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Abstract

Population Balance Models have a wide range of applications in many industrial fields as
they allow accounting for heterogeneity among properties which are crucial for some system
modelling. They actually describe the evolution of a Number Density Function (NDF) using
a Population Balance Equation (PBE). For instance, they are applied to gas-liquid columns
or stirred reactors, aerosol technology, crystallisation processes, fine particles or biological
systems. There is a significant interest for fast, stable and accurate numerical methods in
order to solve for PBEs, a class of such methods actually does not solve directly the NDF
but resolves their moments. These methods of moments, and in particular quadrature-
based methods of moments, have been successfully applied to a variety of systems. Point-
wise values of the NDF are sometimes required but are not directly accessible from the
moments. To address these issues, the Extended Quadrature Method of Moments (EQMOM)
has been developed in the past few years and approximates the NDF, from its moments, as
a convex mixture of Kernel Density Functions (KDFs) of the same parametric family. In the
present work EQMOM is further developed on two aspects. The main one is a significant
improvement of the core iterative procedure of that method, the corresponding reduction
of its computational cost is estimated to be between 80% and 85%. The second aspect is
an extension of EQMOM to two new KDFs used for the approximation, the Weibull and
the Laplace kernels. All MATLAB source codes used for this article are provided with this
article.

Keywords: Extended Quadrature Method of Moments (EQMOM), Quadrature Based
Method of Moments (QBMM), Population Balance, Mathematical modelling, Gauss
quadrature

1. Introduction1

Population Balance Equations (PBEs) are particular formalisms that allows describing2

the evolution of properties among heterogeneous populations. They are used to track the size3
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distribution of fine particles [1]; the bubble size distribution in gas-liquid stirred-tank reactors4

or bubble columns [2, 3]; the crystal-size distribution in crystallizers or the distribution of5

biological cell properties in bioreactors [4, 5], among other examples.6

A PBE describes the evolution and transport of a Number Density Function (NDF),7

under the influence of multiple processes which modify the tracked property distribution8

(e.g. erosion, dissolution, aggregation, breakage, coalescence, nucleation, adaptation, etc.).9

One often requires low-cost numerical methods to solve PBEs, for instance when coupling10

with a flow solver (e.g. Computational Fluid Dynamics software). Monte-Carlo methods11

constitute a stochastic resolution of the population balance and can be applied to such12

PBE-CFD simulations [6]. Similarly, sectional methods allow direct numerical resolutions of13

the PBE through the discretisation of the property space [7, 8]. They respectively require14

a high number of parcels or sections in order to reach high accuracy and are thus often15

discarded for large-scale simulations.16

An interesting alternative approach lies in the field of methods of moments. A PBE,17

which describes the evolution of a NDF, is transformed in a set of equations which describes18

the evolution of the moments of that distribution. Moments are integral properties of NDFs,19

the first low order integer moments are related to the mean, variance, skewness and flatness20

of the statistical distributions described by NDFs. This approach then reduces the number21

of resolved variables to a finite set of NDF moments. It also comes with some difficulties22

when one must compute non-moment integral properties, or point-wise evaluations, of the23

distribution [9].24

To tackle these issues, one can try to recover a NDF from a finite set of its moments. In25

most cases, this reverse problem has an infinite number of solutions and different approaches26

exist to identify one or an other out of them. Some methods that lead to continuous ap-27

proximations are the Spline method [10], the Maximum-Entropy approach [9, 11, 12] or the28

Kernel Density Element Method (KDEM) [13].29

More recently, the Extended Quadrature Method of Moments (EQMOM) was proposed30

as a new approach which is more stable than the previous ones, and yields either continuous31

or discrete NDFs depending on the moments [1, 14, 15]. EQMOM has been implemented in32

OpenFOAM [16] for the purpose of PBE-CFD coupling. The core of this method relies on33

an iterative procedure that is a computational bottleneck.34

The current work focuses on EQMOM and develops a new core procedure whose compu-35

tational cost is significantly lower than previous implementations by reducing both (i) the36

cost of each iteration and (ii) the total number of required iterations.37

The previous core procedure [1] will be recalled before describing how it can be shifted38

toward the new –cheaper– approach. Both implementations will be compared in terms of39

computational cost (number of required floating-point operations) and run-time.40

Multiple variations of EQMOM exist, the Gauss EQMOM [14, 17], Log-normal EQMOM41

[18] as well as Gamma and Beta EQMOM [15]. Two new variations, namely Laplace EQ-42

MOM and Weibull EQMOM, are proposed along with a unified formalism among all six43

variations.44

The whole source code used to write this article (figures and data generation) is provided45

as supplementary data, as well as our implementations of EQMOM in the form of a MATLAB46

functions library [19].47
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2. Quadrature Based Methods of Moments: QMOM and EQMOM48

2.1. Definitions49

Let dµ(ξ) be a positive measure, induced by a non-decreasing function µ(ξ) defined on50

a support Ωξ. This measure is associated to a Number Density Function n(ξ) such that51

dµ(ξ) = n(ξ)dξ. Let mN be the vector of the first N + 1 integer moments of this measure:52

mN =


m0

m1
...
mN

 , mk =

∫
Ωξ

ξkn(ξ)dξ (1)

Three actual supports will be considered: (i) Ωξ = ]−∞,+∞[, (ii) Ωξ = ]0,+∞[ and53

(iii) Ωξ = ]0, 1[. For each support, one can define the associated realisable moment space,54

MN(Ωξ), as the set of all vectors of finite moments mN induced by all possible positive55

measures defined on Ωξ.56

2.2. Quadrature Method of Moments57

EQMOM is based on the Quadrature Method of Moments (QMOM) that was first in-58

troduced by McGraw [20]. It is used to approximate integral properties of a distribution59

where only a finite number of its moments is known. By making use of an even number60

of moments 2P , one can compute a Gauss quadrature rule characterised by its weights61

wP = [w1, . . . , wP ]T and nodes ξP = [ξ1, . . . , ξP ]T such that:62 ∫
Ωξ

f(ξ)dµ(ξ) =
P∑
i=1

wif(ξi) (2)

holds true if f(ξ) = ξk, ∀k ∈ {0, . . . , 2P −1}. Otherwise, this quadrature rule will produce63

an approximation of the integral property. The computation of the quadrature rule (i.e.64

the vectors wP and ξP ) is of special interest for us, which is why its two main steps will be65

detailed.66

Any positive measure dµ(ξ) is associated with a sequence of monic polynomials (i.e. poly-67

nomial whose leading coefficient equals 1) denoted πk –with k the order of the polynomial–68

such that:69 ∫
Ωξ

πi(ξ)πj(ξ)dµ(ξ) = 0, for i 6= j (3)

These polynomials are said orthogonal with respect to the measure dµ(ξ) and are defined70

by:71

πk(ξ) =
1

ck

∣∣∣∣∣∣∣∣∣∣∣

m0 m1 · · · mk−1 mk

m1 m2 · · · mk mk+1
...

...
. . .

...
...

mk−1 mk · · · m2k−2 m2k−1

1 ξ · · · ξk−1 ξk

∣∣∣∣∣∣∣∣∣∣∣
(4)
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with ck a constant chosen so that the leading coefficient (of order k) of πk equals 1, hence72

making πk a monic polynomial.73

It is known that monic orthogonal polynomials satisfy a three-term recurrence relation74

[21]:75

πk+1(ξ) = (ξ − ak)πk(ξ)− bkπk−1(ξ) (5)

with ak and bk being the recurrence coefficients specific to the measure dµ(ξ), π−1(ξ) = 076

and π0(ξ) = 1.77

Let Jn(dµ) be the n×n Jacobi matrix associated to the measure dµ. This is a tridiagonal78

symmetric matrix defined as:79

Jn(dµ) =


a0

√
b1 0

√
b1 a1

. . .
. . . . . .

√
bn−1

0
√
bn−1 an−1

 (6)

The weights and nodes of the quadrature rule from Eq. (2) are given by spectral properties80

of JP (dµ). The nodes ξP of the rule are the eigenvalues of JP (dµ). The weights of the rule81

are given by:82

wi = m0v
2
1,i (7)

where v1,i is the first component of the normalised eigenvector belonging to the eigenvalue83

ξi. The computation of the quadrature rule (Eq. (2)) then relies on two steps:84

1. The computation of the recurrence coefficients aP−1 = [a0, . . . , aP−1]T and bP−1 =85

[b1, . . . , bP−1]T.86

2. The computation of the eigenvalues and the normalised eigenvectors of JP (dµ).87

Multiple algorithms are available in the literature to compute the recurrence coefficients:88

• The Quotient-Difference algorithm [22, 23]89

• The Product-Difference algorithm [24]90

• The Chebyshev algorithm [25]91

The Chebyshev algorithm was found to be the stablest one of the three [1, 25], its description92

is given in Appendix A.93

2.3. Extended Quadrature Method of Moments94

The QMOM method is well suited for the approximation of integral properties of the95

