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Abstract

We consider a time-dependent diffusion-reaction model for two vector unknowns, satisfying
a divergence-free constraint, and the associated scalar Lagrange multiplier. The motivation
for studying such a model is provided by a plasma physics problem arising in the modeling
of nuclear fusion devices (Braginskii equations), where the two vector unknowns represent ion
and electron velocities, the scalar unknown is the electrostatic potential and the divergence-free
constraint reflects the physical assumption of quasi-neutrality. We first recast the problem in a
form reminiscent of the standard Stokes problem, which allows us to recognize the importance
of using a compatible discretization for the vector and scalar unknowns, then propose and
analyze a stable finite element formulation. Following this, we address some peculiar geometrical
aspects of the model, showing how they can be naturally dealt with within our formulation,
and finally discuss a solution procedure for the resulting linear system based on the classical
Uzawa algorithm. Some numerical experiments complete the paper.

Keywords. Finite elements inf-sup stable discretization Braginskii equations quasi-neutrality con-
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1 Introduction
The magnetic confinement approach to nuclear fusion for civil applications relies on the construction
of large toroidal devices where a hydrogen plasma is heated while being confined by a strong
magnetic field. In order to obtain the plasma ignition, three simultaneous conditions must be
fulfilled: high temperature, high density and long confinement time. Ensuring these conditions
has proven to be a major technological challenge, which must be supported by a deep physical
understanding of the involved processes; in this context, an important role is played by the use of
numerical models.

*Corresponding author marco.restelli@ipp.mpg.de

1



In this paper, we are interested in fluid models which are used to describe the heat and particle
fluxes occurring in the peripheral region of the confined plasma, the so-called Scrape-off Layer
(SOL) [1]. A suitable model for the SOL is the following fluid system (see (2.1e)–(2.3i) in [2, § 2])

∂tnα +∇ · (nαuα) = Sn,α, (1)
∂t (mαnαuα) +∇ · (mαnαuα ⊗ uα + πα)

= −∇pα + eαnα
(
−∇Φ+ 1

cuα ×B
)
+Rα + SM,α, (2)

∂t
(
3
2pα

)
+∇ ·

(
3
2pαuα + qα

)
+ pα∇ · uα + πα : ∇uα = Qα + ST,α, (3)

∇ · J = 0. (4)

Here, α denotes the various ion species as well as the electrons, characterized by their mass mα,
charge eα, number density nα, velocity uα and pressure pα; Φ and B denote the electrostatic
potential and the magnetic field, respectively, c is the speed of light, πα and qα are momentum
and energy fluxes, Rα and Qα represent the momentum and energy exchanges among the various
species, and Sn,α,SM,α, ST,α are particle, momentum and energy sources, respectively. Finally, J
is the current resulting from the plasma flow, defined by

J =
∑
α

eαnαuα.

Constitutive equations for πα, qα, Rα and Qα are derived in [2] from the kinetic description of
the system, the source terms are assumed to be prescribed and the magnetic field is assumed to be
known and constant, thereby assuming that the equilibrium field, produced by external coils and by
the plasma current, is much larger than the changes in B caused by the transport processes; under
such assumptions, and provided that suitable initial and boundary conditions have been specified,
system (1)–(4) represents a closed initial-boundary value problem.

Equation (4) is referred to as quasi-neutrality condition, since it prevents the local build-up of
electric charge. For a plasma, net electric charge appears on spatial scales comparable with the
Debye length, which is much smaller than the size of technical devices, so that quasi-neutrality is a
correct assumption. Such an assumption has a fundamental impact on the fluid model, for which an
interesting parallel can be drawn with the incompressibility assumption in standard fluid mechanics;
this is one of the main focuses of the present paper and will be discussed in further details in the
following.

For typical fusion devices, the Lorentz force terms proportional to ∇Φ and uα×B are by far the
dominating ones in the momentum equation (2), together with the pressure gradient terms, so that
the geometry of B, and in particular the topology of its flux surfaces, are of paramount importance
in the study of (1)–(4). Given the complexity of the magnetic geometry in technical devices (see for
instance [3]), its accurate representation is a challenge for any numerical method, and has motivated
many authors to explore various approaches concerning the numerical discretization and the choice
of the computational grid.

A class of models based on an approximation of (1)–(4) known as drift-reduced equations [4, 5],
aiming at extracting the dominant physical processes, isolating some stiff terms, and mitigating the
computational cost, is used in various codes for the simulation of the SOL, either in the transport or
the turbulent regime, such as [6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17]. Despite the large variety of the
proposed drift-reduced models, common aspects of such models are: a) projecting the momentum
equation (2) in the directions parallel and perpendicular to B; b) using the resulting perpendicular
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momentum equation to obtain, upon discarding some small terms, an algebraic expression for
the perpendicular velocity (the “drifts”), which is then substituted at the continuous level in the
remaining equations; c) substituting nα and uα into (4) to obtain an elliptic equation for Φ, again
at the continuous level, and finally d) discretizing the resulting system.

Concerning the numerical discretization, the importance of a flexible strategy in the construction
of the computational grid has been recognized in many publications. A first requirement, as pointed
out in [10], is that, due to the strong anisotropy of the problem in the directions parallel and
perpendicular to B, “[…] it is essential that the mesh be aligned with the flux surfaces; i.e. for most
triangles, there should be one side with its two extremities lying on the same flux surface.” Another
important aspect is allowing for local refinement in regions with sharp gradients and regions which
are particularly critical for the correct computation of the source terms, such as the divertor plates.
Finally, it is desirable to extend the grid until the wall of the confinement vessel, which typically has
an irregular geometry. The proposed approaches include block structured grids with cut cells [18],
fully unstructured triangular grids [19, 20, 10, 21, 22, 23, 24], and hybrid grids combining both
structured and unstructured blocks [25, 26].

As an alternative to the drift-reduced approach, one could consider solving directly (1)–(4),
taking advantage of the increase in available computational power with respect to the time when the
first drift-reduced models were introduced. In fact, this would be appealing for at least two reasons:
on the one hand, the structure of (1)–(4) is the same encountered in compressible fluid dynamics
problems, as opposite to the Poisson bracket nonlinearity appearing in the drift-reduced system,
which would allow us to use more standard and well established techniques; on the other hand, such
a system offers the possibility to treat the electric potential Φ as the Lagrange multiplier associated
with the quasi-neutrality condition, as it will be discussed in the rest of the present paper, thereby
providing a solid ground for its treatment from both the continuous and the discrete viewpoint.

As a first step towards exploring the feasibility of discretizing directly (1)–(4), we consider
here an extremely stripped-down version of the problem, retaining the following ingredients: the
velocities u and ue of one ion species and of the electrons, respectively, the corresponding Lorentz
force terms −∇Φ+u×B and ∇Φ−ue ×B, and the quasi-neutrality condition. We stress the fact
that this model is not a consistent asymptotic version of (1)–(4), instead, those terms are retained
which model the quasi-neutral limit and the magnetic geometry. The resulting system is

∂tu = −∇Φ+ u×B + ν∆u+ f , (5)
0 = ∇Φ− ue ×B + νe∆ue + fe, (6)

∇ · (u− ue) = 0, (7)

complemented with Dirichlet boundary conditions for u and ue, either homogeneous, to simplify
the analysis, or inhomogeneous, in the numerical tests. Notice that in (5)–(7) the electron mass has
been neglected, which is an assumption also adopted in the drift-reduced models, and the dissipative
effects have been represented by simple diffusive terms with prescribed, constant coefficients ν, νe.
The use of Dirichlet boundary conditions for the ion and electron velocities is motivated by the
fact that this ensures the well-posedness of the problem, as will be clear from the rest of the paper.
Physically correct boundary conditions would include nonlinear terms to model the plasma sheets,
microscopic layers where (1)–(4) break down [1, 26]); numerical modeling of the plasma sheets
however constitutes an actual research topic on its own and is outside the scope of the present
analysis. Concerning the computational domain, we focus on transport processes and consider an
axisymmetric problem, so that, in a cylindrical coordinate system R, z, φ, each quantity is a function
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of two spatial variables R, z; despite this reduction to a two-dimensional computational domain,
however, we retain the three-dimensional character of the velocity vectors u,ue as well as of the
magnetic field B, in order to represent the effects associated with the nontrivial geometry of the
problem.

The goal of this paper is addressing the following aspects: mathematical well-posedness of (5)–
(7), definition of a suitable finite element discretization for such a problem, definition of an efficient
solution procedure for the computation of the electric potential Φ, and providing a correct framework
for the treatment of the three-dimensional geometrical aspects. The well-posedness derives from a
stability argument for Φ, regarded as Lagrange multiplier; a stable finite element formulation can
then be derived using classical finite element spaces for the Stokes problem. The computation of Φ
can be performed adapting the Uzawa algorithm, taking into account that, due to the Lorentz force,
the operator is not self-adjoint. Finally, to handle the geometrical complexity we introduce three
ingredients: the problem is treated in three spatial dimensions, introducing the axial symmetry
through the finite element space; a hybrid, unstructured mesh composed both of triangles and
quadrilaterals is adopted; a nonstandard representation for the discrete velocity is introduced.

The rest of the paper is organized as follows: § 2 discusses some qualitative aspects of (5)–(7),
relating them to the full system (1)–(4) as well as to the drift-reduced models; § 3 summarizes
the geometry of the problem; § 4 and § 5 are devoted to the well-posedness of the continuous and
discrete formulations, respectively; § 6 addresses various issues which are crucial for an efficient
and accurate computational strategy; finally, § 7 presents a numerical verification of the proposed
method. § 8 draws some conclusions and provides some outlooks.

