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Abstract In this paper, we generalize the normalized gradient flow method
to compute the ground states of Bose-Einstein condensates (BEC) with higher
order interactions (HOI), which is modelled via the modified Gross-Pitaevskii
equation (MGPE). Schemes constructed in naive ways suffer from severe sta-
bility problems due to the high restrictions on time steps. To build an efficient
and stable scheme, we split the HOI term into two parts with each part treated
separately. The part corresponding to a repulsive/positive energy is treated
semi-implicitly while the one corresponding to an attractive/negative energy is
treated fully explicitly. Based on the splitting, we construct the BEFD-splitting
and BESP-splitting schemes. A variety of numerical experiments shows that
the splitting will improve the stability of the schemes significantly. Besides, we
will show that the methods can be applied to multidimensional problems and
to the computation of the first excited state as well.

Keywords Bose-Einstein condensate, higher order interaction, modified
Gross-Pitaevskii equation, ground state, normalized gradient flow, attractive-
repulsive splitting

1 Introduction

The Bose-Einstein condensate (BEC), which is a many body system with low
density and low temperature, has drawn great attention since its first exper-
imental realization in 1995 [1,18,24] as it offers a way to measure the mi-
croscopic quantum mechanical properties in a macroscopic scale. The Gross-
Pitaevskii equation (GPE), which is a mean field approximation by approxi-
mating the interaction between particles by an external pseudo-potential [28,
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2 Xinran Ruan

29,30,32,33], has gained considerable research interest due to its simplicity
and effectiveness in describing Bose-Einstein condensates (BEC). One key as-
sumption in deriving GPE is that the interaction between particles can be well
approximated by the binary interaction in the form

Vint(x1 − x2) = g0δ(x1 − x2), x1,x2 ∈ R3, (1.1)

where δ(·) is the Dirac delta function and g0 = 4π~2as
m is the contact interac-

tion strength with as being the s-wave scattering length, ~ being the reduced
Planck constant and m being the mass of the particle [29]. The theory has
shown excellent agreement with most experiments. However, the validity of
the approximation needs to be carefully examined in certain cases, such as
in the experiments which take advantage of the Feshbach resonances in cold
atomic collision [43]. In such cases, higher order interaction (HOI) (or effective
range expansion) as a correction to the Dirac delta function has to be taken
into account. In [22,25], the higher order interaction correction is analyzed
and a new binary interaction is derived as

Vint(z) = g0

[
δ(z) +

g1
2

(
δ(z)∇2

z +∇2
zδ(z)

)]
, (1.2)

where g0 is defined as before, z = x1 − x2 ∈ R3 and the HOI correction is

given by the parameter g1 =
a2s
3 −

asre
2 with re being the effective range of

the two-body interaction. When re = 2
3as, it is for the hard sphere potential

and reduces back to the classical case. In certain cases, g1 can be extremely
large [43] and, therefore, the HOI can no longer be ignored. With this new
choice of the binary interaction (1.2), the modified Gross-Pitaveskii equation
(MGPE)[27,26,22,34,38] is derived as

i~∂tψ =

[
− ~2

2m
∇2 + V (x) +Ng0

(
|ψ|2 +

g1
2
∇2|ψ|2

)]
ψ, t ≥ 0, x ∈ R3 (1.3)

where N is the number of particles, V (x) is a real-valued external trapping
potential and ‖ψ(x, t)‖2 = 1.

In experiments, the confinement induced by the external potential might
be strong in one or two directions. As a result, the BEC in 3D could be well
described by the MGPE in 2D or 1D, respectively, by performing a proper
dimension reduction [34,13,35]. Finally, we get the dimensionless modified
GPE (MGPE) in d-dimensions (d = 1, 2, 3) as

i∂tψ =

[
−1

2
∆+ V (x) + β|ψ|2 − δ∆(|ψ|2)

]
ψ, t ≥ 0, x ∈ Rd, (1.4)

with mass N(t) :=
∫
Rd |ψ(x, t)|2dx and energy

E(ψ(·, t)) :=

∫
Rd

[
1

2
|∇ψ|2 + V (x)|ψ|2 +

β

2
|ψ|4 +

δ

2
|∇|ψ|2|2

]
dx. (1.5)
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It is easy to check that the mass and the energy are conserved, i.e.

N(t) ≡ N(0) = 1, E(ψ(·, t)) ≡ E(ψ(·, 0)). (1.6)

A fundamental problem in studying BEC is to find its stationary states,
especially the ground state which is the stationary state with the lowest en-
ergy. Mathematically speaking, the ground state φβ,δg := φβ,δg (x) of the MGPE
(1.4) is defined as the minimizer of the energy functional (1.5) under the nor-
malization constraint, i.e.

φβ,δg := arg min
φ∈S

E (φ) , (1.7)

where S is defined as

S := {φ | ‖φ‖2 = 1, E(φ) <∞} . (1.8)

Eβ,δg := E(φβ,δg ) is called the ground state energy. The Lagrangian of the prob-

lem (1.7) implies that the ground state φβ,δg satisfies the following nonlinear
eigenvalue problem

µφ =

[
−1

2
∆+ V (x) + β|φ|2 − δ∆(|φ|2)

]
φ, (1.9)

where the corresponding eigenvalue (also named chemical potential) µ can be
computed as

µ =

∫
Rd

[
1

2
|∇φ|2 + V (x)|φ|2 + β|φ|4 + δ

∣∣∇|φ|2∣∣2 ] dx. (1.10)

It is worth noticing that, when δ 6= 0, the ground state exists if and only
if δ > 0 [10]. Furthermore, the ground state is unique if we have both β > 0
and δ > 0 [10]. When δ = 0, the MGPE degenerates to the GPE. And the
existence and uniqueness of the ground state has been thoroughly studied and
we refer the readers to [7,8,33]. Therefore, throughout the paper, we will only
consider the case δ ≥ 0 for the computation of the ground state of MGPE.

Numerous numerical methods have been proposed to compute the ground
state of the classical GPE, such as a Runge-Kutta spectral method with spec-
tral discretization in space and Runge-Kutta type integration in time by Ad-
hikari et al. in [31], Gauss-Seidel-type methods in [20] by Lin et al., a finite
element method by directly minimizing the energy functional in [16] by Bao
and Tang, a regularized newton method by Wu, Wen and Bao in [40], a pre-
conditioned nonlinear conjugate gradient method [5] and an adaptive finite
element method [23] for the rotating BEC , and so on. Among all the methods,
the normalized gradient flow method, also named the imaginary time method
in physics literatures [12,6,21], is extremely efficient and easy to implement. A
Matlab toolbox named GPELab has been developed based on the method [3].
Due to its simplicity and efficiency, the method has been generalized as well
to spin-1 BEC [11,9], rotational BEC [17,4] and so on. It seems that the gen-
eralization of the method to MGPE (1.9) would be trivial. However, it turns
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out that the term δ∆(|ψ|2)ψ needs to be carefully dealt with since schemes
constructed in naive ways suffer from severe stability problems. In this paper,
we surprisingly find that a proper splitting of the term δ∆(|ψ|2)ψ into two
parts based on the attractive-repulsive splitting will overcome the problem.
The details will be introduced later in Section 3.1.