NDF, which is actually the main purpose of Gauss quadratures. However, in many applica-96

tions such as evaporation [9] or dissolution [26] processes, point-wise values of the NDF n(ξ)97

are required but not directly accessible from the moments. For that purpose, a method is98

needed to produce an approximation ñ(ξ) of the original distribution n(ξ), by knowing only99

a finite set of its moments.100
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In a sense, one can consider that the Gaussian quadrature computed with QMOM ap-101

proximates n(ξ) as a weighted sum of Dirac distributions:102

ñ(ξ) =
P∑
i=1

wiδ(ξ, ξi) (8)

with the Dirac δ distribution defined by its sifting property103 ∫ +∞

−∞
f (ξ) δ(ξ, ξm)dξ = f (ξm) (9)

For most applications, n(ξ) is expected to be a continuous distribution whilst QMOM104

yields monodisperse or discrete polydisperse reconstructions of n(ξ), with ñ(ξ) = 0 for all105

values of ξ except some finite number of these values.106

Many methods were suggested to tackle this problem and to propose a continuous recon-107

struction ñ(ξ) from a finite number of moments mN . Some of them are the Spline method108

[10], the Maximum-Entropy approach [11, 12, 9] or the Kernel Density Element Method109

[13]. Their properties will not be discussed here but one only underlines that they tend to110

be unstable, ill-conditionned, or have a high sensitivity to numerical parameters [10, 26, 27].111

In particular, none of them can handle the case of a moment set which would be on the112

boundary of the realisable moment space mN ∈ ∂MN(Ωξ). Such a moment set is associated113

to a discrete (or degenerated) distribution and, in this specific case, the solution provided114

by QMOM is the only possible reconstruction.115

Note that a failure –or instabilities– in a numerical method can compromise the integrity116

of large-scale simulations. For this reason, Chalons et al. [14], Yuan et al. [15] and Nguyen117

et al. [1] proposed a robust and stable method to tackle this reconstruction problem by han-118

dling both continuous approximations and discrete solutions. Their approach, the Extended119

Quadrature Method of Moments, approximates n(ξ) as a convex mixture of Kernel Density120

Functions (KDFs) of the same parametric family:121

ñ(µ) =
P∑
i=1

wiδσ(ξ, ξi) (10)

with122

• wi: the weight of the i-th node, wi ≥ 0,∀i ∈ {1, . . . , P}123

• ξi: the location parameter of the i-th node, ξi ∈ Ωξ,∀i ∈ {1, . . . , P}124

• δσ: a KDF chosen to perform the approximation, referred later to as the reconstruction125

kernel. σ is the shape parameter of the approximation.126

The computation of the weights wP = [w1, . . . , wP ]T, the nodes ξP = [ξ1, . . . , ξP ]T and127

the shape parameter σ from the moment set m2P is performed by the EQMOM moment-128

inversion procedure. The improvement of this procedure constitutes the core of this article129

and is detailed in section 3.130
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Multiple standard normalized distribution functions can be used as the reconstruction131

kernel δσ (e.g. Gaussian, Log-normal, etc.). A list of them is given in Appendix B. All132

of these kernels degenerate into Dirac distribution if their shape parameters are sufficiently133

small:134

lim
σ→0

δσ(ξ, ξm) = δ(ξ, ξm) (11)

This allows EQMOM to perfectly handle the case of a moment set m2P being on the bound-135

ary of the realisable moment space ∂M2P (Ωξ).136

EQMOM can also be used to compute integral properties of the NDF with high accuracy.137

This comes with the introduction of nested quadratures. The main quadrature proposes the138

following approximation of integral terms:139 ∫
Ωξ

f(ξ)n(ξ)dξ ≈
P∑
i=1

wi

[∫
Ωξ

f(ξ)δσ(ξ, ξi)dξ

]
(12)

Moreover, a quadrature rule can be used to approximate the bracketed integral in Eq.140

(12). This will be the nested quadrature that actually depends on the kernel δσ(ξ, ξm). For141

instance, Gauss-Hermite quadratures can be used to approximate integrals over a Gaussian142

kernel (see Appendix B.1). Nested quadratures then give the following approximation:143 ∫
Ωξ

f(ξ)n(ξ)dξ ≈
P∑
i=1

wi

Q∑
j=1

ωjf
(
ξ

(σ)
ij

)
(13)

withQ the order of the sub-quadrature, ωQ = [ω1, . . . , ωQ]T the weights of the sub-quadrature,144

and ξ
(σ)
ij the j-th node of the sub-quadrature, taking into account the location and shape145

parameters of the i-th main-quadrature node. These nested quadratures are detailed for all146

KDFs in Appendix B and Appendix C.147

3. Moment inversion procedure148

The EQMOM moment-inversion procedure comes with analytical solutions for some ker-149

nels in the case of low-order quadratures. The one-node analytical solutions are detailed for150

all kernels in Appendix B. When they exist, the two-nodes analytical solutions are imple-151

mented in MATLAB code (see supplementary data) but are not detailed in this article. The152

current section is focusing on the numerical procedure used to compute the reconstruction153

parameters in absence of an analytical solution.154

The procedure proposed by Yuan et al. [15] and Nguyen et al. [1] is first recalled in section155

3.1. The section 3.2 details how their approach can be shifted toward a new convergence156

criteria that will be applied to the specific cases of157

• the Hamburger moment problem (section 3.3): NDF defined on the whole phase space158

Ωξ = ]−∞,+∞[159

• the Stieltjes moment problem (section 3.4): NDF defined on the positive phase space160

Ωξ = ]0,+∞[161
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• the Hausdorff moment problem (section 3.5): NDF defined on the closed support162

Ωξ = ]0, 1[163

3.1. Standard procedure164

Let mN be the vector of the first N + 1 integer moments of the measure dµ(ξ) = n(ξ)dξ,165

with N = 2P an even integer:166

mN =


m0

m1
...
mN

 , mk =

∫
Ωξ

ξkn(ξ)dξ (14)

The EQMOM moment-inversion procedure aims to identify the parameters σ, wP =167

[w1, . . . , wP ]T and ξP = [ξ1, . . . , ξP ]T such that mN = m̃N with:168

m̃N =


m̃0

m̃1
...
m̃N

 , m̃k =

∫
Ωξ

ξkñ(ξ)dξ, ñ(ξ) =
P∑
i=1

wiδσ(ξ, ξi) (15)

For any value of σ, Yuan et al. [15] identified a procedure which leads to the parameters169

wP and ξP such that mN−1 = m̃N−1. The EQMOM moment-inversion problem has then170

been reduced to solving a scalar non-linear equation by looking for a root of the function171

DN(σ) = mN − m̃N(σ).172

The approach developed by Yuan et al. [15] and then improved by Nguyen et al. [1] is173

based on the fact that, for the KDFs used in EQMOM, it is possible to write the following174

linear system:175

m̃n = An(σ) ·m∗n (16)

where An(σ) is a lower-triangular (n+ 1)× (n+ 1) matrix whose elements depend only on176

the chosen KDF and on the value σ, whereas m∗n is defined as:177

m∗n =


m∗0
m∗1
...
m∗n

 , m∗k =
P∑
i=1

wiξ
k
i (17)

By their definition, the moments m∗n correspond to the moments of a degenerated dis-178

tribution (i.e. a finite sum of Dirac distributions), hence these moments will be referred as179

the degenerated moments of the approximation. Degenerated moments are defined in such a180

way that the vectors wP and ξP can be computed from m∗2P−1 using a Gauss Quadrature181

(see 2.2).182

At this point, one has the basis required to compute the objective function DN(σ) and183

to search for its root. The computation of DN(σ) from a vector mN is as follow (see also184

Fig. 1a):185
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1. Compute m∗N−1(σ) = A−1
N−1(σ) ·mN−1.186

2. Compute the recurrence coefficients a∗P−1(σ) and b∗P−1(σ) by applying the Chebyshev187

algorithm to m∗N−1(σ).188

3. Use the recurrence coefficients to compute the Gaussian quadrature rule wP (σ) and189

ξP (σ).190

4. Knowing the parameters σ, wP (σ) and ξP (σ) of the reconstruction, compute m̃N(σ),191

this can be done easily by:192

• Computing the N-th order degenerated moment of the approximated NDF:m∗N(σ) =193 ∑P
i=1 wi(σ)ξi(σ)N .194

• Multiplying the last line ofAN(σ) and the vector of degenerated moments: m̃N(σ) =195

[0, 0, . . . , 1] ·AN(σ) ·
[
m∗0(σ), . . . ,m∗N−1(σ),m∗N(σ)

]T
.196

5. Compute DN(σ) = mN − m̃N(σ).197

For each compatible KDF, it is possible to use the low order moments to compute an198

upper bound σmax so that the search of a root of DN is restricted to the interval σ ∈ [0, σmax].199

