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Abstract

A particular mix of integral equations and discretization techniques is sug-
gested for the solution of a planar Helmholtz transmission problem with
relevance to the study of surface plasmon waves. The transmission problem
describes the scattering of a time-harmonic transverse magnetic wave from
an infinite dielectric cylinder with complex permittivity and sharp edges.
Numerical examples illustrate that the resulting scheme is capable of ob-
taining total magnetic and electric fields to very high accuracy in the entire
computational domain.
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1. Introduction

This paper is about solving a classic transmission problem for the Helm-
holtz equation in the plane using integral equation techniques. A physical
interpretation is that an incident time-harmonic transverse magnetic wave,
in a medium with unit permittivity, is scattered from a homogeneous dielec-
tric cylindrical object with permittivity ε. The problem is to find the total
magnetic field U everywhere.

When ε is real and positive and when the object boundary Γ is smooth,
this problem is uncomplicated. Efficient boundary integral equations and
fast solution techniques have long since been established and their use in
computational physics is standard practice. See [26] for pioneering numerical
work and [7] for an overview of more recent development. The only issue
that, perhaps, still is not completely resolved is how to compute U and its
gradient ∇U in an appropriate fashion close to Γ in a post-processor [1, 21].
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When ε is not real and positive and when Γ is not smooth, the transmis-
sion problem gets harder. Issues arise relating to modeling, the existence
and the uniqueness of solutions, and resolution. A particularly difficult situ-
ation is when ε is real and negative and Γ has sharp corners. The excitation
of rapidly oscillating corner fields and their interaction with surface plas-
mon waves then make the choice of integral equations and discretization
techniques crucial. To our knowledge, integral equation methods have not
been used in this context, but a finite element solver has recently been de-
veloped [5]. This solver, which relies on so-called perfectly matched layers at
the corners, is capable of producing convergent results also for challenging
setups.

We will review integral equations for the Helmholtz transmission prob-
lem and show that a system of equations due to Kleinman and Martin [20]
is well suited for our purposes. In passing we observe that another, sel-
dom used, integral equation from [20] is surprisingly efficient when ε is real
and positive and when the accurate evaluation of ∇U close to Γ is of con-
cern. The successful use of integral equations in computations is, of course,
coupled to the choice of discretization scheme. We use standard Nyström
discretization, accelerated with recursively compressed inverse precondition-
ing, and product integration for the evaluation of layer potentials close to
their sources [9, 11]. As a result, we can solve the transmission problem
for negative ε (in a limit sense) in domains with corners and rapidly obtain
corner fields and surface plasmon waves with a precision of about thirteen
digits, even close to Γ.

The rest of the paper is organized as follows: Section 2 presents the trans-
mission problem as a system of partial differential equations (PDEs). Sec-
tion 3 reviews some popular integral equation reformulations which all work
well for ε real and positive. This includes three systems of integral equations
which we call KM0, KM1, and KM2. Section 4 is on discretization. Special
emphasis is given to the treatment of singularities and near-singularities of
kernels that occur in field representations and systems of integral equations.
The basic evaluation strategy is the same as in [9, 12], but the treatment of
the hypersingularity in the gradient of the acoustic double layer potential
operator is new. Section 5 reviews results on the existence and uniqueness
of solutions to the PDEs and to the integral equations of KM0, KM1, and
KM2. These issues are extremely important when ε is not real and positive
and Γ has sharp corners. For inadmissible ε, there simply is no solution. For
a discrete set of other ε, an inappropriate choice of integral equations may
lead to numerical failure. In Sections 6, 7, and 8 we strive to summarize
the fascinating physics which is illustrated by the numerical examples at the
end of the paper.
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2. PDE formulation of the transmission problem

A homogeneous dielectric object, a domain Ω2 with boundary Γ, is em-
bedded in a homogeneous dielectric medium Ω1 in the plane R2. The out-
ward unit normal at position r = (x, y) on Γ is ν. The ratio between the
permittivities in Ω2 and Ω1 is ε. An incident plane wave

U in(r) = eik1(r·d) , r ∈ R2 , (1)

has wavenumber k1, where <e{k1} ≥ 0, and direction d. Let the wavenumber
in Ω2 be

k2 =
√
εk1 . (2)

A transmission problem for the Helmholtz equation can now be formulated:
find U(r) which solves the system of PDEs

∆U(r) + k2
1U(r) = 0 , r ∈ Ω1 , (3)

∆U(r) + k2
2U(r) = 0 , r ∈ Ω2 , (4)

with boundary conditions

lim
Ω13r→r◦

U(r) = lim
Ω23r→r◦

U(r) , r◦ ∈ Γ , (5)

lim
Ω13r→r◦

εν◦ · ∇U(r) = lim
Ω23r→r◦

ν◦ · ∇U(r) , r◦ ∈ Γ , (6)

U(r) = U in(r) + U sc(r) , r ∈ Ω1 , (7)

U sc(r) =
eik|r|√
|r|

(
F (r/|r|) +O

(
1

|r|

))
, |r| → ∞ . (8)

Here U sc(r) is the scattered field, F (r/|r|) is the far-field pattern, and (8)
is the two-dimensional analogue of the radiation condition [4, Eq. (6.22b)].

We are chiefly interested in computing the real fields

H(r, t) = <e
{
U(r)e−it

}
, r ∈ Ω1 ∪ Ω2 , (9)

∇H(r, t) = <e
{
∇U(r)e−it

}
, r ∈ Ω1 ∪ Ω2 , (10)

where t denotes time and angular frequency is scaled to one. The field
H(r, t) can be interpreted as a time-harmonic magnetic wave in a setting
where the PDE models a three-dimensional transverse translation-invariant
electromagnetic transmission problem for the Maxwell equations, with mag-
netic and electric fields

H(r) = U(r)ẑ , (11)

E(r) =

{
ik−1

1 ∇U(r)× ẑ , r ∈ Ω1 ,

ik−1
1 ε−1∇U(r)× ẑ , r ∈ Ω2 .

(12)

Here ẑ is a unit vector perpendicular to the plane, the electric field is scaled
with the wave impedance of free space, and the gradient∇U(r) is augmented
with a zero third component in the cross product.
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3. Integral equation formulations

This section reviews some popular integral equation reformulations of
the transmission problem in Section 2 in a uniform notation.

