
Please cite the Published Version

Zhang, J, Ma, Z, Chen, H and Cao, C (2018) A GPU-accelerated implicit meshless method for
compressible flows. Journal of Computational Physics, 360. pp. 39-56. ISSN 0021-9991

DOI: https://doi.org/10.1016/j.jcp.2018.01.037

Publisher: Elsevier

Version: Accepted Version

Downloaded from: https://e-space.mmu.ac.uk/619928/

Usage rights: Creative Commons: Attribution-Noncommercial-No Deriva-
tive Works 4.0

Additional Information: This is an Author Accepted Manuscript of a paper accepted for publica-
tion in Journal of Computational Physics, published by and copyright Elsevier.

Enquiries:
If you have questions about this document, contact openresearch@mmu.ac.uk. Please in-
clude the URL of the record in e-space. If you believe that your, or a third party’s rights have
been compromised through this document please see our Take Down policy (available from
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines)

https://doi.org/10.1016/j.jcp.2018.01.037
https://e-space.mmu.ac.uk/619928/
https://creativecommons.org/licenses/by-nc-nd/4.0/
https://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:openresearch@mmu.ac.uk
https://www.mmu.ac.uk/library/using-the-library/policies-and-guidelines

1

A GPU-accelerated implicit meshless method for compressible flows

 Jia-Le Zhanga, Zhi-Hua Mab, Hong-Quan Chena,*, Cheng Caoa

a Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, Nanjing

210016, China.

b School of Computing, Mathematics and Digital Technology, Manchester Metropolitan

University, Manchester M1 5GD, UK.

* Correspondence information:

 Corresponding author name: Hong-Quan Chen

 Post address: Department of Aerodynamics

 Nanjing University of Aeronautics and Astronautics

 29 Yudao Street, Nanjing 210016, China

 Email: hqchenam@nuaa.edu.cn

 Tel: +86 25 84895919

mailto:hqchenam@nuaa.edu.cn

2

 1

A GPU-accelerated implicit meshless method for compressible flows 2

 3

Jia-Le Zhanga, Zhi-Hua Mab, Hong-Quan Chena,*, Cheng Caoa 4

 5

a Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, Nanjing 6

210016, China 7

b School of Computing, Mathematics and Digital Technology, Manchester Metropolitan 8

University, Manchester M1 5GD, UK 9

 10

Abstract 11

This paper develops a recently proposed GPU based two-dimensional explicit meshless 12

method (Ma et al., 2014) by devising and implementing an efficient parallel LU-SGS implicit 13

algorithm to further improve the computational efficiency. The capability of the original 2D 14

meshless code is extended to deal with 3D complex compressible flow problems. To resolve the 15

inherent data dependency of the standard LU-SGS method, which causes thread-racing 16

conditions destabilizing numerical computation, a generic rainbow coloring method is 17

presented and applied to organize the computational points into different groups by painting 18

neighboring points with different colors. The original LU-SGS method is modified and 19

parallelized accordingly to perform calculations in a color-by-color manner. The CUDA 20

Fortran programming model is employed to develop the key kernel functions to apply boundary 21

conditions, calculate time steps, evaluate residuals as well as advance and update the solution in 22

3

the temporal space. A series of two- and three-dimensional test cases including compressible 23

flows over single- and multi-element airfoils and a M6 wing are carried out to verify the 24

developed code. The obtained solutions agree well with experimental data and other 25

computational results reported in the literature. Detailed analysis on the performance of the 26

developed code reveals that the developed CPU based implicit meshless method is at least four 27

to eight times faster than its explicit counterpart. The computational efficiency of the implicit 28

method could be further improved by ten to fifteen times on the GPU. 29

 30

Keywords: Implicit meshless; GPU computing; LU-SGS; Rainbow coloring; Euler equations 31

 32

 33

4

1. Introduction 34

In recent years, graphics processing unit (GPU) computing technology has become 35

increasingly popular in scientific research and engineering applications due to its rapidly 36

growing performance and memory bandwidth. The fast development of this new technology 37

provides tremendous computing power with Tera-scale floating operations per second to 38

computational fluid dynamics (CFD), which requires intensive calculation for complex flow 39

problems such as the fine-scale turbulence simulation of a complete fixed-wing aircraft [1], the 40

aero-elasticity and stability of rotorcraft [2]and the hydrodynamic response of ships and 41

offshore floating platforms subjected to extreme wave loadings [3]. 42

In early days, programming on GPUs used to be a complicated exercise involving the use 43

of low-level languages/techniques. This has been much improved with the development of 44

high-level programming languages such as CUDA [4], OpenCL [5] and OpenACC [6]. With 45

the emerge of these languages, more and more researchers in CFD have started to pay attention 46

to GPU computing. Some important works, which successfully accelerate mesh based 47

numerical methods including finite difference [7, 8], finite volume [9-13], finite element [14] 48

and discontinuous Galerkin [15-17], have been reported in the literature. 49

Compared to the vast amount of effort that has been made to port mesh based methods for 50

compressible flows from CPU to GPU, the attention paid to the implementation of meshless 51

methods on GPUs for solving high-speed flows is still limited. Meshless methods, in contrast to 52

mesh methods using strictly closed grid elements, only utilize clouds of points to discretize the 53

computational domain. This provides much greater flexibility to accommodate complex 54

5

aerodynamic configurations [18-22]. Parallelization of these new methods on many-core 55

graphics processors to calculate complex compressible flows more efficiently will undoubtedly 56

be beneficial to scientific research and engineering applications. Recently some researchers 57

have attempted to implement explicit meshless methods on GPUs to calculate 2D compressible 58

flows [23, 24]. However, it remains obscure whether implicit meshless methods, which 59

converge much faster than explicit meshless methods on CPUs, would be able to be ported to 60

GPUs to achieve further acceleration. 61

One of the biggest challenges in realizing implicit methods on the GPU is these methods’ 62

inherent data dependency characteristics, which will inevitably cause thread-racing conditions 63

that could corrupt the data on the computer [24]. It is relatively easy to modify explicit 64

algorithms to avoid thread-racing conditions, but it is much harder to achieve the same 65

objective for implicit methods. 66

This paper presents an effort to develop a recently proposed GPU based two-dimensional 67

explicit meshless method for compressible flows reported by Ma et al. [23]. An efficient 68

parallel LU-SGS implicit algorithm is devised and utilized to further improve the 69

computational efficiency. The capability of the original 2D meshless code is extended to deal 70

with 3D complex problems. To resolve the inherent data dependency of the standard LU-SGS 71

method, which causes thread-racing conditions destabilizing numerical solution, a robust 72

rainbow coloring method is presented and applied to organize the computational points into 73

separate independent groups by painting neighboring points with different colors. The original 74

serial LU-SGS method is modified and parallelized accordingly to perform calculations for all 75

the computational points in a color-by-color independent manner. This method can deal with 76

