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An explicit moving boundary method for the numerical solution of time-dependent hyperbolic
conservation laws on grids produced by the intersection of complex geometries with a regular
Cartesian grid is presented. As it employs directional operator splitting, implementation of the
scheme is rather straightforward. Extending the method for static walls from Klein et al., Phil.
Trans. Roy. Soc., A 367, no. 1907, 4559–4575 (2009), the scheme calculates fluxes needed for a
conservative update of the near-wall cut-cells as linear combinations of “standard fluxes” from a
one-dimensional extended stencil. Here the standard fluxes are those obtained without regard to the
small sub-cell problem, and the linear combination weights involve detailed information regarding
the cut-cell geometry. This linear combination of standard fluxes stabilizes the updates such that
the time-step yielding marginal stability for arbitrarily small cut-cells is of the same order as that for
regular cells. Moreover, it renders the approach compatible with a wide range of existing numerical
flux-approximation methods. The scheme is extended here to time dependent rigid boundaries by
reformulating the linear combination weights of the stabilizing flux stencil to account for the time
dependence of cut-cell volume and interface area fractions. The two-dimensional tests discussed
include advection in a channel oriented at an oblique angle to the Cartesian computational mesh,
cylinders with circular and triangular cross-section passing through a stationary shock wave, a
piston moving through an open-ended shock tube, and the flow around an oscillating NACA 0012
aerofoil profile.
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1. INTRODUCTION

Embedded boundary (or immersed boundary) methods comprise a wide range of techniques for discretising complex
geometries ‘embedded’ into a simple Cartesian mesh. Cartesian mesh-based solvers can yield significant advantages
over body-fitted and unstructured mesh methods in terms of mesh generation simplicity, reduction in cell skewness
around complex geometries, automated mesh generation and improved parallelisation. This is particularly true when
considering the movement of solid boundaries over time, where non-Cartesian mesh-based alternatives can require
expensive regeneration of the mesh at each time step.

The field of immersed boundary methods in general is large. An exhaustive review of this field is beyond the
scope of the current work. We therefore confine ourselves here to a brief overview of the field, identifying some of
the main approaches and their recent variants in order to highlight the broad diversity of methods available and to
provide a wider context within which to place our cut-cell method. We justify the brevity of this overview by noting
that comprehensive reviews of immersed boundary methods are available by Mittal & Iaccarino [1], Sotiropoulos &
Yang [2] and recently by Maxey [3].

Immersed boundary methods can be categorised using a variety of taxonomies. Here we adopt the approach used
by Sotiropoulos & Yang [2], broadly dividing the field into ‘diffuse methods’ and ‘sharp interface methods’. Diffuse
methods are characterised by a smearing of the immersed boundary over a small number of computational cells. Sharp
interface methods explicitly account for the interface, thereby retaining the immersed boundary as a sharp interface
throughout the computation with no spatial smearing.
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Many diffuse immersed boundary methods used in recent literature employ artificial volume forces distributed over
a zone of cells close to the interface to effectively represent the pressure force exerted by the immersed boundary. This
stress can be distributed to the surrounding fluid using, for example, a dirac delta function, a distributed function
or a forcing term. Early examples can be found in [4–7]. The advantage of this approach is that the wall geometry
appears only in the distributed momentum forces, while the surface geometry does not otherwise affect the scheme.
In particular, intersections of the wall geometry with computational cells do not have to be accounted for explicitly.
Recent developments using this approach include particle flow applications [8, 9] and heat transfer applications [10, 11].

Another popular class of diffuse boundary methods are the “fictitious domain” methods. In this approach, both
fluid and solid regions are treated mathematically as a fluid, with either a material-dependent rigidity constraint, as in
Glowinski et al. [12], or the fluid and solid regions are treated as a porous medium, using the Navier Stokes/Brinkmann
equations with a permeability parameter-based forcing term, as in Angot et al. [13] and Khadra et al. [14]. Recent,
notable developments to the fictitious domain approach include Randrianarivelo et al. [15], Angot [16], Angot et al. [17]
and Ducassou et al. [18], for a range of flow types, including homogenous, dilatable, non-homogenous, multi-phase
and free surface flows.

The diffuse methods considered so far can be further categorised as “Continuous Forcing Approach” (CFA) methods,
in which the forcing terms (e.g., dirac delta function or distributed function) are applied to the continuous form of
the equations. The “Discrete Forcing Approach” (DFA), on the other hand, applies forcing terms after discretisation
of the governing equations. This approach, introduced by Mohd-Yusof [19], and developed by many researchers,
including Fadlun et al. [20], Uhlmann [21] and Breugem [22] is documented to have better stability characteristics
due to the absence of user specified forcing parameters.

Although recent work by Qiu et al. [23] has sought to extend the range of diffuse immersed rigid body methods
into the compressible flow regime (in addition to a recent review of general diffuse-interface capturing methods for
compressible two-phase flows by Saurel & Pantano [24]), the majority of diffuse methods presented in the available
literature for capturing rigid body flows are applicable to incompressible flow. For the compressible moving rigid body
flows considered in the current work, an established alternative to the diffuse CFA and DFA methods is the “sharp
interface” approach. This class of methods is therefore considered in the remainder of this section.

“Ghost-fluid methods” [25, 26] belong to the class of sharp interface schemes. That is, the sub-cell geometries of
Cartesian grid cells cut by the boundary are explicitly accounted for, and no artificial smearing of the solution occurs
near the boundaries. These schemes work by first extrapolating the solution at a given time step beyond the actual
computational domain into a halo of “ghost cells” in the immediate vicinity of the boundary, and then employing
standard flux balances for complete cells to advance the solution. The wall geometry is re-inserted into the updated
full grid cells after a completed time step. A disadvantage of ghost fluid methods is that they are generally not
conservative with respect to individual cut-cells, such that mass, momentum, and energy losses across a rigid wall
may occur. Subsequent modifications to the ghost-fluid method of Fedkiw et al. [25] and Fedkiw [26] have sought to
improve accuracy and robustness [27, 28] and to extend the multi-material properties of this approach [29–31].

Cut-cell methods provide a conservative alternative, where Cartesian cells underlying the solid boundary are each
divided into constituent components. For flows involving a solid geometry in a surrounding fluid, the Cartesian cell
underlying the boundary is divided into fluid and solid components. The boundary is therefore simply ‘cut out’ of the
surrounding Cartesian mesh. Boundary conditions are subsequently imposed along the intersecting surface. Dividing
the Cartesian cell in this manner does, however, generate small sub-cells at the boundary which may feature arbitrarily
small volume and highly distorted geometry. These ‘small cells’, which may be orders of magnitude smaller than the
surrounding Cartesian cells, create issues of stability and efficiency for explicit time integration methods. This is
termed the “small cell problem”. A brief outline of existing conservative cut-cell approaches can now be described.

Flux redistribution schemes [32–35] are conservative and obtain stable updates for small cut-cells at time steps
comparable to those achievable on a regular grid in two steps. First, cut-cell updates are determined from standard
flux balances that are locally computed and disregard the small sub-cell problem. In the second step, a suitable fraction
of these updates is redistributed to a stencil of neighbouring cells. Colella [36] argues that handling the time updates
for cut-cells emerging from the intersection of a regular Cartesian grid with a complex geometry would necessitate
“unsplit” numerical schemes, i.e., schemes that avoid directional operator splitting, and accordingly introduced an
unsplit Godunov-type higher-order scheme in this paper. Yet, in [37] we have demonstrated that stable individual
updates for small cut-cells can be formulated in an operator splitting scheme, and we show here that the same
methodology can be extended to moving walls.

“Cell merging” methods [38–44], avoid the small sub-cell problem by creating larger effective control volumes of
size comparable to that of a regular cell through merging cut-cells with neighbouring larger cells and then computing
common updates for the merged cells. There is some arbitrariness in these schemes as to which cells and sub-cells
are to be merged to create the enlarged effective control volumes, and a potential loss of resolution of the near-wall
flow states, both of which we intend to avoid. Notably, Falcovitz et al. [45] designed a technique based on directional
operator splitting, and this is conceptually closest to the present approach. It uses a cell merging for cut-cells with
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volume fractions less than a user defined cell ‘partial length’ to maintain stability in small cells. The cell merging
approach has been shown to evoke spurious oscillations when applied to moving boundaries, as shown in for example,
Schneiders et al. [35]. This motivates the use of alternative approaches, such as the one discussed in this article.

An approach that extends the merged-cell technique to obtain individual updates for small cut-cells has been
proposed by Hartmann et al. [46]. In their scheme, a stable update for a merged cell is computed first, and then
a multi-dimensional reconstruction algorithm is invoked to calculate a conservative improved local update for the
cut-cell portion of the merged cell. It does not appear obvious how their scheme could be formulated in the context
of directional operator splitting as is the goal of the present work.

The “H-Box method” by Berger, Helzel et al. [40, 47] is a locally second order accurate method that achieves
stability for small cut-cells by resorting to LeVeque’s wave propagation scheme, [48], which avoids flux balancing for
control volumes but rather obtains updates by superimposing wave-type increments that emerge from (linearized)
Riemann problems solved at grid cell interfaces. Using Roe’s approach for the formulation of an approximate Riemann
problem, [48, 49], such wave superposition schemes can be formulated such that the resulting scheme conserves the
primary conserved quantities, i.e., mass, momentum, and energy for gas dynamics. Through this construction, the
proposed embedded boundary scheme is inherently tied to the wave propagation approach, however, and is not flexible
with respect to the use of a user’s flux approximation of choice. Also, the distribution of wave portions in the vicinity
of cut cells involves complex geometrical computations. Thus, even though a substantially simpler variant of the
original scheme was proposed in [50], implementation of this approach in three space dimensions remains rather
tedious. Recently, Mudalidharan & Menon [51] describe a high order (third order inviscid fluxes and fourth order
viscous fluxes) conservative finite volume cut-cell method that uses a high order reconstruction using a cell-centre
piece-wise polynomial approximation. A cell merging technique is used for small cut-cells. Mudalidharan & Menon [51]
attempt to overcome numerical oscillations at the cut-cell boundary caused by the irregular stencil used in the k-exact
CENO reconstruction by applying the piece-wise polynomial reconstruction to clusters of cells. This static method
has recently been extended to reactive flows over moving interfaces by Muralidhran & Menon [52]. Other recent
progress in the development of incompressible higher order cut-cell methods includes Krause & Kummer [53] in which
a Discontinuous Galerkin (DG) discretization approach is developed based on the extended Discontinuous Galerkin
(XDG) approach of Kummer [54]. This method is simply mentioned here for completeness, as we limit the scope of
this literature review to compressible finite volume methods.