3.1. Bessel functions, kernels, and vectors

In what follows, Jn(x) and Yn(x) are nth order Bessel function of the
first and second kind and

H(1)
n (x) = Jn(x) + iYn(x) (13)

is the nth order Hankel function of the first kind. We extend the definition
of the outward unit normal ν = ν(r) at a point r ∈ Γ so that if r /∈ Γ, then
ν is to be interpreted as an arbitrary unit vector associated with r. The
fundamental solution to the Helmholtz equation is taken to be

Φk(r, r
′) =

i

2
H

(1)
0 (k|r − r′|) , (14)

where k is a wavenumber. We shall also use the double-layer type kernels
with r′ ∈ Γ and ν ′ = ν(r′) the outward unit normal at r′,

D(r, r′) = −ν · (r − r
′)

|r − r′|2
and D(r′, r) =

ν ′ · (r − r′)
|r − r′|2

. (15)

The boundary Γ has positive orientation and a parameterization called r(s).
At times we identify vectors r, r′, ν, ν ′ in the real plane R2 with points

z, τ , nz, nτ in the complex plane C. Conjugation of complex quantities is
indicated with an overbar symbol.

3.2. A standard choice of operators

We use standard definitions of the single- and double-layer potentials
and their normal derivatives [4, Eqs. (3.8)–(3.11)]

Skρ(r) =

∫
Γ

Φk(r, r
′)ρ(r′) d`′ , (16)

Kkρ(r) =

∫
Γ

∂Φk

∂ν ′
(r, r′)ρ(r′) d`′ , (17)

KA
k ρ(r) =

∫
Γ

∂Φk

∂ν
(r, r′)ρ(r′) d`′ , (18)

Tkρ(r) =

∫
Γ

∂2Φk

∂ν∂ν ′
(r, r′)ρ(r′) d`′ , (19)

where d` is an element of arc length, ∂/∂ν = ν(r) ·∇, and ∂/∂ν ′ = ν(r′) ·∇′.
Note that [4] uses a prefactor i/4 in the expression corresponding to (14)
and a prefactor 2 in the integrals corresponding to (16)–(19). This does not
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affect the definitions of Sk, Kk, K
A
k , and Tk: they are the same in (16)–(19)

as in [4, Eqs. (3.8)–(3.11)].
For r ∈ Γ it holds [4, Eqs. (3.12)–(3.13)]

KkKk − SkTk = I , (20)

KA
k K

A
k − TkSk = I . (21)

3.3. The first set of Kleinman–Martin equations

Kleinman and Martin [20, Section 4.1] suggest the field representation

U(r) = U in(r) +
1

2
Kk1µ(r) +

1

2
Sk1ρ(r) , r ∈ Ω1 , (22)

U(r) =
ε

2
Kk2µ(r) +

c

2
Sk2ρ(r) , r ∈ Ω2 , (23)

where c is a constant such that c+ ε 6= 0 and

arg(c) =

{
arg(εk2) if <e{k1} ≥ 0 ,
arg(εk2)− π if <e{k1} < 0 .

(24)

The corresponding system of integral equations is[
I − α2Kk2 + α1Kk1 −α1(cSk2 − Sk1)
α4(Tk2 − Tk1) I + cα3K

A
k2
− α4K

A
k1

] [
µ(r)
ρ(r)

]
=

[
f1(r)
f2(r)

]
, (25)

with r ∈ Γ and

f1(r) = −2α1U
in(r) , f2(r) = 2α4

∂U in

∂ν
(r) , (26)

α1 =
1

1 + ε
, α2 =

ε

1 + ε
, α3 =

1

c+ ε
, α4 =

ε

c+ ε
. (27)

The choice c in (24) guarantees the uniqueness of the solution µ, ρ to (25)
under certain conditions. See, further, Section 5.2.

The equations (22), (23), and (25) will be referred to as the KM1 repre-
sentation and system, or simply the KM1 equations.

3.4. The second set of Kleinman–Martin equations

Kleinman and Martin [20, Section 4.2] also suggest the field representa-
tion

U(r) = U in(r) +
1

2
Kk1µ(r)− 1

2
Sk1ρ(r) , r ∈ Ω1 , (28)

U(r) = −1

2
Kk2µ(r) +

ε

2
Sk2ρ(r) , r ∈ Ω2 , (29)
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where the layer densities µ and ρ have the physical interpretations

µ(r) = lim
Ω1∪Ω23r→r◦

U(r) , r◦ ∈ Γ , (30)

ρ(r) = lim
Ω13r→r◦

ν◦ · ∇U(r) , r◦ ∈ Γ . (31)

Taking the limit r → Γ in (28) and (29) gives two integral equations.
The limits of the gradients in (28) and (29) give two additional equations.
In [20, Section 4.2], these four equations are combined into the system of
integral equations[

I + α1Kk2 − α2Kk1 −α2(Sk2 − Sk1)
α1(Tk2 − Tk1) I − α2K

A
k2

+ α1K
A
k1

] [
µ(r)
ρ(r)

]
=

[
f1(r)
f2(r)

]
, (32)

with r ∈ Γ and

f1(r) = 2α2U
in(r) , f2(r) = 2α1

∂U in

∂ν
(r) , (33)

α1 =
1

1 + ε
, α2 =

ε

1 + ε
. (34)

The equations (28), (29), and (32) will be referred to as the KM2 represen-
tation and system, or simply the KM2 equations.

An advantage with the KM2 representation is that, by adding the null
fields of [20, Eqs. (3.15a) and (3.14b)]

0 = −1

2
Kk2µ(r) +

ε

2
Sk2ρ(r) , r ∈ Ω1 , (35)

0 = U in(r) +
1

2
Kk1µ(r)− 1

2
Sk1ρ(r) , r ∈ Ω2 , (36)

to (28) and (29), the representation of U(r) can be written

U(r) = U in(r)− 1

2
(Kk2 −Kk1)µ(r) +

1

2
(εSk2 − Sk1) ρ(r) , r ∈ Ω1 ∪ Ω2 .

(37)
The representation (37) contains the difference operator Kk2 − Kk1 whose
kernel is smoother close to Γ than those of the individual operators Kk2

and Kk1 in (22), (23), (28), and (29). As we shall see in Section 9.6, the
stabilizing effect of using (37) is particularly pronounced when the gradient
field ∇U(r) is computed.

3.5. The equations used by Greengard and Lee

Greengard and Lee use the field representation [7, Eq. (8)] that results
from setting c = 1 in the KM1 equations. The corresponding system of
integral equations [7, Eq. (11)] is therefore identical to (25) with c = 1. The
equations (22), (23), and (25) with c = 1 will be referred to as the KM0
representation and system, or simply the KM0 equations.