6

both regularly and irregularly distributed points. It is more generic than the hyper-plane and 77

pipeline methods [25, 26], which are only applicable to structured grids. The CUDA Fortran 78

programming model [27] is employed to develop the important GPU kernels to apply boundary 79

conditions, calculate time steps, evaluate residuals as well as advance and update the solution in 80

temporal space. 81

The rest of the paper is organized as follows. The numerical model, including governing 82

equations and least-square curve fit based meshless discretization, is described in Section 2. 83

The rainbow coloring method and the corresponding parallel LU-SGS algorithm, which are 84

developed to avoid the data dependency of implicit methods, are addressed in Section 3. Key 85

aspects of GPU implementation of the parallel algorithm including the development of 86

computational kernels and the management of device memory are discussed in Section 4. The 87

resulting GPU-based implicit meshless algorithm is firstly validated with typical 88

two-dimensional flows over single- and multi-element airfoils and then used to accelerate the 89

simulations of more complex three-dimensional flows in Section 5 to demonstrate the 90

capability and performance of the algorithm. Finally, conclusions are drawn in Section 6. 91

2. Spatial discretization 92

In this section, a brief description of the numerical model, including the governing 93

equations for inviscid compressible flows and the least-square meshless discretization, is 94

presented for the sake of completeness. 95

2.1 Governing equations 96

The explicit GPU meshless method developed by Ma et al. [23] was only used to deal with 97

7

2D problems. It has not been addressed by these researchers whether this method could 98

deal with complex 3D problems. In the present work we aim at solving three-dimensional 99

compressible flows governed by the Euler equations, of which the differential form can be 100

expressed as 101

0
t


  



rW
F (1) 102

where W and
r
F are the vector of conservative variables and the convective flux terms, 103

respectively. The definitions of them are given by 104

u

v

w

E











 
 
 
 
 
 
 
 

W

() () ()

u v w

uu p uv uw

uv vv p vw

uw vw ww p

u E p v E p w E p

  

  

  

  

  

     
     

     
       
     

     
            

F
r r rr
i j k (2) 105

where  is the density, p is the pressure, u , v and w are the velocity components along 106

x , y and z axes, respectively. The total energy per unit mass E is given by 107

2 2 21 1
()

1 2

p
E u v w

 
   


 (3) 108

where  is the ratio of specific heat coefficients and 1.4  for air. 109

2.2 Least-square curve fit based meshless discretization 110

In meshless discretization [18-24] of the partial differential equations for CFD like 111

Equation (1), the physical domain of the problem should be firstly discretized with scattered 112

points. For each point in the domain as shown in Fig. 1, several surrounding points are chosen 113

to form a local cloud of points, where the surrounding points are called as the satellites of the 114

central point. The spatial derivatives in governing equation (1) are approximated in the 115

meshless clouds of points. 116

8

 117

(a) scattered points around an airfoil (b) local cloud of point 118

Fig. 1. Meshless discretization of a computational domain. 119

For a given cloud of point iC , the spatial derivatives of a sufficiently differentiable 120

function (, ,)x y z located at the central point i can be approximated by 121

i

ij ij

j Cix


 









i

ij ij

j Ci
y


 









i

ij ij

j Ciz


 







 (4) 122

where ij is estimated at the midpoint of the virtual edge i j , and the condition ij C 123

indicates that the summation should traverse all the satellites in iC . The derivative weight 124

coefficients ij , ij and ij can be determined by various kinds of meshless treatments like 125

least-square curve fit [18], radius basis functions [19], conservative meshless schemes [20]. In 126

the present work, a weighted least-square curve fit based meshless method [28] is applied and 127

the spatial derivative coefficients can be obtained by solving the following linear system 128

i ij ijAa B
r

 (5) 129

where the 3×3 matrix iA and 3×1 matrix ijB are given by 130

i i i

i i i

i i i

ik ik ik ik ik ik ik ik ik

k C k C k C

i ik ik ik ik ik ik ik ik ik

k C k C k C

ik ik ik ik ik ik ik ik ik

k C k C k C

x x x y x z

A y x y y y z

z x z y z z

  

  

  

  

  

  

 
      

 
       
 
 

      
 

  

  

  

ij ij

ij ij ij

ij ij

x

B y

z







 
 

  
  

 (6) 131

9

in which
ik k ix x x   ,

ik k iy y y   and
ik k iz z z   are the coordinate differences 132

between the center point i and satellite k ,
T

ij ij ij ija      
r

 is the vector of derivative 133

weight coefficients. To emphasize the contribution of certain points in the cloud, a weighting 134

function  is adopted, which usually takes the inverse square of its distance to the central 135

point, with
2

ij ijw r


 
r

. It can be noted that the derivative weight coefficients only depend on 136

the nodal positions. Therefore, they are pre-computed and stored in the memory before other 137

calculations. 138

2.3 Evaluation of the convective flux 139

Using the above mentioned derivative weight coefficients, the spatial derivative term in 140

Equation (1) can be discretized in an arbitrary cloud iC as 141

i

i ij ij

j C

a


  
r r r
F F (7) 142

To estimate the convective flux ij ij ija 
r r

F F on the virtual edge i j , the JST scheme 143

[29] is employed, which can be expressed as 144

 
1

() ()
2

ij i j ij ija   
r r r

F F W F W D (8) 145

where
ijD is the artificial dissipation consisting of a second-order and a fourth-order terms, 146

and can be expressed as 147

   (2) (4) 2 2

i ij ij j i ij ij j i      D W - W W W (9) 148

where
(2) and

(4) denote the second- and forth-order adaptive coefficients, respectively. 149

2 is the Laplace operator. The spectral radius  is also based on the meshless derivative 150

weight coefficients, and given by 151

2 2 2()u v w p               (10) 152

Additionally, the slip condition is enforced on all the solid wall boundaries, which means 153