2 Qualitative aspects of the model
As already mentioned, the Lorentz force terms are the dominant ones in (5) and (6), so that the
solution of (5)–(7) is characterized by

u⊥ ≈ u⊥
e ≈ −∇Φ×B

B2
, (∇Φ)∥ ≈ 0, (8)

where the superscripts ∥ and ⊥ denote the parallel and perpendicular directions to B, respectively
(see also § 3 for additional details). This qualitative behavior is also relevant for the complete
problem (1)–(4) and defines one of the fundamental drifts accounted for in the drift-reduced models,
namely the E cross B drift uE = −∇Φ×B

B2 . The main problem with (8) is that nothing can be
concluded about the electrostatic potential Φ, and more precisely about its variation in the directions
perpendicular to B. In fact, since (8) yields equal velocities for ions and electrons, condition (7) is
trivially satisfied for any choice of Φ. Hence, terms other than the Lorentz force in (5)–(7), despite
being smaller than the latter, have a fundamental importance in shaping the electrostatic potential
and, by virtue of (8), the ion velocities. Such terms are the ion inertia ∂tu and the momentum
dissipative fluxes ν∆u and νe∆ue, which appear in our reduced model as proxies of the material
derivative of the ion momentum and of the friction terms of the complete model (1)–(4), respectively.

In the terminology of the drift-reduced models, the uE drift is said to be ambipolar, meaning
that it does not differentiate between positive and negative charged particles, while other terms
in (5)–(7) which differentiate between ions and electrons are collectively referred to as polarization
current.
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The computation of Φ taking into account the polarization current is a delicate component of the
drift-reduced models. A typical approach consists in separating this computation in two steps: along
the parallel and the perpendicular directions to B. In the parallel direction, i.e. along the magnetic
field lines, the condition (∇Φ)∥ = 0, from (8), can be used (or, more precisely, its correspondent
form derived projecting the electron momentum equation in (2) in the parallel direction). For open
field lines, i.e. for magnetic field lines which intersect the boundary of the domain, this can be
used to “propagate” a boundary condition for Φ inside the domain, thereby fully determining the
electrostatic potential. For closed field lines on the contrary, i.e. for magnetic field lines which close
upon themselves inside the domain without intersecting the boundary, prescribing (∇Φ)∥ is not
enough and (∇Φ)⊥ must be taken into account. A possible approach is performing some algebraic
manipulations on (1)–(4) in order to isolate an elliptic problem for Φ of the form (omitting some
terms which are not relevant for the point being discussed)

∇ ·
(
σ∥(∇Φ)∥ + σan(∇Φ)⊥

)
= rhs. (9)

However, while σ∥ and the right-hand side of (9) are derived directly from the complete problem (1)–
(4), σan is “an ad hoc anomalous perpendicular conductivity” (see [10, § 2.7]), and hence the term
involving the perpendicular derivatives of Φ is not consistent with the complete Braginskii equations.
Such an approach is used in the SOLPS family of models [8, 9, 11, 12], which are used to simulate
the SOL in axisymmetric devices for long time scales and thus represent a direct reference for our
work. As observed in [11, § 3], despite the possibility to justify, in principle, the introduction of
σan by means of physical arguments, in practice this parameter is treated as a tuning parameter
to ensure convergence of the numerical scheme and can have a significant impact on the computed
solution.

In this paper we explore an alternative approach which does not rely on the introduction of any
anomalous perpendicular conductivity but rather computes Φ by regarding it in (5) and (6) as the
Lagrange multiplier associated with the (charge) incompressibility condition (7), and then resorting
to standard techniques for the incompressible Stokes problem.

We emphasize that the analogy between the quasi-neutrality condition and the incompressible
fluid dynamics is not due to a simple formal correspondence of our reduced model (5)–(7) with
the Stokes system; rather, there is a deep physical correspondence between the quasi-neutrality
assumption in the Braginskii system (1)–(4) and the motivation for considering nondivergent flows
in standard fluid dynamics. In fact, in fluid dynamics a divergent mass flow results in density
variations, which cause pressure fluctuations through the equation of state, which ultimately tend
to counteract the density variations themselves. Whenever the dynamics of these fluctuations is
much faster than the time scale of the problem being considered (i.e. for low Mach numbers) it is
justified, and computationally convenient, to eliminate them altogether enforcing a divergent free
mass flow. Having eliminated the density variations from the system, the pressure fluctuations are
not determined anymore by the equation of state, but instead take the role of Lagrange multiplier
ensuring the fulfillment of the zero divergent constraint. For a plasma, a current with nonvanishing
divergence results in local charge build-up, which causes electric potential fluctuations through
the Maxwell equations, which ultimately tend to restore an electrically neutral condition. Since
the dynamics of these electric oscillations is much faster than the time scales considered in the
SOL modeling, it is justified to eliminate the charge fluctuations enforcing a nondivergent current.
This however prevents us from using the Maxwell equations to compute Φ, which instead can be
determined as the Lagrange multiplier ensuring local quasi-neutrality. This is outlined in Table 1.
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For a more rigorous treatment of the quasi-neutral limit, the interested reader can consider [27, 28].

compressible fluid dynamics incompressible fluid dynamics
prognostic continuity equation for ρ time independent constraint ∇ · u = 0
state equation: p = p(ρ) p Lagrange multiplier for ∇ · u = 0
sound waves
plasma, local charge build-up plasma, quasi-neutrality
prognostic equation for ρc =

∑
α eαnα time independent constraint ∇ · J = 0

Maxwell equation: Φ = Φ(ρc) Φ Lagrange multiplier for ∇ · J = 0
plasma frequency

Table 1: Schematic comparison of the assumptions of incompressibility and quasi-neutrality in
fluid mechanics and plasma physics, respectively. Notice the correspondence between the mass and
charge densities, ρ and ρc, as well as between the pressure p and the electrostatic potential Φ.

3 Problem geometry
To simulate technical devices, the governing equations for the plasma flow must be solved in the
three-dimensional region occupied by the plasma itself. Hence, (5)–(7) must be considered within a
bounded domain Ω ⊂ R3 and u, ue, B, as well as the forcing terms, are vector fields taking values
in R3. At the same time, given that an important class of fusion devices, the so-called tokamaks,
is characterized by axial symmetry, and given that in many cases an axially averaged computation,
which neglects the symmetry breaking fluctuations of the flow, can be considered satisfactory, two-
dimensional simulations in the R−z plane are also of great interest (this is indeed the case considered
in the SOLPS code suite). This motivates us to consider both two and three-dimensional versions
of (5)–(7).

A convenient way to handle both formulations is working with the weak form of the problem,
deriving the axially symmetric case from the general three-dimensional one. Assuming homogeneous
boundary conditions

u = ue = 0 on ∂Ω,

the three-dimensional weak form of (5)–(7) is readily obtained multiplying each equation by a test
function, formally integrating over Ω, integrating by parts and using the boundary conditions for
ue and u, arriving at∫

Ω

[∂tu · v + ν∇u : ∇v − Φ∇ · v − u×B · v] dx =

∫
Ω

f · v dx, (10)∫
Ω

[νe∇ue : ∇ve +Φ∇ · ve + ue ×B · ve] dx =

∫
Ω

fe · ve dx, (11)∫
Ω

∇ · (u− ue)q dx = 0. (12)

To obtain the axially averaged problem, we need to outline the design of a tokamak device, as
illustrated in Figures 1 and 2 (see also [1]). Let us first introduce cylindrical coordinates R, z, φ.
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For an axially symmetric system, the cylindrical angle φ is the homogeneity variable, i.e. nothing in
the system depends on such a variable. The magnetic field B winds around the circle R = R0, z = 0,
which is the magnetic axis, denoted by µ, and around the major axis z, thus defining field lines
and magnetic surfaces. Inner magnetic surfaces are closed and covered by either a single field
lines or, for rational surfaces, by a collection of field lines, while outer magnetic surfaces intercept
the boundary of the domain; closed and open magnetic surfaces are separated by the last closed
magnetic surface. Half planes R ≥ 0, φ = Const are called poloidal planes. Due to the toroidal

Figure 1: Outline of the design the a tokamak device. The magnetic field B winds around the
magnetic axis µ and the major axis z. This plot shows a closed magnetic surface, i.e. a closed
surface covered by a single magnetic line.

symmetry of the device, the three-dimensional domain Ω can be represented as Ω = Ω̃ × [−π, π),
where Ω̃ is the poloidal section Ω ∩ πpol and πpol is the poloidal plane φ = 0. The intersection
of the last closed magnetic surface with πpol is the separatrix; moreover, on πpol, the O point and
the X point are defined by the intersection with the magnetic axis and the self-intersection of the
separatrix, respectively. The separatrix also defines three regions: the main plasma, the scrape-off
layer and the private region, as depicted in Figure 2, right. The magnetic field identifies the parallel
direction b = B/B. Notice that in general b is not perpendicular to the poloidal plane, except
at special points such as the O point and the X point. The two-dimensional, toroidally averaged
version of (10)–(12) is obtained by considering both test and trial functions to be independent from
the homogeneity coordinate φ. This leads to∫

Ω̃

[
∂tũ · ṽ + ν∇ũ : ∇ṽ − Φ̃∇ · ṽ − ũ×B · ṽ

]
Rdx̃ =

∫
Ω̃

f · ṽRdx̃, (13)∫
Ω̃

[
νe∇ũe : ∇ṽe + Φ̃∇ · ṽe + ũe ×B · ṽe

]
Rdx̃ =

∫
Ω̃

fe · ṽe Rdx̃, (14)∫
Ω̃

∇ · (ũ− ũe)q̃ Rdx̃ = 0, (15)

with dx̃ = dR dz. Functions denoted by a tilde can be regarded either as functions of the two
variables R, z (and possibly time), defined on Ω̃, or as functions of R, z, φ defined on Ω and constant
in φ. Despite the reduction to a two-dimensional problem, the vector fields in (13)–(15) retain their
three-dimensional character, so that ũ, ũe and ṽ, ṽe take values in R3; the differential operators,
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Figure 2: Outline of the design of a tokamak device. Left: three-dimensional view showing two
closed magnetic surfaces, the magnetic axis µ, the cylindrical coordinates R, z, one poloidal plane
πpol and the O point, i.e. the intersection of the magnetic axis with the poloidal plane. Right: view
of the poloidal plane showing the O point and the X point, one closed magnetic surface (dash-dot
line), the separatrix (continuous line), two open field lines (dashed line and dotted line) and the
two divertor plates d. The right plot shows also the main plasma regions: the main plasma a, the
scrape-off layer b and the private region c.

expressed with respect to the coordinate unit vectors eR, ez, e−φ (where e−φ = −eφ, the signs
being chosen so that the resulting base is right-handed) are

∇ṽ =

 ∂RṽR ∂z ṽR −R−1ṽ−φ

∂Rṽz ∂z ṽz 0
∂Rṽ−φ ∂z ṽ−φ R−1ṽR

 , ∇ · ṽ = ∂RṽR + ∂z ṽz +R−1ṽR.