Then a bounded non-linear equation solver such as Ridder’s method can be applied to200

actually find the root of the function.201

Two specific cases were discarded in the previous description of the method. First, it202

happens that the function DN does not admit any root, in such a case the procedure is203

switched toward the minimisation of this function in order to reduce the error on the last204

moment of the approximation.205

Second, during the computation of DN(σ), one must compute degenerated moments206

from which the weights and nodes are extracted. If the degenerated moments m∗N−1(σ) turn207

out not to be realisable on the support Ωξ of the NDF, the quadrature performed on this208

vector will lead to nodes outside Ωξ, or even to negative/complex weights. Nguyen et al. [1]209

then suggest to check for the realisability of the degenerated moments, and if these are not210

realisable, to set m̃N(σ) to a arbitrarily high value such as 10100. This will force the non-211

linear equation solver to test a lower value of σ in order to bring back the vector m∗N−1(σ)212

within the realisable moment space. However note that this is only a numerical trick to213

converge toward the actual root, but DN(σ) is actually undefined as soon as m∗N−1(σ) is not214

realisable.215

3.2. A new procedure based on moment realisability216

The reversible linear system linking the raw moments of the approximation m̃N to its217

degenerated moments m∗N is such that a new objective function D∗N(σ) –whose root is the218

same as that of DN(σ)– can be formulated. Its computation is as follow (see also Fig. 1b):219

1. Compute m∗N(σ) = A−1
N (σ) ·mN .220

2. Compute a quadrature on the vector m∗N−1(σ) to obtain the vectors wP (σ) and ξP (σ).221

3. Compute m∗N(σ) =
∑P

i=1 wi(σ)ξi(σ)N .222

4. Compute D∗N(σ) = m∗N(σ)−m∗N(σ).223

The benefit of this new objective function is that it only requires the matrix A−1
N (σ)224

instead of both the matrix A−1
N−1(σ) and the last line of AN(σ). This only increases the225

clarity of the method, but has hardly no effect on its numerical cost.226
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Figure 1: Comparison of the computation of convergence criteria based on (a) DN (σ), (b) D∗
N (σ) and (c)

the realisability criteria of the support Ωξ. CA: Chebyshev Algorithm. QC: Quadrature Computation. The
convergence criteria are highlighted in light blue. Inspired by Fig. 1 from Nguyen et al. [1].

The point of this alternative approach is however to underline a crucial element for the227

new EQMOM implementation: we actually look for a value of σ for which m∗2P (σ) = m∗2P (σ).228

This implies that, for this specific searched σ value, the vector m∗2P (σ) reads229

m∗2P (σ) =


∑P

i=1 wiξ
0
i∑P

i=1 wiξ
1
i

...∑P
i=1wiξ

2P
i

 (18)

which is, by construction, the vector of the first 2P + 1 moments of the sum of P Dirac230

distributions. Under the condition ξi 6= 0, i ∈ {1, . . . , P}, the vector m∗2P (σ) will then have231

the following specific properties:232

1. The vector m∗2P−1(σ) must be strictly within the realisable moment spaceMN−1(Ωξ).233

2. The vector m∗2P (σ) must be on the boundary of the realisable moment spaceMN(Ωξ).234

EQMOM procedure will then rely on the realisability of the vector m∗2P (σ) instead of the235

computation of the error on the last moment, this will be a cheaper approach. The actual236

definition of the realisable moment space of order n,Mn, depends on the support Ωξ of the237

NDF. The three classical supports, corresponding to the Hamburger, Stieltjes and Hausdorff238

moment problems, come with different constraints on a moment set to ensure its realisability.239

The realisability criteria for each of these supports will then be detailed.240

Fig. 1 sums up the “standard approach” based on DN(σ), the shifted approach, based241

on D∗N(σ), as well as the new approach based on the realisability criteria of m∗2P (σ) for all242

three supports.243
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Figure 2: Evolution of the different convergence criteria for both Gaussian (a and b) and Laplace (c and

d) kernels depending on σ value. The two initial moment sets are m
(1)
6 = [1 1 2 5 12 42 133]T and

m
(2)
6 = [1 2 7 17 58 149 493]T.

3.3. Application to the Hamburger problem244

As stated in 2.2, it is known that the monic polynomials which are orthogonal to a245

measure dµ(ξ) = n(ξ)dξ satisfy a three-term recurrence relation (Eq. (5)) with ak and246

bk, k ∈ N, the recurrence coefficients specific to the measure dµ(ξ). The Favard’s theorem247

[28] and its converse [29] imply that the measure dµ(ξ) is realisable on Ωξ = ]−∞,+∞[ if248

and only if ak ∈ R and bk > 0, ∀k ∈ N.249

One looks for a value of σ such that the associated degenerated moments m∗2P−1(σ)250

are within the realisable moment space and the moments m∗2P (σ) are on the boundary of251

this moment space. Then, if the Chebyshev algorithm is used to compute the recurrence252

coefficients a∗P−1(σ) = [a∗0(σ), . . . , a∗P−1(σ)]T and b∗P (σ) = [b∗1(σ), . . . , b∗P (σ)]T from the vector253

m∗2P (σ), the condition of realisability can be written in terms of values of b∗P (σ): looking for254

the EQMOM reconstruction parameters with the Gaussian and Laplace kernels is equivalent255

to looking for a value of σ such as:256

• b∗k(σ) > 0, ∀k ∈ {1, . . . , P − 1}257

• b∗P (σ) = 0258

Fig. 2 makes use of the developments from Appendix B.1 and Appendix B.2, about259

the Gaussian and Laplace kernels respectively, to show the evolution of D6(σ), D∗6(σ) and260

b∗k(σ), k ∈ {1, 2, 3} for two sets of 7 moments (P = 3). This figure illustrates the fact that261

indeed the approaches based on DN(σ), D∗N(σ) and b∗P (σ) are equivalent as they share the262

same circled root.263
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Let denote σk the root of bk(σ). One can notice that the root σk lies within the interval264

[0, σk−1]. We actually observed the existence of all roots σk, k ∈ {1, . . . , P} on numerous265

(about 106) randomly selected moment sets of N + 1 = 13 moments, and never observed an266

undefined root. The generality of this observation has not been mathematically proved, but267

it seems that indeed σk is always defined and always lies in σk ∈ [0, σk−1] , k ∈ {2, . . . , P}.268

σ1 is defined analytically.269

The previous observations were used to design a simple algorithm which allows identifying270

the root σP . This algorithm is based on the fact that it is possible to check whether a value271

σt is higher or lower than σP at low cost and with no prior knowledge of σP value:272

• If b∗k(σt) > 0, ∀k ∈ {1, . . . , P}, then σt < σP .273

• Otherwise, that is if ∃k ∈ {1, . . . , P}, b∗k(σt) < 0, then σt > σP .274

One can then use an iterative approach that will275

1. Check the realisability of the raw moments m2P = m∗2P (0) by computing b∗P (0) and276

checking the positivity of all elements.277

2. Initialise an interval
[
σ

(0)
l , σ

(0)
r

]
such that σ

(0)
l < σP and σ

(0)
r > σP , and then update278

these bounds to shrink the search interval. These initial values will be σ
(0)
l = 0 and279

σ
(0)
r = σ1 with σ1 the analytical solution of b∗1(σ) = 0.280

3. Iterate over k281

(a) Choose σt ∈
[
σ

(k−1)
l , σ

(k−1)
r

]
.282

(b) Compute b∗P (σt).283

(c) If all elements of b∗P (σt) are positive, set σ
(k)
l = σt and σ

(k)
r = σ

(k−1)
r .284

(d) Otherwise, set σ
(k)
l = σ

(k−1)
l and σ

(k)
r = σt.285

The choice of σt at step 3a will be made by trying to locate the root σj of b∗j (σ) with j the286

index of the first negative element of b∗P

(
σ

(k)
r

)
. Following Nguyen et al. [1] developments,287

the use of Ridder’s method is advised to select σt. This method actually tests two σ values288

per iteration. Consequently, the step 3 of the previous algorithm becomes:289

3. Iterate over k290

(a) Identify j the index of the first negative element of b∗P

(
σ

(k−1)
r

)
.291

(b) Compute σt1 = 1
2

(
σ

(k−1)
l + σ

(k−1)
r

)
and b∗P (σt1).292

(c) Compute σt2 = σt1 +
(
σt1 − σ

(k−1)
l

)
b∗j(σt1)√

b∗j(σt1)
2
−b∗j

(
σ
(k−1)
l

)
∗b∗j
(
σ
(k−1)
r

) and b∗P (σt2).293

(d) Set σ
(k)
l as the highest value between σ

(k−1)
l , σt1 and σt2 such that the correspond-294

ing vector b∗P contains only positive values.295

(e) Set σ
(k)
r as the lowest value between σ

(k−1)
r , σt1 and σt2 such that the corresponding296

vector b∗P contains at least one negative value.297
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Stop the computation if σ
(k)
r −σ(k)

l < ε σ1 or if b∗P

(
σ

(k)
l

)
< ε b∗P (0), with ε a relative tolerance298

(e.g. ε = 10−10). Then compute the weightswP and nodes ξP of the EQMOM reconstruction299

by computing a Gauss quadrature based on the recurrence coefficients a∗P−1

(
σ

(k)
l

)
and300

b∗P−1

(
σ

(k)
l

)
.301

Actual implementations of this algorithm for both kernels are provided as supplementary302

data.303

3.4. Application to the Stieltjes problem304

It is well known that the realisability of a moment set mN on the support Ωξ = ]0,+∞[305

is strictly equivalent to the positivity of the Hankel determinants H2n+d [30] defined as:306

H2n+d =

∣∣∣∣∣∣∣
md · · · mn+d
...

