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Abstract

We present the mixed Galerkin discretization of distributed parameter port-Hamiltonian systems.
On the prototypical example of hyperbolic systems of two conservation laws in arbitrary spatial
dimension, we derive the main contributions: (i) A weak formulation of the underlying geometric
(Stokes-Dirac) structure with a segmented boundary according to the causality of the boundary
ports. (ii) The geometric approximation of the Stokes-Dirac structure by a finite-dimensional Dirac
structure is realized using a mixed Galerkin approach and power-preserving linear maps, which define
minimal discrete power variables. (iii) With a consistent approximation of the Hamiltonian, we obtain
finite-dimensional port-Hamiltonian state space models. By the degrees of freedom in the power-
preserving maps, the resulting family of structure-preserving schemes allows for trade-offs between
centered approximations and upwinding. We illustrate the method on the example of Whitney finite
elements on a 2D simplicial triangulation and compare the eigenvalue approximation in 1D with a
related approach.

Keywords: Systems of conservation laws with boundary energy flows, port-Hamiltonian systems,
mixed Galerkin methods, geometric spatial discretization, structure-preserving discretization.

1 Introduction

The port-Hamiltonian (PH) approach for the modeling, interconnection and control of multi-physics
systems underwent an enormous evolution during the past two decades. In this article, we concentrate on
distributed parameter PH systems as initially presented in [1], and refer the reader to the books [2], [3]
and [4] for a more general overview on theory and applications. The salient feature of a PH system is its
representation in terms of (i) a linear geometric interconnection structure – a Stokes-Dirac structure – that
describes the power flows inside the system and over its boundary and (ii) an energy functional (or more
generally potentials) from which the constitutive or closure relations are derived, and which determines
the nature of the system. Completely different systems – linear/nonlinear or hyperbolic/parabolic [5] –
can share the same interconnection structure. PH systems are by definition open systems, they interact
with their environment through energy flow over boundary ports. The in- and outputs in the sense of
systems’ theory and control are defined via a duality product whose value equals the exchanged power at
the port. The definition of boundary port variables plays a crucial role in showing that a PH system is a
well-posed boundary control systems [6]. The definition of distributed power variables as in- and outputs
is discussed in [7].
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The simulation and control by numerical methods, of complex (complex geometries, nonlinearities, inter-
domain couplings) distributed parameter PH systems, requires a spatial discretization, which shall retain
the underlying geometric properties related to power continuity. According to the separation of the inter-
connection structure from the constitutive equations, a geometric or structure-preserving discretization
consists of two steps:

• Finite-dimensional approximation of the underlying Stokes-Dirac structure. The duality between
the power variables (their duality product has the interpretation of a power) must be mapped onto
the finite-dimensional approximation. This requires a mixed approach with different approximation
spaces for each group of dual power variables (called flows and efforts). The subspace of the
approximated, discrete (in space) power variables on which the preserved power-continuity holds,
defines a Dirac structure as a finite-dimensional counterpart of the Stokes-Dirac structure.

• Consistent discretization of the constitutive equations in the previously chosen approximation
spaces, which gives rise to the definition of a discrete Hamiltonian.

A geometric or structure-preserving discretization is, hence, a compatible discretization as defined in
[8]: “Compatible discretizations transform partial differential equations to discrete algebraic problems that
mimic fundamental properties of the continuum equations.” For PH systems, such a fundamental property
is the power balance defined by the Dirac structure with respect to which the PH system is defined. The
open character of PH systems requires special attention to the treatment of the boundary port variables,
in particular the boundary inputs which are imposed as boundary conditions. The simplicial discretiza-
tion [9], [10] of PH systems based on discrete exterior calculus (see e. g. [11]) can be considered a direct
discrete formulation of the conservation laws, which, in conjunction with the consistent approximation
of the closure equations, is such a compatible discretization. [12] addresses a generalized distribution of
boundary inputs on dual meshes, a revised interpretation of the resulting state space models, and the con-
sistent numerical approximation of nonlinear closure equations. Recently, the very related discretization
on staggered grids has been reported using finite volumes [13] and finite differences [14].

The first approach for a structure-preserving discretization of PH systems in the spirit of mixed finite
elements has been proposed in [15], see [16] for its application to a diffusive process. There, the Stokes-
Dirac structure is, however, discretized in strong form which produces restrictive compatibility conditions.
In the 1D pseudo-spectral method [17], the degeneracy of the discrete duality product is rectified by the
definition of reduced effort variables (see also the recent paper [18] for the application to plasma dynamics
described by a parabolic PDE). In [19], the Stokes-Dirac structure is reformulated, changing the role
of state and co-state variable in one conservation law. The discrete power variables are immediately
connected with a non-degenerate duality pairing, at the price of a metric-dependent interconnection
structure.

The weak formulation as the basis for Galerkin numerical approximations, including the different vari-
ations of the finite element method (see [20], to cite only one textbook), has been only rarely used for
modeling and discretization of PH systems: In [19], one of the two conservation laws is written in weak
form. [21] presents the PH model of the reactive 1D Navier-Stokes equations in weak form. In [22], the
inclusion of a piezo patch on a flexible beam in the PH model, and the structure-preserving discretization
are performed via the weak form.

In this article, we present the geometric discretization of distributed parameter PH systems based on the
weak formulation of the underlying Stokes-Dirac structure. Doing so, some limitations and restrictions
of current approaches for PH systems can be overcome.

• The strict separation of metric-independent structure and constitutive equations is maintained in
our approach.

• Our formulation is valid for systems on spatial domains with arbitrary dimension.

• Boundary inputs1 are imposed weakly, i. e. they appear directly in the weak formulation of the
Stokes-Dirac structure and the finite-dimensional approximation.

1In-domain inputs can be treated identically.
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• The power-preserving maps for the discrete power variables offer design degrees of freedom to
parametrize the resulting finite-dimensional PH state space models. They can be used to realize
upwinding.

• Mapping the flow variables instead of the efforts avoids a structural artificial feedthrough, which is
not desirable for the approximation of hyperbolic systems.

We consider as the prototypical example of distributed parameter PH systems, an open system of two
hyperbolic conservation laws in canonical form, as presented in [1]. We use the language of differential
forms, see e. g. [23], which highlights the geometric nature of each variable and allows for a unifying
representation independent from the dimension of the spatial domain.
An important reason for expressing the spatial discretization of PH systems based on the weak form
is to make the link with modern geometric discretization methods. Bossavit’s work in computational
electromagnetism [24], [25] and Tonti’s cell method [26] keep track of the geometric nature of the system
variables which allows for a direct interpretation of the discrete variables in terms of integral system
quantities. This integral point of view is also adopted in discrete exterior calculus [11]. Finite element
exterior calculus [27] gives a theoretical frame to describe functional spaces of differential forms and their
compatible approximations, which includes the construction of higher order approximation bases that
generalize the famous Whitney forms [28], see also [29]. We refer also to the recent article [30] which
proposes conforming polynomial approximation bases, in which the conservation laws are exactly satisfied,
and which gives an excellent introduction to the geometric discretization. Impressing examples for the
use of geometric discretization methods can be found in weather prediction [31] or in the simulation of
large-scale fluid flows [32], where the conservation of potential vorticity plays an important role. Another
important aspect of using the weak form as basis for structure-preserving discretization is to make the
link with well-known numerical methods and to pave the way for a simulation of PH systems with existing
numerical tools like FreeFEM++ [33], GetDP [34] or FEniCS [35].
The paper is structured as follows. In Section 2, we give a quick introduction to functional spaces of
differential forms and we review the definition of distributed parameter PH systems based on the un-
derlying Stokes-Dirac structure. Following the definition of boundary ports with alternating causality,
we propose the weak form of the Stokes-Dirac structure. Section 3 deals with the mixed Galerkin ap-
proximation of this Stokes-Dirac structure. Due to the different geometric nature of the power variables
and their approximation spaces, the discrete power balance involves degenerate duality pairings. We de-
fine minimal discrete power variables (pairs of bond variables) with non-degenerate duality products by
power-preserving mappings. The so-defined subspace of the bond space is a Dirac structure which admits
different representations. The explicit input-output representation, together with the finite-dimensional
approximation of the Hamiltonian, leads to the desired PH approximate models in state space form.
Section 4 illustrates the approach using Whitney finite elements on a 2D simplicial grid. We highlight
the interpretation of the finite-dimensional state and power variables in terms of integral quantities on
the grid and illustrate how the approximation quality can be tuned by the mapping parameters with a
2D simulation study. We compare the 1D eigenvalue approximation with the method of [15]. Certain
parameter choices can be interpreted in terms of upwinding, which is particularly favorable for hyperbolic
systems. Section 5 closes the paper with a summary and an outlook to ongoing and future work.

2 Weak form for port-Hamiltonian systems of conservation laws

2.1 Differential forms and functional spaces

To make the remainder of the paper self-contained, we give a compact introduction to the calculus with
differential forms and their functional spaces. For further reading we refer to [23], [36] and the paper
[27] with its numerous references. The calculus with differential forms, or exterior differential calculus
is widely used in the simulation of Maxwell’s equations [25], to give one example. Discrete exterior
calculus [11] extends the formalism to discrete geometric objects defined on oriented meshes, and finite
element exterior calculus [27] sets the framework for numerical approximation using finite element spaces
of differential forms [37].
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2.1.1 Smooth differential forms

We represent distributed parameter PH systems in the language of differential forms, see e. g. [23]
for a comprehensive introduction to smooth differential forms, i. e. differential forms with sufficiently
differentiable (in the classical sense) coefficient functions. Let Ω be an open, bounded and connected n-
dimensional spatial domain with Lipschitz boundary ∂Ω and denote Λk(Ω) the space of smooth differential
k-forms on Ω. For a smooth n−1-form ω ∈ Λn−1(Ω), the continuous extension to the boundary is denoted
trω ∈ Λn−1(∂Ω). The symbol tr stems from the trace map, which defines the extension to the boundary
for Lebesgue integrable functions (see further below). The exterior derivative d : Λk(Ω) → Λk+1(Ω)
represents, depending on the degree k, the different differential operators from vector calculus. The
wedge product ∧ : Λk(Ω)× Λl(Ω)→ Λk+l(Ω) is a skew-symmetric exterior product of differential forms.
We will make frequent use of the following three formulas2 for λ ∈ Λk(Ω), µ ∈ Λl(Ω), and ω ∈ Λn−1(Ω):

λ ∧ µ = (−1)klµ ∧ λ (Skew-symmetry of ∧) (1)
d(λ ∧ µ) = dλ ∧ µ+ (−1)kλ ∧ dµ (Product rule for d) (2)∫

Ω
dω =

∫
∂Ω

trω (Stokes’ theorem) (3)

A natural pairing or duality product between two differential forms λ ∈ Λk(Ω) and µ ∈ Λn−k(Ω) on Ω is
given by

〈λ|µ〉Ω :=
∫

Ω
λ ∧ µ. (4)

Accordingly for ∂Ω, see [1], Eq. (5). The generalized Stokes’ theorem (3), together with the product
rule (2) and the short notation (4), gives the integration-by-parts formula for smooth differential forms
λ ∈ Λk(Ω) and µ ∈ Λn−k−1(Ω),

〈dλ|µ〉Ω = 〈trλ|trµ〉∂Ω − (−1)k〈λ|dµ〉Ω. (5)

2.1.2 Lebesgue and Sobolev spaces of differential forms

We recall some important definitions and facts, which ensure that the formulas from the previous sub-
section make also sense on functional spaces of differential forms with weaker smoothness conditions.
Section 4 of [27] gives a quick and concise introduction into calculus with differential forms whose coef-
ficient functions belong to Lebesgue spaces Lp(Ω) and Sobolev spaces, in particular Hm(Ω) = Wm,2(Ω).
The space L2Λk(Ω) of differential forms with square integrable coefficient functions is equipped with the
inner product3

〈α, β〉L2Λk(Ω) :=
∫

Ω

n∑
i=1

αi(z)βi(z) dvol, (6)

where αi, βi ∈ L2(Ω), i = 1, . . . , n are the component functions of α, β ∈ L2Λk(Ω). The weak exte-
rior derivative dλ of λ ∈ Λk(Ω) can be defined via the integration-by-parts formula (5), with smooth
differential forms µ that vanish on the boundary (due to their compact support in Ω):

〈dλ|µ〉Ω = −(−1)k〈λ|dµ〉Ω ∀µ ∈ C∞c Λn−k−1(Ω). (7)

We do not introduce a new symbol, as we will understand d in this weak sense in the rest of the paper.
This allows to apply the exterior derivative to differential forms whose coefficient functions are not
differentiable in the classical sense. The Sobolev spaces HmΛk(Ω) contain the differential forms on Ω
with L2 weak derivatives up to order m. The corresponding inner product for m = 1 is defined as

〈α, β〉H1Λk(Ω) := 〈α, β〉L2Λk(Ω) + 〈dα,dβ〉L2Λk+1(Ω). (8)
2See e. g. [23], Sections 2.3 and 3.2 for the first formulas. For Stokes’ theorem, see e. g. [23], Section 5.8 or [36], Section

36.D, formulated for Ω a n-chain, i. e. a formal sum of n-simplices on a manifold M ⊃ Ω.
3To define the inner product, we need a volume form. For Ω ⊂ Rn, we take dvol = dnz as in [38], Definition 3.6.2.
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As we deal with boundary control systems, we are particularly interested in the extension of certain
differential forms to the boundary. Fortunately, the trace theorem from classical functional analysis4

extends to differential forms as discussed in Section 4 of [27]. We will make heavy use of the implication

λ ∈ H1Λk(Ω) ⇒ trλ ∈ H1/2Λk(∂Ω) ⊂ L2Λk(∂Ω). (9)

Where convenient for compactness, we use the common abusive notation
∫
∂Ω ω =

∫
∂Ω tr ω for the exten-

sion of ω ∈ HmΛn−1(Ω), m ≥ 1 to the boundary.

2.2 Distributed parameter port-Hamiltonian systems

We consider systems of two conservation laws in a canonical form5 as introduced in [1]. These systems
share a common linear geometric structure that relates their power variables, i. e. the pairs of physical
quantities that constitute their power balance equation.

