized on the GPU 258 

while the other parts are kept on the CPU. For the implicit meshless method mentioned before, 259 
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the works related to the I/O operation and the generation of meshless clouds are kept on the 260 

CPU side since the former needs to deal with external storages like hard drives and the latter is 261 

calculated only once before other computations. The functions related to the implicit time 262 

marching are the most computing intensive parts. Hence these works need to be accelerated on 263 

the GPU. The implicit time marching procedure in each time step involves boundary condition 264 

enforcement, spectral radius calculation, time step estimation, flux term evaluation and solution 265 

update. For every single small task, a corresponding GPU kernel function is developed 266 

accordingly by using the CUDA Fortran language. The framework of the whole computer 267 

program is illustrated in Fig. 3, in which different tasks are assigned to the CPU and GPU, 268 

respectively. 269 

CPU (host) GPU (device)

Start

Geometry input

Meshless clouds generation

Results output

End

CPU data preparation

Time step calculation

Flux term evaluation 

Boundary value calculation

If(Converged) NoYes

GPU data

GPU dataDownload

Upload

Send data to GPU

Receive data from GPU

n
R

colors =1, N ,1

Forward updating

Loop:

i si L W

colors = N ,1, -1

Backward updating

Loop:

n

i si L W

Δt

BCW

Spectral radius evaluation SR

 270 

Fig. 3. The general program procedure of GPU-based implicit meshless approach 271 
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As shown in Fig. 3, the program starts from the CPU side with the pre-processing tasks 272 

including geometry input, meshless clouds generation and necessary data initialization, which 273 

should be executed before invoking the GPU kernel functions. Once the computing tasks on the 274 

GPU are finished, the results are sent back to the CPU for post-processing. A key to the success 275 

of GPU programming lies in the development of kernel functions and careful management of 276 

the device memory. 277 

4.2 CUDA kernel functions 278 

In the present work, the CUDA functions developed for the time marching procedure are 279 

categorized into three types including internal, boundary and update kernels according to the 280 

actual tasks assigned to them. 281 

 282 

Listing 1. An example of internal kernel for time step calculation 283 

Internal kernels are used to calculate the spectral radius, time step and flux term for 284 

internal field meshless clouds of points. For every meshless cloud of points, a CUDA thread is 285 

launched on the device to undertake important tasks. The total number of threads created the 286 

CUDA device should be no less than the number of points in the domain. An example of the 287 

internal kernel function for time step calculation is presented in Listing 1, in which every thread 288 
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deals with one local cloud. The variable N in the example code is the total number of points in 289 

the computational domain. 290 

Boundary kernels are designed to enforce boundary conditions including no-penetration 291 

wall, symmetric plane and non-reflective far field in the present work. We noted that if the 292 

near-boundary points are treated differently with the field points, the efficiency of the related 293 

kernels will be excessively degraded due to the divergence of thread branch. In the present work, 294 

similar treatment of both near-boundary and field points is adopted to avoid the branch 295 

divergence by introducing ghost points to implement boundary conditions, which is carried out 296 

by a specific kernel. An example code of the boundary kernel is given in Listing 2, in which 297 

each thread evaluates the boundary values for one ghost point. The variable nBC is the total 298 

number of ghost points. 299 

 300 

Listing 2. The kernel for boundary value evaluation of ghost points 301 

Update kernels are developed to advance the solution in the temporal space. Two kernels 302 
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namely LUSGS_Lower and LUSGS_Upper are designed to execute the forward and backward 303 

updating steps as described in Algorithm 2, respectively. Example code of the kernel 304 

LUSGS_Lower is illustrated in Listing 3, where s  is the index of color group and 305 

_ ( )nPoin clor s  is the total number of points in that group. 306 

 307 

Listing 3. The update kernel for forward marching of LU-SGS 308 

 309 

Listing 4. The host fuction for launching GPU kernels 310 
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Listing 4 shows the executing order of the GPU kernels, which is controlled by the CPU 311 

function timeMarching_LUSGS. For every kernel, a two-layer hierarchy is used to manage the 312 

