
Stochastic first passage time accelerated with CUDA

Vincenzo Pierro, Luigi Troiano, and Elena Mejuto
Dept. of Engineering, University of Sannio, Corso Garibaldi, 107, I-82100 Benevento, Italy

Giovanni Filatrella
Dept. of Sciences and Technologies, University of Sannio, Via Port’Arsa, 11, I-82100 Benevento, Italy

The numerical integration of stochastic trajectories to estimate the time to pass a threshold is an interesting
physical quantity, for instance in Josephson junctions and atomic force microscopy, where the full trajectory is
not accessible. We propose an algorithm suitable for efficient implementation on graphical processing unit in
CUDA environment. The proposed approach for well balanced loads achieves almost perfect scaling with the
number of available threads and processors, and allows an acceleration of about 400× with a GPU GTX980
respect to standard multicore CPU. This method allows with off the shell GPU to challenge problems that are
otherwise prohibitive, as thermal activation in slowly tilted potentials. In particular, we demonstrate that it
is possible to simulate the switching currents distributions of Josephson junctions in the timescale of actual
experiments.

PACS numbers: 87.10.Rt, 05.10.Gg, 05.40.-a, 85.25Cp

Keywords: Stochastic differential equations, Mean first passage time, Graphic process units, CUDA, NVIDIA, Josephson
switching current

I. INTRODUCTION

The passage across a threshold of a stochastic process, the
First Passage Time (FPT) process [1], is a valuable tool to
study theoretical properties of random systems (e.g. Kramers’
rate theory [2, 3]). From the experimental point of view,
in Josephson Junctions (JJ) superconducting devices [4] the
measurement of the threshold for the escapes is the only pos-
sibility (or the simplest way) to gain information on the inter-
nal dynamics of systems as quantum devices [5, 6], threshold
detectors [7–9] and arrays of JJ [10, 11] of great interest for
high frequency, up to the THz region, local oscillators [12].
The threshold for escapes is an essential physical information
also in diverse systems . Examples are the atomic force spec-
troscopy (AFS) [13], in some cases characterized by energy
barrier similar to the washboard potential [14] and the fast re-
versal of nanoparticles in a thermal bath [15].

FPT process differs from standard stochastic evolution [16],
for the physically interesting quantity is no more some dynam-
ical observable (e.g., the position of a particle) as a function
of time, but the (random) time to reach a given coordinate.
Thus, while in the stochastic evolution one is interested in
the probability distribution of the positions at a given time,
in the analysis of passage times one deals with the probability
distribution of the time necessary to reach a given position.
This is necessary when there exist special points where some-
thing happens that can be recorded by the instruments, as it is
the case in the JJ physics that we discuss in this work. This
inversion of the roles of time and position calls for a differ-
ent approach to parallel calculation, and prevents the straight-
forward application of already existing stochastic paralleliza-
tion for the determination of FPTs. Computationally efficient
methods are advantageous in JJ physics for a number of rea-
sons. First, measurements are performed while changing the
bias (that is, in the mechanical analogue, tilting the poten-

tial), and thus the resulting nonequilibrium problem requires
numerical simulations. Second, the bias change occurs on
the scale of the conventional ”DC” electronics, typically in
the scale of kHz, while the characteristic time scale for the
Josephson dynamics is in the range 0.1÷1 THz, thus realistic
and accurate simulations require something like 109 ÷ 1012

integrations steps. Third, if JJ are to be used as signal de-
tectors, the tests require extensive simulations to accurately
retrieve the response to the binary hypothesis. Fourth, JJ can
be employed to form larger structures, or arrays and extended
or long junctions where vortices are nucleated [17], that evi-
dently increase the computational burden as many JJs are em-
ployed. Fifth, as will be discussed in details in Sect. IV A,
the estimate of the quasipotential [18, 19] requires simula-
tions for extremely rare escape events. However, all the above
problems amount to the collection of random exit times; If
stochastic replicas can be efficiently assigned to different pro-
cessor units one straightforwardly benefits of an accelerated
integration. A possible method to achieve efficient distributed
computation is the topic of this work.

The call for a specific algorithm for the numerical evalua-
tion of FPTs can be summarized in a rough physical and in-
tuitive way as follows. If the representative trajectory of a
system is computed by a single processor (with sequential al-
gorithms), in both stochastic evolution and random FPTs the
processor just integrates the stochastic equation, and when the
goal is reached (either the final position or the passage time,
that are the desired information) the computation is arrested
and a new calculation can begin. Thus, in single processor
calculations one can use with little changes the algorithm per-
forming the integration of stochastic equations also for the
computation of the FPTs. Instead, for parallel computing the
termination times on the processors are different, inasmuch
the stochastic nature of the process entails different FPTs. It
is the lack of synchrony between the processors that limits the

ar
X

iv
:1

80
2.

05
06

5v
1

 [
ph

ys
ic

s.
co

m
p-

ph
]

 1
4

Fe
b

20
18

2

efficiency of parallel computation. Our purpose is to device
an efficient parallel algorithms that assigns a new job to the
processor as soon as it has terminated its task, and to show
how this can be efficiently done on a GPU in a CUDA envi-
ronment. There is a huge literature for parallel solution of
stochastic differential equations where an arrival time is to be
calculated, see for instance [20] and references therein. The
main point is that the performances are strongly related to the
communication time, and hence to the processor architecture.
Therefore, the knowledge accumulated for traditional parallel
supercomputing cannot be directly transferred to CUDA envi-
ronment.

The work is organized as follows. In Sect. II we discuss
some physical examples where an accelerated (and cheap)
procedure might prove useful, with special reference in Sect.
II A to the model equations for superconducting electronics.
The details of the computational parallel solution (CUDA ori-
ented) are given in Sect. III, and the results of test simula-
tions, together with the observed performances, are collected
in Sect. IV. The conclusions are in the last Sect. V.