2.2.1 The Stokes-Dirac structure

The canonical structure, defined on the open, connected n-dimensional domain Ω with Lipschitz boundary
∂Ω, is expressed, on the one hand, by [

fp

fq

]
=
[
0 (−1)rd
d 0

]
︸ ︷︷ ︸

J

[
ep

eq

]
, (10)

with the flow differential forms fp ∈ L2Λp(Ω), fq ∈ L2Λq(Ω), and the effort differential forms ep ∈
H1Λn−p(Ω), eq ∈ H1Λn−q(Ω). The degrees p and q of the differential forms satisfy p+ q = n+ 1 and the
exponent r = pq+ 1 ensures the formal skew-symmetry6 of the matrix-valued differential operator J for
arbitrary dimension n, see [1]. On the other hand, the extensions of the efforts to the boundary define
the boundary port variables [

f∂

e∂

]
=
[
tr 0
0 (−1)ptr

] [
ep

eq

]
, (11)

f∂ ∈ L2Λn−p(∂Ω), e∂ ∈ L2Λn−q(∂Ω). Note that here we repeat the case of [1] with a single causality.
The term causality describes which of the boundary port variables is imposed as an input boundary
condition in the sense of automatic control. Moreover, the definition of boundary flows and efforts is not
unique (see [6] for a complete characterization). As shown in [1], the pairs of flow and effort variables
that satisfy (10), (11), define a linear subspace of the bond space7 F × E ,

F = L2Λp(Ω)× L2Λq(Ω)× L2Λn−p(∂Ω),
E = H1Λn−p(Ω)×H1Λn−q(Ω)× L2Λn−q(∂Ω),

(12)

on which the power balance equation

〈ep|fp〉Ω + 〈eq|fq〉Ω + 〈e∂ |f∂〉∂Ω = 0 (13)

holds. In addition, this subspace is maximally isotropic with respect to the symmetrized duality pairing
which is represented by the left hand terms of (13). For details on this linear subspace called a Stokes-
Dirac structure, we refer to [1]. It essentially generalizes the notion of a Dirac structure to the distributed
parameter case by exploiting Stokes’ theorem.
A Dirac structure, whose definition and characterization are summarized below, can be considered as
“the geometrical notion formalizing general power-conserving interconnections” [1].

4See e. g. [39], Section 9.8, paragraphs 6 and 7 for fractional Sobolev spaces and the trace theorem.
5Or systems of two conservation laws with canonical interdomain coupling.
6A formal differential operator J is defined without boundary conditions (see e. g. [40], Sect. III.3). Formal skew-

symmetry is verified by 〈e,J e〉 = −〈J e, e〉 under zero boundary conditions, where 〈·, ·〉 is the inner product on the
appropriate functional space.

7As a reference to bond graph modeling of dynamical systems [41], see also [2], Chapter 1.
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Definition 1 ([42], Definition 1.1.1). Given the finite-dimensional linear space V over R or another field
and its dual V ∗ with respect to the duality pairing 〈·|·〉 : V × V ∗ → R. Define the symmetric bilinear
form

〈〈(f1, e1), (f2, e2)〉〉 := 1
2 (〈e1|f2〉+ 〈e2|f1〉) , (fi, ei) ∈ V × V ∗, i = 1, 2. (14)

A Dirac structure is a linear subspace D ⊂ V × V ∗ which is maximally isotropic under 〈〈·, ·〉〉.

Equivalently, a Dirac structure can be characterized as the subspace D ⊂ V × V ∗ which equals its
orthogonal complement with respect to 〈〈·, ·〉〉: D = D⊥, see [1], Definition 2.1. D is isotropic under
〈〈·, ·〉〉, if 〈〈(f1, e1), (f2, e2)〉〉 = 0 for all (f1, e1), (f2, e2) ∈ D, from which D ⊂ D⊥ follows. If, in addition,
for every (f1, e1) ∈ D there exists no (f3, e3) /∈ D such that 〈〈(f1, e1), (f3, e3)〉〉 = 0, then D is maximally
isotropic, and also D⊥ ⊂ D is true, which implies D = D⊥. The isotropy condition implies that

〈〈(f , e), (f , e)〉〉 = 〈e|f〉 = 0 ∀ (f , e) ∈ V × V ∗. (15)

If V and V ∗ are spaces of conjugated power variables, this is indeed a power balance equation. For more
details and the different representations of finite-dimensional Dirac structures (in the PH context), we
refer to [43], [1]. For Dirac structures defined on Hilbert spaces, and their composition, see e. g. Chapter
5 of [44] and [45].

2.2.2 Canonical PH systems of two conservation laws

To define a port-Hamiltonian distributed parameter system, the Stokes-Dirac structure is completed by
dynamic equations that introduce evolution with respect to time, and constitutive relations, which define
the nature of the resulting dynamic system of PDEs. We focus on PH systems based on the canonical
differential operator J as indicated in (10). Moreover, we derive the constitutive equations for the
effort variables from a single energy (Hamiltonian) functional. This results in a hyperbolic system of
conservation laws in PH form.
The flows induce the time evolution of the distributed state variables8 p(z, t) ∈ L2Λp(Ω), q(z, t) ∈ L2Λq(Ω)
with corresponding initial conditions:[

−∂tp(z, t)
−∂tq(z, t)

]
=
[
fp(z, t)
fq(z, t)

]
,

[
p(z, 0)
q(z, 0)

]
=
[
p0(z)
q0(z)

]
. (16)

The closure or constitutive equations relate the state and co-state (or co-energy or effort) variables
according to [

ep(z, t)
eq(z, t)

]
=
[
δpH(p(z, t), q(z, t))
δqH(p(z, t), q(z, t))

]
, (17)

where the right hand side contains the variational derivatives of the Hamiltonian or energy functional

H(p(z, t), q(z, t)) =
∫

Ω
H(p(z, t), q(z, t), z) (18)

with the Hamiltonian density n−formH. The variational derivatives are the unique differential n−p-form
δpH and n− q-form δqH that satisfy9

H(p+ δp, q + δq) =
∫

Ω
H(p, q, z) +

∫
Ω
δpH ∧ δp+ δqH ∧ δq + o(δp, δq). (19)

Definition 2 ([1], Definition 2.2). We call[
−∂tp
−∂tq

]
=
[
0 (−1)rd
d 0

] [
δpH
δqH

]
,

[
f∂

e∂

]
=
[
tr 0
0 (−1)ptr

] [
δpH
δqH

]
(20)

a distributed parameter port-Hamiltonian system on the n-dimensional spatial manifold Ω.
8We use the same symbols for the state variables (as differential forms) and their degrees, which should in general not

provoke any confusion. In this paragraph, we explicitly indicate the arguments (z, t), for the Hamiltonian can depend on z
as in the case of the shallow water equations with variable bed profile. In the sequel, we will omit the arguments.

9See e. g. [2], p. 232.
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Imposing the port variables f∂ and/or e∂ on a subset of ∂Ω as control input (and understanding the
remaining boundary port variables as observation or output), makes the system representation (20)
a boundary control system in the sense of [46]. For 1D linear PH systems with a generalized skew-
symmetric system operator, [6] gives conditions on the assignment of boundary in- and outputs for the
system operator to generate a contraction semigroup. The latter is instrumental to show well-posedness
of a linear PH system, see [3]. Essentially, at most half the number of boundary port variables can be
imposed as control inputs for a well-posed PH system in 1D.
Taking δp = ṗ, δq = q̇ as variations in (19), and omitting the higher order terms, the time derivative of
the energy functional (18) reads

Ḣ =
∫

Ω
δpH ∧ ṗ+ δqH ∧ q̇ = 〈δpH|ṗ〉Ω + 〈δqH|q̇〉Ω. (21)

Replacing ṗ, q̇ according to (20) and using the integration-by-parts formula (5) yields

Ḣ =
∫
∂Ω

(−1)p δqH|∂Ω ∧ δpH|∂Ω = (−1)p〈δqH|δpH〉∂Ω. (22)

Equating the right hand sides of the last two equations gives, together with the definition of boundary
port variables in (20), the power balance equation

〈δpH| − ṗ〉Ω + 〈δqH| − q̇〉Ω︸ ︷︷ ︸
power extracted from

distributed storage

+ 〈e∂ |f∂〉∂Ω︸ ︷︷ ︸
power supplied

over the boundary

= 0, (23)

which is a purely structural property, as it follows directly from (13) and the definitions of distributed
and boundary flows and efforts.
Remark 1. Defining the flux functions[

βp

βq

]
=
[

0 (−1)rd
d 0

] [
δpH
δqH

]
, (24)

it is evident that (20) represents a hyperbolic system of two conservation laws. Note that we explicitly
defined boundary port variables whose pairing describes a power flow over the system boundary. We
therefore deal with open systems of conservation laws.
Remark 2. For the same Stokes-Dirac structure, PDE systems of different nature are obtained when flows
and efforts are defined based on different dynamics and closure equations. For a quadratic Hamiltonian
density H in p and q, the resulting hyperbolic PH system is linear, otherwise nonlinear. The linear case
is treated e. g. in [3], where H is bounded and non-negative, and H serves as the energy norm on the
corresponding Hilbert space. For different definitions of flows and efforts, in particular if both efforts
are not derived from the same functional, the resulting PDE system becomes parabolic, see e. g. [5],
which allows to represent diffusive phenomena with the same Stokes-Dirac structure, see e. g. the heat
conduction example in [2], Section 4.2.2, or [47].
Remark 3. The division of the system variables into flows (i. e. time derivatives of states) and efforts
(or co-states) stems from the duality arizing from the variational formula (19), see also (21). It takes
into account their different geometric definition, such as the degree of the differential forms. Tonti, for
example, distinguishes between configuration and source variables [26], which are states and efforts in
our language. His energy variables are products of these dual quantities, whereas in our context, we
build the duality products between flows and efforts in order to compute powers. The space of dual power
variables contains pairs of in- and output variables (denoted boundary efforts and flows), which describe
the energy flow over the system boundary and make the PH representation inherently control oriented.
A central feature of PH modelling and control is the separation of the linear relations between the power
variables – described by a (Stokes-)Dirac structure – from the constitutive and dynamics equations. This
separation shall be maintained under structure-preserving discretization.

2.2.3 Examples

For illustration, we give two examples for systems of two conservation laws that share the same Stokes-
Dirac structure and can be written as PH distributed parameter systems. In the second example, we
highlight the relations of the representations in terms of vector calculus and differential forms.
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Example 1 (1D transmission line). The simplest 1D example of a system of two conservation laws is
an electric transmission line (the “Telegrapher’s equations”) with the spatial coordinate z ∈ Ω = (0, L),
see e. g. [15]. With p(z) = ψ(z) ∈ Λ1(Ω), the magnetic flux density one-form, q(z) ∈ Λ1(Ω), the electric
charge density one-form, l(z)dz, c(z)dz ∈ Λ1(Ω) the distributed inductance and capacitance per length
(l(z) and c(z) are smooth functions and dz the basis one-form), the Hamiltonian density one-form is
H(p, q) = 1

2

(
p(z) ∧ ∗p(z)l(z) + q(z) ∧ ∗ q(z)c(z)

)
. The Hodge star operator ∗ : Λk(Ω) → Λn−k(Ω) renders in

the 1D case a one-form a zero-form and vice versa10. The variational derivatives of the Hamiltonian
H =

∫ L
0 H are the current and the voltage along the line, ep(z) = δpH = ∗p(z)l(z) = i(z) ∈ Λ0(Ω) and

eq(z) = δqH = ∗ q(z)c(z) = v(z) ∈ Λ0(Ω). Note that in the 1D case, the disconnected nature of the boundary
with opposite orientation of its two parts requires to modify the definition of boundary port variables
according to (20). With the boundary flow and effort vectors

f∂ =
[
ep(0)
eq(L)

]
, e∂ =

[
eq(0)
−ep(L)

]
, (25)

the power transmitted over the boundary can be written as the standard inner product

〈e∂ |f∂〉 = eq(0)ep(0)− eq(L)ep(L) = −〈eq|ep〉∂Ω. (26)

Example 2 (2D shallow water equations). The shallow water equations describe the two-dimensional flow
of an inviscid fluid with relatively low depth (“shallow”), which permits the averaging of the horizontal
components of the velocity field and the omission of the vertical velocity component. The two equations
that describe the conservation of mass and momentum over an infinitesimal, fixed surface element11

(we consider the fluid in a non-rotating system) can be written in vector calculus notation, with spatial
coordinates z =

[
x y

]T , see e. g. [48],

∂th+ div(hu) = 0,

∂t(hu) + div(huu) + 1
2g∇h

2 + gh∇zb = 0,
(27)

where h denotes the water level over the bed, zb is the elevation of the bed profile, u = [u v]T the
2-dimensional velocity field, hu = F the discharge vector and g the gravitational acceleration. u · u and
uu denote respectively the scalar and the tensor (dyadic) product of two vectors. With some rules of
tensor calculus12, and replacing the continuity equation, the momentum equation can be reformulated in
terms of u and we obtain [

∂th
∂tu + qF⊥

]
=
[

0 −div
−grad 0

] [ 1
2u · u + gh+ gzb

hu

]
, (28)

where q = 1
h (∂xv − ∂yu) denotes the potential vorticity13, and F⊥ = [hv − hu]T . The term qF⊥

represents the acceleration of the fluid due to the rotation of the flow. It stems from the rotational part
of the transport term in the momentum equation. The total energy (per unit mass) is

H =
∫

Ω

1
2hu · u + 1

2gh
2 + ghzb dz. (29)

To rewrite the equations in terms of differential forms, we use the relations, see e. g. [52],14

∇f = (df)], div f = ∗d(∗f [). (30)
10The Hodge star induces an inner product on the space of differential forms on a manifold Ω by (α, β) := 〈α| ∗ β〉Ω =
〈β| ∗ α〉Ω = (β, α), α, β ∈ Λk(Ω), see Section 8.4 of [23] or Section 3.6 of [38]. The inner product is not necessarily the
standard L2 norm, but may be equipped with another metric, see e. g. the energy norm for linear PH systems [3]. The
Hodge star is, hence, metric dependent. A given inner product space induces a corresponding Hodge star.

11Which corresponds to the Eulerian representation of the fluid flow.
12See Appendix A.4 of [49]: ∇ · (sI) = ∇s, ∇ · (vw) = v · ∇w + w(∇ · v), v · ∇v = 1

2∇(v · v) − v × (∇× v). The last
term with cross product and rotation has to be evaluated based on the 3D velocity vector with zero vertical component.

13The potential vorticity satisfies the balance equation ∂tq + u · ∇q = 0, i. e. it is advected with the fluid flow see e. g.
[50]. It plays an important role in the long-time numerical simulation of large scale flow problems, see e. g. [51].