. . .
...

mn+d · · · m2n+d

∣∣∣∣∣∣∣ (19)

with d ∈ {0, 1} and n ∈ N, 2n+ d ≤ N .307

This condition on the positivity of Hankel determinants can be translated into a condition308

on the positivity of the numbers ζk [29] defined by :309

ζk =
Hk−3Hk

Hk−2Hk−1

, Hj = 1 if j < 0 (20)

These numbers can be directly computed from the recurrence coefficients aP and bP defined310

in 2.2 through the following relations:311

ζ2k =
bk
ζ2k−1

, ζ2k+1 = ak − ζ2k (21)

with ζ1 = a0 = m1/m0.312

The goal here is to use these realisability criteria to compute the parameters of EQMOM313

quadrature with either the Log-normal, the Gamma or the Weibull kernel (see Appendix314

B.3, Appendix B.4 and Appendix B.5 respectively). In these cases, one must315

1. Compute m∗N(σ) = A−1
N (σ) ·mN with AN(σ) the matrix associated to the chosen316

kernel (see Appendix B.3, Appendix B.4, Appendix B.5).317

2. Apply the Chebyshev algorithm to m∗N(σ) to access the recurrence coefficients a∗P (σ)318

and b∗P (σ).319

3. Compute ζ∗N(σ) = [ζ∗1 (σ), . . . , ζ∗N(σ)]T using the relations in Eq. (21).320

One actually looks for σ such that321

• ζ∗k(σ) > 0, ∀k ∈ {1, . . . , N − 1}322

• ζ∗N(σ) = 0323
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Figure 3: Evolution of the different convergence criteria for the Weibull kernel depending on σ value. The ini-

tial moment sets are m
(a)
6 = [1 1.5 12 131 15200 18033 2.16e5]T , m

(b)
6 = [1 5.5 78 1285 22225 4.05e5 7.88e6]T

and m
(c)
6 = [1 1 2 5 14 42 133]T.

Let σk be the root of ζ∗k(σ). In all cases, the root σ2 is defined, analytically for the324

Log-normal and Gamma kernels, and numerically for the Weibull kernel. Fig. 3 shows the325

evolution of D6(σ), D∗6(σ) and ζ∗6(σ) for three moment sets when the developments relative326

to the Weibull (see Appendix B.5) kernel are used. Three situations can be observed on that327

figure:328

1. All roots σk, k ∈ {2, . . . , N} are defined (Fig. 3a).329

2. Some intermediary roots σk, k ∈ {3, . . . , N − 1}, are not defined but the root σN still330

exists (Fig. 3b).331

3. The root σN is not defined (Fig. 3c).332

These three cases can be observed for the Gamma and Log-normal kernels too.333

In the first two cases, when σN exists, the EQMOM approximation is well defined. The334

last case –where ζ∗N(σ) admits no root in [0, σN−1]– actually corresponds to the case described335

by Nguyen et al. [1] where DN(σ) did not admit any root either. In this case, it was suggested336

to minimise DN(σ) in order to reduce the difference between mN and m̃N(σ) as much as337

possible.338

DN(σ) tends to be a decreasing function, but is undefined as soon as any element of339

ζ∗N−1(σ) is negative. The minimum of DN(σ) is then usually located at the highest order340

defined root. For instance, in the case shown in Fig. 3c, the minimum of D6(σ) is located341

at the root σ5 of ζ∗5 (σ).342

The moment-inversion procedure for reconstruction kernels defined on Ωξ = ]0,+∞[ is343

then reduced to the identification of the defined root σk, k ∈ {2, . . . , N}, of highest index.344

The algorithm proposed in section 3.3 already converges toward this root and only requires345

little adjustments:346
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1. Check the realisability of the raw moments m2P = m∗2P (0) by computing ζ∗N (0) and347

checking the positivity of all elements.348

2. Initialise an interval
[
σ

(0)
l , σ

(0)
r

]
with σ

(0)
l = 0 and σ

(0)
r = σ2 with σ2 the solution of349

ζ∗2 (σ) = 0.350

3. Iterate over k351

(a) Identify j the index of the first negative element of ζ∗N

(
σ

(k−1)
r

)
.352

(b) Compute σt1 = 1
2

(
σ

(k−1)
l + σ

(k−1)
r

)
and ζ∗N(σt1).353

(c) Compute σt2 = σt1 +
(
σt1 − σ

(k−1)
l

)
ζ∗j (σt1)√

ζ∗j (σt1)
2
−ζ∗j

(
σ
(k−1)
l

)
∗ζ∗j
(
σ
(k−1)
r

) and ζ∗N(σt2).354

(d) Set σ
(k)
l as the highest value between σ

(k−1)
l , σt1 and σt2 such that the correspond-355

ing vector ζ∗N contains only positive values.356

(e) Set σ
(k)
r as the lowest value between σ

(k−1)
r , σt1 and σt2 such that the corresponding357

vector ζ∗N contains at least one negative value.358

Stop the computation if σ
(k)
r −σ(k)

l < ε σ1 or if ζ∗N

(
σ

(k)
l

)
< ε ζ∗N(0), with ε a relative tolerance359

(e.g. ε = 10−10). Then compute the weightswP and nodes ξP of the EQMOM reconstruction360

by computing a Gaussian-quadrature based on the recurrence coefficients a∗P−1

(
σ

(k)
l

)
and361

b∗P−1

(
σ

(k)
l

)
.362

3.5. Application to the Hausdorff problem363

The moments of a distribution defined on the closed support Ωξ = ]0, 1[ must obey two364

sets of conditions in order to be within the realisable moment space [12, 23]. The moment365

set mN is interior to the realisable moment space associated to the support Ωξ = ]0, 1[ if366

and only if:367

• Hk > 0, ∀k ∈ {0, . . . , N}368

• Hk > 0, ∀k ∈ {1, . . . , N}369

with Hk defined in Eq. (19) and Hk defined by370

H2n+d =

∣∣∣∣∣∣∣
md−1 −md · · · mn+d−1 −mn+d

...
. . .

...
mn+d−1 −mn+d · · · m2n+d−1 −m2n+d

∣∣∣∣∣∣∣ (22)

Leaving aside the obvious condition H0 = m0 > 0, the conditions Hk > 0 and Hk > 0371

induce a lower bound m−k and an upper bound m+
k for the values of mk, k ∈ {1, . . . , N}.372

Consequently, one can define the canonical moments of the distribution pN = [p1, . . . , pN ]T373

as374

pk =
mk −m−k
m+
k −m

−
k

(23)
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A moment set mN is realisable if and only if the associated canonical moment set pN lies375

in the hypercube ]0, 1[N . The canonical moments can be computed through the recurrence376

relation [31]:377

pk =
ζk

1− pk−1

(24)

with ζk defined in Eq. (20) and p1 = m1.378

In the case of the Beta kernel (see Appendix B.6), one is looking for a value of σ such379

that the vector p∗N(σ) has the following properties:380

• p∗k(σ) ∈ ]0, 1[ , ∀k ∈ {1, . . . , N − 1}381

• p∗N(σ) = 0382

p∗N(σ) is computed from the vector ζ∗N(σ) which is deduced from the recurrence coef-383

ficients a∗P−1(σ) and b∗P (σ). These are computed –like previously– through the Chebyshev384

algorithm applied to the vector m∗N(σ) = A−1
N (σ) ·mN .385

Fig. 4 shows the evolution of the canonical moments and the convergence criteria D6(σ)386

and D∗6(σ) for four different sets of 7 moments with the developments relative to the Beta387

kernel (see Appendix B.6). Each of these sets corresponds to one of the four situations388

encountered when dealing with Beta EQMOM:389

• Fig. 4a: the root σN of DN(σ), D∗N(σ) and p∗N(σ) exists and can be identified through390

a similar procedure than that described in sections 3.3 and 3.4.391

• Fig. 4b: the root σN is not defined but the minimum of DN(σ) is located at the σ392

value for which p∗N−1(σ) is on the boundary of the hypercube ]0, 1[N−1.393

• Fig. 4c: DN(σ), D∗N(σ) and p∗N(σ) admit multiple roots.394

• Fig. 4d: the root σN is defined, but there is a range ]σv1 , σv2 [ with σv2 < σN , highlighted395

in light grey, such that in this interval the convergence criteria are undefined because396

∀σ ∈]σv1 , σv2 [, p
∗
N−1(σ) /∈ ]0, 1[N−1.397

The algorithm proposed in sections 3.3 and 3.4 can still be applied here by replacing the398

convergence criteria by the canonical moments, and by checking that the values of p∗N(σ) all399

lie in the interval ]0, 1[ instead of checking only for positivity:400

1. Check the realisability of the raw moments m2P = m∗2P (0) by computing p∗N (0) and401

checking that all elements lie in ]0, 1[.402

2. Initialise an interval
[
σ

(0)
l , σ

(0)
r

]
with σ

(0)
l = 0 and σ

(0)
r = σ2 with σ2 the analytical403

solution of p∗2(σ) = 0.404

3. Iterate over k405

(a) Identify j the index of the first element of p∗N

(
σ

(k−1)
r

)
that is either negative or406

higher than 1.407

(b) Compute σt1 = 1
2

(
σ

(k−1)
l + σ

(k−1)
r

)
and p∗N(σt1).408
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Figure 4: Evolution of the different convergence criteria for the Beta reconstruction kernel and four initial
moment sets. These sets can be found in the figure source code provided as supplementary data.