The challenges involved in introducing a cut-cell technique are exacerbated when a moving boundary is required.
In addition to problems caused by continuous reduction in the volume fraction of a single cut-cell over time, the
characteristics of a cut-cell (and the neighbouring regular cells) generally alter over time. This can result in an
individual cell changing from a cut-cell to a solid cell over a single time step, a regular cell changing to a cut-cell,
or a large cut-cell (volume fraction > 0.5) changing to a small cut-cell (or the opposite of all three scenarios). This
has significant implications for any of the embedded boundary techniques summarized above. In addition, any cut-
cell method development must satisfy the consistency condition, whereby a solid body moving at the same relative
velocity as the surrounding fluid should produce an exact solution. Published literature on cut-cell methods for moving
boundary problems include cell merging [43, 44] methods, implicit time-stepping [55, 56] and flux redistribution
methods [35, 57], as well as recent developments by Muralidhran & Menon [52], Lin et al. [58], Deng & li [59] and
Patel & Lakdawala [60].

We describe an alternative technique for the solution of moving boundary flows using a dimension-splitting cut-cell
approach, derived from the static wall method introduced by Klein et al. [37]. Our scheme calculates fluxes needed for
a conservative update of the near-wall cut-cells as linear combinations of “standard fluxes” from a one-dimensional
extended stencil. Here the standard fluxes are those obtained without regard to the small sub-cell problem, and the
linear combination weights involve detailed information regarding the cut-cell geometry. This linear combination of
standard fluxes stabilizes the updates such that the time-step yielding marginal stability for arbitrarily small cut-cells
is of the same order as that for regular cells. Moreover, it renders the approach compatible with a wide range of
existing numerical flux-approximation methods. The scheme is extended here to time dependent rigid boundaries
by reformulating the linear combination weights of the stabilizing flux stencil to account for the time dependence of
cut-cell volume and interface area fractions.

The basic scheme from [37] and the extension to moving walls are described in section 2, while results for a number
of smooth and discontinuous flow test cases are presented in section 3. Section 4 provides conclusions and an outlook
to future work.
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(a) (b)

FIG. 1: Demonstrative low resolution Cartesian mesh containing embedded solid regions moving with velocity us and rotation
rate ωs. (a) Physical geometry with indicative signed distance function, φ. (b) Computational domain discretization using a
Cartesian mesh.

2. NUMERICAL METHOD

2.1. Finite Volume Discretisation

We consider a computational domain containing a fluid region, with one or more embedded solid regions of essentially
arbitrary shape. Each solid region can move freely through the fluid in any direction with velocity, us, and rotation
rate, ωs, as shown in Figure 1 (a). Following standard finite volume methodology, the computational domain is
divided into Nl discrete cells in the lth spatial direction. The solid region is then cut out of this domain, leaving just
the fluid domain discretised by the Cartesian mesh, as shown in Figure 1 (b). The current cut-cell implementation
represents a curved solid interface using a planar representation in each computational cell. The resultant curvature
is therefore mesh dependent. The solid-fluid interface is imposed within each cut-cell using an appropriate boundary
condition.

In this paper, we consider an inviscid, single-phase gas for the fluid region. The compressible Euler equations
comprise of the mass, momentum and energy conservation equations. These are defined in compact form as:

∂Q

∂t
+∇ · F (Q) = 0, (1)

where the vector of conserved variables is given by Q =
[
ρ, ρu, ρ

(
e+ u2/2

)]
and the flux vector is given by

F =
[
ρu, ρuu + pI, ρu

(
e+ u2/2 + p/ρ

)]
. These equations are closed using the perfect gas equation of state,

e = p/ρ (γ − 1), with a constant isentropic exponent, γ.
Following integration of Equation 1 over an arbitrary control volume, V , and after applying the Gauss divergence

theorem, the discrete form of the Euler equations can be obtained from the resultant integral form by replacing
the flux integral around the control volume by a summation of the surface normal fluxes at each computational cell
interface. For regular Cartesian cells, away from the cut-cell surface, this is given by:

(
Qn+1

)
l

= (Qn)l −
∆t

V

Nf∑
m=1

(
F (Q)l,m · nl,m

)
Sl,m, (2)

where the shorthand cell index, l = i, j, k and V is the regular cell volume. Cut-cells are defined as having volume,
α̌nV , where the cut-cell volume fraction, α̌n, is defined as the ratio of the fluid volume in the cut-cell to the fluid
volume of a regular Cartesian cell, at time step n. In the current moving boundary formulation, the solid region
is permitted to move over the course of each time step. This movement results in a change to the fraction of the
Cartesian cell covered by the solid, altering the fluid volume fraction, α̌, between time steps n and n+1. The discrete
form of the Euler equations applied to a moving boundary cut-cell is then given by:

(
α̌n+1VQn+1

)
l

= (α̌nVQn)l −∆t

Nf∑
m=1

((
F (Q)− δFwall

)
l,m
· nl,m

)
Sl,m, (3)
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(a)

(b)

FIG. 2: Demonstrative solid-fluid interface in three cut-cells. (a) Interface and volume fractions for the two-dimensional cut-cell
method of Klein et al. [37]. (b) Flux components for the two-dimensional cut-cell method of Klein et al. [37].

In this formulation, Fwall is an additional contribution due to the solid wall movement, denoted here as a wall ‘flux’
for convenience. The kronecker delta, δ, is therefore unity at solid boundaries and zero otherwise. The conservative
flux is required normal to both inter-cell boundaries and solid-fluid boundaries, F (Q) · n. The total number of cell
faces in a Cartesian cut-cell may be more than, less than, or equal to the number of faces in a regular Cartesian cell.
The total number of cut-cell faces is dependent on the local discretisation of the solid geometry and the geometry
curvature. The moving boundary cut-cell approach described in this paper is a dimension-splitting approach, which
isolates the flux component in each spatial direction, considering each as a separate Strang-splitting stage [48, 61], in
which the operator sequence is chosen to maintain second-order accuracy.

2.2. Static Boundary Method Overview

The conservative, dimension-splitting cut-cell method of Klein et al. [37] is extended in this paper to flows involving
one or more moving solid boundaries. This section starts with a brief overview of the static boundary method of
Klein et al. [37] to provide context before describing the current extension to moving boundary flows. Figure 2 shows
a two-dimensional solid-fluid interface extending across three cut-cells, with indices (i− 1, j), (i, j) and (i+ 1, j).
Considering the x-sweep i.e., the horizontal sweep, in isolation, the cut-cell face area fluid fractions at

(
i− 1

2 , j
)

and(
i+ 1

2 , j
)

are given by βi− 1
2 ,j

and βi+ 1
2 ,j

respectively. These are labelled in Figure 2 (a). The difference between

these cut-cell face area fractions, for cell (i, j), is given by ∆βi− 1
2 ,j

. This represents the projection of the solid-fluid

interface onto the cut-cell face,
(
i− 1

2 , j
)
.

The flux stabilization method of Klein et al. [37] permits a global time step to be imposed in both regular Cartesian
cells and cut-cells. This is achieved by modifying the regular cell flux at inter-cell boundaries bordering a cut-cell. To
describe this flux ‘stabilization’, we consider the cut-cell face ∆βi− 1

2 ,j
in Figure 2 (a). The projection of the solid-fluid

interface onto the cell face
(
i− 1

2 , j
)
, given by ∆βi− 1

2 ,j
, is termed in Klein et al. [37] the ‘shielded’ region. Specifically,

this region is directly influenced in the x-direction by the presence of the solid-fluid interface. The remaining fluid
portion of the cut-cell face area, i.e., βi− 1

2 ,j
−∆βi− 1

2 ,j
, is the interface portion not directly influenced by the solid-fluid

interface. This is termed the ‘unshielded’ region.
Figure 2 (b) shows the shielded and unshielded portions of the inter-cell flux for the x-direction sweep along the

interface
(
i− 1

2 , j
)
. These fluxes are defined as Fshielded

i− 1
2 ,j

and Funshielded
i− 1

2 ,j
respectively. The total flux along this cell

interface, F 2D
i− 1

2 ,j
, is defined by a weighted combination of the shielded and unshielded fluxes, as:
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F2D
i− 1

2 ,j
=

1

βi− 1
2 ,j

[
βi+ 1

2 ,j
Funshielded

i− 1
2 ,j

+
(
βi− 1

2 ,j
− βi+ 1

2 ,j

)
Fshielded

i+ 1
2 ,j

]
. (4)

For the convex geometry shown in Figure 2, the unshielded flux component, Funshielded
i− 1

2 ,j
, is simply the regular Cartesian

cell flux:

Funshielded
i− 1

2 ,j
= Fi− 1

2 ,j
. (5)

The shielded flux creates a stable flux by combining the boundary flux, FB
i− 1

2 ,j
, with the regular cell flux, Fi,j , as:

Fshielded
i− 1

2 ,j
= FB

i,j + di− 1
2 ,j

(
Fi− 1

2 ,j
− FB

i,j

)
, (6)

where di− 1
2 ,j

is the average distance between the interface at
(
i− 1

2 , j
)

and the solid-fluid interface, as shown in

Figure 2 (b). The average distance, di− 1
2 ,j

, is computed from the shielded volume fraction, α̂i,j , shown in Figure 2 (a),
as:

di− 1
2 ,j

=
α̂i,j

βi− 1
2 ,j
− βi+ 1

2 ,j

. (7)

For clarity, the notation of the average distance from the cut-cell interface to the stabilized cell interface, di− 1
2 ,j

, is

distinct from the cut-cell shielded volume fraction, α̂i,j , and the total cut-cell volume fraction, α̌i,j . The total cut-cell
volume fraction is defined as the combination of the shielded and unshielded cut-cell volume fractions. The shielded
flux in Equation 6 has the property that, as the cut-cell volume fraction is reduced, and therefore di− 1

2 ,j
→ 0, then

Fshielded
i− 1

2 ,j
→ FB

i,j . As the cut-cell tends towards a regular cell, di− 1
2 ,j
→ 1, the shielded flux tends towards the regular

cell flux, Fshielded
i− 1

2 ,j
→ Fi− 1

2 ,j
.

The boundary flux, FB
i,j , is shown in Figure 2 (b) along the solid-fluid interface. The flux at this interface is computed

using a reflective wall boundary condition. Caution is required here, as in order that the dimension splitting remains
conservative, the advective part of the boundary flux in all directions must be computed for a common solid-fluid
interface state. That is, we can separate the full flux at the boundary into an advective flux and a pressure flux:

F
(
QB

i,j

)
= Fad

(
QB

i,j

)
+ Fpr

(
QB

i,j

)
, (8)

where, the x-direction (horizontal) advective and pressure fluxes for the Euler equations in two-dimensions are respec-
tively Fad

(
QB

i,j

)
=
[
ρ∗u∗, ρ∗u∗u∗, ρ∗u∗v∗, ρ∗u∗

(
e+ u∗2/2

)]
and Fpr

(
QB

i,j

)
= [0, p∗, 0, u∗p∗] based on the boundary

state, QB. Similarly, the advective flux and pressure flux in the y-direction are given by Gad
(
QB

i,j

)
and Gpr

(
QB

i,j

)
respectively. The advective flux is computed before the onset of the first dimensional sweep, at the start of each
time-step. The pressure flux in the momentum equation is, however, computed at each dimensional splitting stage
using the updated boundary state.