14Index raising (]) produces a vector field with the same components from a one-form. Index lowering ([) produces a
one-form with identical components from a vector field. Raising and lowering in these musical isomorphisms refers to the
fact that upper (lower) indices are typically used for the components of vector fields (one-forms).
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Taking into account that ∗ ∗ λ = (−1)k(n−k)λ for a k-form λ, we obtain[
−∂t(∗h)

−(∂tu + qF⊥)[
]

=
[

0 −d
d 0

] [
pdyn
−(∗F[)

]
, (31)

where ∗h ∈ Λ2(Ω) and u[ ∈ Λ1(Ω) are the 2-form and 1-form associated with the water depth and the
flow velocity (p = 2, q = 1). pdyn = 1

2u · u + gh + gzb ∈ Λ0(Ω) is the hydrodynamic pressure function
(0-form) and ∗F[ ∈ Λ1(Ω) is the 1-form associated to the discharge per unit width. Indeed the vector
on the right can be expressed in terms of the variational derivatives pdyn = δ∗hH and −(∗F[) = δu[H of
the Hamiltonian H =

∫
ΩH density 2-form15 H = 1

2h(u[ ∧∗u[) + 1
2gh ∗ h+ g ∗ hzb. If the rotational term

qF⊥ can be neglected16, (31) has the canonical structure (20).
Remark 4. In this paper, we concentrate on canonical systems of two conservation laws in arbitrary spatial
dimension. Beyond this basic class of PH systems (which however covers different linear and nonlinear
physical phenomena), there exists a growing number of PH models for different physical phenomena, see
e. g. [54] for the modeling of the plasma in a fusion reactor, [21] for the reactive Navier-Stokes flow or
[55] for irreversible thermodynamic systems to mention only a few interesting examples. In [56], a PH
formulation of the compressible Euler equations in terms of density, weighted vorticity and dilatation is
presented. The PH representation is not unique. An important approach for mechanical systems is based
on a jet bundle formulation [57].

2.3 Boundary ports with alternating causality

The boundary term 〈e∂ |f∂〉∂Ω in (23) pairs two power variables, one of which is considered as control input
imposed on ∂Ω. The other, dual variable plays the role of the collocated and power-conjugated output.
The assignment of these roles to the boundary power variables is referred to as causality of the boundary
port. This choice of boundary port variables to define a Stokes-Dirac structure (an infinite-dimensional
PH system) is not unique, see [6] for the 1D case, nor must it be homogeneous on ∂Ω. On parts of the
boundary, eq = δqH may define the control input, while this role may be assigned to ep = δqH on the
rest of it. The only constraint on the definition of pairs of boundary port variables is that their product
accounts for the power flow over the whole boundary as in (23). Equation (22) may be interpreted as
the balance equation for the Hamiltonian functional H. For a positive definite (or at least non-negative)
storage functional H, it immediately shows passivity17 of the PH state representation.
In order to represent a larger class of boundary control problems for systems of two conservation laws,
the following proposition generalizes the definition of the Stokes-Dirac structure to the case with multiple
pairs of in- and outputs on ∂Ω with different causalities.
Proposition 1. Given the n-dimensional open and connected domain Ω with Lipschitz boundary ∂Ω.
Consider a partition of ∂Ω with subsets Γi ⊂ ∂Ω, i = 1, . . . , nΓ, and Γ̂j ⊂ ∂Ω, j = 1, . . . , n̂Γ, with
orientation according to ∂Ω. Let

⋃nΓ
i=1 Γi∪

⋃n̂Γ
j=1 Γ̂j = ∂Ω and the intersections Γi∩ Γ̂j be sets of measure

zero. Define the boundary flow and effort forms

fΓ
i = tr ep|Γi ,
eΓ
i = (−1)p tr eq|Γi ,

f̂Γ
j = (−1)p tr eq|Γ̂j ,
êΓ
j = tr ep|Γ̂j ,

(32)

as extensions of the effort forms to the corresponding subsets of ∂Ω. The bond space F × E is composed
of18

F = L2ΛpΩ × L2ΛqΩ × L2Λn−pΓ1
× · · · × L2Λn−pΓnΓ

× L2Λn−qΓ̂1
× · · · × L2Λn−qΓ̂n̂Γ

E = H1Λn−pΩ ×H1Λn−qΩ × L2Λn−qΓ1
× · · · × L2Λn−qΓnΓ

× L2Λn−pΓ̂1
× · · · × L2Λn−pΓ̂n̂Γ

.
(33)

The subspace D ⊂ F × E, on which (10) holds and the boundary ports are defined by (32), is a Dirac
structure.

15In 2D we have ∗dx = dy, ∗dy = −dx.
16If not, (31) still represents a PH system, as the rotational term does not contribute to the energy balance [53]. It can

be associated to the canonical Stokes-Dirac structure, with a different definition of the dynamic equation for the 1-form u[.
17Passivity is defined in complete analogy to the finite-dimensional case, see e. g. [58], Definition 2.4.
18For brevity, the domains of the differential forms are written as subscripts, Λp

Ω = Λp(Ω), etc.
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Figure 1: Sketch of a domain Ω ⊂ R3 with subdomains Ω1,Ω2, Ω3 and Ω̂1 and a partition of the boundary
into Γ1,Γ2,Γ3 and Γ̂1.

Proof. First observe that with the choice of boundary ports, and by construction of the subsets Γi and
Γ̂j , the boundary power flow can be expressed as

nΓ∑
i=1
〈eΓ
i |fΓ

i 〉Γi +
n̂Γ∑
j=1
〈f̂Γ
j |êΓ

j 〉Γ̂j = (−1)p〈eq|ep〉∂Ω. (34)

The proof that the above subspace is a Dirac structure consists of decomposing Ω and exploiting the
compositionality property, see Remark 2.2 of [1], of the Stokes-Dirac structure on each subset. For a
graphical illustration, see Fig. 1.
1. Decompose Ω in a set of n-dimensional submanifolds Ωk and Ω̂l, with the same orientation as ∂Ω on
∂Ωk ∩ ∂Ω and ∂Ω̂l ∩ ∂Ω. On each subset, a Stokes-Dirac structure is defined, with alternating causality
(but unique on each subset). Then

⋃
k ∂Ωk ∩ ∂Ω =

⋃
i Γi,

⋃
l ∂Ω̂l ∩ ∂Ω =

⋃
j Γ̂j and Γi ∩ ∂Ωkl = ∅,

Γ̂j ∩ ∂Ω̂lk = ∅ for all i, j, k, l. ∂Ωkl = −∂Ω̂lk denotes the common part of the boundary of Ωk and Ω̂l,
respectively, where the minus sign underscores the inverse orientation by construction.
2. Define on each common boundary ∂Ωkl = −∂Ω̂lk the interconnection conditions fklk = ep|∂Ωkl = êlkl
and eklk = (−1)peq|∂Ωkl = f̂ lkl . Then, the terms 〈eklk |fklk 〉∂Ωkl and 〈f̂ lkl |êlkl 〉∂Ω̂lk in the overall power
balance equation cancel each other out due to the reverse integration direction. The interconnection
is hence power-preserving, and the composition of the separate Stokes-Dirac structures is, due to their
compositionality property, itself a Stokes-Dirac structure.

Remark 5. In the above proposition, boundary efforts and flows are defined as pure restrictions of either
of the distributed efforts to the corresponding subsets Γi, Γ̂j of the boundary. It is, however, also possible
to define images of the previous ones under a transformation that preserves the inner product (isometry),
e. g. scattering variables [6].
Convention 1. In terms of control, we consider the boundary efforts uqi := eΓ

i , i = 1, . . . nΓ and upj := êΓ
j ,

j = 1, . . . , n̂Γ, as boundary input variables, while the boundary flows ypi := fΓ
i , y

q
j := f̂Γ

j are the (power
conjugated) boundary outputs.

2.4 Weak form of the Stokes-Dirac structure for two conservation laws

The first motivation to study the approximation of distributed parameter PH systems based on their
weak form is the fact that most of the common numerical methods in engineering, including commercial
tools, are based on a Galerkin-type finite-dimensional approximation of the PDEs in weak form19. Also
in the context of existing works on linear PH distributed parameter systems in one spatial dimension,
this perspective is natural. The statements on well-posedness and stability based on the theory of C0
semigroups rely on the mild solution of the abstract (operator) differential equation. These solutions,
however, corresponds to the weak solutions, as known from the theory of PDEs, see [3], page 127: “In fact,

19We use the weak form and not the variational form. The reason is that we focus on the geometric structure of the
equations and do not mention the associated variational problem. We refer to [59] and [60] for the link of the variational
problem in Lagrangian mechanics in finite and infinite dimension with a Dirac structure. Note that this link is less obvious
e. g. for non-Hamiltonian fluids, which are described by a non-canonical structure, see e. g. [61], [62].
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the concept of a mild solution is the same as the concept of a weak solution used in the study of partial
differential equations.” A third point, which motivates to discretize PH distributed parameter systems
based on their weak form, is the close relation with discrete exterior calculus (i. e. the mathematical
formalism for integral modeling of conservation laws), which has been used in [10] for PH systems: “Note
that the process of integration to suppress discontinuity is, in spirit, equivalent to the idea of weak form
used in the Finite Element method” [11]. Finally, also in the work of Bossavit on the mixed geometric
discretization for computational electromagnetism [24], [25], the quality of a weak formulation is addressed
“How weak is the weak solution in finite element methods” [63].
The weak form of the Stokes-Dirac structure of Proposition 1 is obtained by a duality pairing (which
involves the exterior product and integration) on Ω with test forms of appropriate degrees which do not
vanish on the boundary20. The latter allows for a weak imposition of the input boundary conditions
uqi = eΓ

i , i = 1, . . . , nΓ and upj = êΓ
j , j = 1, . . . , n̂Γ.

Definition 3. The weak form of the Stokes-Dirac structure of Proposition 1 is given by the subspace
D ⊂ F × E with F and E as in (33), where

〈vp|fp〉Ω = 〈vp|(−1)rdeq〉Ω ∀vp ∈ H1Λn−p(Ω),
〈vq|fq〉Ω = 〈vq|dep〉Ω ∀vq ∈ H1Λn−q(Ω)

(35)

holds and the boundary ports are defined by (32).

Applying integration by parts according to (5), we obtain the weak form of the Stokes-Dirac structure
with weak treatment of the boundary port variables.
Proposition 2. The weak form of the Stokes-Dirac structure in Proposition 1 with weak treatment of
the boundary port variables is given by the subset D ⊂ F × E, F and E as in (33), where

〈vp|fp〉Ω = (−1)r+q〈dvp|eq〉Ω − (−1)r+p+q
nΓ∑
i=1
〈tr vp|eΓ

i 〉Γi − (−1)r+p+q
n̂Γ∑
j=1
〈tr vp|f̂Γ

j 〉Γ̂j

〈vq|fq〉Ω = (−1)p〈dvq|ep〉Ω − (−1)p
nΓ∑
i=1
〈tr vq|fΓ

i 〉Γi − (−1)p
n̂Γ∑
j=1

tr 〈vq|êΓ
j 〉Γ̂j

(36)

holds for all test forms vp ∈ H1Λn−p(Ω) and vq ∈ H1Λn−q(Ω).

Proof. Equation (36) follows from (35) via integration by parts and the identities

(−1)p〈vp|tr eq〉∂Ω =
nΓ∑
i=1
〈vp|eΓ

i 〉Γi +
n̂Γ∑
j=1
〈vp|f̂Γ

j 〉Γ̂j ,

〈vq|tr ep〉∂Ω =
nΓ∑
i=1
〈vq|fΓ

i 〉Γi +
n̂Γ∑
j=1
〈vq|êΓ

j 〉Γ̂j .
(37)

The latter are due to the definition (32) of boundary port variables and the definition of the subsets Γi,
Γ̂j , which cover ∂Ω and whose intersections have zero measure.

Remark 6. The latter representation of the Stokes-Dirac structure – if considered on a single control
volume – is suitable for discontinuous Galerkin schemes, see e. g. [64], where the boundary terms are
replaced by suitable numerical fluxes.
Remark 7. Note that the two conservation laws are described by the canonical differential operator
J in (10), which contains only exterior derivatives. The weak form of the Stokes-Dirac structure is
defined based on the metric-independent duality product arising from the integration-by-parts formula
(5), applied to both conservation laws in Eq. (10). This is a difference to other approaches like the
mixed mimetic discretization of the Stokes flow in [65] or the structure-preserving PH discretization
in [19], where integration by parts is only applied to the equations that contain the metric-dependent
codifferential.

20In the weak formulation of boundary value problems, mostly test functions with compact support inside Ω are chosen
such that boundary conditions have to be imposed directly on the solution. This is however not mandatory. By test
functions which are non-zero on ∂Ω, boundary conditions can be imposed in a weak fashion, cf. [20], Section 14.3.1, p. 483.
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Using the effort forms as test forms, vp = ep, vq = eq, and adding both equations of (36), we obtain after
some reformulations and exploiting (34),

〈ep|fp〉Ω + 〈eq|fq〉Ω + (−1)p〈eq|ep〉∂Ω = 0, (38)

or, with the definition of boundary port variables,

〈ep|fp〉Ω + 〈eq|fq〉Ω +
nΓ∑
i=1
〈eΓ
i |fΓ

i 〉Γi +
n̂Γ∑
j=1
〈f̂Γ
j |êΓ

j 〉Γ̂j = 0, (39)

which corresponds to the initially derived power continuity equation (13).
We have arrived at a weak representation of the Stokes-Dirac structure of Proposition 1, which suits to
establish discretized mixed Galerkin models of PH systems of two conservation laws.

3 Geometric discretization of the port-Hamiltonian system

In this section, we study the mixed Galerkin approximation of the Stokes-Dirac structure in weak form as
defined in the previous section. Expressing (36) in approximation subspaces that retain the notion of the
duality products as power pairings, and defining in- and output port variables whose pairings represent the
transmitted power over the boundary, we obtain a finite number of equations for the Galerkin coefficients.
On the so-defined subset of the discrete bond space, a discrete power continuity equation holds. Due to
the different dimensions of the geometrically chosen approximation spaces, the bilinear forms that define
the power pairings are, however, degenerate. To obtain a finite-dimensional Dirac structure with non-
degenerate power pairings, which is the basis to formulate a PH approximation model in state space form,
we introduce power-preserving mappings of the discrete flow and effort vectors onto finite-dimensional
spaces of appropriate, identical dimension. The geometric discretization is completed by a consistent
discretization of the constitutive equations.

3.1 Mixed Galerkin approximation with boundary port variables

We introduce the mixed Galerkin approximation of the weak form of the Stokes-Dirac structure for a
system of two conservation laws. Mixed or duality methods have been introduced to include constraints
like the divergence-freedom of flows or to take account for the precise approximation of additional physical
variables in the numerical approximation, see [66] as a classical reference for mixed finite elements. The
duality of the power variables in the Stokes-Dirac structure imposes the use of a mixed approximation.
The boundary inputs are weakly imposed as boundary conditions, and appear immediately in the finite-
dimensional system of equations for the Galerkin degrees of freedom. Boundary outputs are constructed
via the discrete power balance. This point of view, which leads to state space models in input-output
form, distinguishes the structure-preserving discretization of PH systems from classical approaches to the
numerical approximation of PDEs.
For the compactness of notation, we omit to explicitly write out the trace operator on the subsets of the
boundary, i. e. 〈vp|eq〉Γi := 〈tr vp|tr eq〉Γi etc. in the sequel. We start with the representation21

〈vp|fp〉Ω = (−1)r+q〈dvp|eq〉Ω − (−1)r+q
nΓ∑
µ=1
〈vp|eq〉Γµ − (−1)r+q

n̂Γ∑
ν=1
〈vp|eq〉Γ̂ν

〈vq|fq〉Ω = (−1)p〈dvq|ep〉Ω − (−1)p
nΓ∑
µ=1
〈vq|ep〉Γµ − (−1)p

n̂Γ∑
ν=1
〈vq|ep〉Γ̂ν ,

(40)

i. e. (36) without the explicit denomination of the boundary port variables. For a mixed Galerkin
approximation of the Stokes-Dirac structure, we

21In the sequel, we denote portions of the boundary with greek indices and elements of the approximation subspaces with
latin indices.
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• use different (dual or mixed) bases to approximate the spaces of flow and effort forms and

• from these bases, we choose the appropriate ones to approximate the test forms (Galerkin method).