(c) If j < N and p∗j

(
σ

(k−1)
r

)
> 1409

• Compute σt2 = σt1 +
(
σt1 − σ

(k−1)
l

)
q∗j (σt1)√

q∗j (σt1)
2
−q∗j

(
σ
(k−1)
l

)
∗q∗j
(
σ
(k−1)
r

) and p∗N(σt2),410

with q∗j (σ) = 1− p∗j(σ).411

(d) Else, that is if j = N or p∗j

(
σ

(k−1)
r

)
< 0412

• Compute σt2 = σt1 +
(
σt1 − σ

(k−1)
l

)
p∗j(σt1)√

p∗j(σt1)
2
−p∗j

(
σ
(k−1)
l

)
∗p∗j
(
σ
(k−1)
r

) and p∗N(σt2).413

(e) Set σ
(k)
l as the highest value between σ

(k−1)
l , σt1 and σt2 such that the correspond-414

ing vector p∗N lies in ]0, 1[N .415

(f) Set σ
(k)
r as the lowest value between σ

(k−1)
r , σt1 and σt2 such that the corresponding416

vector p∗N does not lie in ]0, 1[N .417

Stop the computation if σ
(k)
r − σ

(k)
l < ε σ2 or if p∗N

(
σ

(k)
l

)
< ε p∗N(0), with ε a relative418

tolerance (e.g. ε = 10−10). As previously, once convergence is achieved, the weights wP and419

nodes ξP of the reconstruction can be obtained by computing a Gaussian quadrature rule420

based on the recurrence coefficients a∗P−1

(
σ

(k)
l

)
and b∗P−1

(
σ

(k)
l

)
.421

This algorithm will converge to the root σN for cases similar to Fig. 4a; to the minimum422

of DN(σ) for cases similar to Fig. 4b; to one of the multiple roots for cases similar to Fig.423

4c. In the case illustrated in Fig. 4d, the algorithm may or may not identify the existing424

root, depending on whether one of the intermediate tested σ values lies in the greyed area.425
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One could try to develop a more robust algorithm, that will always find the root if it426

is defined, even in the case shown in Fig. 4d. An other improvement would be to ensure427

a consistent result when multiple roots exist, for instance by converging toward the lowest428

root, so that a small perturbation in the raw moments will only cause a small change on the429

resulting σ value. Nothing prevents the current algorithm from converging toward one root430

for a moment set and toward another one after a small perturbation of this set which could431

induce instabilities in large-scale simulations. Note that these limitations already existed in432

previous EQMOM implementations and do not result from the new approach developed in433

this article.434

4. Comparison of EQMOM approaches435

4.1. Method436

The new EQMOM moment-inversion procedure only requires computation of the realis-437

ability criteria of the vector of degenerated moments m∗2P (σ) in order to identify σ. These438

computations were already performed in the original approach [1] to ensure the realisability439

of the vector m∗2P−1(σ) prior to the quadrature computation and ulterior steps.440

It is therefore obvious that the new approach will always require a lower number of441

floating point operations (FLOP). In order to quantify this reduction on FLOP number, and442

the actual performance gain, two implementations of the Gauss EQMOM moment-inversion443

procedure are compared.444

The first tested implementation is the one described in Fig. 1b, whose computational cost445

is similar to that of Nguyen et al. [1]. As it only requires the matrix A−1
2P (σ), it will benefit446

the same optimizations as the second approach as far as the linear system is concerned. The447

second tested implementation is the one described in section 3.3, based on the realisability448

of m∗2P (σ) through the computation of the recurrence coefficients a∗P−1(σ) and b∗P (σ).449

Both approaches are implemented in MATLAB [19] functions which take as input a vector450

of moments (size 2P + 1 × 1) and returns the vectors wP , ξP (size P × 1) and the scalar451

σ. These implementations integrate a simple FLOP counter distinguishing each operation452

(+, −, ∗, /, exp,
√

) and counting the number of call to these operations for each step of453

computation (linear system, Chebyshev algorithm, quadrature computation and others).454

In order to evaluate the number of operations used in the computation of the eigenvalues455

and eigenvectors of the Jacobi matrix (Eq. (6)), the Jacobi and the Francis algorithms456

which are suited for symmetric matrices [32] are used in place of the MATLAB built-in “eig”457

function [19]. Finally, the number of tested σ values (i.e. the number of calls to the linear458

system m∗2P (σ) = A−1
2P (σ) ·m2P ) is measured too.459

104 realisable sets of 11 moments were randomly generated through a two step process:460

1. Generate two random vectors a4 and b5.461

• Elements of a4 are distributed along a normal distribution: ak ∼ N (0, 25), k ∈462

{0, . . . , 4}.463

• Elements of b5 are distributed along an exponential distribution bk ∼ Exp(5), k ∈464

{1, . . . , 5}.465
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2. Use a reversed Chebyshev algorithm to compute the vector of moments m10 corre-466

sponding to a4 and b5.467

A routine applied both moment-inversion procedures on all generated moment sets and468

varied the actual number of moments 2P + 1 ∈ {5, 7, 9, 11}. This routine also measured the469

wall-time of each of these calls.470

4.2. Results471

Results of the comparison are given in Table 1. The Jacobi algorithm was the fastest one472

to compute the eigenvalues and eigenvectors in the cases P = 2 and P = 3 whilst the Francis473

algorithm was faster for P = 4 and P = 5. Table 1 only shows the results corresponding474

to that fastest algorithm for each case, in order to have the lowest estimate in FLOP and475

run-time gain between both implementations.476

The first main observation is a decrease in the number of tested σ values. This decrease477

is due to the fact that in the former approach, if m∗N−1(σ) turns out not to be realisable, the478

objective function is set to a arbitrarily high negative value. The use of such an arbitrary479

value slows down the convergence of the non-linear equation solver. Meanwhile, the new480

approach never makes use of arbitrary values, all the elements of the vector b∗P (σ) are used481

one after the other which yields a better choice of the next tested σ value.482

The second observation was expected and is a significant drop in the total number of483

FLOP. This is mainly justified by the fact that the quadrature computation is only called484

once in the new approach whilst it is called for most tested σ values in the former moment-485

inversion procedure. This quadrature, which consists in the computation of the eigenvalues486

and eigenvectors of a tridiagonal symmetric matrix, is the most expensive operation used in487

the EQMOM moment-inversion procedure.488

Overall, one observes a net decrease in the number of floating-point operations and in489

the computation run-time of 80% to 85% for these implementations of Gauss EQMOM and490

the tested 104 moment sets.491

5. Conclusion492

The first developments relative to the Extended Quadrature Method of Moments are493

quite recent [14]. Most of these developments were dedicated to widening the use of this494

method to new application cases, in particular by adding new reconstruction kernels to495

the EQMOM formalism, and to demonstrate its stability and accuracy compared to other496

methods. This article summarised all of these developments, relative to the Gaussian kernel497

[14], to the Log-normal kernel [18] and to the Gamma and Beta kernels [15]. It was also498

shown that at least two other kernels are perfectly compatible with the EQMOM formalism:499

the Laplace and Weibull kernels. In a previous work, the solution of a PBE in some specific500

setups was a Laplace-like distribution [27]. Moreover, the Weibull distribution is often met501

in the modelling of biological systems. We then hope that the scientific community will find502

a good use for these developments.503

The youth of EQMOM explains that there is still room left for improvements. The504

core of this method –the moment-inversion procedure– is an iterative process which is its505

computational bottleneck. Nguyen et al. [1] proposed some modifications, compared to506
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Table 1: Table of comparison of the Gauss EQMOM implementations corresponding to Fig. 1b and 1c.
The count of FLOP details the operations related to (i) the matrix-vector product A−1

2P (σ) ·m2P , (ii) the
Chebyshev Algorithm (CA), (iii) the Quadrature Computation (QC) and (iv) a miscellaneous category.
Results are given as mean±standard-deviation.