10

that the normal velocity of the boundary points should be equal to zero. At the far field 154

boundary, the non-reflecting condition is adopted to adjust the flow variables for all the 155

boundary points. For more details on the parameters
(2) and

(4) and the far field 156

boundary condition, readers can refer to the article [30]. 157

3. Temporal discretization 158

3.1 Implicit LU-SGS scheme 159

The meshless method is used to evaluate the flux term given in Equation (8). By splitting 160

the problem into the spatial and temporal spaces, Equation (1) can be re-written into a 161

semi-discrete form for a meshless cloud iC as 162

i

i
ij

j C

d

dt 

 
W

F (11) 163

With a simple backward differential operator for dW and a first-order Taylor expansion 164

for F , the implicit form of Equation (11) can be expressed as [31] 165

1 1 1()

()

i i

i

i i i

n
n n ni
ij i j

j C j C

n n

ij ijn n n n

i j i j

j C i j

n n

ij ijn n n

ij i j

j C j C j Ci j

t

  

 



  


   



  
      

   

 
     

 

 



  

W
F F W ,W

F F
F W ,W W W

W W

F F
F W W

W W

 (12) 166

where 1n n n  W W W is the increment of the conservative variables, and t denotes 167

the time step. The superscript n and 1n  denote the current and the next time steps, 168

respectively.




F

W
 is the Jacobian matrix with respect to the conservative variables for each 169

local cloud of points. After moving the Jacobian matrix terms to the left side, the above 170

equation can be written as 171

11

1

i i i

n n

ij ijn n n

i j ij

j C j C j Ci jt   

  
          
  I

F F
W W F

W W
 (13) 172

Applying Equation (13) to all of the clouds of points in the domain and assembling these 173

equations, we will obtain a system of block matrix equations given by 174

()n n n  A W W R (14) 175

in which, 176

1

i

n

ik

k C i

ij ij n

ij

j

i j
t

i j



 
 

 
     

 


F

I
W

A = A A =
F

W

1

1

n

n

n

n

N

 
 
  
 
 
  

M

W

W
W

W

1

2

1

2

N

n

j

j C

n

j
n

j C

n

Nj

j C







 
 
 
 

  
 
 
 
 







M

F

F
R

F

 (15) 177

The linear system of Equation (14) encapsulates the implicit iteration schemes, and it can 178

be solved iteratively to converge to a steady state. The standard LU-SGS scheme consists of a 179

forward iteration and a backward iteration sweeping through all the computational points in a 180

sequential order [31], which can be written as 181

1 *

1

: [] 1,2,..., 1,

: , 1,...,2,1

i

i

j i
n

i ii i ij j

j C

j i
n n

i i ii ij j

j C

Forward i N N

Backward i N N


 




 



      

      





W A R A W

W W A A W

 (16) 182

In the forward step of Equation (16), it can be seen that
*

jW on the right side should be 183

calculated and prepared before computing the increment *

iW . The similar situation occurs in 184

the backward step. The ordered forward and backward sweep of the standard LU-SGS scheme 185

works well in serial computation. However, it is not applicable to multi- and many-core parallel 186

computation. Because a computational point could be accessed simultaneously by several 187

threads with conflicting writing operations, which could lead to an unstable solution that is 188

12

neither predictable nor reproducible. Therefore, the standard LU-SGS scheme cannot be 189

directly used in GPU computing. 190

3.2 Rainbow coloring method 191

As mentioned before, data dependency impedes the parallel implementation of the 192

standard LU-SGS algorithm. Some special strategies have been proposed in the past to 193

undertake parallel computation on structured grids, which include the alternating direction 194

implicit method [11], red-black ordering method [12], hyper-plane/hyper-line method [25] and 195

pipeline methods [26]. Unfortunately, the application of these methods is limited to structured 196

meshes only so that they are not suitable to other methods using irregularly distributed points 197

and/or grids. Despite this limitation, a careful comparison of these methods gives us a hint that 198

data independency for irregularly distributed meshless points and/or mesh cells can still be 199

achieved if a proper treatment is used to separate them into several different groups. It is 200

expected that all the points in the same group could be manipulated simultaneously by parallel 201

threads without interfering each other. In addition, the underlying numerical algorithm needs to 202

be modified properly to assure that write operations will be carried out in a group-by-group 203

manner. These two conditions will guarantee that there will be no conflicting operations at a 204

computational point at any time. Some researchers proposed a reordering method to paint 205

unstructured meshes cells with different colors [32]. However, this technique has only been 206

tested on multi-core CPUs so far and whether it could be applied to GPU computing remains 207

unknown. 208

In the current work, we develop and present a rainbow coloring method to organize 209

13

meshless clouds of point into independent groups for GPU computing. The whole procedure to 210

paint all the computational points is described in Algorithm 1. The essential criterion of this 211

coloring algorithm is that any two neighboring points are decorated with different colors. The 212

central point must not have the same color with any of its satellite. In the computer program, we 213

use integer numbers to represent different colors. For example, the red color is represented by 214

index 1 and the blue color can be illustrated by index 2. 215

 216

The painting procedure given in Algorithm 1 is initialized by choosing a start point 0v in 217

the computational domain. Once the start point is selected, the corresponding color graph will 218

be determined accordingly. In order to know whether different choices of the start point will 219

have significant effect on the overall computational efficiency, we have tried choosing a start 220

point randomly and found out that its influence is almost negligible. Therefore, in the present 221

work the first point in the global array is always selected as the start node for the sake of 222

convenience. Examples of the generated color graphs for both regularly and irregularly 223

distributed meshless clouds are illustrated in Fig. 2. The dashed lines in the figure are not used 224

in calculation, they are only used here to present a clear view of neighboring points. As shown 225

in Fig. 2(a), a simple unique graph with two colors is obtained by using Algorithm 1 for 226

14

regularly distributed meshless. It can be seen that the implicit computing (see Equation (16)) of 227

each red point (with color index 1) depends only on itself and the surrounding black points 228

(with color index 2) in its local cloud, while the implicit computing of each black point only 229

relies on itself and the surrounding red points. Therefore, algebraic operations at the points with 230

the same color are independent with each other and they can be easily parallelized. Irregularly 231

distributed meshless points can be treated in the same way, but more colors may be needed to 232

paint these points due to the complex distribution as shown in Fig. 2(b). Obviously, the rainbow 233

coloring method can deal with different types of point distribution, so it is more general than the 234