II. THE PHYSICAL PROBLEM

To focus on a specific physical setting, we discuss a practi-
cal realization of the washboard potential, a superconductive
JJ [4]. For this device, the FPT is of interest inasmuch it is as-
sociated to a measurable quantity. In JJ the trajectory it is not
available because its measure is incompatible with the Heisen-
berg principle, for the intrinsic quantum nature of the repre-
senting coordinate. What is experimentally accessible is the
voltage, that is proportional to the velocity, associated to finite
and large jumps, for the time scale in the THz region makes it
prohibitive to follow the voltage time evolution. The voltage
jumps only occur when the phase passes the maximum of the
metastable (washboard like) potential and enters the running
regime, see Fig. 1. This exit across the separatrix is naturally
formulated as a FPT on the top of the potential barrier and can
be simulated with a GPU in CUDA environment. Besides the
general interest in FPT, there is an additional reason to pay a
special attention to JJ. The well established [21] noisy dynam-
ics of Josephson junctions is of great contemporary interest
[7, 22–24] in connection with macroscopic quantum tunnel-
ing [25–32]. The quantum behavior of JJ makes them a good
candidate for the realization of a quantum bit; however, the
quantum regime is only observed after the ordinary thermal
activated regime has been tamed [33]. Thus, it is of interest
to have precise numerical simulations of the thermal regime,
simulations that are deeply connected with the theoretical pre-
dictions (and corrections) of Kramers’ formula in the under-
damped regime [3].

Finally, we wish to stress that there are other physical con-
texts where a similar setting is of practical interest. For in-
stance, AFS is also due to the passage of the dip over the
maximum of the atomic interaction potential [13, 14]. Inter-
estingly, the model potential for AFS is often of the same type
as the JJ, namely the washboard potential. The description of
the stochastic motion in a washboard potential is the subject

-4 -2 0 2 4 6 8

-3

-2

-1

0

1

2

Phase φ

W
as
hb
oa
rd
P
ot
en
ti
al

normalized bias γ=0.3

running solution

separatix

initial state

φ*

FIG. 1. (color online) Sketch of the washboard potential. The circle
indicates the initial position of the virtual mechanical particle asso-
ciated, for instance, to the quantum phase ϕ of a JJ. The ϕ∗ value
is the threshold indicating the separatrix. The red arrow shows the
running state of the system after the escape over the barrier. Retrap-
ping in subsequent minima never occurs in practice if the system is
underdamped.

of the next Section.

A. The washboard model: basic equations

In this Section we describe the basic equations for the ther-
mal stochastic washboard potential of Fig. 1.

To be specific, we derive the equations with reference to JJ.
The usual model for a point-like JJ reads [4]:

C~
2e

d2ϕ

dt′2
+

1

R

~
2e

dϕ

dt′
+ I0 sinϕ = Ib + I(t′) (1)

that includes inertia (determined by the capacitance C), dissi-
pation (as governed by the dissipative elementR) and fluctua-
tions (the random current I(t′) supplied by the resistance), the
nonlinear periodic term (the oscillating current of amplitude
I0), and a constant bias Ib. Here, as usual, ~ is the reduced
Planck constant, and e is the electron charge. Fluctuations are
assumed to be Gaussian with:

〈I(t′)〉 = 0, (2)

〈I(t′)I(s′)〉 =
2kBT

R
δ(t′ − s′), (3)

where kB is the Boltzmann constant, T is the absolute temper-
ature, δ(·) the Dirac function, 〈·〉 is the expectation operator.
The normalized units [6] are the following. The current is
normalized to the critical current I0:

γ =
Ib
I0
. (4)

3

The time is normalized to the quantity ~/M , where M =
C(~/2e)2 is the effective mass of the junction. We introduce
the time ω−1N = ~/EC , where EC is the Coulomb energy
EC = (2e)2/C, or the energy of the condenser charged by
the elementary Cooper’s pair. We have therefore:

t = t′
EC

~
= t′

1

C

(2e)2

~
= t′

~
M
. (5)

Dissipation is given by the parallel resistor that in dimension-
less units becomes

β =
1

R

~
(2e)2

. (6)

Also the fluctuating current is normalized to I0:

γN =
I(t′)

I0
. (7)

The normalized noise amplitude D reads

D = β
kBT

EC
(8)

that is, the thermal energy scaled to the energy EC . To evi-
dentiate the fluctuation-dissipation theorem, one can also in-
troduce the normalized dissipation β and the normalized tem-
perature θ in the fluctuation correlator (3), we have:

θ =
kBT

EC
⇒ D = βθ.

Using the above normalizations Eq. (1) becomes

d2ϕ

dt2
+ β

dϕ

dt
= V0 (− sinϕ+ γ + γN) , (9)

where V0 = EJ/EC and EJ = I0~/(2e) is the energy barrier
of phase particle. The statistical properties of the Gaussian
(thermal) noise normalized current γN (t) are fully described
by

〈γN (t)〉 = 0, (10)
〈γN (t)γN (t+ ∆t)〉 = 2D δ (∆t) = 2βθ δ (∆t) . (11)

Eqs. (9,10,11) constitute the physical setting in which we de-
scribe the method for accelerated computation of the FPTs.