6



3.6. The Kress–Roach and Müller–Rokhlin equations

Kress and Roach [22] and Rokhlin [26] study the transmission problem
of Section 2 with the boundary conditions (5) and (6) replaced by

lim
Ω13r→r◦

U(r) = lim
Ω23r→r◦

εU(r) , r◦ ∈ Γ , (38)

lim
Ω13r→r◦

ν◦ · ∇U(r) = lim
Ω23r→r◦

ν◦ · ∇U(r) , r◦ ∈ Γ . (39)

The field representation and system in [22] is similar to the KM1 equa-
tions, but contains two free parameters c1 and c2. One can view the KM1
equations as a simplification of the Kress–Roach equations and we will not
investigate the latter equations numerically in this work.

The field representation for U(r) in [26] is

U(r) = U in(r) +
1

2
Kk1µ(r) +

1

2
Sk1ρ(r) , r ∈ Ω1 , (40)

U(r) =
1

2
Kk2µ(r) +

1

2ε
Sk2ρ(r) , r ∈ Ω2 . (41)

This representation gives rise to a system of integral equations, often called
the Müller–Rokhlin equations, which is identical to the KM1 system with
c = 1 and the KM0 system. Since the representation for U(r) in (41) differs
from U(r) in (23) with c = 1, the expression (9) for H(r, t) changes into

H(r, t) =

{
<e
{
U(r)e−it

}
, r ∈ Ω1 ,

<e
{
εU(r)e−it

}
, r ∈ Ω2 ,

(42)

and the expression (10) for ∇H(r, t) undergoes an analogous change.

4. Discretization

We discretize and solve the integral equations of Section 3 using Nyström
discretization with composite npt-point Gauss–Legendre quadrature as un-
derlying quadrature. Most often we choose npt = 16.

When the boundary Γ contains corners, the Nyström scheme is accel-
erated and stabilized with recursively compressed inverse preconditioning
(RCIP). The RCIP technique accomplishes, in linear or sublinear time, a
lossless compression of Fredholm second kind integral equations discretized
on meshes increasingly refined in the direction toward corner vertices. The
final preconditioned system is solved for transformed layer densities, rep-
resented by their values at discretization points only on a coarse mesh on
Γ. See the compendium [11] for a thorough review of RCIP acceleration of
Nyström schemes. See [13, 15] for applications of these techniques to the
solution of integral equations that are similar to those of Section 3. See [10,
Section 6.2-6.3] for details on performance enhancement involving Newton’s
method and homotopy, and for a discussion of the correspondence between

7



traditional mesh refinement and the number of recursion steps used in ad-
vanced implementations of RCIP. See [16, Section 7.2.2] for general com-
ments on how the need for local resolution, npt, depends on ε.

When operator kernelsG(r, r′) contain singularities, or near-singularities,
we replace the Gauss–Legendre quadrature, on quadrature panels affected,
with a product integration scheme. This scheme was first described in [9,
Section 2] and further developed in [12, Section 6] and has as its key the
construction of a split

G(r, r′) d`′ = G0(r, r′) d`′ + log |r − r′|GL(r, r′) d`′

+ <e

{
GC(z, τ) dτ

i(τ − z)

}
+ <e

{
GH(z, τ) dτ

i(τ − z)2

}
, (43)

where G0(r, r′), GL(r, r′), GC(z, τ), and GH(z, τ) are smooth functions and
complex notation is used as explained in Section 3.1. Product integration
weights for the kernels of (43) are then obtained using analytical meth-
ods and recursion or, when r ∈ Γ, alternatively by local regularization [9,
Section 2]. The scheme requires explicit formulas for G(r, r′), GL(r, r′),
GC(z, τ), and GH(z, τ), while G0(r, r′) needs only to be known if r ∈ Γ and
then only in the limit r′ → r.

In the remainder of this section the singular nature of the kernels of
Sk, Kk, K

A
k , and Tk is explored, so that splits of the form (43) can be

constructed.

4.1. Expansions of Yn(x) around x = 0

The following series expansions [17] of Yn(x) around x = 0 are useful:

Y0(x) =
2

π
J0(x) log

(x
2

)
− 2ψ(1)

π
− 1

π

∞∑
j=1

(−1)j2ψ(j + 1)

j!j!

(x
2

)2j
, (44)

Y1(x) =
2

π
J1(x) log

(x
2

)
− 2

πx

− 1

π

∞∑
j=0

(−1)j(ψ(j + 1) + ψ(j + 2))

j!(j + 1)!

(x
2

)2j+1
, (45)

Y2(x) =
2

π
J2(x) log

(x
2

)
− 4

πx2
− 1

π

− 1

π

∞∑
j=0

(−1)j(ψ(j + 1) + ψ(j + 3))

j!(j + 2)!

(x
2

)2j+2
, (46)

where ψ(·) is the digamma function.
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4.2. The kernel of Sk

For arbitrary wavenumber k and with r not necessarily on Γ we have

Sk(r, r
′) =

i

2
H

(1)
0 (k|r − r′|) . (47)

Using (13) and (44) one can split G(r, r′) = Sk(r, r
′) in the form (43) with

GL(r, r′) = − 1

π
J0(k|r − r′|) , (48)

GC = 0, GH = 0, and general limit

lim
r′→r

G0(r, r′) =
i

2
− 1

π
(log(k/2)− ψ(1)) . (49)

4.3. The kernel of Kk

For arbitrary wavenumber k and with r not necessarily on Γ we have

Kk(r, r
′) =

i

2
k|r − r′|H(1)

1 (k|r − r′|)D(r′, r) , (50)

with D(r′, r) as in (15). In the limit of k → 0 this means

K0ρ(r) =
1

π

∫
Γ
D(r′, r)ρ(r′) d`′ = −<e

{
1

πi

∫
Γ

ρ(τ) dτ

τ − z

}
, (51)

which is the Neumann–Poincaré operator with negative sign. Using (13)
and (45) one can split G(r, r′) = Kk(r, r

′) in the form (43) with

GL(r, r′) = − 1

π
k|r − r′|J1(k|r − r′|)D(r′, r) , (52)

GC(z, τ) = − 1

π
, (53)

GH = 0, and general limit

lim
r′→r

G0(r, r′) = 0 . (54)

For r on smooth Γ and with GC as in (53), the third term on the right
hand side of (43) is smooth and should be included in the first term. Then
GC = 0 and

lim
r′→r

G0(r, r′) =
(ν · r̈)
2π|ṙ|2

, (55)

where ṙ = dr(s)/ds and r̈ = d2r(s)/ds2.
Note that, thanks to k-independence in (53), the term associated with

GC in (43) cancels out in difference operators Kk2 −Kk1 .
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4.4. The kernel of KA
k

For arbitrary wavenumber k and with r not necessarily on Γ we have

KA
k (r, r′) =

i

2
k|r − r′|H(1)