ADI, red-black, hyper-plane and pipe-line methods, which can only be applied to regularly 235

distributed points. 236

 237

(a) regular distribution (b) irregular distribution 238

Fig. 2. Examples of color graphs. 239

3.3 Parallel LU-SGS method 240

The standard LU-SGS algorithm sweeps all the computational points in a sequential order, 241

unfortunately this is not applicable to parallel computing. Here we modify it by using the 242

rainbow coloring strategy so that the new algorithm traverses all the data points in a 243

15

group-by-group manner from the first color to the last color in the forward updating step, then it 244

moves across the points from the last color to the first color in the backward iteration. The 245

detailed procedure of the parallel LU-SGS method is presented in Algorithm 2, where the 246

variable Ncolor indicates the total number of colors and Ls is a one-dimensional array storing all 247

the colors used to paint the computational points. The data dependency issue can be 248

successfully avoided by using this method. In the next section, we will discuss the 249

implementation of the proposed parallel algorithm on the GPU. 250

 251

4. GPU implementation 252

CUDA, OpenCL and OpenACC are three major programming models used to develop 253

accelerator codes. The comparison of these models’ advantages and disadvantages is beyond 254

the scope of the present work. Here we choose the CUDA Fortran language [27] to develop the 255

parallel implicit meshless program on the GPU. 256

4.1 Program framework 257

In practical programming, the time-consuming parts are usually parallelized on the GPU 258

while the other parts are kept on the CPU. For the implicit meshless method mentioned before, 259

16

the works related to the I/O operation and the generation of meshless clouds are kept on the 260

CPU side since the former needs to deal with external storages like hard drives and the latter is 261

calculated only once before other computations. The functions related to the implicit time 262

marching are the most computing intensive parts. Hence these works need to be accelerated on 263

the GPU. The implicit time marching procedure in each time step involves boundary condition 264

enforcement, spectral radius calculation, time step estimation, flux term evaluation and solution 265

update. For every single small task, a corresponding GPU kernel function is developed 266

accordingly by using the CUDA Fortran language. The framework of the whole computer 267

program is illustrated in Fig. 3, in which different tasks are assigned to the CPU and GPU, 268

respectively. 269

CPU (host) GPU (device)

Start

Geometry input

Meshless clouds generation

Results output

End

CPU data preparation

Time step calculation

Flux term evaluation

Boundary value calculation

If(Converged) NoYes

GPU data

GPU dataDownload

Upload

Send data to GPU

Receive data from GPU

n
R

colors =1, N ,1

Forward updating

Loop:

i si L W

colors = N ,1, -1

Backward updating

Loop:

n

i si L W

Δt

BCW

Spectral radius evaluation SR

 270

Fig. 3. The general program procedure of GPU-based implicit meshless approach 271

17

As shown in Fig. 3, the program starts from the CPU side with the pre-processing tasks 272

including geometry input, meshless clouds generation and necessary data initialization, which 273

should be executed before invoking the GPU kernel functions. Once the computing tasks on the 274

GPU are finished, the results are sent back to the CPU for post-processing. A key to the success 275

of GPU programming lies in the development of kernel functions and careful management of 276

the device memory. 277

4.2 CUDA kernel functions 278

In the present work, the CUDA functions developed for the time marching procedure are 279

categorized into three types including internal, boundary and update kernels according to the 280

actual tasks assigned to them. 281

 282

Listing 1. An example of internal kernel for time step calculation 283

Internal kernels are used to calculate the spectral radius, time step and flux term for 284

internal field meshless clouds of points. For every meshless cloud of points, a CUDA thread is 285

launched on the device to undertake important tasks. The total number of threads created the 286

CUDA device should be no less than the number of points in the domain. An example of the 287

internal kernel function for time step calculation is presented in Listing 1, in which every thread 288

18

deals with one local cloud. The variable N in the example code is the total number of points in 289

the computational domain. 290

Boundary kernels are designed to enforce boundary conditions including no-penetration 291

wall, symmetric plane and non-reflective far field in the present work. We noted that if the 292

near-boundary points are treated differently with the field points, the efficiency of the related 293

kernels will be excessively degraded due to the divergence of thread branch. In the present work, 294

similar treatment of both near-boundary and field points is adopted to avoid the branch 295

divergence by introducing ghost points to implement boundary conditions, which is carried out 296

by a specific kernel. An example code of the boundary kernel is given in Listing 2, in which 297

each thread evaluates the boundary values for one ghost point. The variable nBC is the total 298

number of ghost points. 299

 300

Listing 2. The kernel for boundary value evaluation of ghost points 301

Update kernels are developed to advance the solution in the temporal space. Two kernels 302

19

namely LUSGS_Lower and LUSGS_Upper are designed to execute the forward and backward 303

updating steps as described in Algorithm 2, respectively. Example code of the kernel 304

LUSGS_Lower is illustrated in Listing 3, where s is the index of color group and 305

_ ()nPoin clor s is the total number of points in that group. 306

 307

Listing 3. The update kernel for forward marching of LU-SGS 308

 309

Listing 4. The host fuction for launching GPU kernels 310

20

Listing 4 shows the executing order of the GPU kernels, which is controlled by the CPU 311

function timeMarching_LUSGS. For every kernel, a two-layer hierarchy is used to manage the 312

CUDA threads launched on the device. As shown in Fig. 4, all threads in a kernel are organized 313

into a set of thread blocks to form a CUDA grid, and each thread block contains the same 314

number of threads. Depending on the underlying numerical method, the CUDA grid and thread 315

block can be one-dimensional or multi-dimensional. Two parameters, gridDim and blockDim, 316

are usually used to control the needed dimensions when calling a GPU kernel. In the present 317

work, we set both the CUDA grid and thread block to be one-dimensional, which means 318

gridDim is equal to the number of blocks and blockDim is equal to the number of threads per 319

block. In order to optimize the GPU performance, the number of threads per block for each 320

kernel should be carefully tuned. According to our recently reported work [33], 64 threads per 321

block is a reasonable choice for the CUDA kernels. Thus the total number of thread blocks 322

could be determined by 323

CPU (host) GPU (device)

Kernel 1

Block 6

Threads

Kernel 2

Grid 2

Block 1 Block 2 Block 3

Block 4 Block 5

Grid 1

Block 1 Block 2 Block 3 Block 4

Block 5 Block 6 Block 7

Fig. 4. The thread hierarchy of CUDA kernels.