P = 2 P = 3 P = 4 P = 5
New

FLOP

A−1
2P (σ) 282±123 843±210 1842±328 3418±527

approach CA 227±92 564±134 1146±195 2026±301

QC 52±1 546±56 1225±144 2151±213

Misc. 93±37 100±23 116±19 131±18

Total 654±252 2053±357 4328±536 7727±834

Evaluations 15±6 17±4 19±3 21±3

Run-time (ms) 6±3 13±5 23±6 33±7

Former

FLOP

A−1
2P (σ) 298±164 1095±391 2683±741 5352±1450

approach CA 223±115 724±246 1662±442 3184±836

QC 823±421 9485±3245 23734±5387 46870±10002

Misc. 228±119 395±137 634±155 959±224

Total 1572±818 11700±3939 28713±6467 56365±12138

Evaluations 16±8 21±7 27±7 32±9

Run-time (ms) 15±9 73±30 105±28 162±40

Gain in FLOP 58.4%±26.9% 82.5%±6.6.% 84.9%±3.9% 86.3%±3.3%

Evaluations 6.3%±60.0% 19.0%±33.0% 29.6%±21.4% 34.4%±20.7%

Run-time 60.0%±31.2% 82.2%±10.0% 78.1%±8.2% 79.6%±6.6%

previous implementations, in order to stabilise the method and to speed-up its resolution,507

namely the use of Ridder’s method instead of bounded-secant or dichotomic methods to508

solve the non-linear problem, and the realisability checks performed prior to the quadrature509

computation.510

Further improvements were proposed by shifting the resolution toward a new paradigm.511

This results in a significant decrease in computational cost of about 80% − 85% in terms512

of required floating-point operations. This resulted in our MATLAB implementations in a513

similar gain in terms of computation wall-time.514

In multiple works [1, 15, 27], EQMOM has been compared to other methods (Maximum515

Entropy approach or sectional methods) and exhibited (i) similar accuracy even with a lower516

number of resolved variables, and (ii) faster or comparable computation times. The new517

improvements of EQMOM will make it even more competitive as its stability and accuracy518

are kept while reducing the gap in terms of numerical cost between EQMOM and other519

cheaper methods such as Gauss or Gauss-Radau quadratures.520

We strongly believe that transparency about these developments will help further refine-521

ments of EQMOM. For that reason, all sources used to generate figures and data in this article522

are provided as supplementary data. We also release all our EQMOM source codes both with523

this article and in an open-access GIT repository (url: https://gitlab.com/open-eqmom).524

It will be updated as well as supplemented with implementations of EQMOM in languages525

other than MATLAB. In the case of the Beta reconstruction kernel, some suggestions for526

further improvements in terms of accuracy and stability were listed in section 3.5. These527
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will be tackled in ulterior work.528
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Appendix A. Chebyshev algorithm629

The Chebyshev algorithm allows to compute the three-term recurrence coefficients of the630

monic polynomials orthogonal to a measure dµ(ξ) whose moments are given by the vector631

mN = [m0, . . . ,mN ]. This version of the algorithm fills column-wise a N + 1×dN+1
2
e matrix632

denoted S.633

First, fill the first column with the moments Si,0 = mi, compute a0 = m1/m0 and fill the634

second column with Si,1 = Si+1,0 − a0Si,0, ∀i ∈ {1, . . . , N − 1}.635

Then iterate for j ∈
{

2, . . . , dN−1
2
e
}

:636

aj−1 =
Sj,j−1

Sj−1,j−1

− Sj−1,j−2

Sj−2,j−2

bj−1 =
Sj−1,j−1

Sj−2,j−2

Si,j = Si+1,j−1 − aj−1Si,j−1 − bj−1Si,j−2, i ∈ {j, . . . , N − j}

Appendix B. Kernels for EQMOM637

There exists multiple variations of the EQMOM method depending on the Kernel Density638

Function that is used for the reconstruction in Eq. (15). This section details the specificities639

of multiple KDF that were found to be compatible with the EQMOM procedure. It details640

for each kernel641

1. the actual expression of that kernel δσ(ξ, ξm);642

2. the expression of its moments;643

3. the matrix An(σ) that allows the transfer between the raw moments of the reconstruc-644

tion m̃n and its degenerated moments m∗n;645

4. the nested quadrature rules suiting this kernel;646

5. the analytical solutions available for one-node EQMOM (P = 1).647

Two-nodes analytical solutions exist for the Gaussian, Gamma, Laplace and Log-normal648

kernels and are accessible using the same methodology than that used by Chalons et al. [14]649

for the Gaussian kernel. These solutions are not detailed here but are implemented in the650

MATLAB code given in supplementary data.651

All definitions of matrices An(σ) are given using zero-offset. The element of the first line652

and column of this matrix then reads A0,0(σ).653

Appendix B.1. Gaussian kernel654

Appendix B.1.1. Definition655

The Gaussian kernel δ
(G)
σ (ξ, ξm) was first used in EQMOM by Chalons et al. [14]. It is656

defined on Ωξ = ]−∞,+∞[ by657

δ(G)
σ (ξ, ξm) =

1

σ
√

2π
exp

(
−(ξ − ξm)2

2σ2

)
(B.1)
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Appendix B.1.2. Moments and linear system658

Moments of the Gaussian kernel are given by:659 ∫ +∞

−∞
ξkδ(G)

σ (ξ, ξm)dξ =

bk/2c∑
j=0

k!

j!(k − 2j)!

(
σ2

2

)j
ξk−2j
m (B.2)

Moments of the distribution ñ(ξ) =
∑P

i=1wiδ
(G)
σ (ξ, ξi) are given by the linear system660

m̃n = A(G)
n (σ) ·m∗n (B.3)

with661

A
(G)
i,j (σ) =

0 if j > i or (i− j mod 2) = 1

i!

( i−j2 )!j!

(
σ2

2

) i−j
2

otherwise
(B.4)

The inverse of this matrix is given by:662

A
(G)−1
i,j (σ) =

0 if j > i or (i− j mod 2) = 1

i!

( i−j2 )!j!

(
−σ2

2

) i−j
2

otherwise
(B.5)

which translates, for the case n = 4 into:663


m̃0

m̃1

m̃2

m̃3

m̃4

 =


1 0
0 1
σ2 0 1
0 3σ2 0 1

3σ4 0 6σ2 0 1

 ·

m∗0
m∗1
m∗2
m∗3
m∗4

 (B.6)


m∗0
m∗1
m∗2
m∗3
m∗4

 =


1 0
0 1
−σ2 0 1

0 −3σ2 0 1
3σ4 0 −6σ2 0 1

 ·

m̃0

m̃1

m̃2

m̃3

m̃4

 (B.7)

Appendix B.1.3. Moment preserving nested quadrature664

The approximation of integral properties using Gauss EQMOM is performed through the665

following nested quadrature:666 ∫ +∞

−∞
f(ξ)n(ξ)dξ ≈ 1√

π

P∑
i=1

wi

Q∑
j=1

ωjf
(
ξi + σλj

√
2
)

(B.8)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and667

λQ are the weights and nodes of a Q-nodes Gauss-Hermite quadrature rule (see Appendix668

C).669
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Appendix B.1.4. Single node analytical solution670

The case P = 1 has the following analytical solution:671

w1 = m0

ξ1 =
m1

m0

σ =

√
m2m0 −m2

1

m0

Appendix B.2. Laplace kernel672

Appendix B.2.1. Definition673

The Laplace kernel δ
(λ)
σ (ξ, ξm) is defined on Ωξ = ]−∞,+∞[ by674

δ(λ)
σ (ξ, ξm) =

1

2σ
exp

(
−|ξ − ξm|

σ

)
(B.9)

Appendix B.2.2. Moments and linear system675

Moments of the Laplace kernel are given by676 ∫ +∞

−∞
ξkδ(λ)

σ (ξ, ξm)dξ =
k∑
j=0

k!

(k − j)!
1 + (−1)j

2
ξk−jm σj (B.10)

Moments of the distribution ñ(ξ) =
∑P

i=1wiδ
(λ)
σ (ξ, ξi) are given by the linear system677

m̃n = A(λ)
n (σ) ·m∗n (B.11)

with678

A
(λ)
i,j (σ) =

{
0 if j > i or (i− j mod 2) = 1
i!
j!
σi−j otherwise

(B.12)

The inverse matrix is defined by679

A
(λ) −1
i,j (σ) =


1 if i = j

−(j + 1)(j + 2)σ2 if i = j + 2

0 otherwise

(B.13)

which translates for n = 6 into680
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

m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6


=



1 0
0 1

2!σ2

0!
0 1

0 3!σ2

1!
0 1

4!σ4

0!
0 4!σ2

2!
0 1

0 5!σ4

1!
0 5!σ2

3!
0 1

6!σ6

0!
0 6!σ4

2!
0 6!σ2

4!
0 1


·



m∗0
m∗1
m∗2
m∗3
m∗4
m∗5
m∗6


(B.14)



m∗0
m∗1
m∗2
m∗3
m∗4
m∗5
m∗6


=



1 0
0 1
−2σ2 0 1

−6σ2 0 1
−12σ2 0 1

−20σ2 0 1
0 −30σ2 0 1


·



m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6


(B.15)

Appendix B.2.3. Moment preserving nested quadrature681

The approximation of integral properties using Laplace EQMOM is performed through682

the following nested quadrature:683 ∫ +∞

−∞
f(ξ)n(ξ)dξ ≈

P∑
i=1

wi

Q∑
j=1

ωjf (ξi + σλj) (B.16)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and684

λQ are the weights and nodes of a Q-nodes “Gauss-Laplace” quadrature rule (see Appendix685

C).686

Appendix B.2.4. Single node analytical solution687

The case P = 1 has the following analytical solution:688

w1 = m0

ξ1 =
m1

m0

σ =

√
m2m0 −m2

1

2m2
0

Appendix B.3. Log-normal kernel689

Appendix B.3.1. Definition690

The Log-normal kernel δ
(L)
σ (ξ, ξm) was first used in EQMOM by Madadi-Kandjani and691

Passalacqua [18]. It is defined on Ωξ = ]0,+∞[ by692
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δ(L)
σ (ξ, ξm) =

1

σξ
√

2π
exp

(
−(log(ξ)− log(ξm))2

2σ2

)
(B.17)