B. The connection between escape times and switching
currents probability distribution

The evolution of a JJ according to the Langevin Eqs.
(9,10,11) is the basis to evaluate the exit time, that is the prac-
tically available physical quantity. Schematically, the trajec-
tories that determine the random exit times are represented in
Fig. 2. The physically interesting quantity is the time at which
the phase ϕ hits the separatrix, because in the Josephson case
this is the time at which a sizable voltage appears. This sudden
passage from a static metastable solution to a running solution

time

φ

time

φ

time

φ

Process: 1

Process: 2

Process: 3

FIG. 2. (color online) Sketch of independent parallel stochastic evo-
lutions, each belonging to a different process. The upper black hor-
izontal line denotes the initial point, and the lower red line is the
separatrix that defines the escapes. The claim that the FPT of a sin-
gle realization has been computed occurs when the random trajectory
touches the red line (i.e., the time instants determined by the black
vertical arrows).

across the separatrix ϕ∗, occurs at random times under the in-
fluence of noise. Rather than the direct measurement of the
escape time, it is convenient in experimental setup to ramp
the bias current, and to read the current at which the passage
occurs. Thus, the exit time (or the FPT) becomes a Switching
Current (SC) if the reverse current probability is negligible
[35], which is commonly the case for underamped systems.
Also, there is a deep connection, for overdamped systems,
between the MFPT and the mean transition time, that is the
statistical quantity that corresponds to the switching currents
in JJ. However, in the first place, from a computational point
of view the algorithms for the MFPT and the mean transition
time are essential identical. In the second place, the MFPT are
more general and of larger applications in systems outside the
JJ physics. We also notice that, if mean transition times are to
be used, one can use a modified Kramers formula [36]. The
histogram of the so defined SCs represents the most impor-
tant physical feature, from which a number of properties are
deduced. Computationally-wise, the evaluation of the FPT or
the switching currents is a rather similar task, as will be shown
in Sect. III B.

III. GPU COMPUTATION WITH CUDA

We here demonstrate that it is possible to accelerate the
computation of the FPTs, first describing the general struc-

4

ture in Sect. III A and the logic of the coding in Sect. III B.
The last Sect. is devoted to the speed-up analysis.

A. GPU Architecture

As reference we use the NVIDIA Maxwell micro architec-
ture used in the GEFORCE GTX980 graphics card based on
GM204 GPU. This GPU, as shown in Fig.3, is composed of an
array of 4 Graphics Processing Clusters (GPC), 16 Streaming
Multiprocessors (SMM), and 4 memory controllers.

In particular the GTX980 GPU is a 393 mm2 die made
of 5.2 billion transistors at 28nm integration scale, equipped
with 2048 cores running at 1126 MHz (boost clock at 1216
MHz), able to reach 4.612 TFLOPs. The on-board memory is
4096MB, with L2 Cache size of 2048KB and memory clock
at 7010 MHz, able to reach a bandwidth of 224.3 GB/sec.

The GPU architecture is based on an array of Graphics
Processing Clusters (GPCs). These high-level blocks include
hardware resources to perform almost all graphics process-
ing, including pixel, texture, raster, vertex and geometry oper-
ations. In practice, the blocks are self-contained GPUs whose
work is scheduled and coordinated by the GigaThread Engine
at higher level. The blocks have access to memory by ded-
icated Memory Controllers. In each GPC, the processing is
further parallelized using four Maxwell Streaming Multipro-
cessors (SMMs).

As shown in Fig.4, each SMM features control logic, L2
cache memory and instruction cache memory, shared mem-
ory and four blocks. Each block has dedicated control logic
and registers, that gain access to 32 CUDA cores organized
in a grid. Each row of four cores has access to load/store
units to calculate source and destination addresses, to move
(in/out) the data at each address and to cache or DRAM. In
addition, for each row there is a Special Function Unit (SFU)
designed to implement instructions such as sin, cosine, recip-
rocal, and square root. The basic processing unit is a CUDA
core (Fig.5). This computational unit is a simple scalar pro-
cessor made of a fully pipelined integer arithmetic logic unit
(ALU) and floating point unit (FPU), based on IEEE 754-2008
floating-point standard, which improves the single and double
precision multiplication and multiply-addition. The ALU is a
32-bit unit, optimized to support 64-bit operations. Among,
the instructions there are Boolean, shift, move, compare, con-
vert, bit-field extract, bit-reverse insert, and population count.

The algorithm we here propose for the CUDA architec-
ture allows to reach a massive parallelization of simulations,
as those depicted in Fig.2. Escape times are collected in a
floating-point array Te (see the Algorithm 1) allocated to the
GPU memory. The size of the array corresponds to the num-
ber of simulation runs one plans to execute. The code of each
run is embedded in a kernel and sent to the GPU using the host
interface. The CUDA programming model is based on kernel,
that is the portion of code that can be processed in parallel
by threads. The kernel is fetched by the GigaThread Engine
and sent to GPC and SMM. Each run is assigned to a specific
location in the array and scheduled to be executed as thread
by a core. Threads are scheduled by each SMM in groups of

FIG. 3. Cores layout for the GPU routine. Here GPC stands for
Graphic Processors Cluster and SMM for Maxwell Streaming Mul-
tiprocessors.

32 parallel threads called ”warps”. Each SMM features four
warp schedulers and four dispatch units, so that four warps
can be issued and executed concurrently. Each simulation run
is executed independently from the other loads: when a core
terminates a run, the next scheduled thread can be assigned
to the core. It is therefore possible to exploit the hardware
parallelism offered by the GPU almost to the full extent of its
potentiality.

5

FIG. 4. Enlargment of the Maxwell Streaming Multiprocessors
(SMM) blocks.

FIG. 5. Details of the CUDA core.