Taking the test forms from the effort bases is the most obvious choice for the approximation of the
Stokes-Dirac structure, as the resulting (discrete) duality pairings have an immediate interpretation in
terms of power, see Eq. (38).

3.1.1 Approximation problem and compatibility condition

The flow differential forms will be approximated by linear combinations of the basis forms of the subspaces

Ψp
h = span{ψp1 , . . . , ψpNp} ⊂ L2Λp(Ω),

Ψq
h = span{ψp1 , . . . , ψqNq} ⊂ L2Λq(Ω). (41)

The subspaces for the effort and test forms are, accordingly,

Φph = span{ϕp1, . . . , ϕpMp
} ⊂ H1Λn−p(Ω),

Φqh = span{ϕq1, . . . , ϕqMq
} ⊂ H1Λn−q(Ω). (42)

From the trace theorem for H1 spaces (as discussed in Subsection 2.1.2), we know that the extension of
the latter spaces to the boundary is L2. The subscript h > 0 denotes the discretization parameter22 and
we assume an appropriate choice of approximation spaces, i. e. for a given functional space V and its
approximation Vh (see [20], Section 5.2) it is true that infvh∈Vh ‖v− vh‖ → 0 for all v ∈ V if h→ 0. The
mixed Galerkin approximation problem is as follows: Find approximate flow and effort forms

fph(z) =
Np∑
k=1

fpkψ
p
k(z) = 〈fp|ψp(z)〉 ∈ Ψp

h,

fqh(z) =
Nq∑
l=1

fql ψ
q
l (z) = 〈f q|ψq(z)〉 ∈ Ψq

h,

(43)

and

eph(z) =
Mp∑
i=1

epiϕ
p
i (z) = 〈ep|ϕp(z)〉 ∈ Φph,

eqh(z) =
Mq∑
j=1

eqjϕ
q
j(z) = 〈eq|ϕq(z)〉 ∈ Φqh,

(44)

where 〈·|·〉 denotes the standard inner product on Rn as in Definition 1, such that

〈vph|f
p
h〉Ω = (−1)r+q〈dvph|e

q
h〉Ω − (−1)r+q

nΓ∑
µ=1
〈vph|e

q
h〉Γµ − (−1)r+q

n̂Γ∑
ν=1
〈vph|e

q
h〉Γ̂ν ,

〈vqh|f
q
h〉Ω = (−1)p〈dvqh|e

p
h〉Ω − (−1)p

nΓ∑
µ=1
〈vqh|e

p
h〉Γµ − (−1)p

n̂Γ∑
ν=1
〈vqh|e

p
h〉Γ̂ν

(45)

hold for all vph ∈ Φph, v
q
h ∈ Φqh. The discrete flow and effort vectors

fp = [fp1 , . . . , f
p
Np

]T ,
f q = [fq1 , . . . , f

q
Nq

]T , and
ep = [ep1, . . . , e

p
Mp

]T ,
eq = [eq1, . . . , e

q
Mq

]T (46)

contain the approximation coefficients, and the vectors (we omit the argument z in the sequel)

ψp(z) = [ψp1(z), . . . , ψpNp(z)]T ,
ψq(z) = [ψq1(z), . . . , ψqNq (z)]T , and

ϕp(z) = [ϕp1(z), . . . , ϕpMp
(z)]T ,

ϕq(z) = [ϕq1(z), . . . , ϕqMq
(z)]T (47)

22Which corresponds to the spatial extent of finite elements or the inverse of the polynomial approximation order.
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contain the approximation basis forms. The flow variables are understood as time derivatives of the
distributed conserved quantities with negative sign, see (16). Thus, they are approximated in the same
spatial bases,

ph(z) =
Np∑
k=1

pkψ
p
k(z) = 〈p|ψp(z)〉 ∈ Ψp

h,

qh(z) =
Nq∑
l=1

qlψ
q
l (z) = 〈q|ψq(z)〉 ∈ Ψq

h,

(48)

and
p = [p1, . . . , pNp ]T , and q = [q1, . . . , qNq ]T , (49)

denote the vectors of discrete or integral conserved quantities.

The mixed Galerkin approximation (45) of (40) is exact for flow and effort forms in the approximation
spaces (41), (42) (in these subspaces, the residual error vanishes), if the following compatibility conditions
hold:

span{ψp1 , . . . , ψpNp} = span{dϕq1, . . . ,dϕqMq
},

span{ψq1, . . . , ψqNq} = span{dϕp1, . . . ,dϕpMp
}.

(50)

In contrast to [15] (Assumptions 3 and 7), this compatibility of forms23 is understood in the weak sense.
This means, more precisely – consider the original weak formulation (35) and the definition of the weak
exterior derivative – that for all test forms with compact support inside Ω, i. e. vp ∈ H1

0 Λn−p(Ω),
vq ∈ H1

0 Λn−q(Ω), there exist constants apk, a
q
l , b

p
i , b

q
j such that

Np∑
k=1

apk〈vp|ψ
p
k〉Ω +

Mq∑
j=1

bqj〈vp|dϕqj〉Ω = 0,

Nq∑
l=1

aql 〈vq|ψ
q
l 〉Ω +

Mp∑
i=1

bpi 〈vq|dϕpi 〉Ω = 0.

(51)

3.1.2 Approximation of the Stokes-Dirac structure

We approximate the weak formulation (40) of the Stokes-Dirac structure by substituting the flow and
effort forms with their finite-dimensional approximations (43), (44). By choosing the test forms from the
effort bases,

vph = 〈vp|ϕp〉, vqh = 〈vq|ϕq〉, vp ∈ RMp , vq ∈ RMq , (52)

the finite-dimensional inner products in the approximation will retain the interpretation in terms of power.
We obtain (the exterior derivative applies element-wise to a vector of differential forms)〈

〈vp|ϕp〉
∣∣∣ 〈fp|ψp〉〉

Ω
− (−1)r+q

〈
〈vp|dϕp〉

∣∣∣ 〈eq|ϕq〉〉
Ω

+(−1)r+q
nΓ∑
µ=1

〈
〈vp|ϕp〉

∣∣∣ 〈eq|ϕq〉〉
Γµ

+ (−1)r+q
n̂Γ∑
ν=1

〈
〈vp|ϕp〉

∣∣∣ 〈eq|ϕq〉〉
Γ̂ν

= 0,〈
〈vq|ϕq〉

∣∣∣ 〈f q|ψq〉〉
Ω
− (−1)p

〈
〈vq|dϕq〉

∣∣∣ 〈ep|ϕp〉〉
Ω

+(−1)p
nΓ∑
µ=1

〈
〈vq|ϕq〉

∣∣∣ 〈ep|ϕp〉〉
Γµ

+ (−1)p
n̂Γ∑
ν=1

〈
〈vq|ϕq〉

∣∣∣ 〈ep|ϕp〉〉
Γ̂ν

= 0.

(53)

23In other words, this is the de Rham property of the sequence of approximation subspaces.
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Evaluating the integrals over the products of basis forms, the system of equations can be written

〈
vp
∣∣∣Mpfp

〉
+
〈
vp
∣∣∣(Kp +

nΓ∑
µ=1

Lµp +
n̂Γ∑
ν=1

L̂νp
)
eq
〉

= 0,

〈
vq
∣∣∣Mqf q

〉
+
〈
vq
∣∣∣(Kq +

nΓ∑
µ=1

Lµq +
n̂Γ∑
ν=1

L̂νq
)
ep
〉

= 0,

(54)

with the coefficient matrices Mp ∈ RMp×Np , Mq ∈ RMq×Nq , Kp,Lµp , L̂νp ∈ RMp×Mq , Kq,Lµq , L̂νq ∈
RMq×Mp , µ = 1, . . . , nΓ, ν = 1, . . . , n̂Γ, composed of the elements

[Mp]ik = 〈ϕpi |ψpk〉Ω, [Mq]jl = 〈ϕqj |ψql 〉Ω,
[Kp]ij = −(−1)r+q〈dϕpi |ϕqj〉Ω, [Kq]ji = −(−1)p〈dϕqj |ϕpi 〉Ω,
[Lµp ]ij = (−1)r+q〈ϕpi |ϕqj〉Γµ , [Lµq ]ji = (−1)p〈ϕqj |ϕpi 〉Γµ ,
[L̂νp ]ij = (−1)r+q〈ϕpi |ϕqj〉Γ̂ν , [L̂νq ]ji = (−1)p〈ϕqj |ϕpi 〉Γ̂ν .

(55)

The equations of (54) have to hold for arbitrary vp ∈ RMp , vq ∈ RMq , which yields the equations for the
discrete flow and effort vectors

Mpfp + (Kp + Lp)eq = 0,
Mqf q + (Kq + Lq)ep = 0.

(56)

By skew-symmetry of the wedge product, see Eq. (1), it is straightforward to show that

[Lµp ]ij = [Lµq ]ji, [L̂νp ]ij = [L̂µq ]ji, (57)

i. e. Lµp = (Lµq )T and L̂νp = (L̂νq )T . By defining

Lp =
nΓ∑
µ=1

Lµp +
n̂Γ∑
ν=1

L̂νp , Lq =
nΓ∑
µ=1

Lµq +
n̂Γ∑
ν=1

L̂νq , (58)

we can show the following.

Lemma 1. The matrices Kp,Kq and Lp,Lq are related via [Kp+Lp]ij + [Kq+Lq]ji = [Lp]ij = [Lq]ji,
i. e.

(Kp + Lp) + (Kq + Lq)T = Lp = LTq . (59)

Proof. By the definition (58) and the corresponding parts of (55), the elements of Lp,Lq are duality
products over the effort basis forms on the complete boundary ∂Ω. Thus, we have that

[Kp + Lp]ij + [Kq + Lq]ji =
− (−1)r+q〈dϕpi |ϕqj〉Ω + (−1)r+q〈ϕpi |ϕqj〉∂Ω − (−1)p〈dϕqj |ϕpi 〉Ω + (−1)p〈ϕqj |ϕpi 〉∂Ω. (60)

Using skew-symmetry of the wedge product (1) and the integration-by-parts formula for differential forms
(5), the right hand side can be rewritten as

(−1)p〈ϕqj(z)|ϕpi (z)〉∂Ω = [Lq]ji = [Lp]ij , (61)

which proves the claim.

Definition 4. The quadratic forms over the discrete effort vectors with the corresponding matrices
Lp,Lµp , L̂νp and Lq,Lµq , L̂νq describe the approximate power transmitted over the boundary ∂Ω or its
parts. We refer to these matrices as boundary power matrices.

The boundary power matrices Lp = LTq , will have reduced rank. The reason is that basis forms for
interior effort degrees of freedom will be, in general, zero on the boundary. This is true e. g. for finite
elements, see Section 4, and also for the 1D geometric pseudo-spectral collocation method [17].
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3.1.3 Discrete boundary port variables

To define the pairs of discrete boundary port variables that will be assigned either the role of boundary
controls or the role of outputs on the boundary subsets, we characterize mappings on the spaces of discrete
efforts variables.

Definition 5. The vectors of discrete boundary port variables24 eb,µ, f b,µ0 ∈ RM
µ
b and êb,ν , f̂ b,ν0 ∈ RM̂ν

b ,
associated with the boundary subdomains Γµ ⊂ ∂Ω, µ = 1, . . . , nΓ, Γ̂ν ⊂ ∂Ω, ν = 1, . . . , n̂Γ, satisfy

〈eq|Lµq ep〉 =: 〈eb,µ|f b,µ0 〉, 〈ep|L̂νpeq〉 =: 〈êb,ν |f̂ b,ν0 〉, (62)

i. e. their duality products (which are standard Euclidean scalar products on the finite-dimensional bond
space) match the discrete expression of the power flow over Γµ and Γ̂ν , respectively.

We decompose the boundary power matrices for each boundary subdomain in matrix products

Lµq = (Tµ
q )TSµp,0, L̂νp = (T̂ν

p)T Ŝνq,0. (63)

The boundary trace matrices25 Tµ
q ∈ RM

µ
b
×Mq , T̂ν

p ∈ RM̂ν
b ×Mp define the effort degrees of freedom

eb,µ = Tµ
q eq, êb,ν = T̂ν

pep (64)

that lie on the boundary and are assigned the roles of input variables. We call Sµp,0 ∈ RM
µ
b
×Mp , Ŝνq,0 ∈

RM̂ν
b ×Mq the collocated boundary output matrices. They define the boundary flow variables

f b,µ0 = Sµp,0ep, f̂ b,ν0 = Ŝνq,0eq, (65)

which, together with the discrete efforts (64), satisfy exactly the discrete power balance (62) on the
different portions of the boundary26. Because of

〈eΓ
µ|fΓ

µ 〉Γµ = (−1)p〈eq|ep〉Γµ ≈ (−1)p
〈
〈eq|ϕq〉

∣∣∣〈ep|ϕp〉〉
Γµ

= 〈eq|Lµq ep〉 = 〈eb,µ|f b,µ0 〉,

〈êΓ
ν |f̂Γ

ν 〉Γ̂ν = (−1)p〈ep|eq〉Γ̂ν ≈ (−1)p
〈
〈ep|ϕp〉

∣∣∣〈eq|ϕq〉〉
Γ̂ν

= 〈ep|L̂νpeq〉 = 〈êb,ν |f̂ b,ν0 〉,
(66)

the definition of discrete boundary port variables is consistent with the distributed definition (39). Sum-
mation over the individual boundary power matrices according to (58), yields a matrix equation that
expresses the boundary power balance,

TT
q Sp,0 + ŜTq,0T̂p = Lq = LTp , (67)

where

Tq =

 T1
q
...

TnΓ
q

 , Sp,0 =

S1
p,0
...

SnΓ
p,0

 , Ŝq,0 =

Ŝ1
q,0
...

Ŝn̂Γ
q,0

 , T̂p =

 T̂1
p
...