The paper is organized as follows. In Section 2, we introduce the continuous
normalized gradient flow method for MGPE and show its discretization, which
will be shown to be mass-conserved and energy diminishing. Then we intro-
duce the discrete normalized gradient flow and derive the BEFD schemes con-
structed in naive ways. Analysis will be provided to show the high restrictions
of BEFD on time steps. In Section 3, we introduce the attractive-replulsive
splitting of the term δ∆(|ψ|2)ψ and construct the BEFD-splitting and BESP-
splitting schemes by applying finite difference and pseudo-spectral discretiza-
tions in space, respectively. In Section 4, a variety of numerical experiments
will be performed to show that the splitting does improve the stability of the
schemes significantly and the BEFD-splitting/BESP-splitting schemes have a
great advantage over the methods constructed in naive ways. We will also ap-
ply the BEFD-splitting/BESP-splitting scheme to multidimensional problems
as well as the computation of the first excited state. Finally, some conclusions
are drawn in Section 5.

2 Normalized gradient flow and its discretization

The normalized gradient flow method is proven to be one of the most popular
methods for computing the ground state of GPE due to its simplicity and
efficiency. In this section, we will introduce the continuous normalized gradient
flow as well as the discrete normalized gradient flow, showing its generalization
to MGPE with detailed discretizations.

2.1 Continuous normalized gradient flow (CNGF)

The continuous normalized gradient flow method (CNGF) can be viewed as
applying the steepest descent method to the energy functional (1.5) with a
Lagrange multiplier for the normalization constraint. It is proposed in [12] for
computing the ground state of GPE and can be generalized trivially to MGPE
in the continuous level as

φt =
1

2
∆φ− V (x)φ− β|φ|2φ+ δ∆(|φ|2)φ+ µφ(t)φ, (2.1)

φ(x, t) = 0 for x ∈ ∂Ω, t ≥ 0, and φ(x, 0) = φ0(x), x ∈ Ω, (2.2)

where Ω is the domain and µφ(t) depending on φ := φ(·, t) is defined as

µφ(t) =
1

‖φ‖2

∫
Ω

[
1

2
|∇φ|2 + V (x)|φ|2 + β|φ|4 + δ|∇(|φ|2)|2

]
dx. (2.3)
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It can be shown that the CNGF scheme (2.1) conserves the mass and dimin-
ishes energy as stated in Lemma 2.1.

Lemma 2.1 Denote φ(·, t) to be the solution of the CNGF scheme (2.1)-(2.3)
at time t. For any initial value φ0(x) satisfying ‖φ0‖ = 1 and lim|x|→∞ φ0(x) =
0, we have the CNGF scheme is normalization conservation and energy dimin-
ishing. To be more specific, we have

‖φ(·, t)‖2 = ‖φ0‖2, (2.4)

d

dt
E(φ(·, t)) = −2‖φt(·, t)‖22, t ≥ 0. (2.5)

which implies that

E(φ(·, t1)) ≥ E(φ(·, t2)), 0 ≤ t1 ≤ t2 <∞. (2.6)

Proof (2.4) and (2.5) can be derived by taking time derivatives of ‖φ(·, t)‖2
and E(φ), respectively, and combining (2.1). The details are omitted here for
brevity. ut

2.2 A mass conserved and energy diminishing discretization

In this section, we will present the CNGF-FD scheme, which is the full dis-
cretization of the CNGF (2.1)-(2.3) via Crank-Nicolson in time and finite
difference in space.

Due to the fact that the external potential V (x) satisfies the confining
condition, the ground state decays to zero exponentially fast as |x| → ∞ [10].
Therefore, we can always truncate the problem into a large bounded domain
with homogeneous Dirichlet boundary conditions in practical computation.
For simplicity, only the 1D case, which is defined over an interval (a, b), is con-
sidered. Extension to higher dimensions is straightforward for tensor product
grids and thus omitted here.

Choose a time step τ > 0 and denote the time sequence as tn = nτ for
n ≥ 0. Take Ω = (a, b) to be the computational domain and denote the
uniformly distributed grid points as

xj := a+ jh, for j = 0, 1, . . . N, (2.7)

where h := (b − a)/N is the mesh size. Let φnj be the numerical approxima-
tion of φ(xj , tn) and Vj := V (xj). Denote Φn to be the vector solution with
component φnj , i.e.

Φn := (φn1 , . . . , φ
n
N−1)T ∈ RN−1. (2.8)

Define the operators δ+x and δ2x as

δ+x φ
n
j :=

φnj+1 − φnj
h

, δ2xφ
n
j :=

φnj+1 − 2φnj + φnj−1
h2
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to be the finite difference approximations of ∂x and ∂xx, respectively.
With the notations above, the CNGF scheme (2.1)-(2.3) is discretized, for

j = 1, 2, . . . , N − 1 and n ≥ 0, as

φn+1
j − φnj

τ
=

1

2
δ2xφ̄

n
j − Vj φ̄nj − βρ̄nj φ̄nj + δδ2xρ̄

n
j φ̄

n
j + µ̄nφ̄nj , (2.9)

φ0j = φ0(xj), φn0 = φnN = 0 (2.10)

where φ̄nj := (φnj + φn+1
j )/2, ρnj := |φnj |2, ρ̄nj := (ρnj + ρn+1

j )/2 and

µ̄n :=

∑N−1
j=0

[
1
2 |δ

+
x φ̄

n
j |2 + Vj |φ̄nj |2 + βρ̄nj |φ̄nj |2 + δδ+x ρ̄

n
j δ

+
x (|φ̄nj |2)

]∑N
j=0 |φ̄nj |2

. (2.11)

The discretized mass and the discretized energy at t = tn can be computed,
respectively, as ‖Φn‖2h := h

∑N−1
j=1 |φnj |2 and

Eh(Φn) := h

N−1∑
j=1

[
1

2
|δ+x φnj |2 + V (xj)|φnj |2 +

β

2
|φnj |4 +

δ

2
|δ+x (|φnj |2)|2

]
. (2.12)

Similar to the CNGF (2.1)-(2.3), the CNGF-FD scheme (2.9)-(2.11) is mass
conservation and energy diminishing as well, as shown in Lemma 2.2.