The neighbouring fluxes, at Fi− 3
2 ,j

and Fi+ 1
2 ,j

, are also shown in Figure 2 (b). These fluxes are, in turn, a

combination of the local shielded and unshielded flux contributions from the solid-fluid interface in cells (i− 1, j) and
(i+ 1, j) respectively for this example.

The complete two-dimensional update for cell (i, j) is therefore given by:

Qx
i,j = Qn

i,j +
∆t

α̌i,j∆x

[
βi− 1

2 ,j
F2D

i− 1
2 ,j
− βi+ 1

2 ,j
F2D

i+ 1
2 ,j

+
(
βi+ 1

2 ,j
− βi− 1

2 ,j

)
FB

i,j

]
, (9)

Qn+1
i,j = Qx

i,j +
∆t

α̌i,j∆y

[
βi,j− 1

2
G2D

i,j− 1
2
− βi,j+ 1

2
G2D

i,j+ 1
2

+
(
βi,j+ 1

2
− βi,j− 1

2

)
GB

i,j

]
. (10)

Klein et al. [37] show that, using the flux stabilization from Equation 6, this update can be rewritten for cut-cells
in such a way that the division by α̌i,j is eliminated and singular behaviour for vanishing cut-cell volume fractions is
avoided.
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(a) (b) (c)

FIG. 3: Interaction of a moving solid-fluid interface with a cut-cell. (a) The solid first appears in the subject Cartesian cell,
turning the regular cell into a cut-cell. (b) The cut-cell volume fraction gradually decreases as the solid covers more of the
cut-cell. (c) The solid covers the Cartesian cell completely, turning the cut-cell into a solid cell. Solid line: Solid-fluid interface
at the current time step. Dashed line: Solid-fluid interface at the previous time step. The arrow indicates the direction of the
solid-fluid interface movement.

2.3. Moving Boundary Extension

2.3.1. Moving Boundary Issues

A number of additional challenges arise in the extension of the static cut-cell method of Klein et al. [37] to accom-
modate moving solids. Whereas the status of the cut-cells and regular Cartesian fluid cells are unchanging over the
course of a static boundary computation, a transient cut-cell status now exists due to the motion of the solid-fluid
interface across each Cartesian cell. As the solid-fluid interface first crosses one of the regular cell boundaries, the
regular Cartesian cell changes to a cut-cell which requires stabilization of the boundary fluxes, Figure 3 (a). As the
solid-fluid interface moves further into the cut-cell, the cut-cell volume fraction becomes a smaller fraction of the
regular cell fluid volume, Figure 3 (b), tending towards a zero volume fraction when the solid-fluid interface passes
through the final cut-cell fluid boundary. At this point the cut-cell changes to a solid cell, which is no longer used in
the fluid computation, Figure 3 (c).

Conversely, a cut-cell can be created from a solid cell when the solid-fluid interface passes through one of the
inter-cell boundaries of a solid cell. As the solid-fluid interface moves across the new cut-cell, the fluid volume fraction
becomes an increasing fraction of the regular cell volume, until the solid-fluid interface passes out of the cut-cell and
the cut-cell becomes a regular Cartesian fluid cell.

The problem caused by the decreasing cut-cell volume fraction, and the related changes of the cut-cell face area
fractions, can be identified by rearranging the discrete Euler equation, Equation 3, to make the state variable the
subject, i.e:

Qn+1
l =

α̌n
l

α̌n+1
l

(Qn)l −
∆t

α̌n+1
l V

Nf∑
m=1

((
F (Q)− δmFwall

)
l,m
· nl,m

)
Sl,m, (11)

where the shorthand index, l = (i, j, k). As the cut-cell volume fraction tends towards zero over time, the reciprocal of
the cut-cell volume fraction at the updated time, α̌n+1, causes the state variables at the new time, Qn+1, to increase
to large values. Merging cut-cell methods, as used for moving boundaries by Xu et al. [42], Yang et al. [43] and Barton
et al. [44], for example, deal with this issue by grouping cut-cells of small volume fraction with an adjacent regular
cell (or large cut-cell) to form one cell with a combined volume. In contrast, Schneiders et al. [35, 62] deal with this
issue through a redistribution of the numerical error from the small volume cut-cell to the surrounding cells, following
a time integration of all cells using regular cell fluxes. The vanishing volume fraction issue is dealt with in the current
method through an augmentation of the cut-cell shielded flux.

For a solid-fluid interface moving at a velocity that matches the local velocity, the work done on the fluid by the
solid-fluid interface reduces to zero and a constant wall pressure is recovered, pwall = pl. This is described in, for
example, Toro [63]. In terms of the present cut-cell method, this constraint dictates that the mass, momentum
or energy displaced by the solid-fluid boundary movement within a cut-cell should equal the total advective mass,
momentum or energy flux through the computational cell boundaries, for each spatial direction. This provides a
sound test of any new moving boundary method, as any resultant pressure fluctuations at the solid-fluid interface
are therefore due to errors in matching the boundary movement to the advective flux, or due to fluctuations in the
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FIG. 4: Moving solid interface across three cut-cells. The solid-fluid interface in cell (i, j) moves from A-B to A’-B’ between
time level n (dashed line) and n+ 1 (solid line).

solid geometry through inadequate geometry discretisation and movement across the Cartesian mesh over time.

2.3.2. Moving Boundary Geometry Approximation

The moving boundary cut-cell method described in this paper is a straightforward extension to the static boundary
method of Klein et al. [37] described in Section 2.2. The moving boundary extension maintains the principle of
dividing each cut-cell interface flux into a ‘shielded’ and ‘unshielded’ contribution, based on whether the inter-cell
boundary directly faces the solid-fluid interface during each dimensional sweep.

For the purpose of illustration, we can consider the same solid-fluid interface as in the static boundary section,
intersecting three cut-cells, (i− 1, j), (i, j) and (i+ 1, j), this time with movement of the solid-fluid interface over
a typical time step, ∆t, as shown in Figure 4. The direction of the solid-fluid interface movement is indicated by
arrows. Over the time interval, ∆t, the cut-cell interface in cell (i, j) moves such that the intersection points with
the Cartesian cell boundaries, (x, y)A and (x, y)B , at time n become (x, y)A′ and (x, y)B′ at time n+ 1. The cut-cell
volume correspondingly changes from VABCD to VA′B′CD.

Murman et al. [56] classify the numerical representation of the space-time geometry development in increasing order
of fidelity as either ‘sequential-static’, ‘staircase-in-time’, ‘linear-in-time’ or ‘full space-time approximation’. In terms
of this classification, the current method would be considered a ‘linear-in-time’ approach, in which the geometry
movement, and hence the cut-cell area and volume fractions, are assumed to change linearly between time steps n and
n+ 1. The current moving boundary method is introduced by initially considering a simpler ‘moving wall’ boundary
condition approach applied to the method of Klein et al. [37] in Section 2.3.3.

2.3.3. The Moving Wall Boundary Condition Approach

The simplest extension to the method of Klein et al. [37] involves fixing the geometry at each time level and changing
the boundary flux to a ‘moving wall’ boundary flux, as described for a compressible Riemann-based approach in
Toro [63]. At the moving solid-fluid interface, the boundary flux incorporates the local boundary velocity by imposing
a ghost-cell velocity, ug, according to:

ug = ui,j − 2 (ui,j · n)n + 2 (uwall · n)n, (12)

where, uwall is the local solid-fluid interface velocity vector and ui,j is the fluid velocity vector in the cut-cell (i, j), as
shown in Figure 4. The ghost-cell density and pressure can be imposed for an inviscid reflective boundary condition
according to ρg = ρi,j and pg = pi,j . Finding the resultant boundary state in terms of pressure, density and velocity
results in a boundary velocity equal to the wall velocity, u∗ = uwall. For an advancing wall, the wall pressure, p∗ > pi,j ,
and density, ρ∗ > ρi,j . Conversely, for a retreating wall, p∗ < pi,j and ρ∗ < ρi,j . For a simple one-dimensional problem,
approximating the non-penetration reflective boundary condition using this ‘moving wall’ boundary state results in
a mass flux ρ∗u∗ ‘through’ the solid-fluid interface which matches the fluid mass displaced by the movement of the
solid-fluid interface over this time step. Using an example of a one-dimensional cut-cell reducing in length from α̌n

i ∆x
to α̌n+1

i ∆x over the time interval ∆t, as shown in Figure 5, the cut-cell update is given by:
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FIG. 5: One-dimensional moving boundary example. The cut-cell reduces in size from α̌n
i ∆x to α̌n+1

i ∆x between times n and
n + 1, where 0 ≤ α̌i ≤ 1. As the total cut-cell volume fraction, α̌i, the shielded cut-cell volume fraction, α̂i, and the average
distance from the stabilized cell interface to the cut-cell interface, di− 1

2
, are equivalent in a one-dimensional problem, we use

the notation α̌i here.

(a)

(b)

FIG. 6: Moving solid interface in three cut-cells. (a) Interface and volume fractions for the two-dimensional cut-cell method of
Klein et al. [37] based on the solid-fluid interface at time, n. (b) Interface fluxes based on the solid fluid interface at time n.

α̌n+1
i Qn+1

i = α̌n
i Q

n
i +

∆t

∆x

[
Fi− 1

2
− FB

i

]
− ∆t

∆x
uwallQ

B
i , (13)

where the boundary flux, FB
i , and boundary state, QB

i , are non zero in mass, momentum and energy. We explicitly
note that, in the one-dimensional case, the total cut-cell volume fraction, α̌i, the shielded cut-cell volume fraction, α̂i,
and the average distance from the stabilized cell interface to the cut-cell interface, di− 1

2
, are equivalent. For clarity,

we therefore use the total cut-cell volume fraction notation, α̌i, in Equation 13 and Figure 5. It is noted that the
moving boundary time integration/accuracy is explained further in Section 2.3.4.