T̂n̂Γ
p

 . (68)

The overall vectors of discrete boundary port variables comprise the contributions of each boundary
subset with corresponding causality27,

eb = Tqeq, f b0 = Sp,0ep, êb = T̂pep, f̂ b0 = Ŝq,0eq, (69)

with

eb =

 eb,1
...

eb,nΓ

 , f b0 =

 f b,10
...

f b,nΓ
0

 , êb =

 eb,1
...

eb,n̂Γ

 , f̂ b0 =

 f b,10
...

f b,n̂Γ
0

 . (70)

24Discrete boundary variables have index b, in contrast to index ∂ for the original distributed quantities.
25This denomination refers to the trace theorem for the extension of a Hm function to the boundary.
26The subscript 0 indicates that these discrete output variables will be re-defined when we derive a PH state space model

based on a (non-degenerate) Dirac structure.
27The causality of a pair of port variables changes if the role of in- and output is permuted.
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3.1.4 Power balance on the discrete bond space

The vectors of discrete flows and efforts fp/q, ep/q that satisfy (56), together with the discrete boundary
ports of different causality, define a subset of the bond space

F × E = RNp × RNq × RMb × RM̂b × RMp × RMq × RMb × RM̂b , (71)

with Mb =
∑nΓ
µ=1M

µ
b , M̂b =

∑n̂Γ
ν=1 M̂

ν
b . On this subspace, a discrete power balance holds that approxi-

mates the continuous one (39).

Proposition 3. The subspace

D = {(fp, f q, f b0 , f̂ b0 , ep, eq, eb, êb) ∈ F × E | (56) holds} (72)

with the boundary port variables defined by (64) and (65) satisfies the isotropy condition D ⊂ D⊥ with
respect to the bilinear form 〈〈·, ·〉〉M that results from symmetrization of the duality product

〈·|·〉M := 〈ep|Mpfp〉+ 〈eq|Mqf q〉+ 〈eb|f b0〉+ 〈êb|f̂ b0〉. (73)

Proof. The proposition generalizes Proposition 18 in [17] and follows the same lines. We write out the
symmetrized bilinear form, replacing (56):

〈ep1|Mpfp2 〉+ 〈eq1|Mqf q2 〉+ 〈eb1|(f b0)2〉+ 〈êb1|(f̂ b0)2〉+ 〈ep2|Mpfp1 〉+ 〈eq2|Mqf q1 〉+ 〈eb2|(f b0)1〉+ 〈êb2|(f̂ b0)1〉 =
− 〈ep1|(Kp + Lp)eq2〉 − 〈eq2|(Kq + Lq)ep1〉 − 〈eq1|(Kq + Lq)ep2〉 − 〈ep2|(Kp + Lp)eq1〉
+ 〈Tqeq1|Sp,0ep2〉+ 〈T̂pep1|Ŝq,0eq2〉+ 〈Tqeq2|Sp,0ep1〉+ 〈T̂pep2|Ŝq,0eq1〉. (74)

Exploiting the matrix equalities (59) and (67), we obtain

− 〈ep1|Lpeq2〉 − 〈eq1|Lqep2〉+ 〈eq1|Lqep2〉+ 〈ep1|Lpeq2〉 = 0, (75)

which proves isotropy of D with respect to 〈〈·, ·〉〉M .

The discrete power continuity equation, which represents the counterpart of (39) in the approximation
subspaces, finally reads

〈ep|Mpfp〉+ 〈eq|Mqf q〉+ 〈eb|f b0〉+ 〈êb|f̂ b0〉 = 0. (76)

The subspace (72) is, however, not a Dirac structure, as the duality product 〈·|·〉M defined in (73) is
degenerate in general. Its value can be zero for nonzero discrete flows and/or efforts that lie in the kernel
of Mp, Mq, or their transposes. This motivates the introduction of power-preserving mappings on the
discrete bond space in Subsection 3.2.
Remark 8. The problem of a degenerate duality product does not appear in the approach according to
[19], which is based on a metric-dependent Dirac structure. The parameters in the power-preserving maps
represent however degrees of freedom to tune the resulting numerical methods.

3.1.5 Discrete conservation laws

Assume the matrices in the second terms of (56) can be factorized as

Kp + Lp = −(−1)rMpdp
Kq + Lq = −Mqdq.

(77)

Then the set of linear equations that relates discrete flow and effort degrees of freedom has the form[
fp
f q
]

=
[

0 (−1)rdp
dq 0

] [
ep
eq
]
. (78)
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This is a direct discrete representation of the two conservation laws with dp ∈ RNp×Mq and dq ∈ RNq×Mp

discrete derivative matrices that replace the exterior derivative in the distributed parameter setting.
For a mixed FE approximation based on Whitney forms of lowest polynomial degree, see e. g. [25], the
representation (78) is obtained by integrating only over the respective discrete, oriented geometric objects
(volumes, faces or edges) on the discretization mesh instead of the whole domain Ω. The matrices dp
and dq are then the transposed incidence matrices28, which relate the geometric objects on the mesh.
For some more comments on the direct discrete representation of conservation laws, see Section 4.

3.2 Power-preserving mappings and conjugated output maps

The discrete power balance (76) contains the duality pairings 〈ep|Mpfp〉 and 〈eq|Mqf q〉, which are degen-
erate in general, i. e. the matrices Mp and Mq may be non-quadratic and have reduced rank, see Table
2 for the example considered in Section 4. We motivate the definition of power-preserving mappings on
the space of discrete bond variables by the following example.

Example 3. Consider the discrete power balance, a simplified representation of (76), 〈e|Mf〉+〈eb|f b0〉 = 0
with the degenerate bilinear form 〈e|Mf〉. Let e ∈ Rne , f ∈ Rnf , nf 6= ne and the matrix M of reduced
rank rM < min(ne, nf ). Now choose rM vectors ei and fi, i = 1, . . . , rM such that the image spaces of
M and MT are spanned by

span{Mf1, . . . ,MfrM } =: span{w1, . . . ,wrM } = im(M),
span{MTe1, . . . ,MTerM } =: span{v1, . . . ,vrM } = im(MT ).

(79)

Suppose that the matrix M can be decomposed as

M = PT
e Pf with Pe =

 wT
1
...

wT
rM

 , Pf =

 vT1
...

vTrM

 , (80)

then the degenerate bilinear form can be replaced by the non-degenerate duality product 〈ẽ|f̃〉 with
ẽ = Pee, f̃ = Pf f , and the discrete power balance becomes 〈ẽ|f̃〉+ 〈eb|f b0〉 = 0. By the definition of the
rows of Pe and Pf , i. e. wT

i = fTi MT and vTi = eTi M, it is easy to see that Pee = 0 for e ∈ ker(MT )
and Pf f = 0 for f ∈ ker(M). This means that Pe and Pf describe mappings from the quotient spaces
Rne/ ker(MT ) and Rnf / ker(M) to RrM , which map the equivalence classes29

[e] = {e′ ∈ Rne | ∃e′′ ∈ ker(MT ), e′ = e + e′′} and [f ] = {f ′ ∈ Rnf | ∃f ′′ ∈ ker(M), f ′ = f + f ′′} (81)

onto an embedding of Rne × Rnf , endowed with coordinates (ẽ, f̃). We call ẽ, f̃ ∈ RÑ minimal discrete
power variables with Ñ = rM in the considered case.

If no factorization (80) exists – this is the case if the dimension of the minimal bond variables is lower than
the rank of M, Ñ < rM – the “internal” power term 〈e|Mf〉 can not be matched with 〈ẽ|f̃〉. Preservation
of the total discrete power balance will in such a case be achieved by an appropriate redefinition of the
output f b0 → f b such that 〈ẽ|f̃〉 + 〈eb|f b〉 = 0 holds, see the following paragraph. For an illustration,
consider Example 8: The original output vector f̂ b0 does not contain the rotational components contained
in f̂ b as depicted in Fig. 7.

We use the argumentation sketched above to construct a Dirac structure on a minimal discrete bond
space. To replace 〈ep|Mpfp〉 and 〈eq|Mqf q〉 in (76) by non-degenerate duality pairings, we determine
power-preserving mappings

ẽp = Pepep, ẽq = Peqeq and f̃p = Pfpfp, f̃ q = Pfqf q, (82)
28In order to avoid confusion with the actuated system boundary, we use, as in [10] or [67], the term incidence matrix

instead of boundary matrix.
29The maps from Rne and Rnf to the quotient spaces are projections.
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such that

Ñp := dim ẽp = dim f̃p ≤ rank(Mp) and Ñq := dim ẽq = dim f̃ q ≤ rank(Mq). (83)

We refer to the vectors f̃p, ẽp ∈ RÑp , f̃ q, ẽq ∈ RÑq as minimal discrete flows and efforts, as they can be
interpreted as coordinates of an embedding in the original discrete bond space.

Example 4. In the 1D case, p = q = 1, using Whitney finite elements or the pseudo-spectral method
[17], we have, N = Np = Nq and M = Mp = Mq with M = N + 1. Fixing f̃p = fp, f̃ q = f q, minimal
discrete efforts can be defined as ẽp = MT

p ep and ẽq = MT
q eq.

The following definition summarizes the core property of power-preserving mappings.

Definition 6. The discrete flow and effort mappings (82) are power-preserving if they satisfy a discrete
power balance

〈ẽp|f̃p〉+ 〈ẽq|f̃ q〉+ 〈eb|f b〉+ 〈êb|f̂ b〉 = 0 (84)
with the given boundary inputs eb, êb according to (64) and possibly modified boundary outputs

f b = Sµpep, f̂ b = Ŝνqeq. (85)

Remark 9. If the mappings satisfy PT
epPfp = Mp and PT

eqPfq = Mq, the “interior” part of the power
balance (76) is exactly represented by the minimal flows f̃ and efforts ẽ, and (84) holds with the original,
collocated outputs f b0 , f̂ b0 . If, however, Ñq < rank(Mq) and/or Ñp < rank(Mp), a part of the power,
originally described by 〈ep|Mpfp〉+〈eq|Mqf q〉, must be “swapped” to the boundary terms of (84) via the
re-definition of the outputs. This way, the power-balance is maintained globally, and conservativeness of
the finite-dimensional approximation is guaranteed.

To characterize the power-preserving mappings and modified output maps that guarantee power conti-
nuity (84), we substitute in this equation the definitions of the effort and flow maps, the in- and outputs,
and substitute fp, f q according to the discrete representation (78) of the conservation laws. The new
power variables are now expressed in terms of the original discrete efforts,

f̃p
f̃ q
f̂ b
f b


︸ ︷︷ ︸

f̄

=


0 (−1)rPfpdp

Pfqdq 0
0 Ŝq
Sp 0


︸ ︷︷ ︸

ET

[
ep
eq
]

︸︷︷︸
e

,


ẽp
ẽq
êb
eb


︸ ︷︷ ︸

ē

=


Pep 0
0 Peq

T̂p 0
0 Tq


︸ ︷︷ ︸

FT

[
ep
eq
]

︸︷︷︸
e

.
(86)

Equation (84) must hold for arbitrary ep, eq, and we obtain the following matrix condition.

Proposition 4. The effort, flow and output maps are power-preserving, if they satisfy the matrix equation

(−1)rdTp PT
fpPep + PT

eqPfqdq + TT
q Sp + ŜTq T̂p = 0. (87)

The power-preserving maps are not unique. Different parametrizations of the matrices yield different
finite-dimensional Dirac structures that approximate the original Stokes-Dirac structure of Proposition
1. Together with a consistent approximation of the constitutive equations, we obtain PH approximate
models with different numerical properties. A favorable parametrization will depend on the nature of
the system (e. g. if the closure equations make the system hyperbolic or parabolic), the distribution and
type of boundary inputs, and the application case. In any case, the power-preserving maps generate a
minimal space of power variables on which an approximate Dirac structure is defined.
In Section 4, we will illustrate the construction of the power-preserving maps on the example of Whitney
approximation forms on a rectangular simplicial mesh in 2D. The degrees of freedom in the mappings
will allow for a trade-off between centered schemes and upwinding in the discretized PH models.
Remark 10. Equation (87) relates the “discrete differentiation matrices” dp, dq and the “discrete trace
matrices” Tq, T̂p, paired with Sp, Ŝq. This is an apparent reference to Stokes’ theorem (3), which is
instrumental in deriving this discrete representation of power continuity (see also Eq. (43) in [17]).
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3.3 Dirac structure on the minimal bond space

The power-preserving maps that satisfy (87) define a Dirac structure. We verify that (86) is an image
representation of this Dirac structure on the minimal discrete bond space. If the effort maps are invertible,
an unconstrained input-output representation exists.

Proposition 5 (Image representation). Consider the discrete flow and effort vectors f̄ and ē as indicated
in (86). (f̄ , ē) is an element of the bond space

F̄ × Ē = RÑp+Ñq+Mb+M̂b × RÑp+Ñq+Mb+M̂b . (88)

Let Ñp + Ñq + M̂b +Mb = Mp +Mq and assume that the matrix condition (87) is satisfied. If

rank(
[
Pep

T̂p

]
) = Mp and rank(

[
Peq

Tq

]
) = Mq, (89)

then the subspace
D̄ = {(f̄ , ē) ∈ F̄ × Ē | f̄ = ETe, ē = FTe, e ∈ RM

p+Mq} (90)

is a Dirac structure.

Proof. According to the definition of the image representation of a Dirac structure (see e. g. [43], Section
4.4.1), the dimensions of f̄ and ē must be less30 or equal dim(e), which is ensured by Ñp+Ñq+M̂b+Mb =
Mp + Mq. The condition rank([F E]) = Mp + Mq is satisfied by (89), from which rank(F) = Mp + Mq

follows. Moreover, the skew-symmetry condition EFT + FET = 0 must hold. EFT + FET according to
(86) gives[

0 dTq PT
fqPeq + (−1)rPT

epPfpdp + STp Tq + ŜTp T̂q

(−1)rdTp PT
fpPep + PT

eqPfqdq + TT
q Sp + ŜTq T̂p 0,

]
(91)

which equals zero as the matrix equation (87) holds.

Corollary 1 (Input-output representation). Under the conditions of Proposition 5, the Dirac structure
admits an unconstrained input-output representation[

−f̃p
−f̃ q

]
=
[

0 Jp
Jq 0

]
︸ ︷︷ ︸

J=−JT

[
ẽp
ẽq
]

+
[

0 Bp

Bq 0

]
︸ ︷︷ ︸

B

[
êb
eb
]
,

[
f̂ b
f b
]

=
[

0 Cq

Cp 0

]
︸ ︷︷ ︸

C=BT

[
ẽp
ẽq
]

+
[

0 Dq

Dp 0

]
︸ ︷︷ ︸

D=−DT

[
êb
eb
]
,

(92)

with
Jp = −JTq , Bp = CT

p , Bq = CT
q , Dq = −DT

p . (93)

Proof. The (skew-)symmetry conditions can be summarized as[
−Jp −Bp

Cq Dq

]
+
[
−Jq −Bq

Cp Dp

]T
=
[
0 0
0 0

]
. (94)

The submatrices in Eq. (92) are obtained from evaluation of f̄ in (86) and exploiting invertibility of the
matrices in (89). We can write[

−Jp −Bp

Cq Dq

]
=
[
(−1)rPfpdp

Ŝq

] [
Peq

Tq

]−1
,

[
−Jq −Bq

Cp Dp

]
=
[
Pfqdq

Sp

] [
Pep

T̂p

]−1

. (95)

30This is the case of a relaxed image representation.
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Substituting these relations in (94) and multiplying with the non-singular matrices
[
PT
ep T̂T

p

]
from the

left and
[
Peq

Tq

]
from the right yields the left hand side of (87). The right hand side being zero, this proves

(skew-)symmetry of the matrices (93) of the input-output representation.