Lemma 2.2 The CNGF-FD scheme (2.9)-(2.11) is normalization conserva-
tion and energy diminishing, i.e.

‖Φn+1‖2h = ‖Φn‖2h, Eh(Φn+1) ≤ Eh(Φn), for all n ≥ 0. (2.13)

Proof Multiplying φ
n+1/2
j on both sides of (2.9) and summing over j = 1, . . . , N−

1, we have
‖Φn+1‖2h − ‖Φn‖2h

2τ
= 0,

which implies the mass conservation. Similarly, multiplying both sides of (2.9)
by (φn+1

j − φnj ) and summing all together, we will get

‖Φn+1 − Φn‖2h
τ

=
1

2

[
Eh(Φn)− Eh(Φn+1)

]
+ µn+1/2 ‖Φn+1‖2h − ‖Φn‖2h

2

=
1

2

[
Eh(Φn)− Eh(Φn+1)

]
,

where the last equality holds true because of the fact ‖Φn+1‖2h = ‖Φn‖2h. It
follows that Eh(Φn) ≥ Eh(Φn+1). ut

Lemma 2.2 indicates that, theoretically speaking, the CNGF-FD scheme
(2.9) conserves mass and diminishes energy no matter the choice of time step
τ , and is thus unconditionally stable. However, the performance of the method
relies on the proper choice of a nonlinear solver. Without a proper nonlinear
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solver, we may lose the good properties in Lemma 2.2. For example, (2.9) can
be solved using the Gauss-Seidel method as follows.

φn+1,m+1
j − φnj

τ
=

(
1

2
δ2x − Vj − βρ

∗,m
j

)
φ∗,m+1
j +(δδ2xρ

∗,m
j + µ̃m)φ∗,mj , (2.14)

where φn+1,0
j := φnj , φ∗,mj := (φnj + φn+1,m

j )/2, ρn+1,m
j := |φn+1,m

j |2, ρ∗,mj :=

(ρnj + ρn+1,m
j )/2 and µ̃m := Eh(Φ∗,m)/‖Φ∗,m‖2h. And then Φn+1 is computed

as

Φn+1 := lim
m→∞

Φn+1,m. (2.15)

Equation (2.14) implies that a linear system needs to be solved to get Φn+1,m+1

and it can be shown that the solution always exists and is unique. However,
it is not guaranteed that Φn+1,m has a limit as m → ∞, which indicates
that there should be some restrictions on time step τ and mesh size h. Such
restrictions will be shown in Fig. 4.3 in Section 4 later. It is worth noticing
that the restrictions are because of the specific nonlinear solver chosen rather
than the CNGF-FD scheme.

2.3 Backward Euler finite difference discretization (BEFD)

In this section, we will introduce the discrete normalized gradient flow and its
detailed discretizations, especially the one with backward Euler in time and
finite difference in space.

Despite the good properties shown in Lemma 2.2, the CNGF-FD scheme
(2.9) is usually not the best choice in practical computation since a complicated
nonlinear equation needs to be solved for each time step, which might be time
consuming and even cause severe stability issues. Modifications are needed
to get schemes which are both efficient and stable. One way to due with the
problem is to separate the steepest descent step and the normalization step in
(2.1), which gives us the discrete normalized gradient flow as follows.

φt =
1

2
∆φ− V (x)φ− β|φ|2φ+ δ∆(|φ|2)φ, x ∈ Ω, tn < t < tn+1, (2.16)

φ(x, tn+1) =
φ(x, t+n+1)

‖φ(x, t+n+1‖
, (2.17)

φ(x, t)|∂Ω = 0, φ(x, 0) = φ0(x) with ‖φ0‖ = 1. (2.18)

To update from t = tn to tn+1, we first solve (2.16) to get φ(x, t+n+1) and then
get φ(x, tn+1) by the normalization step (2.17).

Remark 2.1 As shown in [12], the solution of (2.16)-(2.17) may not preserve
the energy diminishing property and the limiting solution might differ from
the ground state. However, such difference is usually not obvious and can be
diminished by choosing a smaller time step.
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Discretizing (2.16) via Crank-Nicolson (C-N) in time and finite-difference
(FD) in space, we will get the CNFD scheme. However, such scheme is far
from satisfactory. The CNFD scheme is still nonlinear and, what makes things
worse, there are high restrictions on time step and mesh size. As shown in
Theorem 3.1 in [12], even for the linear case where β = δ = 0, we need to take
τ = O(h2) to diminish energy.

A better choice would be the BEFD scheme, where (2.16) is discretized
via backward Euler in time and the nonlinear terms on the right-hand side
are treated semi-implicitly. The idea comes from the success of the scheme for
GPE where δ = 0 and β > 0 [12]. For the GPE case with β > 0, the nonlinear
term β|φ|2φ is treated as β|φn|2φn+1 when updating from t = tn to tn+1, and
the linear terms are treated implicitly. It is shown that the BEFD scheme is
energy diminishing for any τ > 0 [12] when V (x) ≥ 0 and β = δ = 0, which
implies a great advantage of the BEFD scheme over the CNFD scheme. When
β < 0, we need to approximate β|φ|2φ fully explicitly as β|φn|2φn to avoid
possible instability issues.

Following a similar idea, we can construct the BEFD scheme for MGPE.
We adopt the same notations as in Section 2.2 and, for simplicity, only the 1D
case where β ≥ 0 is considered. There are several ways to treat the δ-nonlinear
term semi-implicitly. Below is one possibility. For all j = 1, 2, . . . , N − 1 and
n ≥ 0, we have the BEFD scheme constructed as

φ̃n+1
j − φnj

τ
=

1

2
δ2xφ̃

n+1
j − Vj φ̃n+1

j − β|φnj |2φ̃n+1
j + δδ2x(|φnj |2)φ̃n+1

j , (2.19)

Φn+1 =
Φ̃n+1

‖Φ̃n+1‖h
, φn+1

0 = φn+1
N = 0, φ0j = φ0(xj). (2.20)

It is worth noticing that, with the BEFD scheme (2.19)-(2.20), a linear equa-
tion of form A(n)Φ̃n+1 = F (Φn), instead of a nonlinear one, needs to be solved
for each time step. Easy to check that F (Φn) = Φn/τ and

A(n) = I/τ −D + V + β|Φn|2 − δδ2x(|Φn|2) (2.21)

with D := (djk)(N−1)×(N−1) defined as the finite difference approximation of
−∂xx/2 where

djk :=
1

2h2


2, j = k,

−1, |j − k| = 1,

0, otherwise.