Algorithm 1 Kernel used for the simulations of the escape
time)

1: procedure ESCAPETIME(V0, β, γ, D, h)
V0, normalized potential barrier
β, friction coefficient
γ, normalized bias current
D, Gaussian noise amplitude
h, Euler time step

2: pos← cuda.grid(1)
3: if pos < sizeof(Te) then
4: σ ←

√
2D · h

5: ϕ0 ← arcsin γ
6: th← π − ϕ0

7: ϕ̇0 ← 0, initial phase velocity
8: k ← 1
9: while k ≤ klim do

10: r ← nrand()
11: ϕk ← ϕk−1 + ϕ̇k−1 · h
12: ϕ̇k ← ϕ̇k−1 +(−βϕ̇k−1−V0 sinϕk−1 +V0γ) ·h+

σ · r
13: if ϕk > th then
14: Te[pos]← k · h
15: return
16: end if
17: k ← k + 1
18: end while
19: Te[pos]← −1
20: end if

21: end procedure

B. Programming

The simulation is coded as kernel in the environment
CUDA. The pseudo-code of the kernel for the computation of
the exit time distribution is outlined in Algorithm 1. The Al-
gorithm is implemented by the ESCAPETIME procedure that
accepts five arguments as input. The symbols and the physical
meaning of the first four parameters have been introduced in
Eq. (9). The last parameter, the time step h of the stochas-
tic integration method is used in an Euler scheme [34], lines
11, 12. The simulations are retrieved following the scheme
outlined in Figs. 2 and 6, by integration of the stochastic dif-
ferential equation (9) and checking for the threshold crossing,
see line 13. The sequence of operation in the escape time Al-
gorithm 1 is as follows

1. Each processor device begins the trajectory integration
(see Fig. 2) checking at each time step if a threshold
crossing (i.e., a FPT) has occurred

2. When the FPT has been encountered the integration
ends on a processor device and the device communi-
cates the escape time to the host processor (see Fig. 6)

3. The host device assigns a new job to the processor de-
vice that has just completed the task

In Algorithm 1 the function nrand at line 10 generates a
Gaussian random variable with zero average and unit vari-

6

ance. This Gaussian random generator is based on the Box-
Muller transform [37] applied to pseudo-random number ob-
tained with the Mersenne Twister generator [38]. The corre-
sponding CUDA core pseudocode is outlined in Algorithm 2.
The computation is based on an internal subsequence that is
initialized according to the MTRG-INIT procedure. This sub-
sequence is named mt and it is made of 624 32-bits integers
locally allocated to the device (line 2) and stored at L1 cache
as shown in Fig.4. The seed, used as the first element of the
sequence (line 3), is a unique value assigned to each thread.
This initial value is externally provided from the host code
and passed to the kernel. To generate the seed we generally
use the current time in milliseconds.

Algorithm 2 Marsenne Twister Random Generator
1: procedure MTRG-INIT(seed)
seed, random sequence initial value

2: mt← cuda.local.array(624, dtype = int32)
3: mt[0]← seed
4: for i = 1..623 do
5: m = (mt[i− 1] ∧ (mt[i− 1] >> 30)) + i)
6: mt[i] = (1812433253 ·m) ∧ 0xFFFFFFFF

7: end for
8: return mt

9: end procedure

10: procedure MTRG-EXTRACT(r, mt)
r, sequence index
mt, internal sub-sequence

11: ri← r mod 624
12: if ri = 0 then
13: for i = 0..623 do
14: y ← mt[i] ∧ 0x80000000

15: y ← y + (mt[(i+ 1) mod 624] ∧ 0x7fffffff))
16: mt[i]← mt[(i+ 397) mod 624]⊕ (y >> 1)
17: if y is odd then
18: mt[i]← mt[i]⊕ 0x9908b0df

19: end if
20: end for
21: end if
22: y ← mt[ri]
23: y ← y ⊕ (y >> 11) ∧ 0xFFFFFFFF

24: y ← y ⊕ (y << 7) ∧ 0x9D2C5680

25: y ← y ⊕ (y << 15) ∧ 0xEFC60000

26: y ← y ⊕ (y >> 18) ∧ 0xFFFFFFFF

27: return y

28: end procedure

The seed used by MTRG-INIT is obtained by adding the
thread identification number to initial value. With this expe-
dient each thread makes use of a new seed based on the as-
signed simulation run number. The scheme allows each thread
to keep a unique independent pseudorandom integer sequence
that is controlled by the initial seed. From the value mt[0],
all the following values of the subsequence mt are obtained
by iteration (lines 4-7). Once completed, the subsequence mt
is returned as a result of the initialization (line 8) and used

by MTRG-EXTRACT according to the sequence index r and
mt (line 10). The procedure works by blocks of 624 values.
Which value of the block to use is simply indexed by a modulo
operation (line 11). At the beginning, and at each time they
are employed (line 12 of Algorithm 1), a new block of values
is computed from the previous one (lines 13-20). Then, the
value mt[ri] is transformed (lines 22-26 of Algorithm 2) and
returned (line 27).

Algorithm 3 Kernel used for simulations of the switching cur-
rents

1: procedure SWITCHINGCURRENT(δγ, V0, β, D, h)
δγ, normalized ramp step
V0, normalized potential barrier
β, friction coefficient
D, Gaussian noise amplitude
h, Euler time step

2: γ0 ← 0, initial normalized bias current
3: pos← cuda.grid(1)
4: if pos < sizeof(Γe) then
5: σ ←

√
2D · h

6: ϕ0 ← arcsin γ
7: th← π − φ0

8: ϕ̇0 ← 0, initial phase velocity
9: k ← 1

10: γk ← γ0
11: while γk ≤ 1 do
12: r ← nrand()
13: γk ← γ0 + δγ · k
14: ϕk ← ϕk−1 + ϕ̇k−1 · h
15: ϕ̇k ← ϕ̇k−1 + (−βϕ̇k−1 − V0 sinϕk−1 + V0γk) ·

h+ σ · r
16: if ϕk > th then
17: Γe[pos]← γk
18: return
19: end if
20: k ← k + 1
21: end while
22: Γe[pos]← 1
23: end if

24: end procedure

In conclusion the code MTRG-EXTRACT returns a ran-
dom integer uniformly distributed in the range of 32-bit inte-
gers. This integer with a suitable linear normalization gener-
ate an uniform deviate in the range [0, 1]. The uniform deviate
is used in the external function nrand with the Box-Muller
transform to generate Gaussian pseudo random numbers with
zero average and unit variance.