The proposition is a generalization of Proposition 20 in [17] for the 1D case and the pseudo-spectral
method. Note that the rank condition (89) on the effort and flow and boundary maps is sufficient (not
necessary) for the subspace (90) to be a Dirac structure. The fact that both matrices in (89) are assumed
square and invertible, guarantees the input-output representation in the corollary.

3.4 Finite-dimensional port-Hamiltonian model

To build from the input-output representation of the Dirac structure a finite-dimensional PH model for
the canonical system of two conservation laws, we replace the minimal discrete flow variables by time
derivatives of discrete states31

− f̃p =: ˙̃p ∈ RÑp , −f̃ q =: ˙̃q ∈ RÑq . (96)

Then, the minimal efforts need to be replaced by the partial derivatives of a suitable discrete Hamiltonian
H̃d(p̃, q̃)

ẽp =
(
∂H̃d

∂p̃

)T
∈ RÑp , ẽq =

(
∂H̃d

∂q̃

)T
∈ RÑq . (97)

The discrete Hamiltonian must be defined in such a way that the discrete effort variables represent a con-
sistent approximation of their continuous counterparts. We present the discretization of the constitutive
equations in more detail in the FE example of Section 4.
With the state, input and output vectors

x =
[
p̃
q̃

]
, u =

[
êb
eb
]
, y =

[
f̂ b
f b
]
, (98)

the resulting state space model (x ∈ RÑp+Ñq , u,y ∈ RMb+M̂b)

ẋ = J∇Hd(x) + Bu
y = BT∇Hd(x) + Du

(99)

has explicit PH form and the discrete energy satisfies the balance equation

Ḣd = −yTu, (100)

which is the finite-dimensional counterpart of (22). The PH form allows to easily interconnect the finite-
dimensional model of the system of two conservation laws with other subsystems in a power-preserving
way, which is the basis for energy-based control design by interconnection see e. g. [68].

4 Examples

In this section, we first illustrate the construction of power-preserving mappings and consistent Hodge
matrices for the case of Whitney approximation forms and a 2D rectangular grid. The interpretation of
the mappings in terms of weighted balance domains to compute the co-state variables (i. e. the “internal”
discrete efforts) is illustrated and a simulation study highlights the effects of different parametrizations.
In the second subsection, we consider the example of the 1D wave equation, again with Whitney ap-
proximation forms, in order to illustrate the difference of our approach to [15]. We study the numerical
approximation of the eigenvalues and discuss the effect of upwinding in the context of our approach.

31If a flow variable is defined differently, as in the case of the 2D SWE with the additional rotation term, this has to be
accounted for also in the discrete equation.
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Figure 2: Numbering of nodes, edges and faces on a N ×M rectangular simplicial mesh. K = (M + 1)N ,
L = K +M(N + 1).

4.1 Wave equation on a 2D rectangular grid

To illustrate the steps towards an approximate PH state space model with desired boundary inputs by
geometric discretization, we consider a 2-dimensional rectangular domain Ω = (0, Lx)×(0, Ly) ⊂ R2, with
boundary ∂Ω, covered by a regular, oriented simplicial triangulation Th, as sketched in Fig. 2. The system
equations that relate distributed flow and effort differential forms with fp ∈ L2Λ2(Ω), q ∈ L2Λ1(Ω),
ep ∈ H1Λ0(Ω), eq ∈ H1Λ1(Ω) are, according to (10),[

fp

fq

]
=
[

0 −d
d 0

] [
ep

eq

]
. (101)

The effort forms are derived from a Hamiltonian functional,

ep = δpH, eq = δqH, H =
∫

Ω
H, (102)

with p ∈ L2Λ2(Ω) and q ∈ L2Λ1(Ω) the conserved quantities and H the Hamiltonian density n-form.
The dynamics equations are

ṗ = −fp, q̇ = −fq. (103)

The boundary input variables (the causality of the boundary ports) will be specified in the discrete setting
by the choice of the boundary trace matrices Tq and T̂p.

4.1.1 Whitney forms

The approximation bases for flows and efforts (41), (42) are composed of Whitney forms [28] of lowest
polynomial degree, which can be constructed based on the barycentric node weights [69]. The degrees
of freedom are directly associated to the nodes, directed edges and faces of the mesh. The well-known
geometric discretization of Maxwell’s equations [25] is based on Whitney forms, and the resulting finite-
dimensional models feature the (co-)incidence matrices of the underlying discretization meshes [70]. They
can be considered a direct representation of the physical laws on the discrete balance regions of the
triangulation. In contrast to [70], [26], where the conservation laws are evaluated on dual or staggered
grids, we start with a single mesh. Nevertheless, in our approach, the mappings of the original degrees of
freedom allow the interpretation of the minimal discrete flows and efforts in terms of topological duality.

Example 5 (Whitney forms over a 2D simplex). Consider the triangle f1 = {(x, y) |x, y ≥ 0, 0 ≤ x+y ≤
h}, with vertices n1 = (0, 0), n2 = (h, 0), n3 = (0, h), which are connected by the directed edges e1, e2
and e3 as shown in Fig. 3. The node, edge and face forms are constructed according to [69]:

wn1 = 1− x

h
− y

h
, wn2 = x

h
, wn3 = y

h
, (104)

we1 = h− y
h2 dx+ x

h2 dy, we2 = − y

h2 dx+ x

h2 dy, we3 = − y

h2 dx+ x− h
h2 dy, (105)
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Figure 3: Illustrations of the Whitney forms over a 2-simplex.

wf1 = 2
h2 dxdy. (106)

The 0-, 1- and 2-forms verify wni(nj) = δij ,
∫
ei
wej = δij (δij the Kronecker-Delta) and

∫
f1
wf1 = 1.

4.1.2 Mesh, matrices and dimensions

Using Whitney basis forms, the degrees of freedom in the mixed Galerkin approach are associated to
integrals of distributed quantities on the k-simplices of the mesh. The dimensions of the (initial) discrete
flow and effort vectors equal the numbers of corresponding nodes, edges and faces on the grid. The same
holds for the discrete efforts on the boundary, which are designated in- or outputs and are localized at
the corresponding boundary nodes and edges, see Table 1.

Table 1: Dimensions of discrete flow and efforts spaces on the rectangular N ×M simplicial grid.

Vector(s) f p f q, eq ep ep
b , eq

b

Dimension 2NM 3NM+N+M (N+1)(M+1) 2(N+M)
Symbol(s) Np Nq = Mq Mp Mb

p = Mb
q

Table 2: Sizes and ranks of the matrices resulting from the mixed Galerkin approximation and the direct
discrete model, respectively. N,M > 2.

Matrix Mp Kp + Lp dp Mq Kq + Lq dq Lp = LT
q

Size Mp ×Np Mp ×Nq Np ×Nq Nq ×Nq Nq ×Mp Nq ×Mp Mp ×Nq

Rank Mp − 2 Mp − 2 Np 2(Mp − 2) Mp − 1 Mp − 1 2(M +N) − 1

The mixed Galerkin approximation of the Stokes-Dirac structure yields a set of matrices with different
sizes and ranks, see Table 2. The construction of power-preserving mappings and conjugated output
matrices that satisfy matrix equation (87), is based on rank considerations of the involved matrix products.

4.1.3 Power-preserving mappings, discrete in- and outputs

We illustrate at three elementary examples the construction of the power-preserving flow and effort maps
and conjugated output matrices that satisfy Eq. (87). The structure of the resulting matrices can be
extrapolated to the case of N ×M grids with arbitrarily distributed boundary inputs of mixed causality.

Example 6 (Elementary 1×1 grid). Consider the sample grid in Fig. 4. The mixed Galerkin discretiza-
tion of (101) with Whitney forms yields the discrete representation (78) with (−1)r = −1 with the face
degrees of freedom (flows) fp = −ṗ ∈ R2, the edge degrees of freedom (flows and efforts) q̇ = −f q, eq ∈ R5

the node degrees of freedom (efforts) ep ∈ R4. The discrete derivative matrices, which satisfy the discrete
complex property dpdq = 0, are the co-incidence matrices of the graph

dp =
[
1 0 0 1 1
0 1 1 0 −1

]
, dq =


−1 1 0 0
0 −1 1 0
0 0 −1 1
1 0 0 −1
0 −1 0 1

 . (107)
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Figure 4: Sample grid of 4 nodes to illustrate the construction of power-preserving mappings. The
coefficients αj , βj , γj = 1−αj−βj , j ∈ {I, II} weight the contribution of the integral conserved quantities
p1 and p2 in the definition of the states p̃i, which are associated to the edge efforts ẽpi , i = 1, . . . , 4.

Input trace matrices and effort maps. We assign all effort degrees of freedom at the boundary
edges the role of inputs32, summarized in eb ∈ R4. The interior edge is related to the minimal effort
ẽq ∈ R. [

eb
ẽq

]
=
[

Tq

Peq

]
eq with Tq =

[
I4 04×1

]
, Peq =

[
01×4 1

]
. (108)

No node plays the role of an input node, hence,

ẽp = Pepep with Pep = I4. (109)

Mapping of the conserved quantities on the faces. For the mapping of the vector of integral
conserved quantities33 p ∈ R2 on the two faces (triangles), we argue as follows. The vector of discrete
states p̃ ∈ R4, which is dual to the vector ẽp ∈ R4 of node efforts, shall

1. contain weighted sums of the discrete conserved quantities on the faces that touch the corresponding
node and

2. the sum of its elements must reflect the total conserved quantity. In the example according to Fig.
4, this means

4∑
i=1

p̃i =
2∑
j=1

pj . (110)

With p̃ = Pfpp, the second condition translates to34 1T4 Pfp = 1T2 , i. e. the column sums of the matrix
Pfp ∈ R4×2 must equal one. A matrix that satisfies this condition is

Pfp =


γI 0
βI αII
0 γII
αI βII

 with αj + βj + γj = 1, j ∈ {I, II}. (111)

The weights of the conserved quantities p1, p2 in the definition of the states p̃i, which are associated to
the nodal efforts ẽpi , i = 1, . . . , 4, are printed in Fig. 4 in red and green, respectively.

32With this choice, we can easily derive the construction of the power-preserving mappings and output matrices. The same
power-preserving mappings are valid with arbitrary boundary causality, while the output matrices can be easily adapted,
as in the case of the simulation examples.

33We refer to the “original” discrete vectors p, q as discrete conserved quantities, while we call p̃, q̃ the state vectors of
the resulting PH state space model.

341n denotes a column vector whose n elements are all 1.
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Output matrix for the nodal efforts. The matrix equation (87) without a matrix T̂p can be written
in the form

(−1)rdTp PT
fpPep +

[
TT
q PT

eq

] [ Sp
Pfqdq

]
= 0. (112)

Exploiting that
[
TT
q PT

eq

]
is a permutation matrix, the equation can be multiplied from the left with

its transpose (which equals its inverse), and we obtain as the first line the output matrix associated to
node efforts

Sp = −(−1)rTqdTp PT
fpPep =


γI βI 0 αI
0 αII γII βII
0 αII γII βII
γI βI 0 αI

 . (113)

The discrete output vector f b = Spep contains – on this very simple grid – two pairs of identical elements,
which each represent convex sums of the node efforts. Regarding for example the outer boundary of face
1 in Fig. 4, this identity is no surprise. If we delete node 1 (from the graph), and consider edges 1 and 4
as a single edge 14, the power eb1f b1 + eb4f

b
4 which is transmitted over both edges must equal (eb1 + eb4)f b14,

which is the case for f b1 = f b4 .

Mapping of the edge states. In analogy to (113), the matrix equation

Pfqdq = −(−1)rPeqdTp PT
fpPep (114)

determines the matrix Pfq. The solution consists of a particular part to which a linear combination of
the rows of dp (recall that dpdq = 0) can be added:

Pfq = Pp
fq +

[
c1 c2

]
dp

=
[
−γI −γII αI − βII 0 0

]
+
[
c1 c2

] [ 1 0 0 1 1
0 1 1 0 −1

]
.

(115)

With c1 = γI
2 and c2 = −αI + βII + γII

2 , we get a matrix of the form

Pfq = P⊥fq + P‖fq
=
[
−γI2 −γII2

γII
2

γI
2 0

]
+
[

0 0 0 0 αI−βI
2 + αII−βII

2
]
,

(116)

where P⊥fq contains the weights of the conserved quantities qj on the edges “across” the edge on which
the minimal effort ẽqi is defined. Accordingly, P‖fq contains the weight associated to exactly this edge.
Note that only P⊥fq will contribute to the definition of the discrete Hodge matrix Qq, which relates the
efforts across edges of the grid with the states along the dual edges.

The construction which we demonstrated for the simplest quadrilateral grid, can be extended to a rect-
angular grid, which is shown in the next example.

Example 7 (2 × 1 grid, unique boundary causality). We now consider the 2 × 1 rectangular grid as
depicted in Fig. 5, whose co-incidence matrices are the discrete derivative matrices

dp =


−1 0 0 0 0 1 0 1 0
0 −1 0 0 0 0 1 0 1
0 0 1 0 −1 0 0 −1 0
0 0 0 1 0 −1 0 0 −1

 , dq =



1 −1 0 0 0 0
0 1 −1 0 0 0
0 0 0 1 −1 0
0 0 0 0 1 −1
−1 0 0 1 0 0
0 −1 0 0 1 0
0 0 −1 0 0 1
1 0 0 0 −1 0
0 1 0 0 0 −1


. (117)
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Figure 5: Illustration of the 2 × 1 grid in Example 7. Each state p̃i, which is associated to a “nodal”
co-state ẽpi , i = 1, . . . , 6, is defined by a weighted sum of the conserved quantities pj , j = 1, . . . , 4, on the
adjacent triangles. The weights are printed next to the nodes. Red color and index I refer to the lower
triangles, green color and index II to the upper triangles.

Input trace matrices and effort mappings. As in the previous example, we start with a single
causality on the boundary and the only input trace matrix

Tq,1 =


1 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0

 , (118)

The remaining edges and all nodes are the discrete objects on which the elements of the co-state vectors
ẽq and ẽp are defined. This fact is represented by the effort mapping matrices

Peq,1 =

0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 1

 , Pep,1 = I6. (119)

We use the index 1 for this case with only edge inputs, and refer to the corresponding matrices in the
following example.