We notice that the weak form (13)–(15), combined with the vector notation, allows us to write the
axisymmetric problem in a much simpler form compared to the strong, component form used, for
instance, in [11]. Finally, we mention that, for all practical applications, R is strictly larger than
zero in Ω̃, i.e. the plasma does not reach the major axis of the device.

4 Analysis of the continuous model
In this section, we consider the well-posedness of the reduced model (5)–(7) in three space dimen-
sions with homogeneous Dirichlet boundary conditions for the ion and electron velocities, without
assuming any symmetry of the system. Nevertheless, our analysis readily extends to the axisym-
metric case (13)–(15) using the fact that, thanks to R ≥ Rmin > 0,

(p̃, q̃)∼ =

∫
Ω̃

p̃q̃ Rdx̃

defines an equivalent scalar product in L2(Ω̃). Hence, let Ω denote a bounded domain in R3 with
Lipschitz continuous boundary ∂Ω, and let Lp(Ω), for either p = 2 or p = ∞, andHk(Ω), for k = 1, 2,
denote the standard Lebesgue and Sobolev spaces on Ω. We will also need the subset H1

0 (Ω) ⊂
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H1(Ω) of the functions with vanishing trace on ∂Ω, its dual space H−1(Ω) = (H1
0 (Ω))

′, the subspace
L2∫

=0
(Ω) ⊂ L2(Ω) of functions with vanishing mean value and H1∫

=0
(Ω) = H1(Ω) ∩ L2∫

=0
(Ω);

both H1
0 (Ω) and H1∫

=0
(Ω) are endowed with the norm ∥∇q∥L2(Ω) for a generic function q. The

corresponding vector spaces (H1
0 (Ω))

d, (L2(Ω))d and (H−1(Ω))d are denoted by H1
0(Ω), L2(Ω)

and H−1(Ω), respectively. Finally, we introduce the Bochner function spaces Lp(0, T ;X) and
Lp(0, T ;X), for p = 2 or p = ∞, where (0, T ] is the time interval and X,X stand for any of
scalar or vector function spaces introduced above. In the following, the domain Ω will be omitted
whenever there is no ambiguity.

Let B ∈ L∞, f ,fe ∈ L2(0, T ;H−1) and u0 ∈ L2. The variational formulation of (5)–(7)
reads: find u ∈ L2(0, T ;H1

0) with u′ ∈ L2(0, T ;H−1) (which also implies u ∈ C0(0, T ;L2)),
ue ∈ L2(0, T ;H1

0) and Φ ∈ L2(0, T, L2∫
=0

) such that, for a. e. t ∈ (0, T ],

⟨u′,v⟩+ ν(∇u,∇v)− (Φ,∇ · v)− (u×B,v) = ⟨f ,v⟩ , (16)
νe(∇ue,∇ve) + (Φ,∇ · ve) + (ue ×B,ve) = ⟨fe,ve⟩ , (17)

(∇ · (u− ue), q) = 0, (18)

for all (v,ve, q) ∈ H1
0 ×H1

0 × L2∫
=0

, with

u(t = 0) = u0.

Well-posedness of this weak formulation is ensured by the following result.

Theorem 1. Let B, f , fe and u0 be as above. Then there exists a unique weak solution (u,ue,Φ)
of (16)–(18) on [0, T ].

Proof. Since H1
0 and H1∫

=0
are separable, there exist two dense sequences {v̄i}, {q̄i}; let Vn =

span{v̄1, · · · , v̄n} and Qn = span{q̄1, · · · , q̄n}. For ε1, ε2 > 0, define

uε
n =

n∑
i=1

aεi (t)v̄i, uε
e,n =

n∑
i=1

bεi (t)v̄i, Φε
n =

n∑
i=1

cεi (t)q̄i

as the solution, for i = 1, . . . , n, of the regularized system

((uε
n)

′, v̄i) + ν(∇uε
n,∇v̄i)− (Φε

n,∇ · v̄i)− (uε
n ×B, v̄i) = ⟨f , v̄i⟩ , (19)

ε1((u
ε
e,n)

′, v̄i) + νe(∇uε
e,n,∇v̄i) + (Φε

n,∇ · v̄i) + (uε
e,n ×B, v̄i) = ⟨fe, v̄i⟩ , (20)

ε1((Φ
ε
n)

′, q̄i) + ε2(∇Φε
n,∇q̄i) + (∇ · (uε

n − uε
e,n), q̄i) = 0, (21)

with uε
n(t = 0) = Pnu0, uε

e,n(t = 0) = 0 and Φε
n(t = 0) = 0 and where Pn denotes the L2

orthogonal projector onto Vn with respect to the L2 inner product. The existence and uniqueness
of an approximate solution on [0, T ] is ensured by Picard’s theorem. For i = 1, . . . , n, multiply (19),
(20) and (21) by aεi (t), bεi (t) and cεi (t), respectively, sum over i and add the resulting equations to
get

1

2

d

dt
∥uε

n∥2L2 +
ε1
2

d

dt
∥uε

e,n∥2L2 +
ε1
2

d

dt
∥Φε

n∥2L2

+ ν∥∇uε
n∥2L2 + νe∥∇uε

e,n∥2L2 + ε2∥∇Φε
n∥2L2 = ⟨f ,uε

n⟩+
⟨
fe,u

ε
e,n

⟩
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and observe that, using Poincaré’s inequality,

⟨f ,uε
n⟩ ≤

C2
p + 1

2ν
∥f∥2H−1 +

ν

2
∥∇uε

n∥2L2 ,

and the same holds for
⟨
fe,u

ε
e,n

⟩
. Therefore,

d

dt
∥uε

n∥2L2 + ε1
d

dt
∥uε

e,n∥2L2 + ε1
d

dt
∥Φε

n∥2L2

+ ν∥∇uε
n∥2L2 + νe∥∇uε

e,n∥2L2 + 2ε2∥∇Φε
n∥2L2 ≤ C

ν
∥f∥2H−1 +

C

νe
∥fe∥2H−1 .

(22)

We can now integrate (22) in time obtaining uniform estimates in n for the following norms:

∥uε
n∥L2(0,T ;H1

0)
∥uε

e,n∥L2(0,T ;H1
0)

∥Φε
n∥L2(0,T ;H1∫

=0
);

corresponding uniform estimates in n for the time derivatives can be obtained following [29, § 7.1.2]:

∥(uε
n)

′∥L2(0,T ;H−1) ∥(uε
e,n)

′∥L2(0,T ;H−1) ∥(Φε
n)

′∥L2(0,T ;(H1∫
=0

)′).

Such estimates allow us to conclude that there exists a unique solution uε,uε
e ∈ L2(0, T ;H1

0) ∩
C0(0, T ;L2), Φε ∈ L2(0, T ;H1∫

=0
) ∩ C0(0, T ;L2) such that

⟨(uε)′,v⟩+ ν(∇uε,∇v)− (Φε,∇ · v)− (uε ×B,v) = ⟨f ,v⟩ , (23)
ε1 ⟨(uε

e)
′,ve⟩+ νe(∇uε

e ,∇ve) + (Φε,∇ · ve) + (uε
e ×B,ve) = ⟨fe,ve⟩ , (24)

ε1 ⟨(Φε)′, q⟩+ ε2(∇Φε,∇q) + (∇ · (uε − uε
e), q) = 0, (25)

for almost every t ∈ [0, T ], for every (v,ve, q) ∈ H1
0 × H1

0 × H1∫
=0

and satisfying the prescribed
initial condition.

Let us now consider the limit ε1 → 0. Taking (v,ve, q) = (uε,uε
e ,Φ

ε) in (23)–(25) and proceed-
ing as in the derivation of (22) yields

d

dt
∥uε∥2L2 + ε1

d

dt
∥uε

e∥2L2 + ε1
d

dt
∥Φε∥2L2

+ ν∥∇uε∥2L2 + νe∥∇uε
e∥2L2 + 2ε2∥∇Φε∥2L2 ≤ C

ν
∥f∥2H−1 +

C

νe
∥fe∥2H−1 ,

(26)

which provides uniform estimates in ε1 for the following norms:

∥uε∥L2(0,T ;H1
0)

∥(uε)′∥L2(0,T ;H−1) ∥uε
e∥L2(0,T ;H1

0)
∥Φε∥L2(0,T ;H1∫

=0
).