CUDA threads launched on the device. As shown in Fig. 4, all threads in a kernel are organized 313 

into a set of thread blocks to form a CUDA grid, and each thread block contains the same 314 

number of threads. Depending on the underlying numerical method, the CUDA grid and thread 315 

block can be one-dimensional or multi-dimensional. Two parameters, gridDim and blockDim, 316 

are usually used to control the needed dimensions when calling a GPU kernel. In the present 317 

work, we set both the CUDA grid and thread block to be one-dimensional, which means 318 

gridDim is equal to the number of blocks and blockDim is equal to the number of threads per 319 

block. In order to optimize the GPU performance, the number of threads per block for each 320 

kernel should be carefully tuned. According to our recently reported work [33], 64 threads per 321 

block is a reasonable choice for the CUDA kernels. Thus the total number of thread blocks 322 

could be determined by  323 

CPU (host) GPU (device)

Kernel 1

Block 6

Threads

  

Kernel 2

Grid 2

Block 1 Block 2 Block 3

Block 4 Block 5   

Grid 1

Block 1 Block 2 Block 3 Block 4

Block 5 Block 6 Block 7   

 
 

 

Fig. 4. The thread hierarchy of CUDA kernels. 
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( 1) /gridDim nTotalThread blockDim blockDim                    (17)  324 

where nTotalThread  represents the total number of threads. 325 

4.3 Device memory management 326 

The performance of a GPU kernel function is heavily influenced by various types of 327 

memories, among which global memory, shared memory and register are three major types of 328 

memories that could be used and controlled by programmers. In order to enhance the overall 329 

performance of the program, efforts should be made to achieve an optimal use of the device 330 

memeory. 331 

In this paper, the thread index is used to build the mapping relationships between the 332 

threads of the kernels and the corresponding computing data stored on the graphics card for 333 

memory addressing. As presented in Listings 1, 2 and 3, three build-in variables, blockDim, 334 

blockIdx and threadIdx, related to the thread hierarchy are used to compute the thread index. 335 

The utilizing of these important variables can be found in article [4] for details. When fetching 336 

data from or writing them to the global memory, coalesced memory access is the ideal pattern 337 

[34]. This pattern is adopted in the present work so that all the threads in a half wrap map/access 338 

the global memory simultaneously with respect to the center of a meshless cloud. In reality, this 339 

means consecutive thread access consecutive memory addresses [33, 34]. 340 

The low-latency shared memory, which is usually used in structured grid based regular 341 

computation for sharing data between sibling threads in the same block, is not utilized in the 342 

present work due to the unpredictable irregular memory access pattern of the meshless method 343 

with respect to satellite points in a cloud. Instead, the shared memory is used as an extension to 344 
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the registers to store local variables of each thread. For each local variable stored in the shared 345 

memory, a memory space with size of blockDim is allocated for each thread block and the 346 

variable threadIdx is used to search the corresponding value for each thread. 347 

The registers, which have the lowest latency compared to other types of GPU memory, are 348 

used to store local variables for each thread. It should be noted that the number of registers 349 

provided by the hardware is very limited. A careful and delicate management is needed to ease 350 

the pressure on this scarce resource. Proper reusing of non-conflicting local variables and 351 

tuning the number of threads in a block are helpful to reduce the register pressure and to achieve 352 

the optimal performance [33]. 353 

5. Numerical results and analysis 354 

Table 1 Specifications of the Intel core i5-3450 CPU and NVIDIA GTX TITAN GPU.  355 

  Intel i5-3450 NVIDIA GTX TITAN 

Processor 

Total number of cores 4 2688 

Clock rate 3.10 GHz 837 MHz 

Memory 

Global memory 16GB 6GB 

Shared memory - 64KB 

Registers per block - 49152 

Theoretical 

performance 

Single-precision FLOP 198.4 GFLOP/s 4500 GFLOP/s 

Double-precision FLOP 99.2 GFLOP/s 1500 GFLOP/s 

Memory bandwidth 25.6 GB/s 288 GB/s 

A set of 2D and 3D inviscid compressible flows over aerodynamic bodies, for which 356 

regularly or irregularly distributed meshless clouds of pointed are used, have been carried out to 357 

verify the developed code. To evaluate the overall computing performance, we have 358 



 

23 

 

programmed and benchmarked four suits of CFD codes: 1) CPU based explicit code (CE), 2) 359 