Appendix B.3.2. Moments and linear system693

Moments of the Log-normal kernel are given by694 ∫ +∞

0

ξkδ(L)
σ (ξ, ξm)dξ = ξkmz

k2 with z = eσ
2/2 (B.18)

Moments of the distribution ñ(ξ) =
∑P

i=1wiδ
(L)
σ (ξ, ξi) are given by695

m̃k = m∗kz
k2 (B.19)

This can be translated into a linear system696

m̃n = A(L)
n (σ) ·m∗n (B.20)

with A
(L)
n (σ) a diagonal matrix:697

A
(L)
i,j (σ) =

{
zi

2
if i = j

0 otherwise
(B.21)

whose inverse matrix is directly given by698

A
(L)−1
i,j (σ) =

{
z−i

2
if i = j

0 otherwise
(B.22)

Appendix B.3.3. Low cost nested quadrature699

A variable change allows approximating integral properties over a LogN EQMOM recon-700

struction using Gauss-Hermite quadratures [18]:701 ∫ +∞

0

f(ξ)n(ξ)dξ ≈ 1√
π

P∑
i=1

wi

Q∑
j=1

ωjf
(
ξi exp

(
σλj
√

2
))

(B.23)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and702

λQ are the weights and nodes of a Q-nodes Gauss-Hermite quadrature rule (see Appendix703

C).704

Parameters of this nested quadrature do not depend on σ of the main quadrature nodes705

ξP . Consequently, ωQ and λQ only need to be computed once. It is worth noting that this706

quadrature does not preserve the moments of the distribution and only yields exact results707

for f(ξ) = log(ξ)k, k ∈ {0, . . . , 2 min(P,Q)− 1}.708

Appendix B.3.4. Moment preserving nested quadrature709

[16] suggested the use of Gauss-Wigert quadratures [33] to preserve the moments of a

27



LogN EQMOM reconstruction:∫ +∞

0

f(ξ)n(ξ)dξ ≈
P∑
i=1

wi

Q∑
j=1

ω
(σ)
j f

(
ξiλ

(σ)
j

)
(B.24)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ω
(σ)
Q and710

λ
(σ)
Q are the weights and nodes of a Q-nodes Gauss-Wigert quadrature rule of parameter σ711

(see Appendix C). This quadrature rule must be computed for each value of σ, i.e. for each712

LogN EQMOM reconstruction.713

Appendix B.3.5. Single node analytical solution714

The case P = 1 has the following analytical solution:715

w1 = m0

ξ1 =

√
m4

1

m2m3
0

σ =

√
log

(
m2m0

m2
1

)
Appendix B.4. Gamma kernel716

Appendix B.4.1. Definition717

The Gamma kernel δ
(Γ)
σ (ξ, ξm) was first used in EQMOM by Yuan et al. [15]. It is defined718

on Ωξ = ]0,+∞[ by719

δ(Γ)
σ (ξ, ξm) =

ξ(l−1) exp(−ξ/σ)

Γ(l)σl
with l =

ξm
σ

and Γ(x) =

∫ +∞

0

tx−1e−tdt (B.25)

Appendix B.4.2. Moments and linear system720

Moments of the Gamma kernel are given by721 ∫ +∞

0

ξkδ(Γ)
σ (ξ, ξm)dξ = Gk(ξm, σ) =

{
1 if k = 0∏k−1

j=0 (ξm + jσ) otherwise
(B.26)

Moments of the distribution ñ(ξ) =
∑P

i=1wiδ
(Γ)
σ (ξ, ξi) are given by the linear system722

m̃n = A(Γ)
n (σ) ·m∗n (B.27)

with723
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A
(Γ)
i,j (σ) =


0 if j > i or i = 0 or j = 0

1 if i = 0 and j = 0

A
(Γ)
i−1,j−1(σ) + (i− 1)σA

(Γ)
i−1,j(σ) otherwise

(B.28)

The inverse of this matrix is given by724

A
(Γ)−1
i,j (σ) =


0 if j > i or i = 0 or j = 0

1 if i = 0 and j = 0

A
(Γ)−1
i−1,j−1(σ)− jσA(Γ)−1

i−1,j (σ) otherwise

(B.29)

which translates, for the case N = 6 into725 

m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6


=



1 0
0 1
0 1σ 1
0 2σ2 3σ 1
0 6σ3 11σ2 6σ 1
0 24σ4 50σ3 35σ2 10σ 1
0 120σ5 274σ4 225σ3 85σ2 15σ 1


·



m∗0
m∗1
m∗2
m∗3
m∗4
m∗5
m∗6


(B.30)



m∗0
m∗1
m∗2
m∗3
m∗4
m∗5
m∗6


=



1 0
0 1
0 −σ 1
0 σ2 −3σ 1
0 −σ3 7σ2 −6σ 1
0 σ4 −15σ3 25σ2 −10σ 1
0 −σ5 31σ4 −90σ3 65σ2 −15σ 1


·



m̃0

m̃1

m̃2

m̃3

m̃4

m̃5

m̃6


(B.31)

Appendix B.4.3. Low cost nested quadrature726

A Gauss-Laguerre quadrature can be used to approximate integral properties over a727

Gamma EQMOM reconstruction:728 ∫ +∞

0

f(ξ)n(ξ)dξ ≈
Q∑
j=1

ωjf(σλj)
P∑
i=1

wi

Γ
(
ξi
σ

)λ ξiσ −1

j (B.32)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and729

λQ are the weights and nodes of a Q-nodes Gauss-Laguerre quadrature rule of parameter730

α = 0 (see Appendix C). The advantage of this quadrature is that it only requires ωQ and731

λQ to be computed once. However, this quadrature will not preserve the moments of the732

distribution.733

Appendix B.4.4. Moment preserving nested quadrature734

A generalized Gauss-Laguerre quadrature preserves the moments of a Gamma EQMOM735

reconstruction:736
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∫ +∞

0

f(ξ)n(ξ)dξ ≈
P∑
i=1

wi

Γ
(
ξi
σ

) Q∑
j=1

ω
(αi)
j f

(
σλ

(αi)
j

)
(B.33)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ω
(αi)
Q and737

λ
(αi)
Q are the weights and nodes of a Q-nodes Gauss-Laguerre quadrature rule of parameter738

αi = ξi
σ
− 1 (see Appendix C).739

The accuracy of this quadrature comes with a cost related to the computation of ω
(αi)
Q740

and λ
(αi)
Q for each value of αi.741

Appendix B.4.5. Single node analytical solution742

The case P = 1 has the following analytical solution:743

w1 = m0

ξ1 =
m1

m0

σ =
m2

m1

− m1

m0

Appendix B.5. Weibull kernel744

Appendix B.5.1. Definition745

The Weibull kernel δ
(W )
σ (ξ, ξm) is defined on Ωξ = ]0,+∞[ by746

δ(W )
σ (ξ, ξm) =

1

σξm

(
ξ

ξm

) 1−σ
σ

exp

(
−
(
ξ

ξm

)1/σ
)

(B.34)

Appendix B.5.2. Moments and linear system747

Moments of the Weibull kernel are given by748 ∫ +∞

0

ξkδ(W )
σ (ξ, ξm)dξ = ξkmΓ(1 + kσ) (B.35)

Moments of the distribution ñ(ξ) =
∑P

i=1wiδ
(W )
σ (ξ, ξi) are given by749

m̃k = m∗kΓ(1 + kσ) (B.36)

This can be translated into a linear system750

m̃n = A(W )
n (σ) ·m∗n (B.37)

with A
(W )
n (σ) a diagonal matrix:751

A
(W )
i,j (σ) =

{
Γ(1 + iσ) if i = j

0 otherwise
(B.38)
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whose inverse matrix is directly given by752

A
(W )−1
i,j (σ) =

{
1

Γ(1+iσ)
if i = j

0 otherwise
(B.39)

Appendix B.5.3. Low cost nested quadrature753

A Gauss-Laguerre quadrature can be used to approximate integral properties over a754

Weibull EQMOM reconstruction:755 ∫ +∞

0

f(ξ)n(ξ)dξ ≈
P∑
i=1

wi

Q∑
j=1

ωjf
(
ξiλ

σ
j

)
(B.40)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and756

λQ are the weights and nodes of a Q-nodes Gauss-Laguerre quadrature rule of parameter757

α = 0 (see Appendix C). The advantage of this quadrature is that it only requires ωQ and758

λQ to be computed once. However, this quadrature will not preserve the moments of the759

distribution and only yields exact results for f(ξ) = ξk/σ, k ∈ {0, . . . , 2 min(P,Q)− 1}760

Appendix B.5.4. Moment preserving nested quadrature761

One can produce a Gauss quadrature that preserves the moments of Weibull EQMOM762

approximations:763 ∫ +∞

0

f(ξ)n(ξ)dξ ≈
P∑
i=1

wi

Q∑
j=1

ω
(σ)
j f

(
ξiλ

(σ)
j

)
(B.41)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ω
(σ)
Q and764

λ
(σ)
Q are the weights and nodes of a Q-nodes “Gauss-Weibull” quadrature rule of parameter765

σ (see Appendix C). The weights and nodes of the nested quadrature need to be computed766

for each value of σ, i.e. for each Weibull EQMOM approximation of the NDF.767

Appendix B.5.5. Single node numerical solution768

The parameters w1, ξ1 and σ of the one-node Weibull EQMOM must be solution of the769

following system:770

m0 = w1

m1

Γ(1 + σ)
= w1ξ1

m2

Γ(1 + 2σ)
= w1ξ

2
1

The first equation gives w1 = m0 but no explicit solution exists for the two other equations.771

One can however notice that s = σ
1+σ

must be a root of772

G(s) =
m2m0

m2
1

−
Γ(1+s

1−s)

Γ( 1
1−s)

2
(B.42)
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which is monotonous, defined on s ∈ [0, 1[ and has the following limits773

G(0) =
m2m0

m2
1

> 0

lim
s→1−

G(s) < 0

G(s) then admits a single root that can be computed numerically with the Ridder’s method.774

One can also narrow down, at a very low cost, the search interval [0, 1[ by using the property775

gn = G

(
n

n+ 1

)
=
m2m0

m2
1

− (2n)!