The corresponding two-dimensional cut-cell update, for the cell (i, j) shown in Figure 6, would then be given by:

α̌x
i,jQ

x
i,j = α̌n

i,jQ
n
i,j +

∆t

∆x

[
βi− 1

2 ,j
F2D

i− 1
2 ,j
− βi+ 1

2 ,j
F2D

i+ 1
2 ,j

+
(
βi+ 1

2 ,j
− βi− 1

2 ,j

)
FB

i,j −
(
βi+ 1

2 ,j
− βi− 1

2 ,j

)
ux
wallQ

B
i,j

]
,(14)

α̌n+1
i,j Qn+1

i,j = α̌x
i,jQ

x
i,j +

∆t

∆y

[
βi,j− 1

2
G2D

i,j− 1
2
− βi,j+ 1

2
G2D

i,j+ 1
2

+
(
βi,j+ 1

2
− βi,j− 1

2

)
GB

i,j −
(
βi,j+ 1

2
− βi,j− 1

2

)
uy
wallQ

B
i,j

]
.(15)

where ux
wall and uy

wall are the wall velocity x and y direction components. QB
i,j is the boundary state. As shown in

Ben-Artzi & Falcovitz [64] and Falcovitz et al. [45], the resultant contribution of the moving boundary in the x and
y directions is then:

FB
res = [0, p∗, 0, u∗p∗] = FB

i,j − ux
wallQ

B
i,j , (16)

QB
res = [0, 0, p∗, v∗p∗] = GB

i,j − uy
wallQ

B
i,j . (17)
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(a) (b)

FIG. 7: Comparison of the volume fraction change as a diagonal solid-fluid interface diagonally traverses a Cartesian cell. (a)
Volume change after the x-direction sweep. (b) Volume change after the y-direction sweep. Dashed line: Solid-fluid interface
at time level n. Solid line: Solid-fluid interface at time level n + 1. Striped region: Volume change in each direction between
time level n and n+ 1. Dash-dot line: Solid-fluid interface projection in the x-direction or y-direction.

Thus, the contribution from the movement of the non-penetrative solid wall is through the boundary pressure in
the momentum and energy equations. The boundary interface area that this pressure acts upon is the time averaged
boundary area, as outlined in Section 2.3.4.

The necessity of precisely accounting for the movement of the solid boundary, in this case through a time averaged
boundary in the conservation equation, is highlighted by Gokhale [65] through consideration of the loss in conservation
for a dimension-splitting method applied to a diagonal piston problem. This is presented here by considering the
movement of the solid-fluid interface in the x and y directions independently, as shown in Figure 7. The resultant
fluid volume displacement arising from the independent x-direction and y-direction movement does not necessarily
equal the two-dimensional volume displacement.

As the rigid body interface moves across the Cartesian cell in Figure 7, the overall loss of conservation is accompanied
by an under-prediction of the boundary work done by the solid-fluid interface. We attempt to preserve conservation
for a moving rigid body by defining time averaged boundary properties in the conservation equations, together with
a conservation check for newly covered cells. These are outlined in Section 2.3.4 and Section 2.3.5 respectively.

2.3.4. Time Averaged Boundary Modification

The moving boundary method developed here uses the time-averaged solid-fluid interface for defining the shielded
and unshielded cell area fractions, β, and the average shielded distance from the solid, di− 1

2 ,j
. These can be formally

defined as:

β̃i− 1
2 ,j

=
1

∆t

∫ tn+1

tn
βi− 1

2 ,j
(t) dt, (18)

d̃i− 1
2 ,j

=
1

∆t

∫ tn+1

tn
di− 1

2 ,j
(t) dt, (19)

These are used for calculating βshielded, βunshielded and di− 1
2 ,j

. By using the time averaged cell areas, together with

the conservative state after each dimensional sweep, the resultant flux through each cut-cell interface provides a better
approximation than shown in Figure 7. Similarly, the solid-fluid interface unit normal is also computed as the time
averaged surface normal.

The x-sweep and y-sweep for a single time step, between times n and n + 1, is shown in Figure 8 for the same
diagonal piston problem of a solid moving diagonally across a static fluid. Figure 8 (a) shows the motion of the solid
during the x-sweep. The initial position of the solid-fluid interface is given by a dashed line. The final position of
the solid-fluid interface, at the end of the x-sweep, is given by the solid line, with the solid shaded in grey. The final
position of the solid-fluid interface, at the end of the time step n + 1, is given as a dash-dot line for reference. The
time-averaged location of the solid-fluid interface during the x-sweep is given as a bold solid line, located between



11

(a) (b)

FIG. 8: x-sweep and y-sweep for the diagonal moving piston. (a) x-sweep, starting from the dashed line, tn, and ending at the
solid line, tx. Bold solid line: Time averaged boundary for the x-sweep. (b) y-sweep, starting from the dashed line, tx, and
ending at the solid line, tn+1. Bold solid line: Time averaged boundary for the y-sweep.

the dashed line and the thin solid line. Similarly, the y-sweep is shown in Figure 8 (b). The spatial location of the
solid-fluid interface at the end of the x-sweep, tx, is given as a dashed line in this figure. This is the start position
for the y-sweep. The location of the solid-fluid interface at the end of the y-sweep, at time tn+1, is given as a solid
line with the solid at this time shaded in grey. The time-averaged location of the solid-fluid interface during the
y-sweep is given by a bold solid line, located between the dashed line and the thin solid line. Following Ben-Artzi
& Falcovitz [64], splitting the motion into individual x and y-sweeps (i.e. horizontal and vertical motion) simplifies

the determination of the time averaged cut-cell face fraction, β̃, the cut-cell volume fraction and hence the average
cut-cell distance, d̃i− 1

2 ,j
compared to non-dimensional-splitting alternatives. For example, in Figure 8 (a) during an

x-sweep, the boundary movement is isolated to the horizontal direction, maintaining an invariant projection of the
solid surface (between adjacent geometric vertices) onto the vertical cell interfaces, i.e.,

(
i+ 1

2 , j
)
. The same argument

holds for the projection of the same solid-fluid interface section on the cell interface
(
i, j + 1

2

)
during the y-sweep in

Figure 8 (b). The change in the cut-cell face area fractions, βi+ 1
2 ,j

, and the average cut-cell distance, di− 1
2 ,j

, over a

time step then becomes a function of the angle between the cell interface and the local solid-fluid interface (i.e., the
surface slope in the current piece-wise planar surface representation), together with the local wall velocity component
in the direction of the current sweep.

For the numerical examples shown in this paper, in which a non-deforming rigid body is defined, we have made the
assumption that the time step, ∆t, is small enough such that the time averaged quantities can be approximated using
a linear movement of 1

2∆t in both x and y sweeps. It is recognised that this is not a good approximation in general,
and an improvement to this assumption to define an efficient general method for describing the time averaged cut-cell
area fractions and length fractions is under development. Falcovitz et al. [45] describes one such method.

Using the time averaged β̃ and d̃, the modified version of the shielded flux is therefore given by:

F̃shielded
i− 1

2 ,j
= F̃B

i,j + d̃i− 1
2 ,j

(
Fi− 1

2 ,j
− F̃B

i,j

)
, (20)

where,

F̃B
i,j =

[
ρ∗u∗, ρ∗u∗u∗ + p∗I, ρ∗

(
e+

1

2
(u∗)

2
+
p∗

ρ∗

)]
. (21)

The total flux at the boundary,
(
i− 1

2 , j
)
, is then given by:

F̃2D
i− 1

2 ,j
=

1

β̃i− 1
2 ,j

[
β̃i+ 1

2 ,j
Funshielded

i− 1
2 ,j

+
(
β̃i− 1

2 ,j
− β̃i+ 1

2 ,j

)
F̃shielded

i+ 1
2 ,j

]
, (22)

where the unshielded flux, Funshielded
i− 1

2 ,j
is the regular Cartesian cell flux given by Equation 5.

In the current dimensional-split formulation, the time-averaged boundary contribution in the x, y and z directions
are applied independently. The final form can therefore be divided into a boundary movement in the x direction,
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FIG. 9: Three-dimensional computational cell orientation, with the solid region highlighted in grey. The remaining (white)
space contains a single phase fluid.

followed by a boundary movement in the y direction, followed by a boundary movement in the z direction, with the
corresponding component of the time-averaged boundary movement applied at each stage. The three-dimensional
form of the moving boundary conservation equations are therefore:

α̌x
l Q

x
l = α̌n

l Q
n
l +

∆t

∆x

[
β̃i− 1

2 ,j,k
F2D

i− 1
2 ,j,k
− β̃i+ 1

2 ,j,k
F2D

i+ 1
2 ,j,k

+ ∆β̃i− 1
2 ,j,k

FB
l −∆β̃i− 1

2 ,j,k
ux
wallQ

B
l

]
, (23)

α̌xy
l Qxy

l = α̌x
l Q

x
l +

∆t

∆y

[
β̃i,j− 1

2 ,k
G2D

i,j− 1
2 ,k
− β̃i,j+ 1

2 ,k
G2D

i,j+ 1
2 ,k

+ ∆β̃i,j− 1
2 ,k

GB
l −∆β̃i,j− 1

2 ,k
uy
wallQ

B
l

]
, (24)

α̌n+1
l Qn+1

l = α̌xy
l Qxy

l +
∆t

∆z

[
β̃i,j,k− 1

2
H2D

i,j,k− 1
2
− β̃i,j,k+ 1

2
H2D

i,j,k+ 1
2

+ ∆β̃i,j,k− 1
2
HB

l −∆β̃i,j,k− 1
2
uz
wallQ

B
l

]
. (25)

where, l = (i, j, k) and ∆β̃ are used for compactness. The three-dimensional computational cell orientation and solid
region used in this definition are shown in Figure 9.

To maintain a second-order accurate scheme, the x-y-z sequence is reversed from Equations 23-25 in the next
sweep via Strang-splitting, away from the solid surface. A detailed introduction to Strang-splitting for second-order
accurate multi-dimensional schemes is given by Leveque [48]. As explained in Leveque [48], choosing to reverse the
x-y-z sequence in the Strang-splitting approach can be a more efficient alternative than taking half time-steps.

Finally, it is recognised that in the limit as us → 0, i.e., for a stationary solid, these equations reduce to the static
boundary version of Klein et al. [37], i.e., the two-dimensional form of Equations 14-15 reduce to Equations 9-10
respectively.

2.3.5. Covering and Uncovering Cut-Cells

During the transit of the solid-fluid interface through the computational domain, computational cells can change
over the period of a time step from regular Cartesian cells to cut-cells, from cut-cells to solid cells, or the reverse
of these two. The change from a regular cell to a cut-cell is dealt with implicitly by the moving boundary method
outlined in the preceding sections, as summarised in Equations 20-25. The uncovering of a cut-cell (transition from
a solid cell to a cut-cell) and the ‘covering’ of a cut-cell (transition from a cut-cell to a solid cell), however, require
additional measures to maintain strict conservation.

The change from a solid cell to a cut-cell (uncovering) is shown diagrammatically in Figure 10 (a). The reverse
situation, of a cut-cell changing to a solid cell, is shown in Figure 10 (b).