(2.22)

and V, β|Φn|2, δδ2x(|Φn|2) are diagonal matrices whose diagonals are the corre-
sponding vectors.

The BEFD scheme (2.19)-(2.20) is conditionally stable. In most cases, we
need τ . h2 as indicated in the following lemma.

Lemma 2.3 When β ≥ 0 and V ≥ 0, one sufficient condition for the BEFD
scheme (2.19)-(2.20) to be solvable is τ . h2.
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Proof One sufficient condition for the matrx A(n), with general choices of
V ≥ 0 and β ≥ 0, to be nonsingular is min{1/τ − δδ2x(|φnj |2)} ≥ 0, i.e.

τ ≤ 1

δδ2x(|φnj |2)
, for j = 1, . . . , N − 1. (2.23)

Noticing that δ2x(|Φn|2) = −2D|Φn|2, where the largest eigenvalue of D is
of order O(1/h2) and |Φn|2 is bounded in l∞-norm [10], we get δ2x(|φnj |2) .
1/h2,which implies the sufficient condition τ . h2. ut

For the BEFD scheme (2.19)-(2.20), the restriction on time step τ is mainly
because of the possible negative sign of δ2x(|Φn|2). To avoid the restriction, one
possible way is to approximate the term δ∆(|φ|2)φ fully explicitly. In this way,
we get a different BEFD scheme as follows.

φ̃n+1
j − φnj

τ
=

1

2
δ2xφ̃

n+1
j − V (xj)φ̃

n+1
j − β|φnj |2φ̃n+1

j + δδ2x(|φnj |2)φnj , (2.24)

Φn+1 =
Φ̃n+1

‖Φ̃n+1‖h
, φn+1

0 = φn+1
N = 0, φ0j = φ0(xj), (2.25)

where j = 1, 2, · · · , N − 1 and n ≥ 0.
The equation (2.24) can be reformulated in the matrix form Ã(n)Φ̃n+1 =

F̃ (Φn), where F̃ (Φn) = Φn/τ + δδ2x(|Φn|2)Φn and

Ã(n) = I/τ −D + V + β|Φn|2. (2.26)

It is worth noting that the matrix Ã(n) is an M-matrix, which guarantees the
solvability in each step. However, there are still restrictions on time steps for
Φn to converge to the correct ground state Φg. When β = 0, the following
lemma shows that the scheme (2.24) may be not energy diminishing if we
don’t take time step satisfying τ . h2.

Lemma 2.4 When β = 0 and V ≥ 0, one sufficient condition for Eh(Φ̃n+1) ≤
Eh(Φn), for all n ≥ 0, is τ . h2.

Proof For simplicity, denote δtΦ
n = Φ̃n+1 − Φn and ‖Φ‖V = (V Φ,Φ), where

(·, ·) denotes the inner product of two vectors. Multiplying both sides of (2.24)
by φ̃n+1

j − φnj and summing over j, we get

2‖δtΦn‖2

τ
= (δ2xΦ̃

n+1, δtΦ
n)− 2(V Φ̃n+1, δtΦ

n) + 2δ(δ2x(|Φn|2)Φn, δtΦ
n)

=
1

2
(‖δxΦn‖2 − ‖δxΦ̃n+1‖2 − ‖δxδtΦn‖2) + (‖Φn‖V − ‖Φ̃n+1‖V − ‖δtΦn‖V )

+
1

2

[
‖∇(|Φn|2)‖2 − ‖∇(|Φ̃n+1|2)‖2 + ‖δxδt(|Φn|2)‖2

]
−
(
δ2x(|Φn|2), (δtΦ

n)2
)

≤ Eh(Φn)− Eh(Φ̃n+1) +
1

2
‖δxδt(|Φn|2)‖2 −

(
δ2x(|Φn|2), (δtΦ

n)2
)
.
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Obviously, one sufficient condition for the energy diminishing is

2‖δtΦn‖2

τ
≥ 1

2
‖δxδt(|Φn|2)‖2 −

(
δ2x(|Φn|2), (δtΦ

n)2
)
. (2.27)

The boundedness of Φn for arbitrary n [10] indicates the boundedness of |Φn|2.
Furthermore, we have ‖δt|Φn|2‖∞ . ‖δtΦn‖∞. Following a similar argument
as in the proof of Lemma 2.3, we get ‖δ2x(|Φn|2)‖∞ . 1/h2. As a result,∣∣(δ2x(|Φn|2), (δtΦ

n)2
)∣∣ ≤ ‖δ2x(|Φn|2)‖∞

(
1, (δtΦ

n)2
)
. ‖δtΦn‖2/h2. (2.28)

Besides, the Bramble-Hilbert lemma and a standard scaling argument gives

‖δxδt(|Φn|2)‖2 .
‖δt(|Φn|2)‖2

h2
. (2.29)

Combing (2.27), (2.28) and (2.29), we get the sufficient condition τ . h2. ut

Lemma 2.3 and 2.4 indicate the possible strict restrictions on time step
τ no matter whether the term δ∆(|φ|2)φ is treated semi-implicitly or fully
explicitly. Later in Section 4, we will show numerically that such restrictions
are necessary in many cases for the solution to converge to the desired ground
state. The high restrictions on time step imply the BEFD schemes (2.19)-
(2.20) and (2.24)-(2.25) proposed in this section are not satisfactory. The main
reason is that we didn’t treat the nonlinear term δ∆(|φ|2)φ properly. In the
next section, we will introduce a new scheme, named the backward Euler
finite difference scheme with splitting (BEFD-splitting), which splits the term
δ∆(|φ|2)φ into two parts with each part dealt with separately. It will be shown
numerically that the new method will significantly improve the scheme in the
sense that a much larger time step can be adopted for the scheme which is
almost unrelated to the mesh size we choose.

3 Backward Euler discretization with attractive-repulsive splitting

In this section, we introduce a new BEFD scheme which can be numerically
proven to be much more efficient and stable than the BEFD schemes (2.19)-
(2.20) and (2.24)-(2.25) proposed in the last section.

3.1 A new gradient flow with attractive-repulsive splitting

In this section, we will introduce a new gradient flow with its semi-discretization,
which will be used to construct a new BEFD scheme suitable for practical com-
putation. The ideal scheme should satisfy the following properties.

– The update for each step should be simple, which is necessary for the
scheme to be efficient.
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– The scheme should have good stability properties, i.e. the time step shouldn’t
be highly restricted by the mesh size. In this way, we can improve the ac-
curacy of the solution without much extra computational cost.