Mapping of the conserved quantities on the faces. With the same arguments as for the simple
example before, we can construct the matrix to define the discrete states p̃ = Pfp,1p, see also the
illustration of the weights in Fig. 5:

Pfp,1 =


αI 0 βII 0
γI αI 0 βII
0 γI 0 0
0 0 γII 0
βI 0 αII γII
0 βI 0 αII

 , αI/II + βI/II + γI/II = 1. (120)

Output matrices for the nodal efforts. According to (113) we obtain for the nodal output matrix

Sp,1 =


−αI −γI 0 0 −βI 0

0 −αI −γI 0 0 −βI
βII 0 0 γII αII 0
0 βII 0 0 γII αII
−βII 0 0 −γII −αII 0

0 αI γI 0 0 βI

 . (121)

Note that again there are two pairs of identical outputs (modulo the sign depending on the orientation
of the input edge), which is due to the fact that by merging the adjacent edges, nodes 3 and 4 could be
removed from the graph.
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Figure 6: Illustration of the components of q̃ in Example 8 in terms of the original conserved quantities
qj , j = 1, . . . , 9, on the edges of the grid. The components across the considered effort edge/aligned
with the effort edge are drawn in blue/red. The round black arrows indicate the sense of the rotational
components in q̃1 and q̃2 for positive values of εI and δI/II , respectively.

Mapping of the edge states. The solution of the matrix equation (114) for the matrices as defined
above (again, the rows of dp can be used to adjust the solution) results in a matrix

Pfq,1 = P⊥fq,1 + P‖fq,1 + Prot
fq,1 (122)

with

P⊥fq,1 =

 αI 0 0 αII 0 0 0 0 0
−γI2 0 −γII2 0 −γII2 −γI2 0 0 0

0 −γI2 0 −γII2 0 −γII2 −γI2 0 0

 , (123)

P‖fq,1 =

 0 0 0 0 0 βI + βII − 1 0 0 0
0 0 0 0 0 0 0 αI−βI

2 + αII−βII
2 0

0 0 0 0 0 0 0 0 αI−βI
2 + αII−βII

2

 , (124)

Prot
fq,1 =

 −δI δII δI −δII −δI δI + δII −δII 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 , (125)

and the abbreviation
δI/II = 1

8 + 1
4(αI/II − βI/II). (126)

Example 8 (2 × 1 grid, mixed boundary causality). Still considering the grid in Fig. 5, we assign the
efforts in nodes 1 and 2 the role of (boundary) inputs êb1 and êb2 and remove the effort on edge 1 from the
input vector eb. The corresponding input trace matrices are

T̂p =
[
1 0 0 0 0 0
0 1 0 0 0 0

]
, Tq =


0 1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 0

 . (127)

The matrix equation (87) for power preservation can now be written as[
(−1)rdTp PT

fp ŜTq
] [Pep

T̂p

]
+
[
PT
eq TT

q

] [Pfqdq
Sp

]
= 0. (128)

For the moment, we assume that by appropriate choice of Ŝq, the first term can be made (−1)rdTp PT
fp,1Pep,1.

We obtain the flow map Pfq and the output matrix Sp in the second term (with Pep,1 = I) by the solution
of

Pfqdq = −(−1)rPeqdTp PT
fp,1, Sp = −(−1)rTqdTp PT

fp,1. (129)
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The output matrix Sp contains the rows of Sp,1 that correspond to the input edges represented by the
rows of Tq. In the present case, we have to delete the first row in (121) and obtain

Sp =


0 −αI −γI 0 0 −βI
βII 0 0 γII αII 0
0 βII 0 0 γII αII
−βII 0 0 −γII −αII 0

0 αI γI 0 0 βI

 . (130)

The construction of Pfq follows the same lines as in the previous examples. The horizontal edge, on
which a discrete co-state is defined, gives rise to a new element of the discrete state vector q̃ ∈ R4, which
is illustrated in Fig. 6. The matrix Pfq becomes

Pfq = P⊥fq + P‖fq + Prot
fq (131)

with

P⊥fq =


0 0 0 0 0 −βI 0 0 0
αI 0 0 αII 0 0 0 0 0
−γI2 0 −γII2 0 −γII2 −γI2 0 0 0

0 −γI2 0 −γII2 0 −γII2 −γI2 0 0

 , (132)

P‖fq =


1
2 − αI 0 0 0 0 0 0 0 0

0 0 0 0 0 βI + βII − 1 0 0 0
0 0 0 0 0 0 0 αI−βI

2 + αII−βII
2 0

0 0 0 0 0 0 0 0 αI−βI
2 + αII−βII

2

 , (133)

Prot
fq =


−εI 0 εI 0 −εI εI 0 0 0
−δI δII δI −δII −δI δI + δII −δII 0 0

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

 , (134)

and the abbreviation
εI/II = 1

8 −
1
4(αI/II − βI/II). (135)

Figure 6 illustrates the different components whose (vector) sums constitute the states q̃i, i = 1, . . . , 4 in
the example. With

Pfp = PepPfp,1 =


0 γI 0 0
0 0 γII 0
βI 0 αII γII
0 βI 0 αII

 (136)

and

Ŝq = (−1)rT̂p

[
dTq PT

fq STp
] [Peq

Tq

]
=
[
αI − 1

2 0 −βII 0 βII −αI 0 βII − αI 0
γI − 1

2 αI 0 −βII 0 βII − γI −αI −γI βII − αI

]
,

(137)

see Fig. 7, the parametrization of power-preserving effort and flow maps and output matrices is completed.

4.1.4 Generalization to N ×M meshes and remarks

N ×M meshes. The construction as presented on the three elementary examples above can be gen-
eralized in a straightforward manner to arbitrary N ×M rectangular meshes. The direct interpretation
of the discretized system equations as discrete conservation laws in the case of Whitney approximation
forms allows for a construction of the matrices based on the properties of the 2-complex (generalized
oriented graph) on the discretization mesh. In the above examples, we used only two sets of convex
weights (αj , βj , γj), j ∈ {I, II} for the upper and lower triangles. It is, however, possible to assign differ-
ent combinations of convex weights to each triangle, for example on non-rectangular meshes over more
complex geometries.
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êb
1

y
βII

yαI

1
2

(a) f̂b
1

êb
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Figure 7: Illustration of the geometric objects on which the elements of the output vector f̂ b are defined
in Example 8 (blue, with weights). The dual elements of the input vector êb are defined on the red nodes.

Input trace matrices and effort maps. Identifying the elements of the input vector u =
[
(up)T (uq)T

]T =[
(êb)T (eb)T

]T with effort degrees of freedom on the boundary nodes and edges corresponds to a con-
sistent imposition of the effort boundary conditions in the finite-dimensional model. To arrive at the
input-output representation (92), the matrices

Πp :=
[
Pep

T̂p

]
and Πq :=

[
Peq

Tq

]
(138)

should be square and invertible. With the presented choice, Πp and Πq become permutation matrices and
the property Π−1

p/q = ΠT
p/q makes the matrices of the state space model as indicated in (95) particularly

simple.

Flow/state maps. By the presented construction, each element p̃i, i = 1, . . . , Ñp, of p̃ = Pfpp
is related to a 2-chain (a weighted formal sum of 2-simplices), located around the node associated to
ẽpi . The node and the weighted 2-chain can be considered as topologically dual objects. The property
αν + βν + γν = 1, ν ∈ {I, II} ensures that the balance of the discrete conserved quantities

Ñp∑
i=1

p̃i =
Np∑
j=1

pj − εp (139)

holds. If (boundary) input nodes are defined, the error εp 6= 0 occurs, because the weighted contribution
of pj on 2-simplices next to the input nodes is neglected in the definition of discrete states. It is easy to
imagine that the error εp, which tends to zero with grid refinement, can be related to well-known effects
from the discretization with staggered grids, like ghost values, see e. g. [12] for a discussion from the PH
point of view.

A related interpretation of the (minimal) states in terms of topologically dual objects holds for the
different elements of the vector q̃ = Pfqq. As shown in Fig. 6, each element q̃i of q̃ can be considered
dual to a discrete effort ẽqi on a horizontal, vertical or diagonal edge (drawn in red). q̃i is localized on
a formal sum of the adjacent 1-simplices (edges), which can be decomposed into components across and
along the effort edge and a rotational part. Only the “across” part contributes to the discrete constitutive
equations as discussed in the next section. While the effort edges are considered outer oriented (“across”),
the formal sums of edges, on which the q̃i are defined, are inner oriented (“along”), which describes the
geometric nature of the different system variables.
Remark 11. The reconstruction of the rotational components of q̃ from the given quantities can be used
to discretize the vorticity term in the shallow water equation (31).

Power-conjugated discrete outputs. Like the minimal flows and efforts, the discrete power-conjugated
outputs f b = Spep and f̂ b = Ŝqeq are constructed as weighted sums of the discrete efforts in the vicinity
of the corresponding boundary input. The components f bi are defined by a convex sum of node efforts,
see e. g. (130). The f̂ bi are composed of rotational parts and a component associated to the neighbouring,
outer oriented boundary edge, as illustrated in Fig. 7.
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If the effort maps and input trace matrices form permutation matrices (138), the feedthrough matrices
in the PH state space model according to (92) become Dq = ŜqTT

q and Dp = SpT̂T
p . By the collocated

construction of f b and f̂ b, these matrices have only non-zero elements at the interfaces between two
boundary regions Γi and Γ̂j with different causality. This feedthrough is physical as it only stems from
the definition of neighboring in- and outputs, and can be completely avoided by setting the boundary
inputs zero at these interfaces. For 1D systems, where the two parts of the boundary are not connected,
no feedthrough term occurs at all. The absence of an undesired direct feedthrough (undesired at least
for the numerical approximation of hyperbolic systems) distinguishes our method from the structure-
preserving discretization according to [15], where the feedthrough stems from the convex sum of nodal
efforts to define the discrete co-state variables.

4.1.5 Discrete constitutive equations

To obtain a consistent numerical approximation of the system of conservation laws, the discrete states p̃,
q̃ and the efforts or co-states ẽp, ẽq must be related via discrete constitutive relations that are consistent
with the continuous ones. We consider the case of linear constitutive equations with Hamiltonian density
H = 1

2p ∧ ∗p+ 1
2q ∧ ∗q and ep = ∗p, eq = − ∗ q. The discrete constitutive equations will be expressed by

ẽp = Qpp̃, ẽq = Qqq̃ (140)

with positive definite, diagonal matrices Qp, Qq that represent diagonal discrete Hodge operators [71].
The discrete states p̃ and q̃ are constructed (as f̃p and f̃ q) as linear combinations of integral conserved
quantities on the 2- and 1-simplices of the discretization grid. The faces, based on which p̃i is constructed,
surround the node to which ẽpi is associated. A similar geometric duality35 can be observed for the ẽqi -
edges and the neighbouring edges that constitute q̃i. One can even imagine p̃, q̃ localized on a (virtual)
dual grid, whose localization and shift with respect to the original (primal) grid are parameterized by
the convex set of mapping parameters (αj , βj , γj), which we assume all to be positive and related via
αj + βj + γj = 1. Moreover, we consider a mesh with equal step size hx = hy = h in both coordinate
directions.

For the consistent discretization of the time-invariant constitutive equations, we consider a steady state.
In this case, the elements of ẽp must represent “average” values of p on the weighted sum of balance
areas36 on which the states p̃i are defined. The diagonal matrix Qp with elements

[Qp]i,i = 2
h2∑Np

j=1[Pfp]i,j
, i = 1, . . . , Ñp (141)

represents a consistent Hodge matrix.

Accordingly, the elements of ẽq must reflect the integral flux of the vector field37 q] across the corre-
sponding horizontal, vertical or diagonal edges. Only the parts of q̃i, which are associated to the edges
perpendicular to the ẽqi -edge, contribute to this flux. This reasoning yields a diagonal matrix Qq that
replaces the Hodge star in (102) with diagonal elements38

[Qq]hor/veri,i = 1∑Nq
j=1

∣∣∣[P⊥fq]i,j∣∣∣ and [Qq]diai,i = 2∑Nq
j=1

∣∣∣[P⊥fq]i,j∣∣∣ (142)

for the efforts on horizontal/vertical and diagonal edges, respectively.
35This geometric duality is immediately given if the two conservation laws are modeled on two shifted grids, i. e. dual

meshes [10].
36Precisely, the average value of the coefficient function of the 2-form p.
37Index raising of the 1-form q.
38Note that our grids according to Fig. 2 have square cells and unique orientations of horizontal, vertical and diagonal

edges.
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4.1.6 Simulation study

We consider the linear wave equation in port-Hamiltonian form (101)–(103) on a square domain Ω =
(0, 20) × (0, 20) to illustrate the effects of different mapping parameters. We impose the boundary con-
ditions

ep(0, 0) = u(t) =
{

sin2(π8 t), 0 ≤ t < 8
0 t ≥ 8

, eq(x, y) = 0 on ∂Ω. (143)

by the input trace matrices
T̂p =

[
1 0 . . . 0

]
, Tq = I1b , (144)

where I1b ∈ RMb×Nq is the matrix composed of unit row vectors associated to boundary edges. The inputs
to the simulation model according to Eq. (98) are

êb(t) = u(t), eb(t) = 0. (145)

Table 3: Parameter sets used in the simulations.

αI βI γI δI εI αII βII γII δII εII

#1 1/3 1/3 1/3 1/8 1/8 1/3 1/3 1/3 1/8 1/8
#2 1/2 1/4 1/4 3/16 1/16 1/4 1/2 1/4 1/16 3/16
#3 2/3 1/12 1/4 13/48 −1/48 1/12 2/3 1/4 −1/48 13/48
#4 15/16 1/32 1/32 45/128 −13/128 1/32 15/16 1/32 −13/128 45/128

Fig. 8 shows the simulated propagation of the wave in radial direction under different parametrizations
of the method, see Table 3. The red line displays a circle with radius tsim − T/2 = 14, as a reference
for the maximum of the wave front39 at time tsim, based on the exact solution. The parameter sets in
Table 3 represent different weightings of the 2-simplices in the propagation direction to compute f̃pi , see
Fig. 9. For parameter set #1 (equal weights 1/3 in the definition of f̃pi associated to a nodal effort ẽpi ),
the propagation of the wave front in the effort variable ep is reproduced in a completely unsatisfactory
manner. Parameter set #2 leads also to undesired dispersion. Moreover, the quarter circle shape of the
wave is perturbed, which is due to the non-isotropic mesh and the inadequate parametrization. Parameter
set #3 shows less dispersion and parametrization #4 reproduces appropriately the circular wave front

A direct explanation of the unsatisfactory behaviour of the numerical solutions #1 and #2 can be found
by studying the definition of the matrix P⊥fq, which is visualized in the upper drawings of Fig. 6 for the
elementary example. Consider first the parametrizations #3 and #4 in Table 3. With

sgn(δI) = −sgn(δII) and sgn(εI) = −sgn(εII), (146)

the rotational parts in the definition of the discrete states q̃ are composed of discrete rotations of q in
the same sense. This is not the case for parametrizations #1 and #2, which is a hint that reasonable
parameter sets for the numerical approximation of hyperbolic systems should satisfy condition (146), or,
equivalently, αI − βI ≶ 1

2 and at the same time αII − βII ≷ 1
2 .