The proposed Algorithm 1 is useful for the computation
of escape time distribution by means of direct event simula-
tions. In threshold device based on JJ it is experimentally
simpler to retrieve the SCs distribution [39]. The proposed
code is straightforwardly changed to compute the SCs instead
of the exit time, as per the SWITCHINGCURRENT that is only
slightly different from the escape time process (see Algorithm
3). During the computation, the bias current is increased from
zero to 1 (that in our normalized units, see Eq.(4), corre-

7

FIG. 6. Sketch of the streaming process, the GigaThread Engine that
dictates the task scheduling. The processor computes an element (
e.g. t0, t6, ...) of the escape time sequence and eventually stores the
result in the array Te. The order of the single tasks termination does
not correspond to the array index order of Te.

sponds to the maximum superconducting current that can flow
through the JJ). The numerical method to increase the bias
current at each time step, however, requires a particular care.
In fact the GPUs normally work in single precision. When
this is the case, the smallest bias increment is 10−7, that is
the reciprocal of the largest integer in single precision. Con-
sequently, for the extremely long simulations reported in the
experiments demand that the bias current is not incremented
with a single precision integer loop. The difficulty can be
overcome with a tuple of n 32-bit integers.

C. Parallelism and Speedup tests

To investigate the scaling with the number of processing
units, we have studied the execution time as a function of
the number of realizationsNr for three different numbers (de-
noted as Ntpb) of threads per block (TPB). This is shown in
Fig. 7. From the Figure it is evident that for a given number
of processors the execution time linearly scales with the num-
ber of realizations, as expected for serial computation. The
advantage is in the slope, that decreases when the number of
units is increased.

The advantage of a large number of processing units is
shown in more details in Figs. 8(a,b). In (a) we display the ex-
ecution time as a function of the TPB for different numbers of
realizations Nr, from ' 103 to ' 105. The figure essentially
confirms the linear behavior of Fig. 7: the increased num-
ber of processor units proportionally scales with the required
CPU time only above a certain number of threads. This num-
ber, that depends upon the number of realizations, represents
the point at which the additional processors do not contribute.
In Fig. 8(b) we compare two technologies (Python Numba vs
CUDA Fortran solution) to implement the same algorithm. It
is evident that the overall behavior is the same for both tech-
nologies, albeit the CUDA Fortran is much more efficient, of
about a factor 30. This is to be expected, as Numba is based
on CUDA Toolkit version 7.5 which does not provide a native

FIG. 7. Sketch of the execution time (in seconds) as a function of the
number of realizations Nr with different numbers of active threads
per block Ntpb.

implementation of the random generator library, made avail-
able in version 8 as CURAND DEVICE library and used by
the CUDA Fortran compiler. Thus, the execution of MTRG-
EXTRACT in Algorithm 2 significantly impacts on the simu-
lation kernel if the number of operations required by the ran-
dom generator (MTRG and Box-Muller) is comparable to the
number of operations for the integration. In addition, CUDA
Fortran uses compiler optimizations that are not available to
the LLVM compiler infrastructure on which Numba is based.
In both figures we observe that time required by simulations
decreases linearly with respect to number of active TPB. A
larger number of threads improves the GPU occupancy, up to
the limit of 512 TPB.

The speedup efficiency, defined as the ratio S/Ntpb, is dis-
played in Fig. 9. In the efficiency the speedup S is defined as
the ratio between the average execution time for the sequential
and the parallel algorithm (see Eq.(A.5) and the Appendix A
for the details of the model and notation). The data show that
the asymptotic efficiency converges to 1 as the number of real-
izations increases. For a constant number of realizations Nr,
the efficiency makes worse increasing the number of threads
per block (i.e., reducing the computation burden per thread
NL). This effect is manly due to the fluctuations in the execu-
tion time of each thread, that emerge in the small sample limit
when the load is distributed over too many threads.

In the inset of Fig. 9 we show a 3σ error limits due to the
statistical variability of the speedup S for the particular case
Ntpb = 20. We remind that the statistical model employed in
the Appendix neglects the short time behavior of the system.
However, the qualitative asymptotic behavior of the speedup,
and more specifically of the statistics concerning the execu-
tion time, is mainly due to the exponential tail of the random
variable distribution.

8

FIG. 8. (color online) (a) Sketch of the execution time (in sec-
onds) as a function of the number of TPB for different number of
realizations Nr reported in the legend. The dashed red curves give
the power law interpolation. For Nr = 1024 the scaling coefficient
is 0.13, it converges for larger values of Nr to the values ≈ 0.6.
(b) Python Numba vs CUDA Fortran execution time (in seconds) as
function of TPB. We note the same power law scaling (i.e. ≈ 0.6),
as a function of Ntpb in both practical implementations.

IV. TESTS ON PHYSICAL SYSTEMS

At the end of the previous Section we have investigated the
execution time statistics of the Algorithms 1 and 3. In the fol-
lowing we collect numerical results of the benchmark physical
system, that is of superconducting JJs. We do so to validate
the whole method, for the CUDA arithmetic is poorer than the
ordinary CPU arithmetic, in that it is single precision and with
a lower level of fidelity [40].