CPU based implicit code (CI), 3) GPU based explicit code (GE) and 4) GPU based implicit 360 

code (GI) in the present work. Both the explicit and implicit CPU codes are executed in the 361 

serial mode using only one core. All the codes run in the double-precision mode. Wall time is 362 

recorded for all the codes to make direct comparisons. The hardware employed in the present 363 

work is a desktop workstation equipped with an Intel I5-3450 CPU and a NVIDIA GTX TITAN 364 

GPU, of which the specifications are presented in Table 1. 365 

5.1 Transonic flow past a NACA0012 airfoil 366 

Two-dimensional inviscid compressible flow over a NACA0012 airfoil is firstly simulated 367 

to validate the numerical method. In the computation, the freestream conditions are assigned 368 

with Mach number 0.8M   and angle of attack 1.25  o . The computational domain is 369 

discretized with 128×40 points regularly distributed as shown in Fig. 5(a). Each internal cloud 370 

of points is composed of one central point and four surrounding satellite points. Fig. 5(b) shows 371 

the corresponding color graph obtained by using Algorithm 1. Close views of the graph at the 372 

leading and trailing edges of the airfoil are presented in Fig. 6. It can be seen that the red and 373 

blue points appear alternately in the graph, and hence total 2560 red points and 2560 blue points 374 

are painted respectively. 375 

The computed results including Mach number contours and pressure coefficients are 376 

depicted in Fig. 7. Experimental data and reference numerical results published in the literature 377 

[18, 35] are also presented here to facilitate a direct comparison. It can be seen that the present 378 

solution agrees well with these reference experimental and numerical results. 379 
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    380 

(a) meshless cloud                                 (b) color graph 381 

Fig. 5. The whole meshless cloud and color graph around the NACA0012 airfoil. 382 

    383 

(a) the leading edge                 (b) the trailing edge 384 

Fig. 6. The detailed color graphs around the NACA0012 airfoil. 385 

    386 

(a) contours of Mach number             (b) plots of pressure coefficient 387 

Fig. 7. Computed results for transonic flow past the NACA0012 airfoil. 388 

 389 
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The histories of residual convergence with respect to iteration and wall time are shown in 390 

Fig. 8. It can be noted that the numbers of iteration of the implicit algorithms used to achieve the 391 

convergence are only a quarter of the explicit method. The implicit methods on the CPU and 392 

GPU have the same convergence rate per iteration. Compared to the large amount of computing 393 

time spent by the CPU based explicit method, the CPU implicit algorithm could reduce it 394 

effectively. The time cost could be further cut by the GPU implicit code. 395 

    396 

 (a) residual against iteration                 (b) residual against time 397 

Fig. 8. Convergence histories for transonic flow past the NACA0012 airfoil. 398 

5.2 Subsonic flow past a three-element airfoil 399 

Two-dimensional inviscid compressible flow past a three-element airfoil with 0.2M   400 

and 1.25  o  is then simulated to test the performance of the algorithm using irregularly 401 

distributed meshless clouds of points. There are 9592 points irregularly distributed in the 402 

computational domain as shown in Fig. 9. By adopting Algorithm 1, six colors are requested to 403 

paint all the points. The detailed color graphs at the leading and trailing gaps are presented in 404 

Fig. 10. Specifically, the numbers of points in each of the six color groups are 2600, 2525, 2314, 405 

1818, 332 and 3, respectively.  406 



 

26 

 

 407 

Fig. 9. The whole meshless cloud and color graph around the three-element airfoil. 408 

    409 

(a) the leading gap                           (b) the trailing gap 410 

Fig. 10. The detailed color graphs around the three-element airfoil. 411 

Fig. 11 shows the computed results including the Mach number contours and the pressure 412 

coefficient plots, which are close to the experimental data and other numerical results reported 413 

in the literature [36]. The histories of convergence in terms of iteration and time are presented in 414 

Fig. 12. It can be seen from Fig. 12(a) that the numbers of iterations needed to achieve the 415 

convergence for implicit algorithms are only about one-eighth of the explicit method. Once 416 

again, we can notice that the implicit methods could effectively reduce the computing time 417 

compared to the explicit method. 418 
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    419 

(a) contours of Mach number                 (b) plots of pressure coefficient 420 

Fig. 11. Computed results for subsonic flow past the three-element airfoil. 421 

    422 

(a) residual against iteration                  (b) residual against time 423 

Fig. 12. Convergence histories for subsonic flow past the three-element airfoil. 424 