1 (k|r − r′|)D(r, r′) , (56)

with D(r, r′) as in (15). In the limit of k → 0 this means

KA
0 ρ(r) =

1

π

∫
Γ
D(r, r′)ρ(r′) d`′ = <e

{
1

πi

∫
Γ

nzn̄τρ(τ) dτ

τ − z

}
. (57)

Using (13) and (45) one can split G(r, r′) = KA
k (r, r′) in the form (43)

with

GL(r, r′) = − 1

π
k|r − r′|J1(k|r − r′|)D(r, r′) , (58)

GC(z, τ) =
nzn̄τ
π

, (59)

GH = 0, and general limit

lim
r′→r

G0(r, r′) = 0 . (60)

For r on smooth Γ and with GC as in (59), the third term on the right
hand side of (43) is smooth and should be included in the first term. Then
GC = 0 and

lim
r′→r

G0(r, r′) =
(ν · r̈)
2π|ṙ|2

. (61)

4.5. The kernel of Tk

For arbitrary wavenumber k and with r not necessarily on Γ we have

Tk(r, r
′) =

i

2
k|r − r′|H(1)

1 (k|r − r′|) (ν · ν ′)
|r − r′|2

+
i

2
(k|r − r′|)2H

(1)
2 (k|r − r′|)D(r, r′)D(r′, r) . (62)

Using (13) and (46) one can split G(r, r′) = Tk(r, r
′) in the form (43) with

GL(r, r′) = −k
π
J1(k|r − r′|) (ν · ν ′)

|r − r′|

− 1

π
(k|r − r′|)2J2(k|r − r′|)D(r, r′)D(r′, r) , (63)

GC(z, τ) = − k
2

2π
<e {nz(τ̄ − z̄)} , (64)

GH(z, τ) = −nz
π
. (65)
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and general limit

lim
r′→r

G0(r, r′) =
i

4
k2 − 1

4π
k2(2 log(k/2)− 2ψ(1)− 1) . (66)

For r on smooth Γ and with GC as in (64), the third term on the right
hand side of (43) is smooth, has zero limit as r′ → r, and should be included
in the first term. Then GC = 0, but (66) is unaffected.

Note that, thanks to k-independence in (65), the term associated with
GH in (43) cancels out in difference operators Tk2 − Tk1 .

5. Existence and uniqueness of solutions

This section collects known results on the existence and the uniqueness
of solutions to the PDE (3)–(8) and to the system of integral equations
called KM0, KM1, and KM2 in Section 3.

5.1. Uniqueness: the PDE

According to the uniqueness theorem of [20, Section 2], if Γ is smooth,
if k1 6= 0, and if (2) is assumed, a solution to (3)–(8) is unique if

0 ≤ arg(k1) < π , |ε| 6=∞ , 0 ≤ arg(εk1) ≤ π . (67)

According to [22, Theorem 3.1], if Γ is smooth, if k1, k2 6= 0, and if (2) is
assumed, a solution to (3)–(8) is unique if

0 ≤ arg(k1), arg(k2) ≤ π/2 or π/2 ≤ arg(k1), arg(k2) < π . (68)

The two sets of conditions (67) and (68) overlap, but are not identical. For
example, if arg(k1) = π/2 and 0 < arg(k2) < π/4 then (68) holds but
not (67) – a fact we think is due to a flaw in the proof of [22, Theorem 3.1]
which affects the analysis of the solvability of [22, Eq. (4.5)]. In the present
work we are chiefly interested in arg(k1) = 0, 0 ≤ arg(k2) ≤ π/2. Then
both (67) and (68) guarantee that a solution to (3)–(8) is unique if Γ is
smooth.

5.2. Unique solvability: the systems of integral equations

According to [20, Theorem 4.1], if Γ is smooth, if (67) holds, and if c is as
in (24), then the KM1 system (25) is uniquely solvable. The unique solution
µ, ρ gives, via (22) and (23), a unique solution to (3)–(8). As a consequence,
the KM0 system and the Müller-Rokhlin equations, which correspond to the
KM1 system with c = 1, are also uniquely solvable if both k1 and k2 are real
and positive. In our numerical experiments with KM1 in Section 9, where
<e{k1} ≥ 0, we choose c in accordance with (24) as

c = εk2/|εk2| . (69)

According to [20, Theorems 4.2 and 4.3], if Γ is smooth and if both k1

and k2 are real and positive, then the KM2 system (32) is uniquely solvable.
The solution gives, via (28) and (29), a unique solution to (3)–(8).
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5.3. True and false eigenwavenumbers

When k1 and ε are such that the conditions (67) are violated, a solution
to (3)–(8) may, or may not, be unique. The same applies to solutions to
the systems of integral equations of Section 3 if the conditions on unique
solvability of Section 5.2 are violated.

Assume now that the conditions on unique solvability of Section 5.2
are violated for a given system of integral equations in Section 3. If, for
some k1 and ε, we numerically detect a non-trivial homogeneous solution
to that system, we call k1 an eigenwavenumber. Eigenwavenumbers can be
of two types: those that correspond to non-vanishing eigenfields U(r) that
satisfy the boundary conditions (5) and (6) and those that correspond to
U(r) = 0 or violate the boundary condition (5). We call the former type
true eigenwavenumbers and the latter type false eigenwavenumbers. False
eigenwavenumbers that correspond to eigenfields that violate (5) can only
occur for the KM2 equations since U(r) in the KM0 and KM1 equations,
by construction, always satisfies (5).

5.4. Existence: the KM1 system on a boundary with corners

This section discusses some issues related to the existence of solutions
to the KM1 system (25) when Γ has corners, ε is close to or on the negative
real axis, and k1 is real and positive so that c ≈ −i according to (69).

In view of the singular nature of the kernels of the integral operators in
Section 4, and when r ∈ Γ, the KM1 system can be written in the form[

I + λ1K0 + C1 C2

C3 I + λ2K
A
0 + C4

] [
µ(r)
ρ(r)

]
=

[
f1(r)
f2(r)

]
, (70)

where C1, C2, C3, and C4 are compact integral operators on Γ also in the
presence of corners, K0 and KA

0 are as in (51) and (57), and

λ1 =
1− ε
1 + ε

, λ2 =
c− ε
c+ ε

. (71)

The operators K0 and KA
0 are singular bounded integral operators on Γ.

The operator KA
0 is the same as the operator denoted K in [15, Eq. (10)].