The CNGF-FD scheme (2.9) do not satisfy the first requirement since a compli-
cated nonlinear system needs to be solved for each step. The BEFD schemes
(2.19)-(2.20) and (2.24)-(2.25) do not satisfy the second condition since an
extremely small time step, which is of order O(h2), is needed.

The instability issue of the BEFD schemes (2.19)-(2.20) and (2.24)-(2.25)
is due to the nonlinear term δ∆(|φ|2)φ since the schemes work well when δ = 0
as shown in [12]. One possible reason underlying is that ∆(|φ|2) is much less
smooth than |φ|2. A small error in φ would affect ∆(|φ|2) in a significant way,
which indicates that instead of treating the part ∆(|φ|2) as ∆(|φn|2) as a
whole, we should split it in a proper way and deal with each part separately.
A simple computation gives that

δ∆(|φ|2)φ = 2δ|φ|2∆φ+ 2δ|∇φ|2φ. (3.1)

Combining the first term on the right hand side of (3.1), i.e. 2δ|φ|2∆φ, with
the linear term 1

2∆φ, we get an equivalent new form of the original gradient
flow (2.16). To be more specific, the new gradient flow reads as follows.

φt =
1

2
∆φ− V (x)φ− β|φ|2φ+ 2δ|φ|2∆φ+ 2δ|∇φ|2φ,

= (
1

2
+ 2δ|φ|2)∆φ− V φ− β|φ|2φ+ 2δ|∇φ|2φ, x ∈ Ω, t ≥ 0. (3.2)

The equation (3.2) is equivalent to the original gradient flow (2.16) in the
continuous level. However, it will lead to different schemes after discretiza-
tion in time. The trick is that we treat the term 2δ|φ|2∆φ semi-implicitly as
2δ|φn|2∆φn+1 while treat the term 2δ|∇φ|2φ fully explicitly as 2δ|∇φn|2φn.
And then we get the following semi-discretized scheme from tn to tn+1

φ̃n+1 − φn

τ
=

[(
1

2
+ 2δρn

)
∆− V (x)− βρn

]
φ̃n+1 + 2δ|∇φn|2φn, (3.3)

φn+1 =
φ̃n+1

‖φ̃n+1‖
, with φ̃n+1|∂Ω = 0 and ρn = |φn|2, (3.4)

where x ∈ Ω, n ≥ 0 and β ≥ 0. If β < 0, we need to change βρnφ̃n+1 to
βρnφn.

It is obvious that the new scheme (3.3) is linear in φ̃n+1. Furthermore,
the coefficient before ∆, i.e. 1

2 + 2δρn, is always positive, which guarantees

the existence and uniqueness of φ̃n+1 for any n. Besides, by splitting the term
δ∆(|φ|2)φ into two parts, we avoid the explicit treatment of ∆(|φ|2) as a whole,
which indicates the possibility to get rid of the strict restrictions on τ . All these
features imply that the new gradient flow (3.3) could be used to construct new
numerical schemes suitable for practical computation.
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The idea of treating the two terms on the right-hand side of (3.1) separately
comes from the convex-concave splitting proposed in, for example, [36,41,
42] and so on, where the term corresponding to a convex energy is treated
implicitly while the term corresponding to a concave term is treated explicitly.
It is proved in [42] that, without discrete normalization, the gradient flow
will always be energy diminishing if the convex-concave splitting is applied.
Multiplying both terms in (3.1) by φ, integrating over domain Ω and doing
integration by part, we get the corresponding energies of the terms 2δ|φ|2∆φ
and 2δ|∇φ|2φ as

H1 =
3δ

2

∫
Ω

|∇(|φ|2)|2 dx and H2 = −δ
2

∫
Ω

|∇(|φ|2)|2 dx, (3.5)

respectively. Obviously, H1 is convex in φ while H2 is concave, which indicates
the proper discretization of (3.2) is (3.3). Slightly different from the convex-
concave splitting, the term 2δ|φ|2∆φ is treated semi-implicitly instead of fully
implicitly for the computational efficiency.

The scheme (3.3) can be understood from a physics point of view as well
by checking the corresponding energy terms. In physics, a positive energy
term corresponds to a repulsive energy, which will stablize the system and
should be discretized implicitly, while a negative energy term corresponds to an
attractive energy, which will, on the contrary, destabilize the system and must
be discretized in a fully explicit way. Noticing that the energies corresponding
to 2δ|φ|2∆φ and 2δ|∇φ|2φ are H1 and H2, respectively, and H1 ≥ 0 and
H2 ≤ 0 hold true for any function φ, 2δ|φ|2∆φ should be treated implicitly
while 2δ|∇φ|2φ must be treated explicitly. The signs of H1 and H2 matter
here. This idea also explains why we need to change β|φn|2φ̃n+1 to β|φn|2φn
if β < 0. From this point of view, the splitting is based on the repulsive-
attractive splitting of the energy. As a result, we name our new method to be
the normalized gradient flow with repulsive-attractive splitting.

3.2 Backward Euler finite difference discretization with splitting

In this section, we construct the backward Euler finite difference scheme
with splitting (BEFD-splitting) by discretizing (3.3) in space via the finite
difference. For simplicity, we adopt the notations as in Section 2.2 and consider
the 1D problem. When β ≥ 0, we have

φ̃n+1
j − φnj

τ
=

[(
1

2
+ 2δ|φnj |2

)
δ2x − Vj − β|φnj |2

]
φ̃n+1
j + 2δ|δ+x φnj |2φnj , (3.6)

Φn+1 =
Φ̃n+1

‖Φ̃n+1‖h
, φn+1

0 = φn+1
N = 0, φ0j = φ0(xj). (3.7)

The equation (3.6) can be written in matrix form as

A(n)Φ̃n+1 = F (Φn) (3.8)
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where A(n) = I+τ
[(
I + 4δ|Φn|2

)
D + V + β|Φn|2

]
, D is defined in (2.22) and

F (Φn) = (I + 2δτ |δ+x Φn|2)Φn.
Noticing that the matrix A(n) is tridiagonal and diagonal dominant, the

equation (3.8) can be solved efficiently by the tridiagonal matrix algorithm
(TDMA) with the computational cost O(N). The scheme (3.6) can be gener-
alized to multidimensional problems with tensor product grids in a straightfor-
ward way. In such cases, the matrix A(n) is no longer tridiagonal and TDMA
cannot be applied. However, it is a sparse M-matrix, which indicates that
we can use iterative methods, such as Gauss-Seidel method, to get Φ̃n+1 effi-
ciently.