100 500 1000 5000 104
0.0

0.2

0.4

0.6

0.8

1.0

Realizations Nr

S
pe
ed
up
E
ff
ic
ie
nc
y
S
/N
tp
b

Ntpb=20

Ntpb=50

Ntpb=10

Asymptotic Perfect Parallelism

FIG. 9. Speedup efficiency S/Ntpb as a function of the number of
realizations (on a log scale), as per Appendix A. The inset shows the
speedup S (solid line) for the particular case Ntpb = 20, together
with the ±3σ uncertainty (dots) due to statistical variability.

A. Arrhenius plots

First, to validate the algorithms we have investigated the
case of a constant bias JJ subject to different noise intensity,
see Fig. 10. In the Figure the error bar is not visible, for the
speed of the algorithm has allowed to collect a large number
of realizations (Nr = 5120). This high accuracy allows to
distinguish between the Arrhenius behavior

〈τ〉 ∝ exp
∆U

∆θ
(12)

and the detailed Kramers rate, obtained taking into account
the prefactor corrections, for the special case of moderately
underdamped systems. The model fits in this case with pref-
actor becomes [1]:

〈τ〉 ∝ 1

θ
exp

∆U

∆θ
. (13)

The accurate simulations of the mean FPT as a function of the
inverse of the temperature is a task useful in several applica-
tions, most importantly to retrieve the so-called quasipotential
(or pseudopotential) for non-Hamiltonian systems [18, 19].
When a bona fide potential does not exist or is not explic-
itly known, one can estimate an effective quasipotential from
numerical simulations as those of Fig. 10, reversing the logic
of Eq. (13), i.e., assuming:

∆U ≡ log (θ〈τ〉)
∆θ

. (14)

The resulting method requires to simulate the system in the
low noise limits, when the relations (12,13) are strictly valid
[18, 19]. By the same token, in this limit simulations are ex-
tremely long, and hence the call for fast, parallel simulations.
In this work we retrieve the potential ∆U form the slope of the

9

FIG. 10. (color online) Log of the average FPT (black dots) as a
function of the inverse normalized temperature D = βθ, compared
to the theory, Eq. (12) (short dashed blue) and Eq. (13) (long dashed
red). Parameters of the simulations are: γ = 0.5, α = 0.05, Nr =
5120, integration step h = 0.004 The theoretical value for the energy
barrier reads ∆U = 0.0342, while the numerical evaluation reads
∆Ũ ' 0.0303 for fitting with Eq.(12) and ∆Ũ ' 0.0359 for fitting
with Eq.(13). The accuracy of the numerical method is 11% and 4%,
respectively.

Arrhenius plots of Fig. 10 of a system such as the Josephson
potential associated to Eq.(9). In this case, being the potential
known, we can use the analytic result to ensure that numerical
simulations are reliable. From the data of Fig. 10 we conclude
that Kramers fitting offers a good estimate of the potential bar-
rier ∆U , with a relative error of few percents.

B. Escapes and switching current distributions

As a benchmark for the simulations we also employ the
switching current distribution of the Josephson junctions. We
have preliminarily checked that CUDA simulations are statis-
tically reliable (see Sect. IV A). The accuracy is further con-
firmed by the comparison of simulations with ordinary double
precision CPU arithmetic and the GPU arithmetic. For the
sake of comparison, we have employed PGI Suite Compilers
version 17.4, community edition, with Cuda Toolkit 8.0 for
both the CPU-only and the GPU version of the code. Rou-
tines have therefore been encoded without external libraries,
such as those provided by the Intel Math Kernel Library, that
includes optimized implementation of Mersenne Twister ran-
dom number generator. The comparison is shown in Fig.
11(a) as the escape times cumulative distributions computed
for the same parameters for both GPU and CPU code.

The difference between the two distributions (shown in the
inset) is small and lies within the statistical fluctuations for
this type of stochastic simulations.

Having tested the code, we now turn our attention to some

physically interesting results. The high speed simulations al-
low to investigate the adiabatic approximation used in [39]
that, neglecting non-equilibrium corrections to the Kramers’
theory, gives a formula for the SC cumulative distribution only
valid in the limit of vanishingly small bias ramp speed (for
possible generalizations of the adiabatic approach, however
overdamped, see [41] . This formula can be compared with
the numerical result of Fig. 11(b), that displays the computed
cumulative distribution function of the JJ switching currents
with the same parameters of the experiments reported in Ref.
[42]. In particular, to check the theoretical approximations we
have performed simulations with a bias current step that in
normalized units correspond to about 10−12. It is shown that
simulated and theoretical SC cumulative distributions agree
within 1.5%, as displayed in the inset of Fig. 11(b). This
computation has required about 1.5 × 105sec ' 2d on the
GPU device. Assuming an acceleration of ' 400 we estimate
an execution time of about 5 × 108sec ' 700d on an ordi-
nary CPU (e.g., Intel Core i7 − 6700). The direct numerical
simulations of the experiments in the timescale of the labora-
tory electronics is therefore very demanding, for the different
time scales between the JJ internal dynamics and the driving
external electronics (see Sect. II A).

V. CONCLUSIONS

We have challenged the problem of an effective and fast
algorithm for the mean first passage times with CUDA. This
is specially useful in the GPU simulations of escape times of
Josephson junctions, where the intrinsic timescale of the sys-
tem is extremely fast (up to the THz magnitude), while the
electronic to control the escapes from the zero voltage state is
much slower (typically around or below 1KHz).

We have exploited the CUDA environment to compute in
parallel several different realizations of the escape process as
schematically shown in Figs. 2 and 6. Each parallel thread
uses a pseudorandom number generator with a different seed.