21

(1) /gridDim nTotalThread blockDim blockDim   (17) 324

where nTotalThread represents the total number of threads. 325

4.3 Device memory management 326

The performance of a GPU kernel function is heavily influenced by various types of 327

memories, among which global memory, shared memory and register are three major types of 328

memories that could be used and controlled by programmers. In order to enhance the overall 329

performance of the program, efforts should be made to achieve an optimal use of the device 330

memeory. 331

In this paper, the thread index is used to build the mapping relationships between the 332

threads of the kernels and the corresponding computing data stored on the graphics card for 333

memory addressing. As presented in Listings 1, 2 and 3, three build-in variables, blockDim, 334

blockIdx and threadIdx, related to the thread hierarchy are used to compute the thread index. 335

The utilizing of these important variables can be found in article [4] for details. When fetching 336

data from or writing them to the global memory, coalesced memory access is the ideal pattern 337

[34]. This pattern is adopted in the present work so that all the threads in a half wrap map/access 338

the global memory simultaneously with respect to the center of a meshless cloud. In reality, this 339

means consecutive thread access consecutive memory addresses [33, 34]. 340

The low-latency shared memory, which is usually used in structured grid based regular 341

computation for sharing data between sibling threads in the same block, is not utilized in the 342

present work due to the unpredictable irregular memory access pattern of the meshless method 343

with respect to satellite points in a cloud. Instead, the shared memory is used as an extension to 344

22

the registers to store local variables of each thread. For each local variable stored in the shared 345

memory, a memory space with size of blockDim is allocated for each thread block and the 346

variable threadIdx is used to search the corresponding value for each thread. 347

The registers, which have the lowest latency compared to other types of GPU memory, are 348

used to store local variables for each thread. It should be noted that the number of registers 349

provided by the hardware is very limited. A careful and delicate management is needed to ease 350

the pressure on this scarce resource. Proper reusing of non-conflicting local variables and 351

tuning the number of threads in a block are helpful to reduce the register pressure and to achieve 352

the optimal performance [33]. 353

5. Numerical results and analysis 354

Table 1 Specifications of the Intel core i5-3450 CPU and NVIDIA GTX TITAN GPU. 355

 Intel i5-3450 NVIDIA GTX TITAN

Processor

Total number of cores 4 2688

Clock rate 3.10 GHz 837 MHz

Memory

Global memory 16GB 6GB

Shared memory - 64KB

Registers per block - 49152

Theoretical

performance

Single-precision FLOP 198.4 GFLOP/s 4500 GFLOP/s

Double-precision FLOP 99.2 GFLOP/s 1500 GFLOP/s

Memory bandwidth 25.6 GB/s 288 GB/s

A set of 2D and 3D inviscid compressible flows over aerodynamic bodies, for which 356

regularly or irregularly distributed meshless clouds of pointed are used, have been carried out to 357

verify the developed code. To evaluate the overall computing performance, we have 358

23

programmed and benchmarked four suits of CFD codes: 1) CPU based explicit code (CE), 2) 359

CPU based implicit code (CI), 3) GPU based explicit code (GE) and 4) GPU based implicit 360

code (GI) in the present work. Both the explicit and implicit CPU codes are executed in the 361

serial mode using only one core. All the codes run in the double-precision mode. Wall time is 362

recorded for all the codes to make direct comparisons. The hardware employed in the present 363

work is a desktop workstation equipped with an Intel I5-3450 CPU and a NVIDIA GTX TITAN 364

GPU, of which the specifications are presented in Table 1. 365

5.1 Transonic flow past a NACA0012 airfoil 366

Two-dimensional inviscid compressible flow over a NACA0012 airfoil is firstly simulated 367

to validate the numerical method. In the computation, the freestream conditions are assigned 368

with Mach number 0.8M  and angle of attack 1.25  o . The computational domain is 369

discretized with 128×40 points regularly distributed as shown in Fig. 5(a). Each internal cloud 370

of points is composed of one central point and four surrounding satellite points. Fig. 5(b) shows 371

the corresponding color graph obtained by using Algorithm 1. Close views of the graph at the 372

leading and trailing edges of the airfoil are presented in Fig. 6. It can be seen that the red and 373

blue points appear alternately in the graph, and hence total 2560 red points and 2560 blue points 374

are painted respectively. 375

The computed results including Mach number contours and pressure coefficients are 376

depicted in Fig. 7. Experimental data and reference numerical results published in the literature 377

[18, 35] are also presented here to facilitate a direct comparison. It can be seen that the present 378

solution agrees well with these reference experimental and numerical results. 379

24

 380

(a) meshless cloud (b) color graph 381

Fig. 5. The whole meshless cloud and color graph around the NACA0012 airfoil. 382

 383

(a) the leading edge (b) the trailing edge 384

Fig. 6. The detailed color graphs around the NACA0012 airfoil. 385

 386

(a) contours of Mach number (b) plots of pressure coefficient 387

Fig. 7. Computed results for transonic flow past the NACA0012 airfoil. 388

 389

25

The histories of residual convergence with respect to iteration and wall time are shown in 390

Fig. 8. It can be noted that the numbers of iteration of the implicit algorithms used to achieve the 391

convergence are only a quarter of the explicit method. The implicit methods on the CPU and 392

GPU have the same convergence rate per iteration. Compared to the large amount of computing 393

time spent by the CPU based explicit method, the CPU implicit algorithm could reduce it 394

effectively. The time cost could be further cut by the GPU implicit code. 395

 396

 (a) residual against iteration (b) residual against time 397

Fig. 8. Convergence histories for transonic flow past the NACA0012 airfoil. 398

5.2 Subsonic flow past a three-element airfoil 399

Two-dimensional inviscid compressible flow past a three-element airfoil with 0.2M  400

and 1.25  o is then simulated to test the performance of the algorithm using irregularly 401

distributed meshless clouds of points. There are 9592 points irregularly distributed in the 402

computational domain as shown in Fig. 9. By adopting Algorithm 1, six colors are requested to 403

paint all the points. The detailed color graphs at the leading and trailing gaps are presented in 404

Fig. 10. Specifically, the numbers of points in each of the six color groups are 2600, 2525, 2314, 405

1818, 332 and 3, respectively. 406

26

 407

Fig. 9. The whole meshless cloud and color graph around the three-element airfoil. 408

 409

(a) the leading gap (b) the trailing gap 410

Fig. 10. The detailed color graphs around the three-element airfoil. 411

Fig. 11 shows the computed results including the Mach number contours and the pressure 412

coefficient plots, which are close to the experimental data and other numerical results reported 413

in the literature [36]. The histories of convergence in terms of iteration and time are presented in 414