Thus, for ε1 → 0, the following limits exist: uε w−→ uε2 , uε
e

w−→ uε2
e in L2(0, T ;H1

0), Φε w−→ Φε2 in
L2(0, T ;H1∫

=0
) and (uε)′

w−→ (uε2)′ in L2(0, T ;H−1). For an arbitrary integer N , let us now take
(v,ve, q) = (v̄i, v̄i, q̄i), for i = 1, . . . , N , in (23)–(25) and, upon choosing a collection of smooth
functions {ai(t), bi(t), ci(t)}Ni=1 such that bi(0) = bi(T ) = ci(0) = ci(T ) = 0, let us multiply each
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equation by ai(t), bi(t) and ci(t), respectively, add over i and integrate in time to obtain∫ T

0

[⟨(uε)′,vN ⟩+ ν(∇uε,∇vN )− (Φε,∇ · vN )− (uε ×B,vN )] dt =

∫ T

0

⟨f ,vN ⟩ dt, (27)∫ T

0

[ε1 ⟨(uε
e)

′,ve,N ⟩+ νe(∇uε
e ,∇ve,N ) + (Φε,∇ · ve,N ) + (uε

e ×B,ve,N )] dt =

∫ T

0

⟨fe,ve,N ⟩ dt,

(28)∫ T

0

[ε1 ⟨(Φε)′, qN ⟩+ ε2(∇Φε,∇qN ) + (∇ · (uε − uε
e), qN )] dt = 0, (29)

where we have defined

vN =

N∑
i=1

ai(t)v̄i, ve,N =

N∑
i=1

bi(t)v̄i, qN =

N∑
i=1

ci(t)q̄i. (30)

Observe now that∫ T

0

ε1 ⟨(uε
e)

′,ve,N ⟩ dt = −
∫ T

0

ε1(u
ε
e ,v

′
e,N )dt ≤ ε1∥uε

e∥L2(0,T ;L2)∥v′
e,N∥L2(0,T ;L2)

so that, considering the uniform bound for ∥uε
e∥L2(0,T ;L2) and the fact that ve,N is fixed, this term

vanishes for ε1 → 0. The same is true for the term involving (Φε)′ in (29). Passing to the limit
in (27)–(29) we conclude that the limit solution satisfies∫ T

0

[⟨(uε2)′,vN ⟩+ ν(∇uε2 ,∇vN )− (Φε2 ,∇ · vN )− (uε2 ×B,vN )] dt =

∫ T

0

⟨f ,vN ⟩ dt, (31)∫ T

0

[νe(∇uε2
e ,∇ve,N ) + (Φε2 ,∇ · ve,N ) + (uε2

e ×B,ve,N )] dt =

∫ T

0

⟨fe,ve,N ⟩ dt, (32)∫ T

0

[ε2(∇Φε2 ,∇qN ) + (∇ · (uε2 − uε2
e ), qN )] dt = 0, (33)

In fact, since functions of the form (30) are dense in L2(0, T ;H1) and L2(0, T ;H1), we conclude
that, for a.e. t ∈ [0, T ], for every (v,ve, q) ∈ H1

0 ×H1
0 ×H1∫

=0
,

⟨(uε2)′,v⟩+ ν(∇uε2 ,∇v)− (Φε2 ,∇ · v)− (uε2 ×B,v) = ⟨f ,v⟩ , (34)
νe(∇uε2

e ,∇ve) + (Φε2 ,∇ · ve) + (uε2
e ×B,ve) = ⟨fe,ve⟩ , (35)

ε2(∇Φε2 ,∇q) + (∇ · (uε2 − uε2
e ), q) = 0. (36)

The last step is to take the limit ε2 → 0. Proceeding from (34)–(36) as done in the derivation
of (26), we obtain uniform bounds in ε2 for ∥uε2∥L2(0,T ;H1

0)
, ∥(uε2)′∥L2(0,T ;H−1) and ∥uε2

e ∥L2(0,T ;H1
0)

;
a uniform bound for ∥uε2

e ∥L∞(0,T ;H1
0)

can also be obtained. A uniform bound for Φε2 now follows
from an inf-sup condition and (35). Indeed, by an inf-sup condition between L2∫

=0
and H1

0, there
exists β > 0 such that, for every q ∈ L2∫

=0
,

β∥q∥L2 ≤ sup
0 ̸=v∈H1

0

(q,∇ · v)
∥∇v∥L2

.
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From (35) we have

(Φε2 ,∇ · ve) ≤
(
(νe + C2

p∥B∥L∞)∥∇uε2
e ∥L2 + Cp∥fe∥H−1

)
∥∇ve∥L2 ,

yielding
∥Φε2∥L2 ≤ 1

β

(
(νe + C2

p∥B∥L∞)∥∇uε2
e ∥L2 + Cp∥fe∥H−1

)
where we can use the uniform bound for ∥uε2

e ∥L∞(0,T ;H1
0)

. Hence, for ε2 → 0, the following limits
exist: uε2 w−→ u, uε2

e
w−→ ue in L2(0, T ;H1

0), Φε2 w−→ Φ in L2(0, T ;L2∫
=0

) and (uε2)′
w−→ u′ in

L2(0, T ;H−1). Let us now fix (vc,ve,c, qc) ∈ H1
0 ×H1

0 ×C∞
c (Ω)∩L2∫

=0
in (34)–(36). Observe now

that
ε2(∇Φε2 ,∇qc) = −ε2(Φε2 ,∆qc) ≤ ε2∥Φε2∥L2∥∆qc∥L2

so that, considering the uniform bound for ∥Φε2∥L2 and the fact that qc is fixed, this term vanishes
for ε2 → 0. Passing to the limit in (34)–(36), we conclude that the limit solution satisfies

⟨u′,vc⟩+ ν(∇u,∇vc)− (Φ,∇ · vc)− (u×B,vc) = ⟨f ,vc⟩ , (37)
νe(∇ue,∇ve,c) + (Φ,∇ · ve,c) + (ue ×B,ve,c) = ⟨fe,ve,c⟩ , (38)

(∇ · (u− ue), qc) = 0. (39)

In fact, thanks to the density of C∞
c (Ω) ∩ L2∫

=0
in L2∫

=0
, (37)–(39) hold for every (v,ve, q) ∈

H1
0 ×H1

0 × L2∫
=0

, thus concluding the proof.

We now turn our attention to the existence of a strong solution of (16)–(18). A weak solution
will be strong if

u ∈ L∞(0, T ;H1
0) ∩ L2(0, T ;H2 ∩H1

0), u′ ∈ L2(0, T ;L2),

ue ∈ L2(0, T ;H2 ∩H1
0),

and
Φ ∈ L2(0, T ;H1∫

=0).

Theorem 2. Let Ω be an open bounded set either of class C1,1 or Lipschitz continuous and convex.
Assume f ,fe ∈ L2(0, T ;L2) and u0 ∈ H1

0. Then (16)–(18) has a unique strong solution on [0, T ].

Proof. Let us first consider the regularized problem (34)–(36). Upon rewriting (36) as

ε2(∇Φε2 ,∇q) = (hΦ
ε2
, q),

with hΦε2
= −∇· (uε2 −uε2

e ), using the fact that uε2 ,uε2
e ∈ H1

0 and standard regularity results [29,
§ 6.3.2] (see also [30] for the case with minimal domain regularity), we conlcude that Φε2 ∈ H2∫

=0

for a.e. t ∈ (0, T ), and also Φε2 ∈ L2(0, T ;H2∫
=0

). By the same argument we can rewrite (35) as

νe(∇uε2
e ,∇ve) = (hu

ε2
e ,ve)

12



with hu
ε2
e = ∇Φε2−uε2

e ×B+fe and conclude that uε2
e ∈ L2(0, T ;H2∩H1

0). Finally, regarding (34)
as a heat equation

⟨(uε2)′,v⟩+ ν(∇uε2 ,∇v) = (huε2
,v)

with huε2
= −∇Φε2 +uε2 ×B+f , using again standard regularity results [29, § 7.1.3], we conclude

that uε2 ∈ L2(0, T ;H2 ∩H1
0) and (uε2)′ ∈ L2(0, T ;L2). These results imply that (34)–(36) hold

in a strong sense, i.e.

(uε2)′ +∇Φε2 − uε2 ×B − ν∆uε2 = f , (40)
−∇Φε2 + uε2

e ×B − νe∆uε2
e = fe, (41)

−ε2∆Φε2 +∇ · (uε2 − uε2
e ) = 0 (42)

with uε2 = uε2
e = 0 and n · ∇Φε2 = 0 on ∂Ω. We can thus multiply each equation by −∆uε2 ,

−∆uε2
e , −∆Φε2 , respectively, integrate and add obtaining

1

2

d

dt
∥∇uε2∥2L2 + ν∥∆uε2∥2L2 + νe∥∆uε2

e ∥2L2 + ε2∥∆Φε2∥2L2

= −(f + uε2 ×B,∆uε2)− (fe − uε2
e ×B,∆uε2

e ).
(43)

Then we have

(f + uε2 ×B,∆uε2) ≤ ν

2
∥∆uε2∥2L2 +

1

ν

(
∥f∥2L2 + ∥B∥2L∞∥uε2∥2L2

)
and an analogous relation for uε2

e . Using these realtions in (43) and integrating in time we conclude,
thanks to the uniform bounds for ∥uε2∥L2 , ∥uε2

e ∥L2 and ∥uε2
0 ∥H1

0
, that u,ue ∈ L2(0, T ;H2 ∩H1

0)

and u ∈ L∞(0, T ;H1
0). Let us now rewrite (17), (18) as a generalized Stokes problem

νe(∇ue,∇ve) + (Φ,∇ · ve) = (hue ,ve),

(∇ · ue, q) = (hΦ, q)

with hue = fe − ue × B and hΦ = ∇ · u. Standard regularity results [31], proposition 2.2 of
chapter 1, imply that Φ ∈ H1∫

=0
for a.e. t ∈ (0, T ) and, integrating in time, Φ ∈ L2(0, T ;H1∫

=0
).

Finally, multiplying (40) by (uε2)′ yields

∥(uε2)′∥2L2 + ν
d

dt
∥∇uε2∥2L2 ≤ 2∥f −∇Φε2 + uε2 ×B∥2L2 .

Integrating in time and passing to the limit using the previous results provides u′ ∈ L2(0, T ;L2),
thus completing the proof.

5 Finite element discretization
In this section, we consider the spatial discretization of (16)–(18). Throughout this section, we
assume the following hypothesis.