5.3 Transonic flow past a M6 wing 425 

After testing two-dimensional problems, the develop code is used to accelerate the 426 

simulation of complex flows over three-dimensional aerodynamic bodies. Here, a typical 427 

transonic flow problem for the ONERA M6 wing with the Mach number 0.84M   and the 428 

angle of attack 3.06  o  is tested with regularly and irregularly distributed points. Fig. 13 429 

shows the points distributed on the wing surface and the symmetric plane. It can be noted that 430 

only two colors are used for the regular distribution while nine colors are needed to paint the 431 
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irregularly distributed points. The numerical results computed for the two sets of points are very 432 

close to each other, hence for convenience we only present the flow obtained on the first set of 433 

points. 434 

    435 

(a) points distributed regularly                  (b) points distributed irregularly 436 

Fig. 13. The whole meshless cloud and color graph around the M6 wing. 437 

    438 

(a) the upper surface                           (b) the lower surface 439 

Fig. 14. The contours of pressure coefficient at the surface of M6 wing. 440 

Fig. 14 shows the pressure coefficient contours on the upper and lower surfaces of the 441 

wing. It can be noted that the characteristic lambda shock on the upper surface of the wing is 442 

clearly captured. Pressure coefficients computed at several span-wise sections of the wing are 443 

presented in Fig. 15, where experimental data [37] and other numerical results published in the 444 

articles [38, 39] are also plotted. It can be noted that the present solution agrees well with these 445 
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reference data.  446 

 447 

Fig. 15. The plots of pressure coefficient at four inboard sections of the M6 wing. 448 

    449 

(a) residual against iteration         (b) residual against time 450 

Fig. 16. The comparation of convergence histories for transonic flow past the M6 wing. 451 

Fig. 16 shows the histories of convergence obtained by the CE, CI and GI codes. It can be 452 

seen from Fig. 16(a) that for achieving the convergence, the numbers of iterations used by 453 
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implicit codes are only one-third of the explicit code. The saving in time offered by the GI code 454 

is very significant as illustrated in Fig. 16 (b). 455 

5.4 Performance analysis 456 

To have a quantitative comparison of the performance for all the codes used in the present 457 

work, we set 10-8 as the convergence criteria for all the test cases. The actual costs of computing 458 

(wall) time for all the four codes are listed in Table 2. For the M6 wing (Case 3), the explicit 459 

CPU code needs nearly 3.9 hours to bring down the residual by 8 orders of magnitude, the 460 

implicit CPU code requires about 42 minutes, the explicit GPU code spends 9.5 minutes, while 461 

the implicit GPU code only asks for 3.3 minutes. This achievement is impressive and especially 462 

useful to engineers who need to conduct a quick and accurate analysis on the aerodynamic 463 

performance of aircraft. Multiple 3D simulations could be completed in a relative short time to 464 

assist engineers to identify and optimize the key parameters to improve the performance of 465 

aircraft such as the ratio of lift to drag. 466 

Table 3 presents the speedup, which compares the time costs of (any) two codes from the 467 

four. On the CPU, the implicit code offers a speedup from 4.46 to 8.11 compared to the explicit 468 

code. If accelerating the explicit code on the GPU, we can gain a speedup from 7.20 to 24.34. If 469 

the implicit code is parallelized on the GPU, we can get a speedup from 5.78 to 12.50. 470 

Comparing the GPU based implicit code to the explicit GPU program, we can have a speedup 471 

from 2.86 to 4.20, which is less than the speedup on the CPU side with respect to the ratio of CI 472 

to CE. The drop in the speedup of implicit method over explicit algorithm on the GPU side is 473 

due to the overhead of executing multiple colored small LU-SGS kernel functions. Launching a 474 



 

31 

 

kernel on the device is not free in terms of time, it actually causes overhead, which is usually 475 

more expensive than calling a similar function on the CPU. This phenomenon is consistent with 476 

the general idea in the high performance computing community that the parallelization of 477 

implicit codes is usually much more difficult than explicit programs. Nevertheless, the 478 

outcomes here demonstrate that the present work is of value that parallelizing the implicit code 479 

on the GPU could further cut computing time cost effectively compared to the explicit GPU 480 

code. 481 

Table 2 Computing time cost. 482 

  Computing time (seconds) 