Fig. 12. It can be seen from Fig. 12(a) that the numbers of iterations needed to achieve the 415

convergence for implicit algorithms are only about one-eighth of the explicit method. Once 416

again, we can notice that the implicit methods could effectively reduce the computing time 417

compared to the explicit method. 418

27

 419

(a) contours of Mach number (b) plots of pressure coefficient 420

Fig. 11. Computed results for subsonic flow past the three-element airfoil. 421

 422

(a) residual against iteration (b) residual against time 423

Fig. 12. Convergence histories for subsonic flow past the three-element airfoil. 424

5.3 Transonic flow past a M6 wing 425

After testing two-dimensional problems, the develop code is used to accelerate the 426

simulation of complex flows over three-dimensional aerodynamic bodies. Here, a typical 427

transonic flow problem for the ONERA M6 wing with the Mach number 0.84M  and the 428

angle of attack 3.06  o is tested with regularly and irregularly distributed points. Fig. 13 429

shows the points distributed on the wing surface and the symmetric plane. It can be noted that 430

only two colors are used for the regular distribution while nine colors are needed to paint the 431

28

irregularly distributed points. The numerical results computed for the two sets of points are very 432

close to each other, hence for convenience we only present the flow obtained on the first set of 433

points. 434

 435

(a) points distributed regularly (b) points distributed irregularly 436

Fig. 13. The whole meshless cloud and color graph around the M6 wing. 437

 438

(a) the upper surface (b) the lower surface 439

Fig. 14. The contours of pressure coefficient at the surface of M6 wing. 440

Fig. 14 shows the pressure coefficient contours on the upper and lower surfaces of the 441

wing. It can be noted that the characteristic lambda shock on the upper surface of the wing is 442

clearly captured. Pressure coefficients computed at several span-wise sections of the wing are 443

presented in Fig. 15, where experimental data [37] and other numerical results published in the 444

articles [38, 39] are also plotted. It can be noted that the present solution agrees well with these 445

29

reference data. 446

 447

Fig. 15. The plots of pressure coefficient at four inboard sections of the M6 wing. 448

 449

(a) residual against iteration (b) residual against time 450

Fig. 16. The comparation of convergence histories for transonic flow past the M6 wing. 451

Fig. 16 shows the histories of convergence obtained by the CE, CI and GI codes. It can be 452

seen from Fig. 16(a) that for achieving the convergence, the numbers of iterations used by 453

30

implicit codes are only one-third of the explicit code. The saving in time offered by the GI code 454

is very significant as illustrated in Fig. 16 (b). 455

5.4 Performance analysis 456

To have a quantitative comparison of the performance for all the codes used in the present 457

work, we set 10-8 as the convergence criteria for all the test cases. The actual costs of computing 458

(wall) time for all the four codes are listed in Table 2. For the M6 wing (Case 3), the explicit 459

CPU code needs nearly 3.9 hours to bring down the residual by 8 orders of magnitude, the 460

implicit CPU code requires about 42 minutes, the explicit GPU code spends 9.5 minutes, while 461

the implicit GPU code only asks for 3.3 minutes. This achievement is impressive and especially 462

useful to engineers who need to conduct a quick and accurate analysis on the aerodynamic 463

performance of aircraft. Multiple 3D simulations could be completed in a relative short time to 464

assist engineers to identify and optimize the key parameters to improve the performance of 465

aircraft such as the ratio of lift to drag. 466

Table 3 presents the speedup, which compares the time costs of (any) two codes from the 467

four. On the CPU, the implicit code offers a speedup from 4.46 to 8.11 compared to the explicit 468

code. If accelerating the explicit code on the GPU, we can gain a speedup from 7.20 to 24.34. If 469

the implicit code is parallelized on the GPU, we can get a speedup from 5.78 to 12.50. 470

Comparing the GPU based implicit code to the explicit GPU program, we can have a speedup 471

from 2.86 to 4.20, which is less than the speedup on the CPU side with respect to the ratio of CI 472

to CE. The drop in the speedup of implicit method over explicit algorithm on the GPU side is 473

due to the overhead of executing multiple colored small LU-SGS kernel functions. Launching a 474

31

kernel on the device is not free in terms of time, it actually causes overhead, which is usually 475

more expensive than calling a similar function on the CPU. This phenomenon is consistent with 476

the general idea in the high performance computing community that the parallelization of 477

implicit codes is usually much more difficult than explicit programs. Nevertheless, the 478

outcomes here demonstrate that the present work is of value that parallelizing the implicit code 479

on the GPU could further cut computing time cost effectively compared to the explicit GPU 480

code. 481

Table 2 Computing time cost. 482

 Computing time (seconds)

Case Number of points CPU explict CPU implicit GPU explicit GPU implicit

1 5120 1.16×102 2.60×101 1.61×101 4.50×100

2 9592 1.14×103 1.40×102 1.05×102 2.50×101

3 306577 1.39×104 2.50×103 5.71×102 2.00×102

 483

Table 3 Speedup. CE: CPU explicit; CI: CPU implicit; GE: GPU explicit; GI: GPU implicit. 484

 Speedup

Case Number of points CI/CE GE/CE GI/CE GI/CI GI/GE

1 5120 4.46 7.20 25.78 5.78 3.58

2 9592 8.11 10.86 45.60 5.60 4.20

3 306577 5.56 24.34 69.50 12.50 2.86

5.5 Size effect 485

For the first and second 2D cases, we only obtain a relatively small speedup in the range of 486

5 to 6 with respect to GI/CI. For the 3D case, the speedup rises to 12.50. The similar situation 487

occurs for the explicit code on GPU with respect to GE/CE. In fact, the numbers of points used 488

for the first and second cases are less than 10,000, which are not large enough to keep the GPU 489

busy. In general, the GPU likes the programmer to feed it as much data as possible. Heavier the 490

32

better is a principle in GPU computing towards achieving the full potential of many-core 491

processors. 492

To investigate the size effect on the speedup, here we carry out extra tests of the implicit 493

CPU and GPU codes by continually increasing the number of points used for the computation. 494

The obtained computer time as well as the speedup are listed in Table 4. It is interesting to note 495

that a relatively stable speedup around 15 could be accomplished by providing large number of 496

data points (over 15 thousand) for the regular distribution case. For large number of irregularly 497

distributed points, we can achieve a speedup of 10 in average. 498

Table 4 Size effect on the computing time and speedup. CI: CPU Implicit; GI: GPU Implicit. 499