(H1) Let Ω be a convex polyhedral domain and let Th be a regular tessellations of Ω such that
Ω = ∪K∈Th

K. Moreover, let f ,fe ∈ L2(0, T ;L2) and u0 ∈ H1
0.
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(H2) Let Vh, Qh be two conforming finite-dimensional spaces on Th such that Vh ⊂ H1
0, and

Qh ⊂ L2∫
=0

.

(H3) The pairs Vh, Qh are assumed to be uniformly compatible, i.e. there exists β > 0, independent
of h, such that

inf
0̸=qh∈Qh

sup
0̸=vh∈Vh

(qh,∇ · vh)
∥vh∥H1

0
∥qh∥L2

≥ β. (44)

(H4) The spaces Vh, Qh are endowed with interpolation properties, i.e. there exists Capp > 0,
independent of h, such that, for every v ∈ H2, q ∈ L2,

inf
vh∈Vh

{∥v − vh∥L2 + h∥v − vh∥H1} ≤ Capph
2∥v∥H2 ,

and
inf

qh∈Qh

∥q − qh∥L2 ≤ Capph∥q∥H1 .

The finite element discretization of (16)–(18) reads: find uh,ue h,Φh such that, for each t ∈
(0, T ],

d

dt
(uh,vh) + ν(∇uh,∇vh)− (Φh,∇ · vh)− (uh ×B,vh) = (f ,vh), (45)

νe(∇ueh,∇ve h) + (Φh,∇ · ve h) + (ueh ×B,veh) = (fe,veh), (46)
(∇ · (uh − ueh), qh) = 0, (47)

for all (vh,ve h, qh) ∈ Vh × Vh ×Qh, with

uh(t = 0) = uh 0,

where uh 0 ∈ Vh is an approximation of u0. Well-posedness of this finite element formulation is
ensured by the following result.

Theorem 3. There exists a unique solution (uh,ueh,Φh) of (45)–(47).

Proof. In (45)–(47), we can express ueh and Φh as continuous functions of uh (thanks to the inf-
sup condition). Substituting these expressions in (45) results in a system of ordinary differential
equations; the existence and uniqueness of a solution on [0, T ] is then ensured by Picard’s theorem.

Convergence of the finite element solution to the analytic one is proven in the following result.

Theorem 4. Let u,ue,Φ be the unique strong solution of (16)–(18) and let uh,ueh,Φh be the
finite element solution of (45)–(47). Then there exists a constant C, depending on the problem
coefficients and ∥u∥H2 , ∥ue∥H2 and ∥Φ∥H1∫

=0
, such that

∥u− uh∥L2(0,T ;H1
0)
+ ∥ue − ueh∥L2(0,T ;H1

0)
+ ∥Φ− Φh∥L2(0,T ;L2∫

=0
) ≤ Ch. (48)
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Proof. The proof is similar to the one described in [32, Prop. 11.2.1]. Combining (16)–(18) and (45)–
(47) we obtain

⟨(eu)′,vh⟩+ ν(∇eu,∇vh)− (eΦ,∇ · vh)− (eu ×B,vh) = 0, (49)
νe(∇eue ,∇veh) + (eΦ,∇ · veh) + (eue ×B,ve h) = 0, (50)

(∇ · (eu − eue), qh) = 0, (51)

with eu = u − uh, with eue = ue − ueh and eΦ = Φ − Φh. Observe now that, thanks to
hypothesis (H1), u,ue,Φ is a strong solution and thus it is possible to choose uh I ∈ Vh such that
the approximation error ηu = u− uh I satisfies the estimates of hypothesis (H4); a possible choice
is taking uh I = Phu, where Ph denotes the L2 orthogonal projector onto Vh (see [33, § 1.6.3]).
Take then vh = ξu = uh I − uh in (49) and similarly for ve h and qh, obtaining

⟨(eu)′,eu⟩+ ν(∇eu,∇eu)− (eΦ,∇ · eu)
= ⟨(eu)′,ηu⟩+ ν(∇eu,∇ηu)− (eΦ,∇ · ηu)− (eu ×B,ηu),

νe(∇eue ,∇eue) + (eΦ,∇ · eue)

= νe(∇eue ,∇ηve) + (eΦ,∇ · ηve) + (eue ×B,ηve),

(∇ · (eu − eue), eΦ) = (∇ · (eu − eue), ηΦ),

and add these equations obtaining,
1

2

d

dt
∥eu∥2L2+ν∥∇eu∥2L2 + νe∥∇eue∥2L2 (52)

=
1

2

d

dt
∥ηu∥2L2 + ν(∇eu,∇ηu)− (eΦ,∇ · ηu)− (eu ×B,ηu),

+ νe(∇eue ,∇ηve) + (eΦ,∇ · ηve) + (eue ×B,ηve),

+ (∇ · (eu − eue), ηΦ),

where we have used

⟨(eu)′,ηu⟩ = ⟨(ηu)
′,ηu⟩+ ((ξu)

′,ηu) =
1

2

d

dt
∥ηu∥2L2 ,

thanks to (ξu)
′ ∈ Vh and the definition of the L2 projector.

The first step to estimate the right-hand-side of this relation is now using the discrete compati-
bility condition (44) to estimate ∥ξΦ∥L2 from the error equation (50). Indeed, (44) implies

β∥ξΦ∥L2 ≤ sup
0 ̸=vh∈Vh

(ξΦ,∇ · vh)
∥vh∥H1

0

≤ sup
0 ̸=vh∈Vh

(eΦ,∇ · vh)− (ηΦ,∇ · vh)
∥vh∥H1

0

≤ ∥ηΦ∥L2 + sup
0̸=vh∈Vh

(eΦ,∇ · vh)
∥vh∥H1

0

and from (50)

(eΦ,∇ · vh) = −νe(∇eue ,∇vh)− (eue ×B,vh)

≤
(
νe + ∥B∥L∞C2

P

)
∥∇eue∥L2∥∇vh∥L2 ,
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so that
β∥ξΦ∥L2 ≤ ∥ηΦ∥L2 +

(
νe + ∥B∥L∞C2

P

)
∥∇eue∥L2 . (53)

Let us now proceed to estimate the right-hand-side of (52). We have

ν(∇eu,∇ηu)− (eu ×B,ηu) + (∇ · eu, ηΦ)

≤ 3

2
ϵ1∥∇eu∥2L2 +

ν2

2ϵ1
∥∇ηu∥2L2 +

C2
P ∥B∥2L∞

2ϵ1
∥ηu∥2L2 +

1

2ϵ1
∥ηΦ∥2L2

for an arbitrary constant ϵ1 to be fixed later; a similar estimate holds for the corresponding terms
in ue, for another arbitrary constant ϵ2. Also,

(eΦ,∇ · ηu) = (ηΦ + ξΦ,∇ · ηu)

≤ (∥ηΦ∥L2 + ∥ξΦ∥L2) ∥∇ηu∥L2

≤ ϵ3
2
∥ξΦ∥2L2 +

1

2

(
1 +

1

ϵ3

)
∥∇ηu∥2L2 +

1

2
∥ηΦ∥2L2 ;

an analogous result holds for (eΦ,∇·ηue). Combing these estimates, and using (53), yields from (52)

d

dt
∥eu∥2L2 + ν∥∇eu∥2L2 + νe∥∇eue∥2L2 (54)

≤ d

dt
∥ηu∥2L2 + C1∥∇ηu∥2L2 + C2∥∇ηue∥

2
L2 + C3∥ηΦ∥2L2 ,

where
C1 = 1 +

ν2 + ∥B∥2L∞C4
P

ϵ1
+

1

ϵ3
, C2 = 1 +

ν2e + ∥B∥2L∞C4
P

ϵ2
+

1

ϵ3
,

and
C3 = 2 +

1

ϵ1
+

1

ϵ1
+

4ϵ3
β2

,

with
ϵ1 =

ν

6
, ϵ2 =

νe
6
, ϵ3 =

νeβ
2

8

(
νe + ∥B∥L∞C2

P

)−2
.

Integrating (54) in time and considering the approximation properties (H4) now yields

∥eu(t)∥2L2 + ν∥∇eu∥2L2(0,T ;L2) + νe∥∇eue∥2L2(0,T ;L2) ≤ ∥eu(0)∥2L2 + Ch2, (55)

where C is a function of the problem coefficients and ∥u∥H2 , ∥ue∥H2 and ∥Φ∥H1∫
=0

. The thesis
follows from (55) and (53).

6 Computational aspects
The previous sections § 4 and § 5 consider the continuous and the discrete problems, respectively, in
their general form. In the present section, the finite element formulation is specialized in a way that
suites the problem under investigation. In particular, this amounts to specifying: the computational
grid, the finite element spaces, the complete space-time discretization and a solution procedure for
the linear system. While the previous sections address both the two and the three-dimensional
cases, we restrict our attention here to the two-dimensional one.
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6.1 Computational grid and finite element spaces
As discussed in § 3, the magnetic field defines the parallel and perpendicular directions. Since the
Lorentz force, which is the dominating term, only acts in the perpendicular direction, the presence
of B results in a strong anisotropy. Such anisotropy is relevant for the numerical discretization
for two reasons: first of all the computational grid should not introduce any numerical coupling
between parallel and perpendicular gradients and second the representation of the vector fields
should not introduce any numerical coupling between parallel and perpendicular components. A
common practice is addressing both of these issues at the same time by introducing a curvilinear
coordinate system in the poloidal plane where one axis is directed along the magnetic surfaces. In
fact, this implies that a Cartesian grid in the coordinate space is aligned with the flux surfaces,
addressing the first issue, while at the same time the contravariant vector representation induced
by the coordinates naturally decouples the parallel and perpendicular directions, hence addressing
the second issue. The difficulty in this approach is the choice of the curvilinear coordinate system:
aligning one axis with the parallel direction typically can not be done globally and multiple patches
must be introduced; another drawback is that both local grid refinement and resolving the boundary
of the domain become nontrivial problems.