The system (70) is a compact perturbation of the de-coupled system[
I + λ1K0 0

0 I + λ2K
A
0

] [
µ(r)
ρ(r)

]
=

[
f1(r)
f2(r)

]
, (72)

whose spectral properties, including the essential spectrum of K0 and KA
0

in planar domains with corners, have been analyzed in [24].
In particular, when Γ has a corner with opening angle θ and when ε

of (71) is real and such that

−
∣∣∣∣1− θ

π

∣∣∣∣ < − 1

λ1
<

∣∣∣∣1− θ

π

∣∣∣∣ ⇔ |π − θ|+ π

|π − θ| − π
< ε <

|π − θ| − π
|π − θ|+ π

, (73)
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then (72) does not in general have a solution µ in the fractional Sobolev
space H1/2(Γ), see [6], corresponding to boundary values of potentials with
finite absolute energy in the sense of [15, Section 4]. There exists, however,
a solution µ ∈ H1/2(Γ) for λ1 arbitrarily close to, but not on, the real axis.
We remark that similar restrictions on the solvability of (72) apply to ρ if
−1/λ2 is real and in the interval specified by (73). Since, by assumption
on ε and k1, the parameter λ2 of (71) is not close to the real axis and we
disregard this possibility.

The essential spectrum of an integral operator is invariant under compact
perturbations. Therefore the solvability analysis for (72) also applies to (70).
When (73) holds in our numerical examples of Section 9, we then add a small
imaginary number iδ, δ > 0, to ε and solve (70) in the limit δ → 0+. This
corresponds to λ1 approaching the real axis from below in the complex plane.
The limit solutions are indicated with a plus-sign superscript.

6. The Drude model and surface plasmon waves

We are interested in wave phenomena which under certain conditions
appear in metallic objects with sharp edges. Let us assume that there is
vacuum in Ω1, that k1 is real and positive, and that Ω2 is a metal. Certain
metals, such as silver, have permittivities that often are well approximated
by the Drude model, see [19, Eq. (7.58)], which in our context reads

ε = 1−
k2

p

k2
1 + ik1γ

. (74)

Here kp is the plasma wavenumber and γ ≥ 0 is a damping constant. The
equation says that ε becomes real and negative when k1 < kp and γ → 0+.
We mention the Drude model merely to explain why real and negative ε can
occur for real and positive k1.

When ε is real the time average of the electric and the magnetic energy
densities, normed by the vacuum permeability, are

〈wel(r)〉 =
1

4k2
i

|∇U(r)|2 , r ∈ Ωi , i = 1, 2 , (75)

〈wma(r)〉 =
1

4
|U(r)|2 , r ∈ R2 . (76)

This means that if ε < 0, then 〈wel(r)〉 is negative inside Ω2 while 〈wma(r)〉
is positive and electromagnetic waves cannot propagate in Ω2. It is, how-
ever, possible for so-called surface plasmon waves to propagate in a direction
along Γ. This is illustrated in the numerical examples of Section 9.5, be-
low, where surface plasmon waves are excited and propagate along Γ of a
bounded object. The properties of these waves resemble those of surface
plasmon waves along planar surfaces, and this resemblance is enhanced as
the wavelength of the surface plasmon waves decreases.
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The main results for surface plasmon waves on planar surfaces, pertinent
also for curved Γ, are as follows, see [25, Appendix I]: The surface plas-
mon waves can occur only for ε < −1, they are evanescent (which roughly
means exponentially decaying) in directions perpendicular to Γ, and propa-
gate along Γ with wavenumber

ksp = k1

√
|ε|
|ε| − 1

, ε < −1 . (77)

Surface plasmon waves can always propagate when ε < −1 and k1 > 0,
but their excitation by an incident wave U in(r) requires special couplers or
that Γ is somehow rough [25, Sections 2.2 and 6.7]. Surface plasmon waves
are particularly easy to excite when Γ has corners and ε is infinitely close
to the interval where (73) holds. That is, when ε approaches the interval

|π − θ|+ π

|π − θ| − π
< ε < −1 (78)

from above in the complex plane. Note that, in (77), the wavenumber ksp

diverges as ε → −1−. More details on surface plasmon waves can, for
example, be found in [2, 27]. Their excitation by corners is the topic of the
next section.

7. Singular fields at corners

The presence of corners on Γ has a great influence on the excitation of
surface plasmon waves and, as a consequence, on scattering and absorption
cross sections. The mechanism behind this is governed by certain singular
eigenfields which can be determined by quasi-static analysis, see [5]. We
now briefly review some results on this topic.

7.1. Quasi-static eigenfields

In the limit k1 → 0 and for certain ε, the transmission problem of Sec-
tion 2 can allow for magnetic eigenfields. These eigenfields are non-trivial
solutions to

∆U(r) = 0 , r ∈ Ω1 ∪ Ω2 , (79)

lim
Ω13r→r◦

U(r) = lim
Ω23r→r◦

U(r) , r◦ ∈ Γ , (80)

lim
Ω13r→r◦

εν◦ · ∇U(r) = lim
Ω23r→r◦

ν◦ · ∇U(r) , r◦ ∈ Γ , (81)

lim
|r|→∞

U(r) = 0 , r ∈ Ω1 , (82)

and they are important in the analysis of cross sections of objects Ω2 that
are much smaller than the wavelength 2π/k1.
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It follows from (79)–(82) that the eigenfields have zero electric energy
when =m{ε} = 0, that is,∫

Ω1

|∇(U(r))|2 dS +
1

ε

∫
Ω2

|∇(U(r))|2 dS = 0 , (83)

where dS is an element of area.
An alternative and, perhaps, more common analysis uses the scalar elec-

tric potential V (r), related to E(r) of (12) via E(r) = −∇V (r). The eigen-
problem for V (r) is the same as that for U(r) but with ε replaced by 1/ε in
the quasi-static boundary condition (81) and in (83). Since U(r) and V (r)
give rise to the same electric field we have

∇V (r) =

{
A∇U(r)× ẑ , r ∈ Ω1 ,
Aε−1∇U(r)× ẑ , r ∈ Ω2 ,

(84)

where A is a normalization constant. The quasi-static potentials U(r) and
V (r) are still complex representations of physical fields via (9) and V (r, t) =
<e
{
V (r)e−it

}
.

7.2. Eigenfields of the semi-infinite wedge

Magnetic and electric eigenfields can, in the limit k1 → 0, only occur
when ε is real and negative. When Γ is smooth there is a discrete set of
ε that admits eigenfields. When Γ is the open boundary of a semi-infinite
wedge of opening angle θ there exist eigenfields for all ε that satisfy (73).
These wedge eigenfields satisfy (79)–(81) and (83), but not (82), and are
often used in the static analysis of singular fields in domains containing finite
non-smooth objects. See [3] for a rigorous justification of this practice.