It is remarkable that the BEFD-splitting scheme (3.6)-(3.7) is not uncon-
ditionally stable. The stability region is difficult to be theoretically analysed.
However, as shown by the numerical experiments in Section 4.1, the scheme is
much less restricted than the BEFD schemes (2.19)-(2.20) and (2.24)-(2.25).
It can be concluded that the new scheme (3.6)-(3.7) satisfies the properties
proposed in Section 3.1 and has a great advantage over all our previous meth-
ods.

3.3 Backward Euler pseudo-spectral discretization with splitting

In this section, we construct the backward Euler pseudo-spectral scheme
with splitting (BESP-splitting) by discretizing (3.3) in space via Fourier
spectral method. Compared to the finite difference method, the spectral method
has the advantage of high accuracy for regular domains and smooth solutions.

For simplicity, consider the problem in 1D defined in Ω = (a, b) and use
the same notations as in Section 2.2. Introduce µl = 2πl

b−a and

Φ̂ := (φ̂−N/2, φ̂−N/2+1, . . . , φ̂N/2−1) (3.9)

to be the discrete Fourier transform of Φ = (φ0, φ1, . . . , φN−1). It is easy to

check that φ̂l = φ̂l+N . Then (3.6) can discretized as

φ̃∗j − φnj
τ

=

[(
1

2
+ 2δ|φnj |2

)
Ds
xx − Vj − β|φnj |2

]
φ̃∗j + 2δ(Ds

xφ
n
j )2φnj , (3.10)

Φn+1 =
Φ̃∗

‖Φ̃∗‖h
, with φ̃∗0 = φ̃∗N = 0, φ0j = φ0(xj). (3.11)

where Ds
xx and Ds

x are the pseudo-spectral differential operators approximat-
ing ∂xx and ∂x, respectively, and defined as

Ds
xφj =

N/2−1∑
l=−N/2

iµlφ̂le
iµl(xj−a), Ds

xxφj = −
N/2−1∑
l=−N/2

µ2
l φ̂le

iµl(xj−a). (3.12)
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To preserve the high accuracy of the spectral method, the discretized energy
needs to be computed in the following way [8],

ESPh (Φ) :=
b− a

2

N/2−1∑
l=−N/2

[
µ2
l φ̂

2
l + δµ2

l ρ̂
2
l

]
+ h

N−1∑
j=1

[
V |φj |2 +

β

2
|φj |4

]
, (3.13)

where µl, φ̂l are defined as before and ρ̂ := (ρ̂−N/2, ρ̂−N/2+1, . . . , ρ̂N/2−1) is
the discrete Fourier transform of ρ := |Φ|2.

The equation (3.10) can be written in a matrix form as well. Define matrices
W = (wjk) ∈ RN×N with wjk = ei2πjk and Ξ = diag(µk) ∈ RN×N for
j = 0, 1, . . . , N − 1 and k = −N/2,−N/2 + 1, . . . , N/2− 1. Denote

D(sp)
x = iWΞW−1 D(sp)

xx = −WΞ2W−1. (3.14)

Then the equation (3.10) can be written as

A(n)
sp Φ̃

∗ = F (Φn), (3.15)

where A
(n)
sp = I+ τ

[
−
(
I + 4δ|Φn|2

)
D

(sp)
xx /2 + V + β|Φn|2

]
and F (Φn) = (I+

2δτ |D(sp)
x Φn|2)Φn.

Since the fast Fourier transform (FFT) cannot be applied to evaluate[(
1
2 + 2δ|Φn|2

)
Ds
xx

]−1
, the equation (3.10) cannot be solved in a direct way

or iteratively by the fixed point method as in [8,12] with the computational
cost O(N logN). One alternative way is through a Krylov subspace method,
such as BiCGSTAB [3,4]. As shown in [3,4], the main computational cost of

BiCGSTAB is the computation of the matrix-vector multiplication A
(n)
sp v for

some vector v. Although the matrix A
(n)
sp is full and asymmetric, the matrix-

vector multiplication can be effectively evaluated via FFT with the compu-
tational cost O(N logN), which guarantees that the total computational cost
per step is O(N logN) as well. Compared to the BEFD-splitting scheme (3.6)-
(3.7), the BESP-splitting scheme (3.10)-(3.11) has the advantage of high ac-
curacy while the order of the computional cost per step is almost the same,
which implies the scheme is usually more effective in practice.

4 Numerical results

In this section, we will show numerical experiments with the BEFD-splitting
scheme (3.6)-(3.7) and the BESP-splitting scheme (3.10)-(3.11). To show the
great superiority of our new schemes, we will compare the BEFD-splitting/BESP-
splitting scheme with other schemes, including CNGF-FD (2.9), the naive
BEFD schemes (2.19)-(2.20) and (2.24)-(2.25), and also the extension of the
regularized Newton method proposed in [34,40]. Then the spatial accuracy of
the BEFD-splitting scheme (3.6)-(3.7) and the BESP-splitting scheme (3.10)-
(3.11) will be tested numerically. Finally, we will apply our new methods to
compute ground states of the MGPE defined in multidimensional space with
general external potentials as well as to compute the first excited states.
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4.1 Energy decay and convergence test

In this section, we show the conditional energy decay property of the BEFD-
splitting scheme (3.6)-(3.7) and the BSEP-splitting scheme (3.10)-(3.11).

Example 4.1 Consider the MGPE in 1D under the harmonic potential V (x) =
x2/2. The initial data is chosen to be

φ0(x) =
e−

x2

2

π1/4
. (4.1)

Two choices of the parameters are considered: (I) β = δ = 10, (II) β =
−10, δ = 10.

Fig. 4.1 shows the energy evolution via the BEFD-splitting scheme (3.6)-
(3.7) or the BESP-splitting scheme (3.10)-(3.11) for Case I in Example 4.1. As
shown in the figure, the solution will converge to a steady state with a small
time step τ = 0.01. As time step increases, the energy will begin to oscillate in
time. When the time step is large enough, say τ = 2, the energy will diverge
and the solutions no longer converge to the ground state.

Different from the classical definition of instability, we say the scheme is
unstable with the given parameters if we can’t get the correct ground state.
In this sense, the numerical test implies that the BEFD-splitting scheme and
BESP-splitting scheme are only conditionally stable. Fig. 4.2 shows the effect
of the time step and mesh size on the stability region of BESP-splitting. As
shown in the figure, the scheme is more stable with a small time step τ and a
large mesh size h, and the stability of the scheme would not be much affected
by h if h is small enough. In practical numerical computation, a smaller mesh
size is needed sometimes for better accuracy and a relatively larger time step
is preferred for a faster convergence. Therefore, we need to balance the stabil-
ity, accuracy and efficiency by choosing a proper mesh size and time step in
practical numerical computation.