10

0 100 200 300 400 500
0.0

0.2

0.4

0.6

0.8

1.0

Escape Time

E
sc
ap
e
T
im
e
C
D
F

(a)

0 100 200 300 400 500
0.0000

0.0005

0.0010

0.0015

0.0020

0.0025

0.0030

Escape Time

A
bs
ol
ut
e
D
ev
ia
ti
on

FIG. 11. Cumulative distributions of the escape time and switching
current, and deviations from other reference models. (a) Escape time
cumulative distribution through Monte Carlo solution of Eq.(9). The
numerical simulations are performed with CUDA Fortran following
Algorithm 1 and with ordinary GNU compiler in standard double
precision arithmetic. On the scale of the figure the two numerical
solutions are the same, therefore the difference between the two re-
sults is displayed in the inset. (b) Numerical simulations and theo-
retical predictions for the switching current cumulative distribution.
The numerical simulations have been performed with CUDA Fortran
following Algorithm 3, while the theoretical predictions are based on
Kramers adiabatic rate [39]. On the scale of the figure the two results
are the same, therefore the difference is displayed in the inset. Param-
eters of the simulations, reported in physical units, are the same of a
realistic device tested in Ref. [42]: R = 250Ω, C = 88× 10−15F ,
Ic = 0.748 × 10−6A, T = 1.2K, and the sweep rate is 200Hz.
The SC empirical CDF is computed usingNr = 30 000 realizations.
The initial bias in each realizations is γ = 0. The integration step
h = 10−4 corresponds to about 2 × 10−4 of the natural oscillating
period, that is given by the dimensionless plasma frequency V 1/2

0 .

The efficiency of the proposed algorithm reaches acceler-
ations of about 400 respect to standard Intel Core i7 − 6700
host processors. The scaling of the performances with the ris-
ing of the number of threads has ben elucidated in Figs. 7
and 8. From the data, it is clear that: i) the choice of random

generator is crucial, it should be quick and low memory de-
manding; ii) the load for each thread should be high enough to
avoid that fluctuations dominate and reduce the efficiency of
parallelism ; iii) in the running regime (that, however, is not
essential for switching current distributions) the argument of
the sin, namely ϕ, grows to a level where the single precision
could be not enough . With this care the abovementioned effi-
ciency applied to the benchmark Josephson junctions proved
fast enough to challenge realistic experiments [42]. The nu-
merical experiments have reproduced practical set-ups with-
out extrapolation formulas and could be useful, for instance,
to investigate the thermal-quantum transition process. In the
same field we suggest that CUDA environment might be also
relevant for arrays of Josephson junctions, possibly coupled
to a resonator [43] or for voltage standards [44].

ACKNOWLEDGEMENTS

We thank I. M. Pinto and S. Pagano for stimulating discus-
sions. VP acknowledges INFN, Sezione di Napoli (Italy) for
partial financial support .

APPENDIX A. PARALLELISM STATISTICAL MODEL

We propose a simple probabilistic model for the parallel
computation of escape times with GPU in CUDA environment
that is at the basis of the performances of Fig. 9.

The execution time of Algorithm 1 for each parallel process
is directly proportional to the random escape time. The overall
average execution time random variable 〈Et〉 is determined by
the sum of the individual escapes ti:

Et =

Nr∑
i=1

ti. (A.1)

The variable ti can be approximated with an exponential ran-
dom deviate (although this is not exact, for the presence of an
inertial short time prior to escapes over the barrier) identically
distributed with an appropriated time scaling. The random
variable (A.1) is distributed as the sum of iid exponentials’
and the resulting distribution is an Erlang(·) function [45]

Et ∼ Erlang(Nr, 1). (A.2)

Defining NL = Nr/Ntpb the number of runs assigned to each
parallel thread the execution time random variable of the par-
allel algorithm is

Ep = max(E
(1)
t , E

(2)
t , ..., E

(Ntpb)
t). (A.3)

We define the parallel execution time as the average 〈Ep〉.
From (A.3) it follows that the CDF of the random variable
Ep reads

CDF [Ep, x] = CDF [Erlang(NL, 1), x]Ntpb (A.4)

11

by Eq. (A.4) is possible to compute in closed form all the
moments, in particular the parallel execution time 〈Ep〉. If
one defines the average speedup as the ratio

S =
〈Et〉
〈Ep〉

, (A.5)

a perfect parallel algorithm entails: S = Ntpb. To display a
quantity that is independent of the time scaling used in (A.1)

it is convenient to define the speedup efficiency as the ratio
S/Ntpb. The theoretical estimate (A.5) for the speedup is the
basis for the results displayed in Fig. 9 and discussed in Sect.
III C.

REFERENCES

[1] H. Risken, The Fokker-Planck Equation. (Springer-Verlag,
1984)

[2] E. Pollak and R. Ianconescu, J. Phys. Chem. A, 120, 3155
(2016).

[3] J. J. Mazo, F. Naranjo, and D. Zueco, Phys. Rev. B 82, 094505
(2010).

[4] A. Barone, G. Paternò, “Physics and Applications of the
Josephson Effect”, (John Wiley & Sons, 1982).

[5] M. H. Devoret, “Quantum Fluctuations in Electrical Cir-
cuits”, S. Reynaud, E. Giacobino and J. Zinn-Justin, eds., Les
Houches, Session LXIII, 1995, Elsevier (1997).

[6] V. Pierro and G. Filatrella, Phys. Rev. A 94, 042116 (2016).
[7] J. P. Pekola , Phys. Rev. Lett. 93, 206601 (2004).
[8] G. Filatrella and V. Pierro, Phys. Rev. E 82, 046712 (2010).
[9] P. Addesso, G. Filatrella, and V. Pierro, Phys. Rev. E 85,

016708 (2012).
[10] B. Gross, J. Yuan, D. Y. An, M. Y. Li, N. Kinev, X. J. Zhou, M.

Ji, Y. Huang, T. Hatano, R. G. Mints, V. P. Koshelets, P. H. Wu,
H. B. Wang, D. Koelle, and R. Kleiner Phys. Rev. B 88, 014524
(2013).