Here, we consider an alternative approach where the two issues mentioned above are dealt with
separately: grid alignment in the sense of [10] (see also § 7) is made possible by the use of a
fully unstructured grid composed of both triangles and quadrilaterals; at the same time, spurious
coupling of parallel and perpendicular vector components is avoided through a careful construction
of the vector finite element space Vh. This combination avoids the difficulty of the multipatch
approach, and in particular allows local grid refinement, good overall grid regularity and accurate
representation of the domain boundaries.

Given thus Ω̃ ∈ R2 as described in § 3, let T̃h be a regular tessellation of Ω̃ composed of triangular
and quadrilateral elements such that Ω̃ = ∪K̃∈T̃h

K̃. The finite element space for the electrostatic
potential is now

Qh =
{
qh ∈ H1∫

=0(Ω̃) | qh|K̃ ∈ X1(K̃), ∀K̃ ∈ T̃h
}
,

where X1(K̃) is the space of affine and bilinear functions on K̃ for triangular and quadrilateral
elements, respectively. To define the vector space Vh, let us first introduce

Vh =
{
vh ∈ H1

0 (Ω̃) | vh|K̃ ∈ Y1-iso-2(K̃), ∀K̃ ∈ T̃h
}
,

where Y1-iso-2(K̃) is the space of the P1-iso-P2 piecewise affine and Q1-iso-Q2 piecewise bilinear
functions on K̃ for triangular and quadrilateral elements, respectively [33, 32]. Then let us assume
that at each point of Ω̃ three linearly independent unit vectors of class C1 are prescribed {ei}3i=1,
ei ∈ R3, such that e1, e2 ⊥ B and e3 = b ∥ B; such vectors can be obtained, for instance, by
applying one iteration of the Gram–Schmidt orthogonalization procedure to {b, eR, ez} (see also
§ 7). Notice that it is not required that e1 ⊥ e2. Notice as well that, in general, the ei are not
induced by any coordinate system. The vector finite element space can now be defined as

Vh =
{
vh ∈ H1

0(Ω̃) | vh = v1he1 + v2he2 + v
∥
hb, v1h, v

2
h, v

∥
h ∈ Vh

}
.

The main advantage of this representation is that, contrary to the standard Cartesian or cylindrical
ones, it allows separating the parallel and perpendicular components of the discrete fields, letting

vh = v⊥
h + v

∥
h, v⊥

h = v1he1 + v2he2, v
∥
h = v

∥
hb.
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Hence, v1h = v2h = 0 yields a purely parallel field, while v∥h = 0 yields a purely perpendicular one.
Representing such fields within a standard Cartesian or cylindrical setting would not be possible, in
general, because the components of the unit vectors ei are arbitrary functions and thus the Cartesian
and the cylindrical components of v⊥

h and v
∥
h do not belong to any standard finite element space.

Thanks to the regularity of ei, the finite element pair Vh, Qh satisfies both hypotheses (H3) and (H4)
(see [33, § 4.2.6]).

In the following, for a generic finite element space Xh, Ñh(Xh) denotes the set of nodes ã of Xh

and ϕã denotes the Lagrangian basis function associated with ã. The nodal degrees of freedom of
xh ∈ Xh are indicated by xã. The metric tensor defined by the local base is

gij = ei · ej

which, taking into account the orthogonality of such vectors, can be expressed as

g =

 g⊥ 0
0

0 0 1

 . (56)

The Einstein summation convention is understood for co- and contravariant indexes.

6.2 Complete space-time discretization
Having defined the finite element spaces, the spatial discretization is readily obtained from (13)–
(15). Before stating it, however, it is convenient to introduce a mass lumping approximation for
the zero-order terms. This amounts to integrating such terms with a numerical quadrature formula
using the finite element nodes as quadrature nodes, i.e. we introduce∫

Ω̃

f Rdx̃ ≈
∑

ã∈Ñh(Vh)

wãf(ã) = Ih,Ω̃(f)

where the quadrature weights are
wã =

∫
Ω̃

ϕã Rãdx̃.

The finite element discretization then reads: find ũh, ũe h, Φ̃h such that, for each t ∈ (0, T ], ũh, ũeh ∈
Vh, Φ̃h ∈ Qh and

d
dt (ũh, ṽh)∼,h + ν(∇ũh,∇ṽh)∼ − (Φ̃h,∇ · ṽh)∼ − (ũh ×B, ṽh)∼,h = (f , ṽh)∼,h, (57)

νe(∇ũeh,∇ṽe h)∼ + (Φ̃h,∇ · ṽeh)∼ + (ũeh ×B, ṽeh)∼,h = (fe, ṽe h)∼,h, (58)
(∇ · (ũh − ũeh), q̃h)∼ = 0 (59)

for all (ṽh, ṽeh, q̃h) ∈ Vh × Vh ×Qh and with a suitable initial condition for ũh, having defined the
discrete scalar product

(f, g)∼,h = Ih,Ω̃(fg).

It is now useful to compute the local matrices corresponding to (57)–(59). Besides being required for
the implementation of the scheme, such matrices clarify that the projection of the vector equations
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along the parallel and perpendicular directions, which is the typical starting point of the numerical
discretizations for the SOL discussed in the literature, is indeed present also in our approach and
corresponds to testing (57) and (58) with test functions such that ṽ1h = ṽ2h = 0 for the parallel
direction and ṽ

∥
h = 0 for the perpendicular one. Specifically, let us take ṽh =

∑
ã∈Ñh(Vh)

vi
ãϕãei

in (57); for the time derivative this yields

d
dt (ũh, ṽh)∼,h =

∑
ã∈Ñh(Vh)

vi
ã [wã gij(ã)] u̇j

ã.

Hence, the mass matrix is block diagonal, and by virtue of (56) each block can be further subdivided
into a two-by-two block for the time derivative of ũ⊥

h and a scalar equation for the time derivative
of ũ∥

h. The Lorentz force term has a similar structure:

(ũh ×B, ṽh)∼,h =
∑

ã∈Ñh(Vh)

vi
ã [wã B(ã) (ei × ej · b)] uj

ã,

where ei × ej · b defines a three-by-three block with two nonvanishing entries for (i, j) = (1, 2) and
(i, j) = (2, 1), which of course corresponds to the fact that the Lorentz force has no component
in the parallel direction. The gradient of the electrostatic potential appears in both parallel and
perpendicular directions, and couples all the vector components and the finite element nodes; in
fact we have

(Φ̃h,∇ · ṽh)∼ =
∑

ã∈Ñh(Vh)

∑
d̃∈Ñh(Qh)

vi
ã

[∫
Ω̃

ϕd̃ (∇ϕã · ei + ϕã∇ · ei)Rdx̃
]
Φd̃.

The diffusion term results in a similar matrix contribution, namely

ν(∇ũh,∇ṽh)∼ =
∑

ã∈Ñh(Vh)

∑
b̃∈Ñh(Vh)

vi
ã

[
ν

∫
Ω̃

Dij,ãb̃ Rdx̃
]

uj

b̃

with
Dij,ãb̃ = gij∇ϕã · ∇ϕb̃ + ϕãej · ∇ei ∇ϕb̃ + ϕb̃ei · ∇ej ∇ϕã + ϕãϕb̃∇ei : ∇ej .

The remaining terms in (58) and (59) can be expressed in terms of the same matrices derived for
the first equation.

Concerning the time discretization, we follow the standard method of lines, i.e. we regard (57)–
(59) as an ordinary differential equation and integrate it using a discrete time integrator. Since the
ũh×B term is the stiff one, and since we are not interested in resolving the associated fast dynamics,
it is natural to choose an implicit time discretization; in this work, we consider the simplest option
represented by the implicit Euler method. This suppresses the fast gyration motion resulting from
the ũh×B term and provides a solution where the leading order terms −∇Φ̃h+ ũh×B are in very
close balance. The outcome of this setting is that the E cross B drift velocity (8) emerges from the
solution of the discretized problem rather than being postulated a priori in the derivation of the
model equation, as it is done in the drift-reduced class of models.

This general statement can be verified by a classical dispersion analysis as follows. Let us consider
for simplicity the case B = B0e−φ with B0 = Const, so that the parallel velocity components can
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be separated, and let us make, for the perpendicular components, the ansatz

ũ⊥ = ˆ̃u⊥ej(k̃·x̃−ωt), ũ⊥
e = ˆ̃u⊥

e e
j(k̃·x̃−ωt), Φ̃ = ˆ̃Φej(k̃·x̃−ωt) (60)

where ˆ̃u⊥, ˆ̃u⊥
e ,

ˆ̃Φ are constants and j =
√
−1. Let us start from the continuous problem: substi-

tuting (60) into (5)–(7) and taking f = fe = 0 we arrive at a homogeneous system which admits a
nontrivial solution if the matrix determinant vanishes, i.e.

k2
(
aω2 + bω + c

)
= 0, (61)

with k2 = |k̃|2 and

a = −νek
2, b = −j

(
B2

0 + νe(2ν + νe)k
4
)
, c = (ν + νe)(B

2
0 + ννek

4)k2.

Notice that, for the second order term in ω,

∆ = b2 − 4ac = −(B2
0 − ν2e k

4)2 < 0.

This indicates the existence of three modes:

• k̃ = 0 is a uniform mode with ω1 = ±B0, ˆ̃u⊥ ̸= 0, ˆ̃u⊥
e = 0 and ˆ̃Φ = Const;

• ω2 = −b−
√
∆

2a = −j(ν + νe)k
2 implies ˆ̃u⊥ = ˆ̃u⊥

e = B0b×+νek
2

B2
0+ν2

e k
4 jk̃ ˆ̃Φ;

• ω3 = −b+
√
∆

2a = −j
(

B2
0

νek2 + νk2
)

implies ˆ̃u⊥ = νek
2

B0

B0+νek
2b×

B2
0+ν2

e k
4 jk̃ ˆ̃Φ, ˆ̃u⊥

e = B0b×+νek
2

B2
0+ν2

e k
4 jk̃ ˆ̃Φ.