The performance of the gradient flow method depends on the choice of
the initial value as well. A good choice of the initial value would not only
accelerate the convergence of the solutions, but also improve the stability of
the scheme. For MGPE with weak or strong nonlinearity and with special
external potentials, such as box potential and harmonic potential, the proper
choices can be found in [34,35]. For MGPE with general external potentials,
the multigrid technique (see [19,39] and references therein) using a hierarchy
of discretizations would be a good choice to increase the stability and efficiency
of the schemes. In Table 4.1, we show how the multigrid technique improves
the stability of the scheme. We consider the case with h = 0.25 and τ = 0.01.
To apply the multigrid technique, we start with the problem with h = 0.5 and
τ = 0.01 to get the ground state φcg on the coarse grid. Then φcg is refined to be
on the grid with mesh size h = 0.25 in a proper way. With the refined function
as the initial data, we apply the BEFD-splitting/BESP-splitting method again
to get the ground state. As shown in Table 4.1, the stability is significantly
improved with this simple technique.
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Fig. 4.1: Energy dynamics via BEFD-splitting (3.6)-(3.7) (left) and BESP-
splitting (3.10)-(3.11) (right) with different choices of time steps.

time step (τ = 0.01)
τ/4 τ/2 τ 2τ

δ
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mesh size (h = 0.25)
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β = 10
β = 50
β = 100

Fig. 4.2: Effect of time step τ and mesh size h on the stability region of BESP-
splitting (3.10)-(3.11). One remark for the figure on the right is that, when
mesh size is 2h, the scheme is stable with δ > 50000 for all three choices of β.

BEFD-splitting δ

without multigrid ≈4000
multigrid >50000

BESP-splitting δ

without multigrid ≈890
multigrid >50000

Table 4.1: Largest possible δ computable by BEFD-splitting (3.6)-(3.7) or
BESP-splitting (3.10)-(3.11) with h = 0.25, τ = 0.01 and β = 100. The
scheme with the multigrid technique starts from h = 0.5 and uses the refined
solution as the initial data for the problem where h = 0.25.

4.2 Comparison with different schemes

In this section, we compare the BEFD-splitting/BESP-splitting schemes with
other schemes, especially the CNGF-FD (2.9) and the BEFD (2.19)-(2.20) and
(2.24)-(2.25) proposed in this paper, on the stability region. The results are
summarized in Fig. 4.3.
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Fig. 4.3a shows the stability region when β = 10 and δ = 10. The method
will be stable with the time step τ and mesh size h if the point (h, τ) is below
the line, and vice versa. Therefore, the best method will be the least restrictive
one, i.e. the borderline of the stability region should be on the top. As shown
in the figure, when β = δ = 10, the time step can be chosen to be O(1)
for the BEFD-splitting/BESP-splitting scheme. However, for the other three
methods, we need τ ≈ O(h2), which is very restrictive. In this sense, we can
conclude that the BEFD-splitting method and the BESP-splitting method are
much more stable than the other methods.

Fig. 4.3b shows the borderline of the stability region when τ = 0.01 and
h = 0.25. The scheme is stable if the point (β, δ) is below the line. Similarly, a
good scheme should be the one applicable to the case with strong nonlinearity,
i.e. large δ and β. Therefore. the borderline for the best scheme should be on
the top. As shown in the figure, the BEFD-splitting scheme is the best one and
the BEFD-splitting/BESP-splitting schemes are much better than the other
methods. The huge difference indicates that the attractive-repulsive splitting
of the term δ∆(|φ|2)φ does improve the stability significantly, which makes
the gradient method suitable for practical numerical computation.

h
1/16 1/8 1/4 1/2

τ

10
-4

10
-3

10
-2

10
-1

10
0

10
1

β = 10, δ = 10

BEFD-splitting
BESP-splitting
BEFD (2.19)
BEFD (2.24)
CNGF-FD (2.14)

τ=h
2

(a) Fix β and δ.

β
0 20 40 60 80 100

δ

10
0

10
1

10
2

10
3

10
4

h = 0.25, τ = 0.01

BEFD-splitting
BESP-splitting
Newton (SP)

BEFD (2.19)
BEFD (2.24)
CNGF-FD (2.14)

(b) Fix h and τ .

Fig. 4.3: Stability test for different schemes. The lines denote the borderlines
of the stability region and the part below the line corresponds to the region
where the scheme is stable.

Finally, we compare the BEFD-splitting/BESP-splitting scheme with the
regularized Newton method proposed in [40], which minimizes the discrete en-
ergy functional directly under the normalization constraints. The extension of
the method to MGPE is straightforward [34]. We compare the stability region
of the regularized Newton method discretized via pseudo-spectral method in
space with the BEFD-splitting/BESP-splitting method and the result is shown
in Fig. 4.3b. Numerical experiments show that the regularized Newton method
will give an oscillatory solution, which is apparently different from the exact
solution, when δ is large. In such cases, we call the method unstable, which is
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Error h = 1/2 h/2 h/22 h/23

|E(φFD
g,h)− E(φg)| 9.33E-3 2.37E-3 5.95E-4 1.49E-4

rate - 1.98 1.99 2.00

‖φFD
g,h − φg‖l2 5.14E-3 1.30E-3 3.23E-4 8.06E-5

rate - 1.98 2.01 2.00

‖φFD
g,h − φg‖∞ 4.21E-3 1.11E-3 2.84E-4 7.08E-5

rate - 1.93 1.96 2.01

Table 4.2: Spatial resolution of the ground state for β = δ = 10 computed by
the BEFD-splitting method.

Error h = 1 h/2 h/22 h/23

|E(φSPg,h)− E(φg)| 1.66E-3 1.62E-6 1.13E-9 5.38E-12

‖φSPg,h − φg‖l2 3.50E-3 2.10E-4 3.63E-7 5.59E-9

‖φSPg,h − φg‖∞ 2.02E-3 2.02E-4 2.53E-7 3.88E-9

Table 4.3: Spatial resolution of the ground state for β = δ = 10 computed by
the BESP-splitting method.

consistent with our previous definition of the stability of a scheme. As shown
in the figure, the regularized Newton method is much less stable than the
BEFD-splitting/BESP-splitting method. One result not shown in Fig. 4.3b
is that the regularized Newton method with finite difference discretization in
space is quite stable, even when δ is extremely large. However, as indicated in
Table 4.1, a simple multigrid technique will improve the stability of the BEFD-
splitting/BESP-splitting scheme signicantly and make the schemes competi-
tive with the regularized Newton method with finite difference discretization
in space.