(n!)2
(B.43)

with n an integer, which induces the following recurrence relation:776

gn = c− hn (B.44)

hn+1 =

(
4− 2

n+ 1

)
hn (B.45)

with c = m2m0

m2
1

and h1 = 2.777

The proposed algorithm to identify the root of G(s) is778

1. Compute c = m2m0

m2
1

779

• if c < 1, cancel the operation as the moments are not realisable;780

• if c = 1, s = 0 is the root of G(s);781

• if c < 2, set sl = 0, vl = c− 1, sr = 1
2

and vr = c− 2 and go to step 3.782

• otherwise, set sl = 0, vl = c− 1 and go to step 2.783

2. Initialise i = 1, h = 2 and iterate784

(a) increment i by 1;785

(b) compute h = h ∗
(
4− 2

i

)
786

• if h = c, then s = i
i+1

is a root of G(s);787

• if h < c, set sl = i
i+1

and vl = c− h;788

• if h > c, set sr = i
i+1

, vr = c− h and go to step 3.789

3. Apply the Ridder’s method to G(s) on the interval [sl, sr]790

(a) compute st1 = 1
2
(sl + sr) and vt1 = G(st1);791

(b) compute st2 = st1 + (st1 − sl)
vt1√

v2t1
−vlvr

and vt2 = G(st2);792

(c) set sl the highest value between sl, st1 and st2 whose image by G is positive;793

(d) set sr the lowest value between sr, st1 and st2 whose image by G is negative;794

(e) stop the computation if vl < ε(c− 1) with ε a relative tolerance (e.g. ε = 10−10)795

and consider sl as a root of G(s).796
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Once the root of G(s) is identified, compute797

σ =
s

1− s
ξ1 =

m1

m0Γ(1 + σ)

Note that each iteration of the Ridder’s method requires two computations of G(s), that798

implies four computations of the Gamma function –which is quite expensive– by iteration.799

This explains the interest of the second step which allows to narrow down the research800

interval at hardly no cost.801

Appendix B.6. Beta kernel802

Appendix B.6.1. Definition803

The Beta kernel δ
(β)
σ (ξ, ξm) was first used in EQMOM by Yuan et al. [15]. It is defined804

on Ωξ = ]0, 1[ by805

δ(β)
σ (ξ, ξm) =

ξ(l−1)(1− ξ)(m−1)

B(l,m)
with l =

ξm
σ

and m =
1− ξm
σ

(B.46)

with B(l,m) =
∫ 1

0
x(l−1)(1− x)(m−1)dx the beta function.806

Appendix B.6.2. Moments and linear system807

Moments of the Beta kernel are given by808 ∫ 1

0

ξkδ(β)
σ (ξ, ξm)dξ = Hk(ξm, σ) =

{
1 if k = 0∏k−1

j=0

(
ξm+jσ
1+jσ

)
otherwise

(B.47)

Moments of the distribution ñ(ξ) =
∑P

i=1wiδ
(β)
σ (ξ, ξi) are given by the linear system809

m̃n = A(β)
n (σ) ·m∗n (B.48)

with the elements of A
(β)
n (σ) being computed from the elements of the matrix relative to810

Gamma EQMOM, A
(Γ)
n (σ):811

A
(β)
i,j (σ) =

A
(Γ)
i,j (σ)

Fi(σ)
(B.49)

Fi(σ) =

{
1 if i ≤ 1

(1 + (i− 1)σ)Fi−1(σ) otherwise
(B.50)

The inverse of this matrix is also easily defined from A
(Γ)−1
n (σ):812

A
(β)−1
i,j (σ) = A

(Γ)−1
i,j (σ)Fj(σ) (B.51)
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Appendix B.6.3. Low cost nested quadrature813

A Gauss-Legendre quadrature can be used to approximate integral properties over a Beta814

EQMOM reconstruction:815

∫ 1

0

f(ξ)n(ξ)dξ ≈ 1

2

P∑
i=1

wi
B (αi+1, βi+1)

Q∑
j=1

ωjf

(
1− λj

2

)(
1− λj

2

)αi (1 + λj
2

)βi
(B.52)

with wP , ξP and σ the EQMOM reconstruction parameters computed from m2P ; ωQ and816

λQ are the weights and nodes of a Q-nodes Gauss-Legendre quadrature rule (see Appendix817

C); αi = ξi−σ
σ

and βi = 1−ξi−σ
σ

. This nested quadrature only requires ωQ and λQ to be818

computed once, but will not preserve the moments of the distribution.819

Appendix B.6.4. Moment preserving nested quadrature820

A Gauss-Jacobi quadrature will preserve the moments of the distribution:821

∫ 1

0

f(ξ)n(ξ)dξ ≈ 2
σ−1
σ

P∑
i=1

wi
B (αi+1, βi+1)

Q∑
j=1

ω
(αi,βi)
j f

(
1− λ(αi,βi)

j

2

)
(B.53)

withwP , ξP and σ the EQMOM reconstruction parameters computed fromm2P ; ω
(αi,βi)
Q and822

λ
(αi,βi)
Q are the weights and nodes of a Q-nodes Gauss-Jacobi quadrature rule of parameters823

αi = ξi−σ
σ

and βi = 1−ξi−σ
σ

(see Appendix C). The moment-preserving property of this824

quadrature comes with the need to compute ω
(αi,βi)
Q and λ

(αi,βi)
Q for each node of the main825

Beta EQMOM quadrature.826

Appendix B.6.5. Single node analytical solution827

The case P = 1 has the following analytical solution:828

w1 = m0

ξ1 =
m1

m0

σ =
m2

1 −m0m2

m0(m2 −m1)

Appendix C. Gaussian quadratures829

A Q-node Gaussian quadrature allows to approximate a function integral as a weighted830

sum of pointwise values of this function over an interval I:831 ∫
I

f(x)p(x)dx ≈
Q∑
j=1

ωjf (λj) (C.1)
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p(x) is a weight function, and the quadrature rule yields accurate integral evaluations if832

f(x) = xk, k ∈ {0, . . . , 2Q − 1}. The computation of the weights ωQ and nodes λQ is833

performed as detailed in 2.2 by considering polynomials that are orthogonal with respect to834

the weight function p(x).835

Table C.1 details for each Gauss quadrature:836

• the weight function p(x);837

• the integration support I;838

• the computation of recurrence coefficients aQ−1 and bQ−1;839

• the zero-th order moment P0 of p(x).840

The recurrence coefficients are used to construct the Jacobi matrix JQ associated with841

p(x) on I (see Eq. 6). The nodes λQ are the eigenvalues of JQ, and the weights ωQ are given842

by ωj = P0v
2
1,j with v1,j the first component of the normalised eigenvector belonging to the843

eigenvalue λj.844
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Table C.1: Specifics of Gauss quadratures used for EQMOM nested quadratures.

Gauss- I p(x) aQ and bQ P0

Hermite R exp (−x2) ak = 0

bk = k/2

√
π

Laplacec R exp (− |x|) /2
Apply Chebyshev algorithm to

P2Q−1 with Pk =

{
0 if k odd

k! if k even

1

Laguerref R+ xα exp (−x) a0 = 1 + α

ak = 2 + ak−1

bk = k(k + α)

Γ (1 + α)d

Wigerta,f R+ 1
γx
√

2π
exp

(
log2(x)

2γ2

)
ak =

((
z2 + 1

)
z2k − 1

)
z2k−1

bk =
(
z2k − 1

)
z6k−4

z = exp(γ2/2)

1

Weibulla,f R+ γxγ−1 exp (−xγ) Apply Chebyshev algorithm to
P2Q−1 with Pk = Γ (1 + k/γ)

1

Legendreb ]−1, 1[ 1 ak = 0

bk =
k2

4k2 − 1

2

Jacobib,f ]−1, 1[ (1−x)α (1+x)β ak =
β2−α2

δk(δk+2)

bk =
4k(k+α)(k+β)(k+α+β)

δ2
k(δ

2
k−1)

δk = 2k+α+β

2α+β+1×
B (α+1, β+1)e

aWilck [33]. bShen et al. [34]. c Not standard Gauss-quadrature. d Γ(x) =
∫ +∞

0 tx−1e−tdt. e

B(x, y) = Γ(x)Γ(y)
Γ(x+y) . f α > −1, β > −1, γ > 0.
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