[11] Yu. M. Shukrinov, I. R. Rahmonov, K. V. Kulikov, A. E. Botha,
A. Plecenik, P. Seidel and W. Nawrocki, Supercond. Sci. Tech-
nol. 30, 024006 (2017).

[12] M. A. Galin, A. M. Klushin, V. V. Kurin, S. V. Seliverstov, M.
I. Finkel, G- N- Goltsman, F. Müller, T. Scheller and A. D.
Semenov, Supercond. Sci. Technol. 28, 055002 (2015).

[13] L. B. Freund, Proc. Natl. Acad. Sci. U.S.A. 106, 8818 (2009).
[14] J. J. Mazo, F. Naranjo, and D. Zueco, J. of Chem. Phys. 138,

104105 (2013).
[15] A. A. Smirnov, and A. L. Pankratov, Phys. Rev. B 82, 132405

(2010).
[16] M. Januszewski, M. Kostur, Comput. Phys. Commun. 181, 183

(2010).
[17] K. G. Fedorov and A. L. Pankratov, Phys. Rev. Lett. 103,

260601 (2009) .
[18] R. Graham and T. Tél, Phys. Rev. A 31, 1109 (1985).
[19] R.L. Kautz, J. Appl. Phys. 76, 5538 (1994).
[20] S.S. Artemiev and V.D. Korneev, Numer. Analys. Appl. 4, 1

(2011).
[21] M. Büttiker, E.P. Harris, and R. Landauer, Phys. Rev. B 28,

1268 (1983).
[22] G. Augello, D. Valenti, A.L. Pankratov, and B. Spagnolo, Eur.

Phys. B 70, 145 (2009).
[23] N. Grønbech-Jensen, M. G. Castellano, F. Chiarello, M. Cirillo,

C. Cosmelli, L. V. Filippenko, R. Russo, and G. Torrioli, Phys.
Rev. Lett. 93, 107002 (2004).

[24] N. Grønbech-Jensen and M. Cirillo, Phys. Rev. Lett. 95, 067001
(2005).

[25] J. M. Martinis, M. H. Devoret, and J. Clarke, Phys. Rev. B 35,
4682 (1987).

[26] A. Shnirman, E. Ben-Jacob, and B. Malomed, Phys. Rev. B, 56,
14677 (1997).

[27] J. M. Martinis, S. Nam, J. Aumentado, and C. Urbina, Phys.
Rev. Lett. 89, 117901 (2002).

[28] A. Wallraff, A. Lukashenko, J. Lisenfeld, A. Kemp, M. V. Fis-
tul, Y. Koval, and A. V. Ustinov, Nature 425, 155 (2003).

[29] A. N. Price, A. Kemp, D.R. Gulevich, F.V. Kusmartsev, and
A.V. Ustinov, Phys. Rev. B, 81, 014506 (2010).

[30] U. C. Coskun, M. Brenner, T. Hymel, V. Vakaryuk, A.
Levchenko, and A. Bezryadin, Phys. Rev. Lett. 108, 097003
(2012).

[31] D. Massarotti, A. Pal, G. Rotoli, L. Longobardi, M.G. Blamire,
and F. Tafuri, Nature Comm. 6, 7376 (2015).

[32] Y. Makhlin, G. Schön, and A. Shnirman, Rev. Mod. Phys. 73,
357 (2001).

[33] J. A. Blackburn, M. Cirillo, N. Grnbech-Jensen, Physics Re-
ports 611, 1 (2016).

[34] P. E. Kloeden, E. Platen and H. Schurz, Numerical Solution of
SDE Through Computer Experiments (Springer-Verlag, 1994).

[35] A.L. Pankratov Phys. Lett. A 234, 329 (1997).
[36] A.N. Malakhov , A.L. Pankratov, Physica C 269, 46 (1996).
[37] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flan-

nery, Numerical Recipes (Cambridge University Press, 1995),
Vol. I, Ch. 19.

[38] M. Matsumoto, and T. Nishimura, ACM Trans. Model. Com-
put. Simul. 8, 3 (1998).

[39] T. A. Fulton and L. N. Dunkleberger, Phys Rev B 9, 4760
(1974).

[40] http://docs.nvidia.com/cuda/floating-point/index.html, con-
sulted on January 8th, 2018.

[41] A. L. Pankratov and M. Salerno, Phys Rev E 61, 1206 (2000);
Phys. Lett. A 273, 162 (2000).

[42] Shao-Xiong Li, Wei Qiu, Siyuan Han, Y. F. Wei, X. B. Zhu, C.
Z. Gu, S. P. Zhao, and H. B. Wang, Phys. Rev. Lett. 99, 037002
(2007).

[43] R. Yamapi and G. Filatrella, Phys. Rev. E 89, 052905 (2014).
[44] R. Behr, O. Kieler, J. Kohlmann, F. Müller, and L. Palafox,

Meas. Sci. Technol. 23, 124002 (2012).
[45] M. Evans, N. Hastings, and B. Peacock, Statistical Distribu-

tions, 4th Ed. (John Wiley & Sons, 2011) Ch. 15, p. 84.

http://docs.nvidia.com/cuda/floating-point/index.html

	Stochastic first passage time accelerated with CUDA
	Abstract
	I Introduction
	II The physical problem
	A The washboard model: basic equations
	B The connection between escape times and switching currents probability distribution

	III GPU computation with CUDA
	A GPU Architecture
	B Programming
	C Parallelism and Speedup tests

	IV Tests on physical systems
	A Arrhenius plots
	B Escapes and switching current distributions

	V Conclusions
	 Acknowledgements
	 Appendix A. Parallelism Statistical Model
	 References
	 References