4.3 Spatial accuracy

In this section, we test the spatial accuracy of the BEFD-splitting/BESP-
splitting schemes by considering Example 4.1 with β = δ = 10. The initial data
is chosen to be (4.1). The problem is solved via BEFD-splitting and BESP-
splitting, respectively, on [−8, 8] with τ = 0.001. The steady state solution
is reached when the difference between two consecutive steps are extremely
small. In our numerical tests, we stop when

‖Φn+1 − Φn‖h
τ

< 10−10. (4.2)

Denote φFDg,h and φSPg,h to be the steady states we get via the BEFD-splitting
and BESP-splitting, respectively. Let φg be the ‘exact’ ground state, which is
computed numerically by BESP-splitting with h = 1/32 and the same time
step τ = 0.001. Its corresponding discrete energy, which is denoted as Eg, is
computed via (3.13).
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Table 4.2 and Table 4.3 indicate that the BEFD-splitting scheme is second
order accurate in space while the BESP-splitting scheme is spectrally accu-
rate. Therefore, the BESP-splitting scheme requires much less grid points and,
therefore, much less computation memory, to get the same order of accuracy.

4.4 Ground states in multidimensional space

In this section, we apply the BEFD-splitting scheme to compute ground states
in more general cases. We start with Example 4.1 and compute the ground
states for various choices of β and δ to see how the parameters affect the
profiles of the ground states. The numerical results are shown in Fig. 4.4, from
where we can observe that both the increase of β and δ will spread the ground
state and the phenomenon would be more obvious if the other parameter is
small.
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Fig. 4.4: The top row shows the ground states of Example 4.1 with fixed δ = 1
(left) or fixed δ = 50 (right) and different β’s. The second row shows the
ground states of Example 4.1 with fixed β = 1 (left) or fixed β = 50 (right)
and different δ’s.
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The BEFD-splitting method can be applied to multidimensional problems
as well. Next we show a case in 2D defined in a bounded domain.

Example 4.2 Consider the MGPE under the box potential defined in [0, 1]2,
i.e.

V (x, y) =

{
0, (x, y) ∈ [0, 1]2,

∞, otherwise .
(4.3)

The initial data is chosen to be φ0(x, y) = sin(πx) sin(πy).

Obviously, the ground state in Example 4.2 is constrained in [0, 1]2 with ho-
mogenous Dirichlet boundary conditions. By applying the BEFD-splitting
scheme, we get the ground states with different choices of β and δ. Again,
we observe that both the increase of β and δ will make the ground state less
concentrated in the center. However, for this problem, the limiting profiles as
β →∞ or δ →∞ are obviously different. If β � 1 and δ is fixed, the ground
state is flat and a boundary layer appears. However, such a boundary layer
does not appear when δ � 1 with β fixed. The results are consistent with the
results in [10,35,37] and the details are omitted here for brevity.

Finally, we show two numerical examples in 3D, namely Example 4.3 and
Example 4.4. The BEFD-splitting scheme is applied to compute the ground
states in the examples, and the isosurfaces are shown in Fig. 4.6.

Example 4.3 Consider the MGPE in 3D under the harmonic potential

V (x, y, z) = (x2 + 4y2 + 4z2)/2 (4.4)

with β = 1 and δ = 20. The initial data is chosen to be

φ0(x) =

√
2

π3/4
e−(x

2+2y2+2z2)/2. (4.5)

Example 4.4 Consider the MGPE in 3D under the harmonic potential in op-
tical lattices

V (x, y, z) = (x2 + 4y2 + 4z2)/2 + 20(sin2(x) + sin2(y) + sin2(z)) (4.6)

with β = 1 and δ = 20 and the initial data (4.5).

4.5 Extension to the computation of the first excited state

For special external potentials, the BEFD-splitting/BESP-splitting schemes
can also be applied to compute the first excited state, which is the stationary
state with the second lowest energy, when the initial data is properly chosen.
Inspired by the classical GPE case in [12], we can choose the initial data to be
the odd function

φ0(x) =

√
2

π1/4
xe−x

2/2 (4.7)
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Fig. 4.5: Ground states φβ,δg (x, y) with β = 0, 100 (from top to bottom) and
δ = 0, 20 (from left to right) under the box potential in (0, 1)2.

Fig. 4.6: Isosurface of the ground states of Example 4.3 with isovalue 0.01
(left) and Example 4.4 with isovalue 0.15 (right).
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to compute the first excited state in Example 4.1. Fig. 4.7 shows the first
excited states in Example 4.1 with different choices of β and δ. For multidi-
mensional problems, the choice of the initial data is similar, and the details
can be referred to [8,15] and the references therein.
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Fig. 4.7: First excited states of Example 4.1 with fixed δ = 1 and different β′s
(left) or fixed β = 1 and different δ’s (right).

Finally, we show two numerical examples in 3D, namely Example 4.3 and
Example 4.4. In both examples, the confinement in the x-direction is the
weakest. Therefore, the first excited state should be the one excited in the
x-direction, which is similar to the classical GPE case where the first excited
state is studied in details in [14,15]. The first excited state can be computed
by the BEFD-splitting method with the initial data

φ0(x) =
2x

π3/4
e−(x

2+2y2+2z2)/2 (4.8)

for both examples, and the numerical results are shown in Fig. 4.6.

5 Conclusion

In this paper, we generalized the normalized gradient flow method, which
was originally designed for GPE, to compute the ground state of the MGPE
(1.4). In particular, the CNGF-FD scheme (2.9) proposed can be proven to
be normalization conservative and energy diminishing. However, the scheme is
not suitable for practical numerical computation since a complicated nonlinear
equation needs to be solved for each step.

To design an easy, efficient and stable numerical scheme suitable for prac-
tical numerical computation, we introduced the attractive-repulsive splitting
of the term δ∆(|φ|2)φ and constructed the BEFD-splitting/BESP-splitting
schemes, which are explicit-implicit schemes and only a linear equation is
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Fig. 4.8: First excited states of the MGPE in 3D for Example 4.3 with isovalues
±0.01 (left) and Example 4.4 with isovalues ±0.15 (right). The green part is
for the part with positive value while the yellow part is for the part with
negative value.

needed to be solved for each step. Numerical experiments indicate that the new
schemes are much more stable than schemes constructed in naive ways and are
competitive with other popular methods. With the multigrid technique and a
relatively large time step, the scheme can be applied to MGPE with extremely
strong nonlinearities, which implies that the BEFD-splitting/BESP-splitting
schemes are extremely suitable for computing the ground state of the MGPE.
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