Solid cells in the context of the current method are not updated and therefore have no valid conservative variable
state. The change over time from a solid cell to a cut-cell therefore requires initialisation of the cut-cell before
continuing the cut-cell update procedure.
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(a) (b)

FIG. 10: The covering and uncovering of a cut-cell due to the solid-fluid interface moving from the dashed line at time level n
to the solid line at time level n+ 1. (a) An uncovered cut-cell at (i, j). (b) A covered cut-cell at (i, j).

To maintain strict global conservation, an initial state is computed from a volume weighted average of the neighbour-
ing cells, with the contribution from each neighbouring cell being reduced from its own conserved state. Following the
method outlined in Schneiders et al [35], we define a volume weighting, σ, for a cell with shorthand index, l = (i, j, k),
as:

σl =
(α̌V )l∑

k∈Mc

(α̌V )k
, (26)

where Mc is the total number of neighbouring cells used as donors for the newly uncovered cell. This includes the
uncovered cell itself. In this work, donor cells are defined as those neighbouring cells horizontal or vertical to the
uncovered cell. For a two-dimensional computation this may include donor cells at (i+ 1, j), (i− 1, j), (i, j + 1),
(i, j − 1) and the uncovered cell, (i, j). The uncovered cell, (i, j) in Figure 10, is then initialised using a conserved
variable state of:

(α̌VQnew)i,j = σi,j
∑

k∈Md

(α̌VQ)k (27)

where Md is the total number of donor cells (excluding the uncovered cell). Note that α̌ = 0 for a solid cell and
0 < α̌ ≤ 1 for fluid cells. This ensures only cut-cells or regular fluid cells contribute to the new cell initialisation.
Each of the donor cells is then updated with a modified state according to:

(α̌VQ)
modified
d = (α̌VQ)d − σl (α̌VQ)d . (28)

where subscripts d and l distinguish the donor and uncovered cell respectively for the general case. The penalty of
maintaining conservation in this way is a local reduction in the primitive variables for those donor cells surrounding
the uncovered cell. The influence of this penalty can be reduced through increased use of Adaptive Mesh Refinement
(AMR), a method of locally refining the computational mesh around flow features of interest using a hierarchical
mesh configuration based on a user defined mesh refinement criterion. The density is used as the refinement criterion
in all the test cases described in this paper that use AMR, employing a user-defined refinement threshold which is
individually tailored for each test case to maintain a tight confinement of the refined mesh around the compressible
flow features, while maintaining efficiency in preventing unnecessary sub-division of the refined region into excessively
small AMR blocks.

To attempt to maintain global conservation, the reverse situation of a cut-cell being covered completely by the
solid, requires the conserved variables in the cut-cell, (i, j), to be completely expelled through the fluid portion of
the inter-cell boundary. The cut-cell conserved variables are gradually passed to the neighbouring cells through the
shielded flux as the cut-cell volume fraction α̌ → 0. To ensure strict conservation is maintained after the cut-cell is
completely covered, any residual fluid remaining in the cut-cell is distributed to the neighbouring cells. The residual
conserved state remaining in the covered cut-cell is computed as:
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FIG. 11: Sloping channel flow configuration. The test geometry consists of a channel oriented an angle of 30◦ to the horizontal
boundary. The channel moves in the positive horizontal direction over time.

(α̌nVQ)
res

= (α̌VQ)
n
l −∆t

Nf∑
m=1

(F (Q)m · nm)
l
(Sm)l . (29)

This is distributed to the surrounding fluid cells as:

(α̌VQ)
modified
r = (α̌VQ)r +

(α̌V )r∑
k∈Mr

(α̌V )k
(α̌nVQ)

res
, (30)

where, Mr is the total number of recipient cells surrounding the covered cut-cell and subscript r denotes the recipient
cell index.

In the next section, the moving boundary cut-cell method described here is applied to a range of compressible flows
involving the time dependent interaction of a moving rigid body with a single phase fluid. To compute the regular cell
fluxes, and those of the cut-cell unshielded flux component, the MUSCL-Hancock solver (see, for example, Toro [63])
is used in combination with the HLLC Riemann solver and van-Leer slope limiter. Currently, complex geometries
can be imported from the standard STL file format, allowing simulation of Computer Aided Design (CAD) models.
However, as the test case geometries in this paper are simple geometries, each geometry was explicitly specified using
simple polygons, or the NACA profile.

3. NUMERICAL RESULTS

3.1. The Sloped Channel Flow - Moving Boundary Validation

We consider as our first test case the propagation of a simple perturbation in density within an inclined channel.
The simulation configuration for this problem is shown in Figure 11. Two parallel interfaces at an angle of 30◦ to
the horizontal plane form an embedded boundary, creating cut-cells with a large range of volume fractions. The
initial condition consists of a simple density wave, centred at x = 0, y = 0 and travelling in a direction parallel to
the channel walls. The channel itself moves in the positive x-direction over time. This test case is intended to assess
how the moving boundary approach handles reducing and increasing cut-cell volume fractions, as well as the covering
and uncovering of cut-cells. By eliminating the force of the cut-cell boundary movement on the fluid, we therefore
effectively simulate a static channel test case resolved by a mesh that is moving in the negative horizontal direction.
Conservation is maintained through an identical movement of the two channel walls. This is confirmed during the
computation. The solid wall boundary condition is assessed for the moving boundary cut-cell method in subsequent
test cases. The CFL number used in this test case is 0.5. Figure 12 shows the relative orientation of the Cartesian
mesh, the channel boundaries and the initial density perturbation, which is shown as a grey scale pseudo-colour plot.

The simulation is performed on a domain 0.4m by 0.08m, with the width of the channel set to 0.02m. The final
time for each simulation is chosen as t = 1ms. This allows the density pulse to propagate across the majority of the
domain, and the entire cut-cell surface to experience the full range of cut-cell volume fractions at each point.

The density along the lower channel surface at a time of t = 1ms is given in figure 13 for mesh resolutions of
160 × 32, 320 × 64 and 640 × 128 cells. This figure shows a comparison of the moving boundary results against the
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FIG. 12: Sloping channel case mesh showing the relative orientation of the Cartesian mesh, the channel boundaries and the
initial density perturbation. The density perturbation is shown using a grey scale pseudo-colour plot.

FIG. 13: Density profiles along the lower channel surface at t = 1ms. Comparison of the moving boundary method with a static
boundary method for a static channel. Comparison with an exact analytical density profile. 640 × 128 (triangular symbols),
320 × 64 (square symbols), 160 × 32 (circles). Static cut-cell case (filled symbols), Moving cut-cell case (hollow symbols). The
black line shows the exact analytical density profile at t = 1ms.

exact analytical density profile and against an equivalently resolved static boundary simulation using the current
solver, applied to a static channel.

A satisfactory comparison between the moving boundary and static boundary results is shown for the three mesh
resolutions given. Numerical diffusion of the cut-cell method is shown at the outer edges of the density pulse. This, of
course, varies with mesh resolution, with the lowest diffusion evident in the 640× 128 results. Numerical dissipation
is also evident at the centre of the pulse resulting in a reduction in the density pulse peak value.

The cut-cell error with increasing mesh resolution is shown for the static boundary results at mesh resolutions of
160 × 32, 320 × 64, 640 × 128, 1280 × 256 and 2560 × 512 in table I. This is compared with the moving boundary
cut-cell error in table II.

The L1 and L2 norm error order indicate that the global order of accuracy increases towards second order as the
mesh resolution increases. This is evident for the static boundary test case in table I and the moving boundary
test case in table II. The cut-cell method is locally first order accurate. The global error increases above unity as
the influence of the first order boundary region diminishes with an increasing proportion of second order accurate
regular cells at higher mesh resolutions. The Linf norm error shows a smaller order of accuracy, increasing to around
unity for both the static and moving boundary cases. The Linf norm error uses the maximum error in the domain.
This is therefore limited by the first order accurate cut-cell boundary region. The increase in the global order of
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Resolution Cell size (∆x = ∆y) L1 norm L1 order L2 norm L2 order Linf norm Linf order
160 × 32 2.5(-3)m 4.74(-2) - 1.03(-1) - 5.99(-1) -
320 × 64 1.25(-3)m 1.79(-2) 1.40 5.32(-2) 9.53(-1) 4.19(-1) 5.16(-1)
640 × 128 6.25(-4)m 5.61(-3) 1.67 2.64(-2) 1.01 2.53(-1) 7.28(-1)
1280 × 256 3.12(-4)m 1.69(-3) 1.73 1.01(-2) 1.39 1.21(-1) 1.06
2560 × 512 1.56(-4)m 4.61(-4) 1.87 3.82(-3) 1.40 5.87(-2) 1.07

TABLE I: Static boundary results. Global L1, L2 and Linf error norms for the propagation of a density perturbation in a static
boundary sloped channel at t = 1ms. Values given in compact form as A(B) to represent A× 10B .

Resolution Cell size (∆x = ∆y) L1 norm L1 order L2 norm L2 order Linf norm Linf order
160 × 32 2.5(-3)m 6.84(-2) - 2.11(-1) - 8.82(-1) -
320 × 64 1.25(-3)m 3.01(-2) 1.18 1.07(-1) 9.80(-1) 7.11(-1) 3.11(-1)
640 × 128 6.25(-4)m 1.07(-2) 1.49 5.37(-2) 9.95(-1) 5.38(-1) 4.02(-1)
1280 × 256 3.12(-4)m 3.32(-3) 1.69 2.51(-2) 1.10 2.99(-1) 8.47(-1)
2560 × 512 1.56(-4)m 9.50(-4) 1.81 9.91(-3) 1.34 1.51(-1) 9.86(-1)

TABLE II: Moving boundary results. Global L1, L2 and Linf error norms for the propagation of a density perturbation in a
moving boundary sloped channel at t = 1ms. Values given in compact form as A(B) to represent A× 10B .

accuracy with increasing mesh resolution justifies the introduction of Adaptive Mesh Refinement (AMR) to resolve
flow features of large density gradient and regions close to the cut-cell boundary, restricting the spatial influence of
the first order accurate cut-cell method with the current second-order accurate numerical solver. Refinement of the
mesh using AMR is test case specific and can be chosen to refine across, for example, shock waves, contact surfaces
or vortices through adjustment of a refinement criterion. Computational cells are flagged for refinement based on a
user defined state variable threshold value. Adjacent computational cells with a difference in the chosen state variable
are flagged for refinement. In the current computation, the refinement variable is density. If desired, in the current
implementation, the rigid body surface can also be independently flagged for refinement.
The analysis presented so far in this section studies the convergence properties of the current explicit scheme at fixed
CFL number, Tables I and II, yielding the global accuracy of the method in both time and space as the mesh resolution
increases. In an extension to this analysis, we isolate the space and time resolution contributions by adjusting the
CFL number as the mesh is refined. Suppose we have a scheme that is formally second order accurate in both space
and time. A measure of the spatial accuracy in isolation can then be computed by allowing the CFL number to vary
between mesh resolutions, according to:

(CFL)n = 2−n (CFL)0 (31)

where, n is a positive integer representing the current refinement level. This value is defined as 0 for the least refined
mesh case and increases by one as the mesh resolution is doubled in all spatial directions. CFL0 in Equation 31
therefore denotes the CFL number used in the least refined case. With the CFL number linked to the mesh refinement
in this manner, the time step approaches zero more rapidly than the mesh resolution, therefore the spatial error will
dominate in this limit. Using this strategy, the global error for the moving channel case is given in Table III. The
most refined three mesh resolutions from Table II have been tested here. Table III documents the CFL number as
the mesh resolution increases.