 Computing time per iteration (seconds) Speedup

Case Number of points CI GI GI/CI

Regular

distribution

155680 1.2287×10-1 8.4870×10-3 14.5

306577 2.3524×10-1 1.6226×10-2 14.5

601408 4.6477×10-1 3.0579×10-2 15.2

1193504 8.9608×10-1 6.0897×10-2 14.7

Irregular

distribution

164160 2.7640×10-1 3.2305×10-2 8.5

319168 5.6693×10-1 6.0300×10-2 9.4

617104 1.1279×100 1.0400×10-1 10.8

1228880 2.1539×100 1.9511×10-1 11.0

We can also notice that the time required by the regular distribution case is much less than 500

the irregular distribution case, the former is around a quarter or half of the latter. The difference 501

in computer time could be caused by several reasons. First is the number of satellite points. A 502

regular meshless cloud has less satellites compared to an irregular cloud, the difference could 503

be 8 to 20 in a general 3D scenario. Having more satellites in a cloud means more work per 504

cloud. Second is the number of colors used to paint the points. Usually regular distribution only 505

33

needs two colors to organize all the points into independent groups. While irregular distribution 506

needs more colors e.g. 9 as shown in Fig. 13 (b). More colors will request more kernels to be 507

launched, and more kernels will cause heavier overhead cost. Of course, this could also be 508

influenced by the data locality issue [24]. These problems will be further investigated and 509

addressed in our future work. 510

6. Conclusions 511

A parallel LU-SGS implicit meshless method has been developed to solve complex 3D 512

compressible flow problems on many-core GPUs. A rainbow coloring method has been 513

proposed to organize computational points into independent groups and to parallelize the 514

LU-SGS algorithm. A series of two- and three-dimensional test cases including compressible 515

flows over single- and multi-element airfoils and a M6 wing have been carried out to verify the 516

developed code. The obtained solutions agree well with experimental data and other 517

computational results reported in the literature. Detailed analysis on the performance of the 518

computer programs reveals that the developed implicit GPU code can achieve up to 70× 519

speedups compared to the CPU based explicit meshless method for the 3D computation of 520

compressible flows over a M6 wing. This demonstrates the potential of the method to be 521

applied to solve more complex and time-consuming problems. In future, we will further 522

develop the method to deal with challenging fluid-structure-interaction problems such as the 523

aero-elasticity calculation of fixed-wing aircraft and rotorcraft. 524

34

Acknowledgements 525

This work was partially supported by Natural Science Foundation of China 526

(No.11172134). 527

References 528

[1] R. Agarwal, Computational fluid dynamics of whole-body airfcraft, Annual Review of 529

Fluid Mechanics, 31 (1999) 125-169. DOI: 10.1146/annurev.fluid.31.1.125. 530

[2] I. Goulos, V. Pachidis, Real-time aero-elasticity simulation of open rotors with slender 531

blades for the multidisciplinary design of rotocraft, Journal of Engineering for Gas 532

Trubines and Power, 137 (2015) 012503. DOI: 10.1115/1.4028180. 533

[3] S. Das, K.F. Cheung, Scattered waves and motions of marine vessels advancing in a 534

seaway, Wave Motion, 49 (2012) 181-197. DOI: 10.1016/j.wavemoti.2011.09.003. 535

[4] NVIDIA, CUDA C Programming Guide, version 8.0. http://docs.nvidia.com/cuda/cuda-c- 536

programming-guide/index.html, 2017 (accessed 07.05.2017). 537

[5] KHRONOS, OpenCL 2.1 Reference Pages. https://www.khronos.org/registry/OpenCL 538

/sdk/2.1/docs/man/xhtml/, 2017 (accessed 07.05.2017). 539

[6] R. Farber, Parallel Programming with OpenACC, Elsevier Science Ltd., Amsterdam, 540

2017. 541

[7] A. Antoniou, K. Karantasis, E. Polychronopoulos, J. Ekaterinaris, Acceleration of a 542

Finite-Difference WENO Scheme for Large-Scale Simulations on Many-Core 543

Architectures, AIAA Paper 2010-2525. DOI: 10.2514/6. 2010-525. 544

[8] R. Lohner, A.T. Corrigan, K.-R. Wichmann, W. Wall, On the Achievable Speeds of Finite 545

Difference Solvers on CPUs and GPUs, AIAA Paper 2013-2852. DOI: 10.2514/6.2013- 546

2852. 547

[9] E. Elsen, P. LeGresley, E. Darve, Large calculation of the flow over a hypersonic vehicle 548

using a GPU, Journal of Computational Physics, 227 (2008) 10148-10161. DOI: 10.1016 549

/j.jcp.2008.08.023. 550

35

[10] E.H. Phillips, Y. Zhang, R.L. Davis, J.D. Owens, Acceleration of 2-D Compressible Flow 551

Solvers with Graphics Processing Unit Clusters, Journal of Aerospace Computing, 552

Information, and Communication, 8 (2011) 237-249. DOI: 10.2514/1.44909. 553

[11] C. Stone, E. Duque, Y. Zhang, D. Car, R. Davis, J. Owens, GPGPU parallel algorithms for 554

structured-grid CFD codes, AIAA Paper 2011-3221. DOI: 10.2514/6.2011-3221. 555

[12] J.T. Liu, Z.S. Ma, S.H. Li, Y. Zhao, A GPU Accelerated Red-Black SOR Algorithm for 556

Computational Fluid Dynamics Problems, Advanced Materials Research, 320 (2011) 557

335-340. DOI: 10.4028/www.scientific.net/AMR.320.335. 558

[13] B.J. Zimmerman, B. Wie, Graphics-Processing-Unit-Accelerated Multiphase 559

Computational Tool for Asteroid Fragmentation/Pulverization Simulation, AIAA Journal, 560

55 (2017) 599-609. DOI: 10.2514/1.j055163. 561

[14] J.F. Remacle, R. Gandham, T. Warburton, GPU accelerated spectral finite elements on 562

all-hex meshes, Journal of Computational Physics, 324 (2016) 246-257. DOI: 10.1016/j. 563

jcp.2016.08.005. 564

[15] A. Klöckner, T. Warburton, J. Bridge, J.S. Hesthaven, Nodal discontinuous Galerkin 565

methods on graphics processors, Journal of Computational Physics, 228 (2009) 7863-7882. 566

DOI: 10.1016/j.jcp.2009.06.041. 567

[16] M. Fuhry, A. Giuliani, L. Krivodonova, Discontinuous Galerkin methods on graphics 568

processing units for nonlinear hyperbolic conservation laws, International Journal for 569