Case Number of points CPU explict CPU implicit GPU explicit GPU implicit 

1 5120 1.16×102 2.60×101 1.61×101 4.50×100 

2 9592 1.14×103 1.40×102 1.05×102 2.50×101 

3 306577 1.39×104 2.50×103 5.71×102 2.00×102 

 483 

Table 3 Speedup. CE: CPU explicit; CI: CPU implicit; GE: GPU explicit; GI: GPU implicit. 484 

   Speedup 

Case Number of points CI/CE GE/CE GI/CE GI/CI GI/GE 

1 5120 4.46 7.20 25.78 5.78 3.58 

2 9592 8.11 10.86 45.60 5.60 4.20 

3 306577 5.56 24.34 69.50 12.50 2.86 

5.5 Size effect 485 

For the first and second 2D cases, we only obtain a relatively small speedup in the range of 486 

5 to 6 with respect to GI/CI. For the 3D case, the speedup rises to 12.50. The similar situation 487 

occurs for the explicit code on GPU with respect to GE/CE. In fact, the numbers of points used 488 

for the first and second cases are less than 10,000, which are not large enough to keep the GPU 489 

busy. In general, the GPU likes the programmer to feed it as much data as possible. Heavier the 490 
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better is a principle in GPU computing towards achieving the full potential of many-core 491 

processors.  492 

To investigate the size effect on the speedup, here we carry out extra tests of the implicit 493 

CPU and GPU codes by continually increasing the number of points used for the computation. 494 

The obtained computer time as well as the speedup are listed in Table 4. It is interesting to note 495 

that a relatively stable speedup around 15 could be accomplished by providing large number of 496 

data points (over 15 thousand) for the regular distribution case. For large number of irregularly 497 

distributed points, we can achieve a speedup of 10 in average. 498 

Table 4 Size effect on the computing time and speedup. CI: CPU Implicit; GI: GPU Implicit. 499 

  Computing time per iteration (seconds) Speedup 

Case Number of points CI GI GI/CI 

Regular 

distribution 

155680 1.2287×10-1 8.4870×10-3 14.5 

306577 2.3524×10-1 1.6226×10-2 14.5 

601408 4.6477×10-1 3.0579×10-2 15.2 

1193504 8.9608×10-1 6.0897×10-2 14.7 

Irregular 

distribution 

164160 2.7640×10-1 3.2305×10-2 8.5 

319168 5.6693×10-1 6.0300×10-2 9.4 

617104 1.1279×100 1.0400×10-1 10.8 

1228880 2.1539×100 1.9511×10-1 11.0 

We can also notice that the time required by the regular distribution case is much less than 500 

the irregular distribution case, the former is around a quarter or half of the latter. The difference 501 

in computer time could be caused by several reasons. First is the number of satellite points. A 502 

regular meshless cloud has less satellites compared to an irregular cloud, the difference could 503 

be 8 to 20 in a general 3D scenario. Having more satellites in a cloud means more work per 504 

cloud. Second is the number of colors used to paint the points. Usually regular distribution only 505 
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needs two colors to organize all the points into independent groups. While irregular distribution 506 

needs more colors e.g. 9 as shown in Fig. 13 (b). More colors will request more kernels to be 507 

launched, and more kernels will cause heavier overhead cost. Of course, this could also be 508 

influenced by the data locality issue [24]. These problems will be further investigated and 509 

addressed in our future work. 510 

6. Conclusions 511 

A parallel LU-SGS implicit meshless method has been developed to solve complex 3D 512 

compressible flow problems on many-core GPUs. A rainbow coloring method has been 513 

proposed to organize computational points into independent groups and to parallelize the 514 

LU-SGS algorithm. A series of two- and three-dimensional test cases including compressible 515 

flows over single- and multi-element airfoils and a M6 wing have been carried out to verify the 516 

developed code. The obtained solutions agree well with experimental data and other 517 

computational results reported in the literature. Detailed analysis on the performance of the 518 

computer programs reveals that the developed implicit GPU code can achieve up to 70× 519 

speedups compared to the CPU based explicit meshless method for the 3D computation of 520 

compressible flows over a M6 wing. This demonstrates the potential of the method to be 521 

applied to solve more complex and time-consuming problems. In future, we will further 522 

develop the method to deal with challenging fluid-structure-interaction problems such as the 523 

aero-elasticity calculation of fixed-wing aircraft and rotorcraft. 524 
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