Table III indicates that the influence of the first order cut-cell method is restricted to a small region close to the
surface in terms of the global order of accuracy when the mesh is sufficiently well resolved. When considered together
with Table II, which demonstrated a similar convergence to second order accuracy, the implication is that the accuracy
of the second-order method is globally maintained in both time and space for the most refined mesh resolution cases.

Resolution Cell size (∆x = ∆y) CFL L1 norm L1 order L2 norm L2 order Linf norm Linf order
640 × 128 6.25(-4)m 0.5 9.27(-3) - 3.92(-2) - 4.62(-1) -
1280 × 256 3.12(-4)m 0.25 3.08(-3) 1.59 1.92(-2) 1.03 2.64(-1) 8.07(-1)
2560 × 512 1.56(-4)m 0.125 8.70(-4) 1.82 7.45(-3) 1.37 1.38(-1) 9.36(-1)

TABLE III: Moving boundary results. Isolation of the spatial component of the global L1, L2 and Linf error norms for the
propagation of a density perturbation in a moving boundary sloped channel at t = 1ms. Values given in compact form as A(B)
to represent A× 10B .
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(a) (b)

(c) (d)

FIG. 14: Numerical Schlieren plot series showing a circular cylinder passing through a stationary shock wave. (a) 6µs, (b)
35µs, (c)106µs, (d) 126µs. Times taken with respect to the initial contact of the cylinder and shock wave.

3.2. Circular Cylinder Interaction with a Stationary Shock Wave

An assessment of the current moving boundary cut-cell method for computing the interaction of a curved surface
with a moderately strong shock wave is presented in the second test case. A stationary shock wave initially separates
two regions of fluid with a discontinuous rise in pressure and density, accompanied by a decrease in fluid velocity, in
the downstream direction. The circular cylinder moves downstream with the same velocity as the initial low pressure
region, eventually passing through the stationary shock wave. This models the experimental situation of a stationary
cylinder and moving shock wave with the same rise in pressure and density across the shock wave. An ideal gas is
used, with specific heat capacity ratio, γ = 1.4, and specific gas constant, R = 287.058J/kgK. The CFL number is
0.5.

Figure 14 shows the interaction of a stationary Mach 1.34 shock wave with a moving cylinder of diameter 0.04m.
Specifically, numerical Schlieren plots are used to highlight compressible flow features at times 6µs, 35µs, 106µs and
126µs after the initial contact of the shock wave with the circular cylinder surface.

This Mach 1.34 shock wave test case is initialised by globally imposing the stationary shock wave flow properties
throughout the computational domain. Specifically, the flow properties to the left and right-hand sides of the shock
wave are ρL = 0.595kg/m3, uL = 459.54m/s, pL = 0.05MPa and ρR =0.944kg/m3, uR =289.86m/s, pR =0.096MPa.
The circular cylinder velocity is ucyl =459.54m/s, matching the fluid velocity on the left-hand side of the shock
wave. The cylinder is initially located one diameter upstream of the shock wave. Before contact with the shock
wave, therefore, the circular cylinder initially moves with the same velocity as the surrounding fluid. The absence of
pressure waves in the low pressure fluid at this time demonstrates that the consistency condition is satisfied by the
moving cut-cell method.

The location of the initial shock wave and the development of additional compressible flow features, such as a bow
shock and shock wave triple points are evident in Figure 14. As outlined in Zdravkovich [66], the location, strength
and development of these compressible flow features are dependent on the magnitude of the pressure and density rise
across the shock wave. Even moderate increases in the shock wave Mach number result in an altered shock wave
pattern, providing a sound basis with which to assess the moving boundary cut-cell surface condition. Figure 15 shows
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FIG. 15: Circular cylinder passing through a Mach 2.82 shock wave. Top: Schlieren image from the experiment of Bryson &
Gross [67] in which a moving shock wave passes over a fixed cylinder. Bottom: Numerical Schlieren image using the current
moving boundary cut-cell method and modelling a stationary shock wave with a moving cylinder.

a comparison between the current moving boundary cut-cell method and an experiment by Bryson & Gross [67] at
a higher shock wave Mach number of M = 2.82. At this Mach number, the pressure and density ratio across the
shock wave is pR/pL = 9.045Pa and ρR/ρL = 3.674kgm−3. The Cartesian mesh resolution used for Figure 15 is
∆x = ∆y = 5× 10−3D, where D = 0.04m is the circular cylinder diameter.

The distance from the circular cylinder to the bow shock, and the location of the shock triple point, in the numerical
Schlieren compare well with the experiment of Bryson & Gross [67]. The contact discontinuity, which runs between
the circular cylinder and the shock triple point is also well located, indicating the moving cut-cell method is able to
capture the correct advection dominated flow behaviour regarding the shock wave interaction with the moving circular
cylinder.

3.3. Schardin Experiment

The interaction of a solid body with an incident shock wave is extended in this test case to the classic experiment
of Schardin [68], in which a planar shock interacts with a triangular wedge. This interaction results in the generation
of a relatively complex flow pattern, with transonic tip vortices extending downstream of the wedge, as well as Mach
stems, triple points, reflected and diffracted shocks, slip lines and acoustic waves. Schardin’s original shadowgraph
images provide an initial basis for comparison, with further experimental imaging by Chang and Chang [69] allowing
for more detailed verification. As with the circular cylinder test case, we model a stationary shock wave, matching
the experimental pressure and density rise across the shock wave. A triangular wedge, moving with the same velocity
as the surrounding fluid on one side of the shock wave, is then allowed to pass through the stationary shock wave.
This models the experiment, in which a fixed stationary wedge in static fluid is subjected to the impingement of
a moving shock wave. An ideal gas is used, with specific heat capacity ratio, γ = 1.4, and specific gas constant,
R = 287.058J/kgK. The CFL number used in this test case is 0.5.

The solid body in this test case takes the form of an equilateral triangle, with base length 20mm. The triangular
wedge is placed in a fluid with a density and pressure of ρ = 0.595 kg m−3 and p = 0.05 MPa. The incident shock
wave has Mach number 1.34, giving a post-shock state of ρ = 0.944 kg m−3 and p = 0.0964 MPa.

The numerical results are computed on the domain of size 0.2 × 0.2 m, with a regular Cartesian mesh of cell size
∆x = ∆y = 5 × 10−4 m. A transmissive boundary condition is defined at the computational domain extents. The
simulation is run to a final time of t = 200µs. The start time, t = 0, is taken as the time at which the initial contact
of the triangular wedge and the shock wave occurs.
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(a) (b)

(c) (d)

FIG. 16: Numerical Schlieren plots at (a) 28 µs, (b) 53 µs, (c) 79 µs and (d) 102 µs after the instant the shock wave contacts
the triangular wedge. This corresponds to Figure 5 of [69].

The development of a compressible flow pattern around the wedge as it passes through the static shock wave is
documented at times, t = 28µs, 53µs, 79µs and 102µs in Figure 16, using numerical Schlieren to highlight density
gradient. These correspond to the experimental interferograms and computational results in [69].

Numerical Schlieren results from the current moving boundary simulation are compared with experimental Schlieren
imaging from Chang & Chang [69], at 91µs after the initial contact of the triangular wedge with the shock wave, in
Figure 17.

The tip vortices are evident downstream of the triangular wedge in both the numerical Schlieren image and the
experiment. The location of the main flow features, the bow shock, tip vortices, downstream shock triple point and
the contact surfaces that extend between the tip vortices and the shock triple point are all well located. The size
of the tip vortex matches the experimental Schlieren, with an embedded shock wave located in the vortex at the
same relative location. The bow shock in Figure 17 extends outside of the photograph extent, with the shock triple
point located along the upper edge. These results provide further evidence of the ability for the current moving
boundary cut-cell method to accurately reproduce the essential flow physics. It is noted that in this test case, the
apex of the wedge coincides with the computational cell edge. As the current implementation of the cut-cell method
represents the rigid body surface as a linear approximation in each computational cell, sharp corners that fall within a
single computational cell are therefore not resolved. This represents a limitation to the current implementation. The
influence on the global mass conservation of this under-resolution of the region around the three corners is, however,
expected to be reduced through judicious use of AMR to better resolve the rigid body surface. Whilst capturing
discontinuous surface gradients (such as the wedge corners) within the confines of a single cut-cell is the subject of
further development, we attempt to quantify the level of error introduced in the current method from this, and other
sources of error. These include the accuracy to which slender regions of the rigid body are represented by the level-set
method, used in the current method to track the movement of the rigid body. These sources of error, which can alter
the local shape of the rigid body as the surface moves across a cut-cell, are resolution dependent. We therefore repeat
the same Schardin wedge test case in order to quantify the mass conservation error as the wedge passes through the
stationary shock wave. We ensure that the influence of the wedge on the surrounding flow does not extend beyond
the computational domain boundary by limiting the end time of the computation and increasing the computational
domain size. The results are calculated as the difference in the total mass in the domain with respect to the total
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FIG. 17: Shock wave development past a Schardin Wedge at 91µs after initial contact. Top: Experimental Schlieren image by
Chang & Chang [69]. Bottom: Numerical Schlieren image using the current moving boundary cut-cell method.

FIG. 18: Mass conservation error for three mesh resolutions. Wedge apex coincident with the computational cell boundary,
solid line: ∆x = ∆y = 2.5 × 10−4m. Dashed line: ∆x = ∆y = 5 × 10−4m, Dash-dot line: ∆x = ∆y = 10 × 10−4m. Dotted
line: Wedge apex coincident with the computational cell centre, with ∆x = ∆y = 5 × 10−4m.

mass at the start of the computation. This mass error is presented as a percentage of the total mass at the start of the
computation. For these mass conservation tests, a single, uniform mesh is defined across the computational domain
in order to eliminate the possibility of the fine-coarse AMR boundary updates negatively influencing the results. The
mass conservation error is given in Figure 18. Three mesh resolutions are compared in this figure, with the leading
corner of the sharp wedge coincident with a computational cell boundary. To account for changes in mass conservation
resulting from the location of the corners, the mass conservation error from a further test is shown in which the sharp
leading corner of the wedge is coincident with the centre of a computational cell with ∆x = ∆y = 5× 10−4m.