Note that all four simulation models are stable by construction. In the following section, we discuss
the quality of the numerical scheme in terms of the eigenvalue approximation. The 1D case allows in
a straightforward manner to implement negative values for the mapping parameter and thereby enforce
upwinding in the numerical solution.

4.2 Eigenvalue approximation for the 1D wave equation

For a short analysis of the spectral approximation properties, we consider the 1D wave equation on a
domain Ω = (0, 1). The degrees of the differential forms for both conserved quantities are p = q = 1, the
exponent in the canonical differential operator of Eq. (10) becomes r = pq + 1 = 2. With the quadratic

39The plots in Fig. 8 represent the discrete, minimal efforts ẽp
i in the nodes of the mesh.
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Figure 8: Propagation of a wave due to point-wise boundary excitation under different parametrizations
of the method. Snapshots at tsim = 18.

Hamiltonian H =
∫ 1

0 ( 1
2p∧∗p+ 1

2q∧∗q), the PH representation with boundary efforts and flows as defined
in Eq. (25), is[

∂tp
∂tq

]
=
[

0 −d
−d 0

] [
ep

eq

]
, e∂ =

[
eq(0)
−ep(L)

]
, f∂ =

[
ep(0)
eq(L)

]
, ep = ∗p, eq = ∗q. (147)

The system corresponds to the transmission line model in Example 1 with length L = 1 and l(z) = c(z) =
1. We consider two identical grids with N + 1 nodes and N edges for both conserved quantities, with
the corresponding Whitney node and edge forms to approximate the spatial distribution of effort 0-forms
and flow 1-forms. According to the choice of boundary efforts (= boundary inputs), we set the boundary
input matrices (trace matrices)

Tq =
[
1 0 . . . 0

]
∈ R1×(N+1), T̂p =

[
0 . . . 0 −1

]
∈ R1×(N+1). (148)

Together with the effort maps

Peq =
[
0N×1 IN

]
, Pep =

[
IN 0N×1

]
, (149)

all effort degrees of freedom are assigned either the roles of inputs eb = Tqeq ∈ R and êb = T̂pep ∈ R or
interior discrete efforts ẽq = Peqeq ∈ RN and ẽp = Pepep ∈ RN . With the discrete derivative matrices
(or co-incidence matrices)

dp = dq =

−1 1
. . . . . .

−1 1

 ∈ RN×(N+1), (150)
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Figure 9: Illustration of 2-simplices and weights that contribute to the definition of the discrete state p̃i
for the parametrizations # 3 (left) and #4 (right). Note that information of the conserved quantity p,
which is directly influenced by the boundary input effort eq in the upper right corner, is preferred for the
computation of the node effort ẽpi (“upwinding”).
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2 −êb = ep
3

(Input)

p̃1 = (1−α)p1 p̃2 = αp1 + (1−α)p2

q̃1 = (1−α)q1 + αq2 q̃2 = (1−α)q2

QqQp

p1 p2

q1 q2

(Input)
eb = eq

1 eq
2 eq

3

ep
1 ep
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Figure 10: Illustration of the difference between our approach and the method according to [15]. In
our approach, the discrete efforts at the interior nodes are computed – via appropriate discrete Hodge
matrices – based on convex sums of the original discrete states (left sketch). Following [15], the original
discrete states remain unchanged, but the co-states are computed as convex sums of the node efforts
(right sketch). For α = 0 and α′ = 0 both methods coincide. Then, for example, the co-state ẽq1 = eq2 is
determined based on the original discrete state q1 in both cases.

we obtain

Pfq = PT
fp =


1− α α

. . . . . .
1− α α

1− α

 ∈ RN×N (151)

as flow maps and

Sp =
[
1− α α 0 . . . 0

]
∈ R1×(N+1), Ŝq =

[
0 . . . 0 α 1− α

]
∈ R1×(N+1) (152)

as boundary output matrices, which verify the matrix equation (87) and define f̃ q = Pfqf q ∈ Rn,
f̃p = Pfpfp ∈ Rn and f b = Spep ∈ R, f̂ b = Ŝqeq ∈ R. The consistent approximation of the constitutive
equations, which takes into account the definition of co-states and the mapping of the discrete states, is
expressed by the diagonal Hodge matrices (in accordance to Section 4.1.5 for the 2D case)

Qp = 1
h
diag{ 1

1− α, 1, . . . , 1}, Qq = 1
h
diag{1, . . . , 1, 1

1− α}. (153)

We compare the results of our method with those obtained with the approach in [15], where mapping the
efforts at the boundary nodes of each discretization interval using a parameter40 α′ yields non-degenerate

40We use a prime to distinguish from the α in our method.
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Table 4: Eigenvalue imaginary parts for the discretized 1D wave equation with different flow mapping
parameters α and grid sizes N , compared to the exact values.

k Exact α = −1/12 α = 0 α = 1/6
N = 20 N = 40 N = 80 N = 20 N = 40 N = 80 N = 20 N = 40 N = 80

1 1.5708 1.5263 1.5482 1.5594 1.5321 1.5513 1.5610 1.5440 1.5576 1.5642
2 4.7124 4.5798 4.6449 4.6783 4.5873 4.6516 4.6825 4.6074 4.6663 4.6910
3 7.8540 7.6352 7.7422 7.7974 7.6156 7.7449 7.8021 7.5975 7.7562 7.8131
4 10.996 10.692 10.840 10.917 10.599 10.827 10.919 10.468 10.815 10.927
5 14.137 13.746 13.939 14.036 13.521 13.892 14.031 13.176 13.830 14.030
10 29.845 28.593 29.428 29.641 26.613 28.814 29.490 23.192 27.852 29.269
20 61.261 46.492 59.316 60.828 39.883 54.899 59.422 26.831 47.252 57.198
40 124.09 – 93.244 120.76 – 79.940 111.47 – 53.664 95.338
80 249.76 – – 186.62 – – 159.97 – – 107.33

power pairings and a PH model in state space form. The strong compatibility conditions, which restrict
the parameter value to α′ = 1

2 for the case of lowest order Whitney forms in the original work, can
be relaxed by a weak formulation of the problem. In contrast to our method, the state space models
according to [15] feature a direct feedthrough.41 The fundamental difference between both approaches is
illustrated by the sketches in Fig. 10 and the explanation below. The discrete Hodge matrices according
to [15] are Qp = Qq = 1

hdiag{1, . . . , 1}. For α < 1
2 and α′ < 1

2 , the state information from the directions
in which the associated effort variables are imposed as boundary inputs, obtains a higher weight. This
type of upwinding leads to a very good approximation of the eigenvalues for values close to zero of α and
α′.

We consider the spectrum of the canonical differential operator of the Stokes-Dirac structure under
homogeneous Dirichlet boundary conditions on the efforts (Neumann-Dirichlet conditions for the PDE
in second order form). The exact eigenvalues are ± 2k−1

2 πi, k = 1, 2, 3, . . ., see [72]. As the structure-
preserving discretization is conservative, also the approximate eigenvalues have zero real parts. We
display in Table 4 the imaginary parts for different values of the flow mapping parameter α. Table 5
shows the corresponding values for the structure-preserving discretization according to [15] with different
effort mapping parameters α′. The relative errors for the first, 5th and 20th eigenvalue are plotted in
the diagrams of Figs. 11 and 12.

For all displayed parametrizations around α = α′ = 0, the order of the first eigenvalue approximation
error is O(h) with h = 1

N , see the left diagrams in Figs. 11 and 12. This is in accordance with the
consistency order 1 for the non-centered approximation of the node efforts (see [12] for the discussion
from the finite volumes point of view). We observe that for the parametrizations α = − 1

12 and α′ = 1
12 ,

the approximation quality of the higher eigenvalues is improved. The result of this upwinding compared
to the situation α = 0/α′ = 0 is a remarkable improvement of the solution of the boundary value
problem42 as shown in the previous section for the 2D case. Note that the same effect can be achieved
if in the finite volume approach on regularly staggered grids [13] (which corresponds to α = 0/α′ = 0),
the control volumes to compute the numerical fluxes are shifted. Tables 4 and 5 as well as Figures 11
and 12 show a very similar evolution of the eigenvalues under grid refinement. Note however, that our
approach, in contrast to [15], produces no structural feedthrough, which is appropriate for hyperbolic
systems43. Moreover, as has been shown in the previous section, the extension to 2D (and prospectively
3D) is straightforward.
Remark 12. In the presented context, it makes sense to talk of upwinding for values of α < 1

2 . With the
parametrization α = 1

2 , the co-states are computed based on the equally weighted information of the states
to the left and to the right of the considered node. This centered evaluation of the discrete constitutive
equations leads to order 2 of consistency and the approximation of the eigenvalues. For 1

2 < α < 1, the
41The exception with zero feedthrough matrix is α′ = 0, which corresponds to α = 0 in our approach. With these

parameter values, both methods produce models that coincide with those obtained from discrete modeling / finite volumes
on regularly staggered grids [10], [13].

42The same holds for the initial value problem, which is not illustrated here.
43The feedthrough, together with the over-estimation of the highest eigenvalues for α′ → 0.5, fits to the good results the

method according to [15] achieves for the discretization of parabolic systems [16], where the instantaneous propagation of
information must be approximated.
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Figure 11: Magnitude of the approximation error over different grid sizes for the 1st, 5th and 20th eigen-
value of the canonical system operator. Upwinding improves the approximation of the higher eigenvalues.

Table 5: A comparable approximation of the eigenvalues can be obtained using the method presented in
[15] in a weak formulation, which permits to choose parameters other than α′ = 1

2 . Note, however, that
the resulting state space models, in contrast to our approach, feature a structural feedthrough.

k Exact α′ = 1/12 α′ = 0 α′ = −1/6
N = 20 N = 40 N = 80 N = 20 N = 40 N = 80 N = 20 N = 40 N = 80

1 1.5708 1.5387 1.5546 1.5627 1.5321 1.5513 1.5610 1.5189 1.5447 1.5577
2 4.7124 4.6152 4.6636 4.6879 4.5873 4.6516 4.6825 4.5283 4.6266 4.6712
3 7.8540 7.6888 7.7719 7.8130 7.6156 7.7449 7.8021 7.4544 7.6858 7.7789
4 10.996 10.757 10.879 10.938 10.599 10.827 10.919 10.250 10.708 10.877
5 14.137 13.816 13.985 14.062 13.521 13.892 14.031 12.875 13.679 13.961
10 29.845 28.700 29.459 29.675 26.613 28.814 29.490 22.886 27.377 29.052
20 61.261 47.800 59.416 60.773 39.883 54.899 59.422 29.950 46.903 56.384
40 124.09 – 95.897 120.87 – 79.940 111.47 – 59.974 94.912
80 249.76 – – 191.95 – – 159.97 – – 119.99

numerical approximation is still in PH form, without numerical dissipation44. In the present 1D example,
this upwinding in wrong direction manifests itself by control input vectors Bp ∈ R2N and Bq ∈ R2N

whose second (second last) element have bigger magnitude than the first (the last) element. At the same
time, a pair of purely imaginary eigenvalues, which tends to 0 under grid refinement, is introduced.

5 Conclusions

We introduced the weak form of the Stokes-Dirac structure with a segmented boundary, on which the
causality of the port variables (the assignment as system in- or output) alternates. This Stokes-Dirac
structure is the underlying geometric structure to represent power continuity in a port-Hamiltonian
distributed parameter system. On the example of a system of two conservation laws with canonical
interdomain coupling, we described the mixed Galerkin discretization of the Stokes-Dirac structure in a
general way. To obtain finite-dimensional approximate models in PH form with the prescribed boundary
inputs – as basis for the interconnection of multi-physics models, control design and simulation – we
proposed power-preserving mappings on the space of discrete effort and flow variables. These maps allow
to define non-degenerate duality pairings, leading to finite-dimensional approximate Dirac structures on
the minimal discrete bond space. The Dirac structures admit several representations, one of them being
an explicit input-output-representation. Port-Hamiltonian state space models are obtained, if dynamics
is added and the constitutive equations are approximated consistently. On the example of Whitney
finite elements we demonstrated the discretization procedure and gave interpretations of the resulting
discretization schemes.

The proposed method is, to the best of our knowledge, the first method which allows for a structure-
preserving discretization of PH distributed parameter systems in more than one spatial dimension with

44For α = 1, the first or last element respectively of the Hodge matrices according (153) becomes singular.
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Figure 12: Magnitude of the approximation error over different grid sizes for the 1st, 5th and 20th
eigenvalue of the canonical system operator with the method according to [15].

a systematic treatment of different boundary inputs and the possibility to tune the discretized models
between centered schemes and upwinding. The proposed family of approximation Dirac structures avoids
a direct feedthrough in the state space model and the over-estimation of higher frequencies in the ap-
proximate spectrum, which is the case for the method presented in [15], where the efforts instead of the
flow degrees of freedom are mapped. The weak form of the Stokes-Dirac structure is the key feature
that allows to include additional effects such as dissipation or diffusion or, more generally, to tackle the
discretization of PH systems with general and higher order interconnection operators and distributed
inputs.

An important difference of our work to related works like [10], [19], [30], where either dual grids are used
a priori or at least one conservation law contains the Hodge star or the co-differential, is that our initial
discretization is based on a metric-independent formulation of the conservation laws. We approximate
all differential forms in the same conforming subspaces depending on their degree (i. e. on the same mesh
in FE), which has the advantage that boundary variables are defined directly on ∂Ω, without having to
cope with an eventual grid shift. To obtain an explicit state space model, however, we need – no free
lunch – the power-preserving mappings. These, in turn, give us degrees of freedom to tune the resulting
numerical method.

Current and future work concerns the application of the method to the PH representations of systems
including heat and mass diffusion phenomena, which share similar Stokes-Dirac structures, as well as
coupled heat and mass transport phenomena in non-homogeneous media such as catalytic foams. More-
over, we want to analyse the approach when applied to PH systems with non-canonical system operators
(containing e. g. higher order derivatives). In this context, we are interested in the reasonable choice of
design parameters in order to adapt the discretization scheme to the physical nature of the system (e. g.
to account for the ratio between convection and diffusion). This aspect is closely related to the analysis
of system-theoretic properties of the discretized models in view of control design. Further important
issues are the implementation of the approach in existing finite element tools like FEniCS [35] and the
use of approximation spaces with higher degree [29], [37]. We intend to include the discretization of the
nonlinear constitutive relations for the 2D shallow water equations in our open models and clarify the
links with recent work on geometric mixed finite elements like [31], [32], where in- and outputs are not
explicitly taken into account, and upwinding in differential forms as presented in [73].
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