Numerical Methods in Fluids, 76 (2014) 982-1003. DOI: 10.1002/fld.3963. 570

[17] Y.D. Xia, L.X. Luo, H. Luo, OpenACC-based GPU Acceleration of a 3-D Unstructured 571

Discontinuous Galerkin Method, AIAA Paper 2014-1129. DOI: 10.2514/6.2014-1129. 572

[18] J.T. Batina, A gridless Euler/Navier-Stokes solution algorithm for complex-aircraft 573

applications, AIAA Paper 93-0333. DOI: 10.2514/6.1993-333. 574

[19] C.M.C. Roque, D. Cunha, C. Shu, A.J.M. Ferreira, A local radial basis functions—Finite 575

differences technique for the analysis of composite plates, Engineering Analysis with 576

Boundary Elements, 35 (2011) 363-374. DOI: 10.1016/j.enganabound.2010.09.012. 577

[20] E. K.-Y. Chiu, Q.Q. Wang, R. Hu, A. Jameson, A Conservative Mesh-Free Scheme and 578

Generalized Framework for Conservation Laws, SIAM Journal on Scientific Computing, 579

www.scientific.net/AMR.320.335

36

34 (2012) A2896-A2916. DOI: 10.1137/110842740. 580

[21] E. Oñate, S. Idelsohn, O.C. Zienkiewicz, R.L. Taylor, A finite point method in 581

computational mechanics. applications to convective transport and fluid flow, 582

International Journal for Numerical Methods in Engineering, 39 (1996) 3839-3866. DOI: 583

10.1002/(sici)1097-0207(19961130)39:22<3839::aid-nme27>3.0.co;2-r. 584

[22] A. Katz, A. Jameson, Multicloud: Multigrid convergence with a meshless operator, 585

Journal of Computational Physics, 228 (2009) 5237-5250. DOI: 10.1016/j.jcp.2009.04. 586

023. 587

[23] Z.H. Ma, H. Wang, S.H. Pu, GPU computing of compressible flow problems by a meshless 588

method with space-filling curves, Journal of Computational Physics, 263 (2014) 113-135. 589

DOI: 10.1016/j.jcp.2014.01.023. 590

[24] Z.H. Ma, H. Wang, S.H. Pu, A parallel meshless dynamic cloud method on graphic 591

processing units for unsteady compressible flows past moving boundaries, Computer 592

Methods in Applied Mechanics and Engineering, 285 (2015) 146-165. DOI: 10.1016/j. 593

cma.2014.11.010. 594

[25] S. Yoon, G. Jost, S. Chang, Parallelization of Lower-Upper Symmetric Gauss-Seidel 595

Method for Chemically Reacting Flow, AIAA Paper 2005-4627. DOI: 10.2514/6.2005- 596

4627. 597

[26] D.L. Li, C.F. Xu, B. Cheng, M. Xiong, X. Gao, X.G. Deng, Performance modeling and 598

optimization of parallel LU-SGS on many-core processors for 3D high-order CFD 599

simulations, The Journal of Supercomputing, 72 (2016) 1-19. DOI: 10.1007/s11227-016- 600

1943-0. 601

[27] PGI, CUDA Fortran Programming Guide and Reference. http://www.pgroup.com/doc/ 602

pgicudaforug.pdf, 2017 (accessed 07.05.2017). 603

[28] A. Katz, A. Jameson, Meshless Scheme Based on Alignment Constraints, AIAA Journal, 604

48 (2010) 2501-2511. DOI: 10.2514/1.j050127. 605

[29] A. Jameson, W. Schmidt, E.L.I. Turkel, Numerical solution of the Euler equations by finite 606

volume methods using Runge Kutta time stepping schemes, AIAA Paper 81-1259. DOI: 607

10.2514/6.1981-1259. 608

37

[30] J. Blazek, Computational Fluid Dynamics : Principles and Applications, Elsevier Science 609

Ltd., Amsterdam, 2001. 610

[31] S. Yoon, A. Jameson, Lower-upper Symmetric-Gauss-Seidel method for the Euler and 611

Navier-Stokes equations, AIAA Journal, 26 (1988) 1025-1026. DOI: 10.2514/3.10007. 612

[32] Y. Sato, T. Hino, K. Ohashi, Parallelization of an unstructured Navier–Stokes solver using 613

a multi-color ordering method for OpenMP, Computers & Fluids, 88 (2013) 496-509. DOI: 614

10.1016/j.compfluid.2013.10.008. 615

[33] J.L. Zhang, H.Q. Chen, C. Cao, A graphics processing unit-accelerated meshless method 616

for two-dimensional compressible flows, Engineering Applications of Computational 617

Fluid Mechanics, 11(2017) (accepted). DOI: 10.1080/19942060.2017.1317027. 618

[34] NVIDIA, CUDA C Best Practices Guide v8.0. http://docs.nvidia.com/cuda/cuda-c-best- 619

practices-guide/index.html, 2017 (accessed 07.05.2017). 620

[35] M.B. Azab, M.I. Mustafa, Numerical solution of inviscid transonic flow using hybrid 621

finite volume-finite difference solution technique on unstructured grid, in: International 622

Conference on Aerospace Science and Aviation Technology, Military Technical College, 623

Cairo, Egypt, 2011. 624

[36] C. Cao, H.Q. Chen, A Preconditioned Gridless Method for Solving Euler Equations at Low 625

Mach Numbers, Transactions of Nanjing University of Aeronautics and Astronautics, 32 626

(2015) 399-407. DOI: 10.16356/j.1005-1120.2015.04.399. 627

[37] V. Schmitt, F. Charpin, Pressure Distributions on the ONERA-M6-Wing at Transonic 628

Mach Numbers, Experimental Data Base for Computer Program Assessment. Report of 629

the Fluid Dynamics Panel Working Group 04, AGARD AR 138 (1979). 630

[38] M. Mani, J.A. Ladd, A.B. Cain, R.H. Bush, An Assessment of One- and Two-Equation 631

Turbulence Models for Internal and External Flows, AIAA Paper 97-2010. DOI: 632

10.2514/6.1997- 2010. 633

[39] N.T. Frink, Upwind scheme for solving the Euler equations on unstructured tetrahedral 634

meshes, AIAA Journal, 30 (1992) 70-77. DOI: 10.2514/3.10884. 635

 636