Figure 18 shows that, as expected, the error decreases significantly with increasing resolution as the representation of
the rigid body surface improves and changes in the representation of the wedge corners between time steps is confined
to a smaller spatial area. The location of the wedge apex is also shown to have an effect on the mass conservation.
The slight improvement in mass conservation when the leading corner is located at a computational cell centre is due,
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in part, to an improvement in the representation of the other two corners in this test. The reduction in the mass
conservation error with increasing mesh resolution justifies the judicious use of AMR to improve the representation
of the rigid body while minimising the associated increase in computational effort.

3.4. Oscillating NACA 0012 Aerofoil

This fourth test case models a NACA 0012 aerofoil pitching between 2.526◦ and −2.494◦ from the oncoming free
stream flow direction. The free-stream Mach number is M∞ = 0.755. This test case has been used to validate a number
of numerical methods, including Venkatakrishnan & Mavriplis [70], Krishnan & Liu [71], as well as cut-cell methods
by Schneiders et al. [35] and Murman et al. [56]. The free stream density, velocity and pressure are ρ∞ = 1.225kg/m3,
u∞ = 256.9m/s and p∞ = 101325Pa respectively. This is used to globally initialise the computational domain
at the start of the computation. The computation develops initially using a static aerofoil, imposed for the first
t = 0.2 seconds to allow the flow around the aerofoil to develop. The aerofoil then oscillates with incidence angle
ϕ(t) = 0.016 + 2.51sin (ωt), where the reduced frequency, ωc/2u∞ = 0.0814 based on the aerofoil chord length, c, and
the free-stream velocity. A perfect gas is used, with specific heat capacity ratio, γ = 1.4, and specific gas constant,
R = 287.058J/kgK.

As the NACA 0012 aerofoil pitch angle changes over time, an unsteady shock pattern develops close to the surface.
Figure 19 shows this unsteady shock wave pattern at two different times in the pitching cycle, highlighting the change
in shock strength and location with time. Figure 19 (a) is a pseudo-colour plot of non-dimensional pressure, p/p∞,
at a pitching angle of ϕ(t) = 2.34◦ with respect to the horizontally aligned free stream flow. At a later time, the
pressure distribution at a pitching angle of ϕ(t) = −0.54◦ is shown in Figure 19 (b). An inverted shock pattern is
observed between these two times. The results are quantitatively validated by comparison with both numerical and
experimental surface pressure profiles along the upper and lower aerofoil surfaces in Figure 20 for a pitching angle of
ϕ(t) = 2.34◦. Adaptive Mesh Refinement (AMR) is used for this test case based on a density refinement criterion of
ρ = 1× 10−4, with the most refined cells at the aerofoil surface of dimension ∆x = ∆y = 5× 10−3c. The surface of
the aerofoil is also flagged for refinement throughout the computation. The CFL number used in this test case is 0.5.

The change in the pressure distribution around the aerofoil over each complete pitching cycle results in a cyclical
change in the aerofoil lift and drag forces. The cyclical variation in lift, between a positive and negative maximum
over the course of each pitching event, is shown in Figure 21 as a plot of lift coefficient against pitching angle.

Following the onset of aerofoil pitching, the lift coefficient variation undergoes a transient period, characterised by
a cycle-to-cycle variation in the lift coefficient maxima and minima. At later times, the lift coefficient settles into
a self-sustaining quasi-steady pattern. It is during this quasi-steady period that the lift coefficient for Figure 21 is
recorded.

The current numerical simulation compares well with the numerical simulation of Venkatakrishnan & Mavriplis [70]
and the measurements of Landon [72], indicating the correct time-dependent compressible flow behaviour is captured
by the current moving boundary cut-cell method. In addition, it is noted for completeness, that although not directly
compared here, the current numerical simulation also compares favourably with the other moving boundary cut-cell
methods noted in the test case introduction, specifically Schneiders et al. [35] and Murman et al. [56].

3.5. Axisymmetric Open-Ended Shock Tube

The fifth test case is intended to demonstrate the current cut-cell methods ability to model relative motion between
two rigid bodies. A rigid circular disc moves at a constant imposed velocity through an open-ended cylindrical tube,
initiating the onset of a Mach 1.76 shock wave ahead of the disc. As the shock wave exits the shock tube and moves
radially outwards through the surrounding quiescent air, a characteristic flow pattern forms close to the shock tube
exit. The post-shock fluid in the tube has a resultant velocity in the direction of the tube exit. As this subsonic fluid
exits the tube, a circumferential shear layer of fluid forms from the inner lip of the tube, terminating in a ring vortex
further from the exit. Over time, the shock wave continues to move radially away from the shock tube exit through
the quiescent fluid. The shear layer increases in length as the ring vortex gradually moves further from the shock tube
exit. The local acceleration of the fluid around the ring vortex results in local compressible flow features which change
in appearance over time as the vortex moves away from the tube. The open-ended shock tube problem is documented
in a number of numerical and experimental publications, for example, [73–75]. The current test case is a modified
form of this published work due to the presence of the moving piston, which replaces the driver gas as the source of
the shock wave development. This modification to the classic open-ended shock tube problem is also used by Yang et
al. [43] to validate a cell merging cut-cell method with moving rigid boundaries. The characteristic flow pattern that
forms outside of the shock tube following the ejection of the shock wave provides both qualitative and quantitative
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(a)

(b)

FIG. 19: Oscillating NACA 0012 aerofoil. Angle of attack, (a) ϕ(t) = 2.34◦, (b) ϕ(t) = −0.54◦. Non-dimensional pressure
pseudo-colour, p/p∞.

FIG. 20: Oscillating NACA 0012 aerofoil pressure coefficient at ϕ(t) = 2.34◦. Solid line: Current simulation. Open symbols:
Numerical simulation of Kirschman & Liu [71]. Solid symbols: Measurements of Landon [72]. Square symbols denote suction
surface, circles denote pressure surface.
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FIG. 21: Oscillating NACA 0012 aerofoil. Lift coefficient. Solid line: Current simulation. Open symbols: Venkatakrishnan &
Mavriplis [70] boundary conforming mesh simulation. Solid symbols: Landon experiment [72].

FIG. 22: Shock tube test case configuration. A piston moving through a quiescent fluid inside a surrounding open-ended rigid
tube induces a shock wave which travels along the tube. Half of the tube diameter is defined, with the full circular tube case
approximated through an axisymmetric form of the Euler equations.

validation through comparison with experimental shadowgraph visualisation and pressure measurements. Figure 22
shows an overview of the computational set-up for this test case.

The current test case is a two-dimensional test case, that models the movement of a disc-shaped rigid body along
a cylindrical shock tube by employing the axisymmetric form of the Euler equations. As the resulting flow pattern
downstream of the shock tube has rotational symmetry, a reflective boundary can be defined along the centre-line of
the shock tube. This forms the lower boundary of the computational domain. Transmissive boundaries are defined
along the other three outer boundaries of the computational domain. The shock tube diameter, D, is used as the
characteristic length. The shock tube defined in this test case is therefore 6D in length, starting at the left-hand
computational boundary. The computational domain is 10D long, in a plane normal to the shock tube exit, and is
4D wide. The air ahead of the shock wave has density ρ =1.225 kgm−3, pressure, p =101325Pa, and is initially at
rest. The moving rigid disc is initially placed at a distance of 5.5D from the shock tube exit, at the start of the
computation. This disc is imposed with a constant velocity in the direction of the shock tube exit equal in magnitude
to the post-shock state for a Mach 1.76 shock wave, i.e., upiston =337.974m/s. The post-shock fluid properties, between
the moving disc and the shock wave, are then ρ =2.812kgm−3, u =337.974m/s and p =349288Pa. Qualitative and
quantitative validation is achieved through comparison with the shadowgraph visualisation and pressure measurements
of Schmidt & Duffy [73], who use a driver gas to initiate the shock wave. To synchronise results from the current test
case with the experimental results of Schmidt & Duffy [73], a common ‘zero’ reference time is defined, tref = 0. This
zero reference time is defined as the time at which the shock wave is level with the exit plane of the shock tube. In
the current simulation, this occurs at t = 1.388ms after the start of the computation. Numerical results from three
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FIG. 23: Numerical Schlieren pseudo-colour plot showing the development of the flow structure at the exit of the shock tube.
(a) Zero reference time (tref = 0) when the shock wave has reached the end of the shock tube (t =1.388ms). (b) tref =0.2ms.
(c) tref =1.466ms.

distinct mesh resolutions are compared with the pressure measurements of Schmidt & Duffy [73]. These are a global
non-AMR case with cell size ∆x = ∆y = 1.6× 10−3m, a non-AMR case with cell size ∆x = ∆y = 0.8×10−3m, and
a two-level (base mesh and one refined level) AMR case with a cell size ∆x = ∆y = 0.4× 10−3m at the most refined
level, using density as the refinement criterion, with a threshold value of ρ =1× 10−3kgm−3 in order to refine across
the shock wave, contact surface and ring vortex. A CFL value 0.5 is specified.

The development of the shock induced flow, downstream of the shock tube exit, is shown at tref =0, tref =0.2 ms
and tref =0.4933ms in Figure 23.

The numerical Schlieren plots are taken from the AMR computation with a refined mesh cell size of ∆x = ∆y =
0.4×10−3m. The disc, which is shown moving along the tube in this sequence, and the stationary shock tube are
uniform grey rectangles. In addition to the primary shock wave, which moves radially outwards from the shock tube
exit in this sequence, the ring vortex and the embedded compressible flow features are present in the outer regions
of the vortex in Figure 23(c). The two latter times in this sequence coincide with the times at which experimental
shadowgraph visualisation are available in Schmidt & Duffy [73]. These are directly compared with the current
numerical Schlieren plots in Figure 24 and Figure 25.

Figure 24 directly compares the numerical Schlieren pseudo-colour plot from the present computation with exper-
imental shadowgraph visualisation by Schmidt & Duffy [73] at a common reference time of tref = 0.2ms. At this
reference time, the primary shock wave has reached the outer edge of the shock tube. The location of the primary
shock wave, the vortex and the shear layer compare well, as does the size of diameter of the vortex at this time.
Further qualitative comparison of the present results with the experiment of Schmidt & Duffy [73] at a later time of
tref = 0.4933ms is given in Figure 25.

At this later time, the vortex has moved downstream compared with Figure 24 and is larger in size. Compressible
flow features are evident embedded either side of the vortex in both the numerical and experimental results. The
location and shape of these compressible flow features compare well between the numerical and experimental results.