The first mode exhibits the fast gyration and no attenuation, the second mode is dominated by
the E cross B drift and decays slowly due to the effect of the viscosity and the third mode is a
rapidly decaying mode. Considering now the semi discretized problem, the analysis proceeds along
the same lines and (61) is still valid provided that ω is substituted with

ωIE = −1− ejω∆t

j∆t
,

where ∆t is the time step. The first mode is still characterized by k̃ = 0, ωIE = ±B0, resulting in
the complex frequency ω = Re(ω) + jIm(ω) with

Re(ω) = ± 1

∆t
atan(B0∆t), Im(ω) = − 1

2∆t
log(1 +B2

0∆t
2),

so that it is numerically damped. The remaining two modes have then the same structure as in the
continuous case and a purely decaying behaviour.

6.3 Iterative solution of the linear system
The discretized problem illustrated in section 6.2 leads to a linear system coupling two vector
unknown, namely ũh and ũe h, and one scalar unknown, namely Φ̃h. It is highly desirable to avoid
solving this system with a fully coupled approach (also called “monolithic” approach), which would
result in a very large, indefinite matrix. Moreover, a fully coupled approach would not scale when
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considering multiple ion species, as it is required for practical applications, since each ion species
introduces an additional vector unknown in the problem. The goal of this section is to discuss how
it is possible to solve separate linear systems for the electric potential and each vector unknown
using a variation of the classical Uzawa algorithm for the Stokes problem [34, 35, 36, 33].

Discretizing (57)–(59) with the implicit Euler scheme results in the linear system

a(ũn+1
h , ṽh) + b(ṽh, Φ̃

n+1
h ) = f(ṽh), (62)

ae(ũ
n+1
e h , ṽeh)− b(ṽe h, Φ̃

n+1
h ) = fe(ṽeh), (63)

b(ũn+1
h − ũn+1

e h , q̃h) = 0 (64)

where

a(ũh, ṽh) =
1

∆t
(ũh, ṽh)∼,h + ν(∇ũh,∇ṽh)∼ − (ũh ×B, ṽh)∼,h,

ae(ũe h, ṽe h) = νe(∇ũe h,∇ṽeh)∼ + (ũe h ×B, ṽh)∼,h,

b(ṽh, q̃h) = −(∇ · ṽh, q̃h)∼

and
f(ṽh) =

1

∆t
(ũn

h, ṽh)∼,h + (f , ṽh)∼,h, fe(ṽeh) = (fe, ṽeh)∼,h.

Define now ũf
h , ũ

fe
eh ∈ Vh by

a(ũf
h , ṽh) = f(ṽh), ae(ũ

fe
e h, ṽeh) = fe(ṽeh)

as well as two linear operators U ,Ue : Qh → Vh such that, for q̃h ∈ Qh,

a(U q̃h, ṽh) = −b(ṽh, q̃h), ae(Ueq̃h, ṽeh) = b(ṽe h, q̃h) (65)

for every ṽh, ṽe h ∈ Vh (such operators are well defined since both a and ae are positive definite).
The solution of (62)–(64) is uniquely characterized by

− b(U Φ̃n+1
h −UeΦ̃

n+1
h , q̃h) = b(ũf

h − ũ
fe
eh, q̃h) (66)

for every q̃h ∈ Qh; the main idea is to apply an iterative algorithm for such a problem.
It can be verified that the left-hand-side of (66) defines a positive definite operator, which

however is not symmetric. Indeed, for p̃h, q̃h ∈ Qh, we have

−b(U p̃h −Uep̃h, q̃h) = a(U q̃h,U p̃h) + ae(Ueq̃h,Uep̃h).

For this reason, the GMRES method [37] is used to solve (66). To summarize the resulting procedure,
let us first rewrite (65) and (66) in matrix form as

AUq = −BTq, AeUe q = BT q (67)

and
B(A−1 +A−1

e )BTΦ = B(uf − ufee ), (68)

where q, Uq, Ue q are the arrays of the nodal degrees of freedom of q̃h,U q̃h,Ueq̃h and Φ, uf , ufee those
of Φ̃n+1

h , ũf
h , ũ

fe
eh. The matrix-free versions of the GMRES solver relies on two methods to compute,
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given an arbitrary Φ(k), the matrix-vector product and the residual of (68). Concerning the matrix-
vector product, we have

B(A−1 +A−1
e )BTΦ(k) = −B(UΦ(k) − Ue Φ(k)), (69)

resulting in the following steps:

• compute UΦ(k) , Ue Φ(k) solving (67) for q = Φ(k) with a direct method

• evaluate the right-hand-side of (69) substituting the corresponding finite element functions in
−b(U Φ̃

(k)
h −UeΦ̃

(k)
h , q̃h).

Concerning the residual, we have

B(uf − ufee )−B(A−1 +A−1
e )BTΦ(k) = B((uf + UΦ(k))− (ufee + UeΦ(k))), (70)

resulting in the following steps:

• compute uf + UΦ(k) = A−1(f − BTΦ(k)) as well as ufee + Ue Φ(k) = A−1
e (fe + BTΦ(k)) with a

direct method

• evaluate the right-hand-side of (70) substituting the corresponding finite element functions in
b((ũf

h +U Φ̃
(k)
h )− (ũ

fe
eh +UeΦ̃

(k)
h ), q̃h).

Remark 1. The proposed algorithm requires a direct method for the solution of (67). This seems
a viable option for the considered problem, since these linear systems, which correspond to two-
dimensional problems, are not expected to be extremely large. At the same time, this algorithm
scales well in presence of multiple ion species, since each ion species would result in a separate
linear system. However, if one wants to adopt an iterative solver also for (67), adopting an inexact
Uzawa scheme, the methods proposed in [36] can be considered.

Remark 2. To leading order, the two operators U ,Ue yield the E cross B drift velocity (8), i.e.

U Φ̃h ≈ UeΦ̃h ≈ −∇Φ̃h ×B

B2
.

This term, being ambipolar, does not contribute to the current U Φ̃h−UeΦ̃h appearing in (66). So, the
presence of the ion inertia and of the diffusion terms, despite contributing only a small perturbation
to the operators U ,Ue, is essential in determining their difference, and thus the solution of (66).

6.3.1 Left-preconditioned GMRES iterations

To improve the convergence of the GMRES iterations, a preconditioned version of the algorithm
can be considered. In this work, we restrict ourselves to a simple left-preconditioned version of (68),
where both sides of the equation are multiplied by

P ≈ B(A−1 +A−1
e )BT .

The matrix P is constructed as
P = B(A−1

0 +A−1
0,e)B

T ,
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where A0 and A0,e include only the 3 × 3 diagonal blocks of A and Ae, respectively. Due to the
lumping of the mass matrix and the Lorentz force terms, this implies that the only difference
between P and the complete matrix of (68) is due to the diffusion terms. It can be verified that P
is a positive definite matrix, and since its dimension is dim(Qh) and it is sparse it can be computed
explicitly and a direct solver can be used for the associated linear system.

7 Numerical experiments
To test the proposed numerical scheme, we consider in this section two cases: the first one involves
simplified geometry and coefficients and has a known analytic solution, which allows us to perform
a convergence test, while the second one uses a more realistic set-up, including an X point.

Following a standard representation (see Eq. (6.2.13) in [3]), the magnetic field is prescribed as

B =
1

R
(Ie−φ +∇ψ × e−φ) ,

where I = B0R0 is a constant and ψ = ψ(R, z). This representation separates the toroidal and the
poloidal components of B; it also provides an immediate expression for the flux surfaces and the
poloidal flux, namely ψ = Const and Ψpol = 2πψ. The computational grids are built so that, on
most of the domain, they are aligned in the sense of [10], which can be rephrased for both triangular
and quadrilateral elements as follows: if a contour line c = {x̃ ∈ Ω̃ | ψ(x̃) = Const} passes through
a vertex of T̃h, then for each element K̃ connected to that vertex either the intersection with c
reduces to the vertex itself, or one side of K̃ has both vertexes belonging to c. The alignment,
however, can be violated in selected regions where it would result in a too strong constraint, such
as close to the domain boundaries, around the X point or in transition regions around patches of
local refinement. Examples of such grids are shown in Figures 3 and 4. Concerning the choice of
{ei}3i=1, as noted in § 6.1 we have e3 = b while there is freedom in the choice of e1 and e2. We take

e1 = (I − b⊗ b)eR
∧

, e2 = (I − b⊗ b)ez
∧

,

where ·
∧

denotes normalization. An alternative choice would be substituting eR and ez in the
above expression with ∇ψ and e−φ × ∇ψ (at least where ∇ψ does not vanish), yielding a radial
and poloidal decomposition analogous to [12]. Notice that e1 and e2 do not need to be mutually
orthogonal.

7.1 Convergence test
We consider Ω̃ = (R0 − a,R0 + a)× (−a, a) and

I = B0R0, ψ = aR0Bp
(R−R0)

2 + z2

2a2
;

the resulting magnetic field has an O point at (R0, 0), closed magnetic surfaces for (R−R0)
2+z2 < a2

and open magnetic surfaces for (R−R0)
2 + z2 > a2. The forcing terms are f = νϖ and fe = νeϖ,

with

ϖ =

[
0, α

R0 − 4R

aR0R
− β

Bp

B0

R2
0

aR3
, 0

]T
,
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and constant in time, nonhomogeneous Dirichlet boundary conditions for u,ue are enforced so that,
after an initial transient, the analytic steady state solution is

ũ = ũe = α
R

aR0

 −z
R−R0

0

+ β
Bp

B0

R0

aR

 z
−(R−R0)

B0

Bp
a


and

Φ̃ =
1

2
aB0α

(
(R−R0)

2 + z2

a2
− 2

3

)
.