The wedge eigenfields describe the singular fields that can arise at corners
of a finite object Ω2. They shed light on how incident waves can couple very
strongly to surface plasmon waves and affect scattering and absorption cross
sections of objects for all wavenumbers k1. Let φ be the azimuth angle and
let Γ be given by φ = ±θ/2. Then the wedge eigenfields can be found via
separation of variables and have the form

U(r) = |r|±iζΘ(φ) , (85)

where ζ is a real and positive parameter that solves a transcendental equa-
tion [5, Section 3]. The function Θ(φ) is odd or even depending on whether
ε < −1 or ε > −1.

The gradients ∇U(r) of the wedge eigenfields (85) make both integrals
in (83) divergent. The time-average power loss (absorbed power) inside a
disk of radius R, centered at the corner vertex of the wedge, is proportional
to

lim
=m{ε}→0+

=m{ε}
∫
Sw

|∇(U(r))|2 dS , (86)
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where Sw is the part of the disk that overlaps the wedge. The limit in (86) is
non-zero and independent of R > 0. This means that power is absorbed by
the wedge even though it becomes lossless as =m{ε} → 0+. A quasi-static
analysis shows that Poynting’s theorem [23, Section 1.3.3] is satisfied. The
power absorption is located in a disk with an infinitesimally small R and is
equal to the time-average power flow through the boundary of a disk with
arbitrarily large R. A detailed analysis shows that, for the wedge eigenfields
in (85), this power absorption depends strongly on ε. It goes to zero as
ε→ −1, but is otherwise positive.

7.3. Coupling to surface plasmon waves

The plane wave excitation of surface plasmon waves along a boundary
Γ with a corner can, heuristically, be explained as follows: U in(r) induces a
magnetic field in the vicinity of the corner that we refer to as a corner field.
The corner field resembles the wedge eigenfields (85). According to (9), the
time-harmonic magnetic wedge eigenfield associated with (85) is

H(r, t) = Θ(φ) cos(ζ log |r| ± t) . (87)

This eigenfield can be viewed as a wave that travels radially inwards (+t) or
outwards (−t) with a local wavelength, 2π|r|/ζ, that increases linearly with
|r|. The corresponding time-harmonic corner field inherits these character-
istics. At the value of |r| where the local wavelength equals the wavelength
of the surface plasmon waves, 2π/ksp see (77), the corner field couples to the
surface plasmon waves on Γ. Only odd corner fields can couple to surface
plasmon waves since the latter only exist for ε < −1, see Section 6.

8. Cross sections

With the incident plane wave U in(r) of (1), the scattering cross section,
σsc, and the absorption cross section, σabs, of Ω2 are defined as time averages
of the scattered and absorbed power densities divided by the time average
of the incident power density. Let ΓC be a contour enclosing Ω2 and with
outward unit normal ν. Then [23, Section 4.2]

σsc = =m

{
1

k1

∫
ΓC

(ν · ∇U sc(r))U
sc

(r) d`

}
, (88)

σabs = −=m

{
1

k1

∫
ΓC

(ν · ∇U(r))U(r) d`

}
. (89)

When the object has corners and the real part of ε is negative, the absorption
cross section can be positive, even in the limit of the imaginary part of ε
going to zero. The absorption can be explained by the quasi-static analysis
in Section 7 and is verified numerically in Section 9.7.
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The total cross section in the direction d of U in(r) is

σtot = σsc + σabs . (90)

The optical theorem, [19, Section 10.11], [23, Section 4.4], gives the alterna-
tive expression for the total cross section

σtot = − lim
|r|→∞

=m

{
4

k1
U sc(|r|d)

√
πk1|r|

2
e−i(k1|r|−π/4)

}
. (91)

9. Numerical examples

In a series of progressively more challenging problems we now put the
integral equations of Section 3 and the discretization techniques of Section 4
to the test. Only a few of our problems have (semi-)analytic solutions. When
assessing the accuracy of computed quantities we therefore often adopt a
procedure where to each numerical solution we also compute an overresolved
reference solution, using roughly 50% more points in the discretization of
the integral equations. The absolute difference between these two solutions
is denoted the estimated absolute error.

Our codes are implemented in Matlab, release 2016b, and executed on
a workstation equipped with an Intel Core i7-3930K CPU. The implementa-
tions are standard, rely on built-in functions, and include a few parfor-loops
(which execute in parallel).

9.1. Numerical tests of integral operators

The operators Sk, Kk, K
A
k and Tk, r ∈ Γ, have been implemented on

the “star” boundary [8, 12] parameterized as

r(s) =
9

20

(
1 +

20

81
sin(5s)

)
(cos(s), sin(s)) , −π ≤ s ≤ π . (92)

Product integration weights for kernels with logarithmic singularities are
computed using analytical methods and recursion [12, Appendix A], while
local regularization [9, Section 2.2] is used for hypersingular kernels.

The compositions of operators KkKk − SkTk and KA
k K

A
k − TkSk act

as the identity operator on simple smooth layer densities, compare (20)
and (21). For example, with k = 3.8+1.3i, f(r(s)) = cos(3s)+i sin(7s), and
384 discretization points on Γ of (92), the relation (KkKk − SkTk)f(r) =
f(r) holds with a relative accuracy of 4 · 10−15 in L2-norm. With 1152
discretization points, the relation (KA

k K
A
k − TkSk)f(r) = f(r) holds with a

relative accuracy of 4 · 10−14.
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Table 1: Estimates of true and false eigenwavenumbers of the KM0 and KM2 systems for
the unit circle with ε = 2.25.

k1 multiplicity nature

2.380109395443269− 0.303953834460040i simple false
3.041565475205771− 1.041465761622153i double true
3.815540575399378− 0.309076450175921i double false
4.892032383544720− 0.631231166352111i double true

0 1 2 3 4 5 6 7 8 9 10

-2

-1.5

-1

-0.5

0

Figure 1: True and false eigenwavenumbers k1 of the KM0 and KM2 systems for the unit
circle with ε = 2.25.

9.2. Eigenwavenumbers for the unit circle

We first choose ε = 2.25 so that arg(k1) = arg(k2), let Γ be the unit
circle, and look for true and false eigenwavenumbers k1 with <e{k1} > 0
using 352 discretization points on Γ. We investigate the KM0 system, which
is (25) with c = 1, and the KM2 system (32). See Section 5.3 for the
definition of true and false eigenwavenumbers.

As it turns out in our numerical experiments, the eigenwavenumbers
of the KM0 system and those of the KM2 system are the same. A few
examples are listed in Table 1. The true eigenwavenumbers are confirmed
to a relative precision of 4 · 10−16 by comparison with semi-analytic results,
computed as solutions to transcendental equations derived in analogy with
their three-dimensional counterparts in [22, Section 3]. We believe that this
precision is indicative of the precision in all computed eigenwavenumbers in
this and the following sections. Figure 1 illustrates all eigenwavenumbers
found with 0 ≤ <e{k1} ≤ 10 and =m{k1} ≥ −2. The eigenwavenumbers
are found using a combination of brute-force random search and Broyden’s
method, see [14, Section VI.B] for a few more details. No eigenwavenumber
has =m{k1} ≥ 0, in agreement with the theory of Section 5.2.