Figure 26 shows the time history in over-pressure at a fixed location along the shock tube centre-line of 1.5 diameters
distance downstream of the tube exit. Three separate mesh resolutions are compared against the measurements of
Schmidt & Duffy [73] showing a convergence of the magnitude and location of the peak over-pressure as the mesh
resolution across the shock wave increases. Specifically, a global, single level (non-AMR) mesh with computational cell
dimensions, ∆x = ∆y = 1.6×10−3m, provides the coarsest resolution. Increasing the resolution, a global, single level
mesh with computational cell dimensions ∆x = ∆y = 0.8×10−3m provides the second mesh refinement, identified in
Figure 26 using diamond symbols. Finally, the most refined mesh, identified in Figure 26 using triangular symbols,
adds one additional refinement level to this mesh, resulting in computational cells of dimension ∆x = ∆y = 0.4×10−3m
on the most refined level. The measured over-pressure, shown in Figure 26 as a dotted line, shows a double peak
in over-pressure, with peak over-pressures of p − p∞ =98.341kPa at tref =0.394ms and p − p∞ =100.9252kPa at
tref =0.415ms. The numerical over-pressure peak converges with increasing mesh resolution to the earlier of these
measured peaks, reaching a peak over-pressure of p − p∞ =98.544kPa at tref =0.398ms. The difference in the first
measured over-pressure peak and the most-refined simulation is 0.206% of the peak measured over-pressure. At later
times, the predicted over-pressure follows the overall shape of the measured over-pressure curve with a better fit to
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FIG. 24: Comparison of the shadowgraph visualisation of Schmidt & Duffy [73] with the current numerical Schlieren pseudo-
colour plot at time t = 0.2ms. Computational domain view truncation to the shock tube exit region for clarity. The grey block
shows the open end of the shock tube.

FIG. 25: Comparison of the shadowgraph visualisation of Schmidt & Duffy [73] with the current numerical Schlieren pseudo-
colour plot at time t = 0.4933ms. Computational domain view truncation to the shock tube exit region for clarity. The
grey block shows the open end of the shock tube. The end of the piston is also visible at this time. The label ‘Al’ in the
experimental results highlight additional spurious flow features only visible in this figure due to the side location of the camera
looking through the axisymmetric flow.
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FIG. 26: Comparison of overpressure at a distance of 1.5 diameters downstream of the tube exit. Solid line: Measurements
of Schmidt & Duffy [73]. Square symbols: Single level (non-AMR) mesh with computational cell dimensions, ∆x = ∆y =
1.6×10−3m. Diamond symbols: Single level (non-AMR) mesh with computational cell dimensions ∆x = ∆y = 0.8×10−3m.
Triangle symbols: Two level AMR computation (baseline mesh plus one refined level). Refined level cell dimensions ∆x = ∆y =
0.4×10−3m.

the measurement evident in the higher resolution simulations, between tref =0.75 and tref =0.85.

3.6. Three-Dimensional Schardin Experiment

This test case extends the two-dimensional rigid body/shock wave interaction case in Section 3.3 to a three-
dimensional cone moving through a stationary shock wave. For comparison with the two-dimensional results in
Section 3.3, the cone used here is an equilateral triangle of base length 20 mm when viewed in cross-section. We
model a stationary shock wave, matching the pressure and density rise across a moving Mach 1.34 shock wave, in
order to simulate the practical situation of a fixed cone in a fluid that is initially at rest and subject to a passing shock
wave. An ideal gas is used in this test case, with a specific heat capacity ratio, γ = 1.4, and specific gas constant,
R = 287.058 J/kgK.

The fluid initially surrounding the cone at time t = 0 has a static density and static pressure of ρ = 0.595 kgm−3

and p = 0.05 MPa respectively, with a post-shock state of density, ρ = 0.944 kgm−3, and pressure, p = 0.0964 MPa.
The computational domain size is 0.2×0.2×0.2 m, with transmissive boundaries defining the outer domain extent.

As the case is radially symmetric, we reduce the computational effort here by terminating the domain along the cone
centre-line.

Adaptive Mesh Refinement (AMR) is used to refine across the shock wave using density as the refinement criterion
with a threshold value of ρ = 1×10−2, defining two levels of mesh refinement above the baseline mesh of 100×100×50
cells. A refinement factor of two is used to half the cell length between AMR levels, leading to the equivalent mesh
resolution of a 400× 400× 200 cell mesh on the most refined level. The cell dimensions of the most refined AMR level
are ∆x = ∆y = ∆z = 5× 10−4 m. A CFL number of 0.5 is used.

Figure 27 shows the development of the cone at a time of t = 102 µs after the initial contact of the cone with the
stationary shock wave. A two-dimensional slice across the centre of the cone is plotted, with a numerical Schlieren
pseudo-colour plot showing compressible and vortical flow features. The two finest mesh levels are plotted in this
figure along a plane normal to the pseudo-colour plot.

As expected, the two-dimensional slice is qualitatively similar to the triangular wedge results in Figure 16 (d). The
passage of the three-dimensional cone, of course, creates a shock and vortex pattern with rotational symmetry. The
numerical Schlieren shows that the main flow features are captured by the current method, in particular, the reflected
shock, Mach stem, downstream vortex ring (shown as two distinct vortices in the two-dimensional slice) and the shock
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FIG. 27: Numerical Schlieren plot at a time of 102 µs after the initial contact of the cone with the shock wave. The most
refined two mesh levels of are shown.

triple points. These flow features are shown as corresponding regions of mesh refinement.

4. CONCLUSIONS

A new moving boundary cut-cell method is presented for flows involving rigid bodies moving in a surrounding
single-phase inviscid fluid. This cut-cell method uses an explicit directional operator splitting approach to solve the
time-dependent hyperbolic conservation laws, extending the static boundary cut-cell method of Klein et al. [37]. A
flux stabilization approach is used to permit cut-cells with small cell volumes to be advanced in a stable manner
using a global time step based on the regular Cartesian cell dimensions. The movement of the rigid body, leading
to a transient interface between the cut-cell boundary and the stationary Cartesian mesh, introduces a number of
unique challenges in formulating a moving boundary flux stabilization method. Specifically, the continuous decrease
in some cut-cell fluid volume fractions and the disappearance of fluid cut-cells during the rigid body movement have
implications for the conservation and stability properties of the scheme. Conversely, solid cells are permitted to change
to cut-cells with no initial fluid state as the moving rigid body uncovers computational cells. These uncovered cells
may subsequently increase in volume to become regular fluid cells over time. An additional consistency condition
requires that an exact solution is produced for a solid body moving at the same velocity as the surrounding fluid. The
cut-cell method outlined in this paper replaces the regular cell interface flux in cut-cells with a stable flux computed
using a linear weighted combination of the regular flux and the cut-cell boundary flux. The movement of non-porous
rigid cut-cell boundaries is accounted for through boundary pressure terms in the momentum and energy equations.
A consideration of the time averaged cut-cell boundary movement during each time step is used to help maintain
conservation in the directional operator splitting scheme. A volume weighted averaging procedure is introduced
to populate newly uncovered cells with conservative state variables. We attempt to maintain global conservation
following cell transformation to solid cells through a conservative redistribution to neighbouring cells.

The moving boundary cut-cell method is applied to six compressible flow test cases in this paper to assess the
solution accuracy and stability when rigid boundaries move through smooth and discontinuous flows. The numerical
results compare favourably with published references. This is shown qualitatively through comparison of experimental
Schlieren visualisation, and quantitatively by reference to pressure and force measurements or exact analytical solution.
A further development to the moving boundary cut-cell method described in this paper is currently under way to
extend the method to two-phase flows, consisting of both rigid body cut-cell boundaries in two-phase flows and cut-cell
boundaries defining fluid-fluid interfaces.
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[18] B Ducassou, J Nuñez, M Cruchaga, and S Abadie. A fictitious domain approach based on a viscosity penalty method to

simulate wave/structure interaction. Journal of Hydraulic Research, pages 1–16, 2017.
[19] J Mohd-Yusof. For simulations of flow in complex geometries. Annual Research Briefs, 317, 1997.
[20] E. A. Fadlun, R. Verzicco, P. Orlandi and J. Mohd-Yusof. Combined immersed-boundary finite-difference methods for

three-dimensional complex flow simulations. Journal of Computational Physics, 161(1):35–60, 2000.
[21] Markus Uhlmann. An immersed boundary method with direct forcing for the simulation of particulate flows. Journal of

Computational Physics, 209(2):448–476, 2005.
[22] Wim-Paul Breugem. A second-order accurate immersed boundary method for fully resolved simulations of particle-laden

flows. Journal of Computational Physics, 231(13):4469–4498, 2012.
[23] YL Qiu, C Shu, J Wu, Y Sun, LM Yang, and TQ Guo. A boundary condition-enforced immersed boundary method for

compressible viscous flows. Computers & Fluids, 136:104–113, 2016.
[24] Richard Saurel and Carlos Pantano. Diffuse-interface capturing methods for compressible two-phase flows. Annual Review

of Fluid Mechanics, 50(1), 2018.
[25] R. P. Fedkiw, T. Aslam, B. Merriman and S. Osher. A non-oscillatory Eulerian approach to interfaces in multimaterial

flows (the ghost fluid method). Journal of Computational Physics, 152(2):457–492, 1999.
[26] R. P. Fedkiw. Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method. Journal

of Computational Physics, 175(1):200–224, 2002.
[27] Hiroshi Terashima and Grétar Tryggvason. A front-tracking/ghost-fluid method for fluid interfaces in compressible flows.

Journal of Computational Physics, 228(11):4012–4037, 2009.
[28] TG Liu, BC Khoo, and KS Yeo. Ghost fluid method for strong shock impacting on material interface. Journal of

Computational Physics, 190(2):651–681, 2003.
[29] Abouzar Kaboudian, Peyman Tavallali, and BC Khoo. The ghost solid methods for the elastic–plastic solid–solid interface



29

and the ϑ-criterion. Journal of Computational Physics, 302:618–652, 2015.
[30] Abouzar Kaboudian and BC Khoo. The ghost solid method for the elastic solid–solid interface. Journal of Computational

Physics, 257:102–125, 2014.
[31] ZW Feng, A Kaboudian, JL Rong, and BC Khoo. The simulation of compressible multi-fluid multi-solid interactions using

the modified ghost method. Computers & Fluids, 154:12–26, 2017.
[32] R. B. Pember, J. B. Bell, P. Colella, W. Y. Crutchfield and M. L. Welcome. An adaptive Cartesian grid method for

unsteady compressible flow in irregular regions. Journal of Computational Physics, 120(2):278–304, 1995.
[33] P. Colella, D. T. Graves, Benjamin J. Keen and D. Modiano. A Cartesian grid embedded boundary method for hyperbolic

conservation laws. Journal of Computational Physics, 211(1):347–366, 2006.
[34] X. Y. Hu, B. C. Khoo, N. A. Adams, and F. L. Huang. A conservative interface method for compressible flows. Journal

of Computational Physics, 219:553–578, 2006.
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