We then choose ε = −1.1838, which is used in [5]. The condition numbers
of the matrices resulting from discretization of the KM1 system and the KM0
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Figure 2: Condition numbers of system matrices from the KM1 and the KM0 systems for the
unit circle, ε = −1.1838, and k1 ∈ [0, 10]: (a) the KM1 system is free of false eigenwavenum-
bers; (b) the KM0 system exhibits nine false eigenwavenumbers.
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Figure 3: Normalized eigenfield U(r) for Γ of (92) and with ε = 2.25 and estimated eigen-
wavenumber k1 = 13.21401616284493−1.636497767435982i: (a) absolute field value |U(r)|;
(b) log10 of estimated absolute field error in |U(r)|.

system are studied as a function of k1 ∈ [0, 10] using 384 discretization points
on Γ. Note that KM1, according to (69), now has c = −i while KM0 always
corresponds to c = 1, so the two systems are not the same. Figure 2(a)
shows that the KM1 system does not exhibit any false eigenwavenumber, in
agreement with the theory of Section 5.2. The KM0 system exhibits nine
false eigenwavenumbers, see Figure 2(b). Furthermore, the KM1 system
leads to generally better conditioned matrices. The sharp peaks that are
common to Figures 2(a) and 2(b) are caused by eigenwavenumbers close to,
but below, the real k1-axis. Results for the KM2 system (not shown) are
very similar to those of the KM0 system: the false eigenwavenumbers are
the same, but the condition numbers are generally slightly smaller.
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Figure 4: Normalized eigenfield U(r) for Γ of (93) and with ε = 2.25 and estimated eigen-
wavenumber k1 = 9.701129417644246−2.000374579086419i: (a) absolute field value |U(r)|;
(b) log10 of estimated absolute field error in |U(r)|.

9.3. Eigenfield for a “star”

We choose ε = 2.25 for the “star” of (92), again look for non-trivial solu-
tions to the homogeneous KM0 system, and then compute eigenfields U(r)
via (22) and (23) at 106 field points placed on a Cartesian grid in the box
B = {−0.6 ≤ x ≤ 0.6,−0.55 ≤ y ≤ 0.65}. The eigenfields are normalized
with their largest value in B.

Figure 3 shows the eigenfield for the simple estimated eigenwavenum-
ber k1 = 13.21401616284493−1.636497767435982i along with the estimated
absolute field-error computed with 976 discretization points on Γ. The ac-
curacy is very high, also close to Γ, which demonstrates the power of the
near-boundary evaluation scheme of Section 4.

9.4. Eigenfield for a one-corner object

We now let Γ be a closed contour with one corner, parameterized as

r(s) = sin(πs) (cos((s− 0.5)θ), sin((s− 0.5)θ)) , 0 ≤ s ≤ 1 . (93)

We choose ε = 2.25 and θ = π/2 and repeat the experiment of Section 9.3
with the KM0 system. RCIP acceleration is activated due to the presence
of the corner, see Section 4, and 320 discretization points are placed on the
coarse mesh on Γ. Figure 4 shows the eigenfield for the simple estimated
eigenwavenumber k1 = 9.701129417644246−2.000374579086419i along with
the estimated absolute error at 106 field points. The accuracy is even higher
than in the example of Section 9.3, which demonstrates the power of RCIP
and that boundary value problems on domains with corners are not nec-
essarily more difficult to solve than boundary value problems on smooth
domains.
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9.5. Surface plasmon wave for a one-corner object

We solve the KM1 equations with ε = −1.1838, k1 = 18, Γ as in (93),
θ = π/6, and U in(r) as in (1) with d = (cos(5π/12), sin(5π/12)). This setup
is chosen as to create a surface plasmon wave and to resemble the setup
of [5, Section 4.4.1].

The KM1 system (70), which now has c = −i according to (69), is solved
for the limit solution µ+, ρ+. The representations (22) and (23) are used for
U+(r) and (9) is used for H+(r, 0). Some resolution issues, related to the
relatively small opening angle θ = π/6 and quadrature panels on opposing
sides of the corner vertex lying close to each other, require that the number
of points used in the underlying quadrature is increased from npt = 16 to
npt = 22. Compare [11, Section 21.1].

Figure 5 shows a sequence of zooms of H+(r, 0) in the vicinity of the cor-
ner vertex, along with a plot of the estimated absolute field error. There are
1100 discretization points on the coarse mesh on Γ and each computational
box contains 106 field points on a (rectangular) Cartesian grid. According
to the analysis of Section 6, a surface plasmon wave can propagate along Γ
with a wavelength 2π/ksp ≈ 0.138. Figure 5(a) shows that this indeed hap-
pens. An animation of a surface plasmon wave H+(r, t), t ∈ [0, 2π], along Γ
can be found in [18].

The estimated field accuracy is not affected by the proximity of a field
point to the corner vertex, as shown in Figures 5(b,d,f). At least thirteen
digits can be obtained irrespective of the level of zoom. Figure 5(a,c,e)
can serve as an illustration to the discussion in Section 7.3 of how the odd
magnetic eigenfields (87) couple to the surface plasmon waves.

9.6. Fields and gradient fields

We compare the performance of the KM1 equations to the performance
of the KM2 equations where (37) is used for field evaluations at points r
close to Γ.

The first setup has ε = 2.25, k1 = 18, Γ as in (93), θ = π/2, U in as in (1),
and d = (cos(π/4), sin(π/4)). (Recall that with both ε and k1 real and posi-
tive, c = 1 in (69) and the KM1 equations coincide with the KM0 equations).
Both the fieldH(r, 0) and the gradient field∇H(r, 0) are computed. Figure 6
shows that the achievable accuracy in H(r, 0) and ∇H(r, 0) is improved with
around one and three digits, respectively, when the KM2 system with (37)
is used rather than the KM1 equations. There are 800 discretization points
on the coarse mesh on Γ and 106 field points on a (rectangular) Cartesian
grid in the box B = {−0.1 ≤ x ≤ 1.1,−0.54 ≤ y ≤ 0.54}.

Figure 7 shows results for a second setup with ε = −1.1838, the geometry
and the mesh being the same as above. We only use the KM1 equations, with
c = −i according to (69). The surface plasmon wavelength of 2π/ksp ≈ 0.138
corresponds to 17.6 wavelengths along Γ – a number that agrees well with
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Figure 5: A corner zoom for ε = −1.1838, Γ as in (93), θ = π/6, k1 = 18, and d =
(cos(5π/12), sin(5π/12)): (a,b) H+(r, 0) of (9) and log10 of estimated absolute error; (c,d)
ten times magnification; (e,f) 100 times magnification.
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Figure 6: H(r, 0) and ∇H(r, 0) with k1 = 18, ε = 2.25, θ = π/2, and d =
(cos(π/4), sin(π/4)); (a) The field H(r, 0); (b) The field |∇H(r, 0)|; (c) log10 of estimated
absolute error in H(r, 0) with KM1; (d) log10 of estimated absolute error in |∇H(r, 0)| with
KM1; (e) log10 of estimated absolute error in H(r, 0) with KM2 and (37); (f) log10 of esti-
mated absolute error in |∇H(r, 0)| with KM2 and (37).
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Figure 7: H+(r, 0) and ∇H+(r, 0) with k1 = 18, ε = −1.1838, θ = π/2, and d =
(cos(π/4), sin(π/4)): (a) The field H+(r, 0); (b) The (diverging) field |∇H+(r, 0)| with
colorbar range set to [0, 133]; (c) log10 of estimated absolute error in H+(r, 0) with KM1; (d)
log10 of estimated absolute error in |∇H+(r, 0)| with KM1.

the wave pattern of Figure 7(a). Note that the gradient field ∇H+(r, 0) of
Figure 7(b) diverges in the corner and that the colorbar range is limited to
[0, 133] as to provide full dynamic color range away from the corner. The
absolute gradient field error shown in Figure 7(d) corresponds to ten digit
accuracy or better.

We end this section with some timings for the computations used to pro-
duce Figure 7(a): setting up the discretized KM1 system matrix took 4.3
seconds; constructing the compressed weighted inverse used for RCIP accel-
eration took 23 seconds; solving the main linear system took 0.25 seconds;
evaluating H+(r, 0) took, on average, 0.6 milliseconds per field point in B.

9.7. The absorption cross section

We compute the limit absorption cross section σ+
abs of (89) for a scatterer

with Γ as in (93), θ = π/2, d = (cos(π/4), sin(π/4)), k1 = 18, ε < 0, and ΓC

as the unit circle centered at r = 0.5. The KM1 equations are used, with
c = −i according to (69). Figure 8 shows results for σ+

abs, for a quantity
that is machine epsilon εmach times the condition number κ of the system
matrix, for the estimated absolute error in σ+

abs and, as a consistency check,
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Figure 8: The absorption cross section σ+
abs of (89) of an object with Γ as in (93), θ = π/2,

d = (cos(π/4), sin(π/4)), k1 = 18, and ε < 0: (a) σ+
abs; (b) σ+

abs, εmach times the condition
number κ, estimated absolute error in σ+

abs, and the absolute difference of σ+
tot from (90) and

from (91) with logarithmic scale on the y-axis; (c,d) higher resolution of (a,b) in the interval
0 < (ε+ 1)/(ε− 1) ≤ 0.1.

for the absolute difference between σ+
tot computed from (90) and from (91).

The curves in Figure 8(a,b) are resolved by 1839 different values of ε,
1280 discretization points on the coarse mesh on Γ, and with npt = 16 in
the underlying quadrature. The magnified curves in Figure 8(c,d) use 1239
different values of ε, 2560 discretization points on the coarse mesh, and
npt = 32. One can see that the condition number of the discretized KM1
system is low for most values of ε, with the exception of values that make
(ε+ 1)/(ε− 1) belong to the set {−1, 0, 0.5}.

Figure 8(d) also shows that high accuracy in σ+
abs requires at least ten dis-

cretization points per surface plasmon wavelength and that it is not enough
to merely resolve the incident plane wave. For example, with (ε+1)/(ε−1) =
6·10−4, which corresponds to about 200 surface plasmon wavelengths along Γ
and 12.8 discretization points per surface plasmon wavelength on the coarse
mesh, the estimated absolute error in σ+

abs is around 10−12. Smaller values
of (ε+ 1)/(ε− 1) give a much larger error since the number of discretization
points in Figure 8(c,d) is fixed while the surface plasmon wavelength 2π/ksp
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decreases with (ε+ 1)/(ε− 1).
The rapid variations in σ+

abs for 0 < (ε+1)/(ε−1) < 0.5, seen in Figure 8,
are due to the coupling between corner fields and surface plasmon waves.
For −0.5 < (ε + 1)/(ε − 1) < 0 there are no surface plasmon waves and
σ+

abs varies less. The general behavior of σ+
abs in Figure 8 can be explained

using an analytic expression for the absorbed power of the wedge eigenfields,
obtained by inserting (85) into (86), multiplied with the squared amplitudes
of the numerically determined corner fields.

10. Conclusions

The mathematical and physical theory behind the excitation of surface
plasmon waves in finite metallic objects with sharp edges by incident plane
waves is rather involved. The present work demonstrates that a robust inte-
gral equation-based solver for the underlying Helmholtz transmission prob-
lem can be constructed and used for the detailed study of surface plasmon
waves in difficult situations. The solver combines a system of integral equa-
tions due to Kleinman and Martin, called KM1 in the present work, with
mildly modified off-the-shelf numerical tools such as Nyström discretization,
RCIP acceleration, and a product integration scheme for the evaluation of
layer potentials. No assumptions about the solution are needed beyond
those that are explicit in the PDE formulation of the problem. Corner fields
and surface plasmon waves can be computed very accurately and that is
crucial for the evaluation and understanding of rapidly varying absorption
cross sections.

The KM1 system contains a parameter c, which should be chosen in
agreement with (24). A choice of c in agreement with (24) makes the KM1
system uniquely solvable on smooth boundaries Γ under plasmonic condi-
tions (the incident wavenumber k1 is real and positive and the permittivity
ratio ε is real and negative) and when the underlying transmission problem
has a unique solution. Furthermore, when Γ has corners and ε is close to
(but not on) an interval on the negative real axis where solutions do not
exist, this choice of c makes one of the layer densities of the KM1 system
(denoted ρ in the present work) particularly easy to resolve numerically.

As a “take-home message” one can say that it is important to choose
c in agreement with (24) for the KM1 system. The choice c = 1, which is
common in the literature and gives the KM0 equations of the present work,
is only guaranteed to be good when k1 and ε both are real and positive.
On the other hand, under such conditions the equations called KM2 in
the present work are preferable. The KM2 and KM0 systems have similar
spectral properties, but the KM2 representation of the total magnetic field
U lends itself better to accurate field evaluation close to Γ than does the
representation of U in the KM0 equations.
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