The numerical values of the coefficients are R0 = 2, a = 1, B0 = 10, Bp = 12.5, ν = 1, νe = 0.01,
α = 0.1 and β = 1.

Six unstructured grids are considered, halving the mesh size h, two of which are shown in
Figure 3. It can be observed that most of the elements are aligned to the ψ = Const circular
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0.5
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1.0 1.5 2.0 2.5 3.0
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Figure 3: Unstructured grids for the convergence test using 32 triangles and 68 quadrilaterals (left)
and 64 triangles and 304 quadrilaterals (right). The number of degrees of freedom of Qh in the two
cases is 97 and 361.

contours, while such alignment is not respected in the four corners, where it would lead to very
distorted elements. Also, mixing triangular and quadrilateral elements allows to achieve a good
overall regularity of the grid.

The numerical computations are performed until T = 4000, which is much larger than the
relaxation time of the system, using the implicit Euler scheme with time-step ∆t = 1, and the
resulting numerical solution is compared to the steady state analytic solution. To avoid errors
associated with the inexact solution of the linear problem, a directed solver is used for the complete
linear system (62)–(64). The resulting error norms are shown in Tables 2 and 3, where the expected
second order convergence can be observed. Similar results, not included here, have been observed
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Table 2: Computed error norms for the electrostatic potential Φ̃− Φ̃h. The numerical convergence
rates are also reported.

dim(Qh) ∥Φ̃− Φ̃h∥L2

31 4.2 · 10−2 –
97 1.1 · 10−2 1.98

361 2.8 · 10−3 1.92
1393 7.2 · 10−4 1.97
5473 1.8 · 10−4 2.00

21697 4.5 · 10−5 2.00

Table 3: Computed error norms ũ − ũh and ũe − ũe h. The numerical convergence rates are also
reported.

dim(Vh) ∥ũ− ũh∥L2 ∥ũe − ũeh∥L2 ∥ũ− ũh∥H1 ∥ũe − ũeh∥H1

109 2.8 · 10−2 – 7.4 · 10−2 – 5.6 · 10−1 – 9.5 · 10−1 –
361 7.1 · 10−3 2.0 1.1 · 10−2 2.8 2.9 · 10−1 1.0 3.4 · 10−1 1.5

1393 1.8 · 10−3 2.0 2.2 · 10−3 2.3 1.4 · 10−1 1.0 1.5 · 10−1 1.1
5473 4.5 · 10−4 2.0 5.0 · 10−4 2.2 7.1 · 10−2 1.0 7.3 · 10−2 1.1

21697 1.1 · 10−4 2.0 1.2 · 10−4 2.1 3.6 · 10−2 1.0 3.6 · 10−2 1.0
86401 2.8 · 10−5 2.0 3.0 · 10−5 2.0 1.8 · 10−2 1.0 1.8 · 10−2 1.0

using structured grids composed entirely of quadrilaterals or triangular elements. This is expected,
since in this case the solution is very smooth. Indeed, the use of unstructured, aligned grids for this
test is motivated by testing the numerical formulation in the most general case, rather than by the
strong anisotropy of the solution.

7.2 Test with a more realistic geometry
In this case, we consider the domain Ω̃ depicted in Figure 4, left, which includes all the main
components illustrated by the schematic representation of Figure 2, right, namely: a separatrix with
an X point, closed and open field lines, a wall and two divertor plates. The central region, containing
the plasma core, has been omitted, mimicking what is typically done for SOL computations. The
magnetic field is specified by

I = B0R0, ψ = aR0Bp

(
(R−R0)

2 + z2

2a2
− z3

3a2z0

)
,

while no forcing terms are present: f = fe = 0. Homogeneous Dirichlet boundary conditions are
enforced for u and ue on most of the domain boundary with the following exceptions: on the
boundary towards the plasma core we set ũ = ũe = 0.1[R − R0, z, 0]

T , on the left divertor plate
we set ũ = ũe = 0.1[−2,−1, 0] and on the right divertor plate we set ũ = ũe = 0.1[−2, 1, 0]. The
numerical values of the coefficients are R0 = 165, a = 60, z0 = −90, B0 = 2.5 · 104, Bp = 0.2B0,
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Figure 4: Domain Ω̃ including a plasma facing wall (blue), left and right divertor plates (magenta
and brown) and a private region (green). The plasma core has been excluded from the computational
domain, resulting in an additional boundary (purple). The separatrix is marked in red. The whole
grid (left) is composed of 120 triangular and 2068 quadrilateral elements; a detail view of the X
point is also shown (right).

ν = 105, νe = 102. We stress the fact that, on the one hand, these values, as well as the results
of this test, should not be directly compared with those encountered in simulation of real devices,
since our model lacks anyway various physically relevant terms; on the other hand, however, these
coefficients are chosen in order to test those aspects of our model which do appear in real devices,
namely a) the fact that the ion viscosity is larger than the electron one and b) the fact that the
Lorentz force term is dominant, except for some thin boundary layers where, due to the presence
of strong gradients, it is balanced by the viscous term. The first condition is motivated by the
standard Braginskii expression for the viscosity coefficients. In fact, if one considers the viscosity
coefficients denoted by ηi

0 and ηe
0 in [2] as order-of-magnitude estimates for our isotropic coefficients,

ν and νe, respectively, then

ν ≈ ηi
0 = 0.96nkBTiτi,

νe ≈ ηe
0 = 0.73nkBTeτe,

where τi and τe are the ion and electron collision time, respectively (see [2] for the precise defini-
tion), n = ni = ne is the number density for a quasi-neutral Hydrogen plasma, Te is the electron
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temperature and Ti is the ion temperature. Under the assumption that the temperature ratio Te/Ti
is of the order of unity, one finds

νe/ν ≈ τe/τi ≈
√
me/mi,

which shows that the electron viscosity is smaller than the ion viscosity by a square root of the
mass ratio which is ≈ 2.3× 10−2. The second condition can be verified estimating the width of the
boundary layers as follows: to balance the Lorentz force term, the viscous term requires variations
of the velocity over a length scale ϵν such that

νϵ−2
ν = B0.

Given the above coefficients, this implies ϵν = 1, ϵνe = 0.063, which are much smaller than Ω̃.
Two different grids are considered, obtained refining uniformly the grid shown in Figure 4

once and twice, respectively. The resulting numbers of degrees of freedom are dim(Vh) = 34384,
dim(Qh) = 8680 and dim(Vh) = 136864, dim(Qh) = 34384. Such grids are aligned in most of the
domain and are nearly structured around the separatrix, where quadrilateral elements allow good
regularity and higher resolution in the radial direction. Few triangular elements are inserted to
obtain a uniform resolution on each flux surface; moreover unstructured, not aligned patches are
used to resolve the X point and close to the domain boundary.

Computations are carried out starting from ũ = ũe = 0 and Φ = 0 until T = 0.01, a time after
which no significant changes are observed. For these tests, a directed solver is used for the complete
linear system (62)–(64). The time-step is ∆t = 6.25 · 10−5. The time evolution of the L2 norms
of the numerical solution is shown in Figure 5 for the coarsest grid. For the same computation,
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102
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Figure 5: Left: time evolution of ∥ũ∥L2 (black) and ∥ũe∥L2 (gray). Right: time evolution of ∥Φ̃∥L2 .

Figure 6 shows the toroidal component of the ion and electron velocities ũ ·e−φ and ũe ·e−φ. It can
be seen that such components do not vanish, despite the absence of toroidal components both in the
boundary conditions and in the forcing terms. This is indeed a consequence of Bp ̸= 0, which couples
the toroidal velocity components with the forcing terms in the poloidal plane. The corresponding
electrostatic potential is shown in Figure 7, left. Here, it can be seen that the Φ̃ = Const contours
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Figure 6: Toroidal velocity components at t = T for dim(Vh) = 34384, dim(Qh) = 8680: ũ · e−φ,
left, and ũe · e−φ, right. Notice that the two plots use different color scales.

tend to coincide with the magnetic surfaces. This is a consequence of the parallel velocity equation
for the electrons, as noted in § 2. An analogous result is obtained using the more refined grid, as
shown in Figure 7, right. For this second computation, we also plot the parallel and perpendicular
gradients of the electrostatic potential in Figure 8 and the perpendicular ion and electron velocities
in Figure 9. The profiles of (∇Φ)∥ and (∇Φ)⊥ show that, away from the boundary layers, a large
gradient of the electrostatic potential can only be sustained in the perpendicular direction, where
it is balanced by the Lorentz force, while the profiles of ũ⊥, ũ⊥

e and ũ⊥ − ũ⊥
e indicate that, away

from the boundary layers, ũ⊥ ≈ ũ⊥
e . These results are in good agreement with (8). Finally, the

importance of using a stable finite element pair for Vh and Qh is verified repeating the computations
with Vh = Qh and reporting the computed electrostatic potential in Figure 10. Here, it can be seen
that the unstable pair results in severe grid-scale oscillations in Φ̃, which can not be cured by refining
the computational grid.

7.3 Iterative solution of the linear system
To test the iterative solution strategy discussed in § 6.3, we consider now a single time-step from
ta = 1.25 · 10−4 to tb = 1.875 · 10−4 of the coarse grid computation of § 7.2 and solve it iteratively
using the solution at ta as initial guess for the linear iterations. This specific time-step is chosen
since the solution has not reached the steady state condition. Figure 11 shows the residual of the
linear iterations, together with the L2 error norms of the ion and electron velocities and of the
electrostatic potential, computed using the solution of the monolithic approach as a reference. All
the values are normalized with the respective values for the initial iterations so that the four curves
start from 1. It can be seen that the plane GMRES iteration indeed do result in a convergent
algorithm, the convergence rate however is slow for the first 300 iterations. The preconditioned
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Figure 7: Electrostatic potential Φ̃ at t = T for the two considered grids: dim(Vh) = 34384,
dim(Qh) = 8680 (left) and dim(Vh) = 136864, dim(Qh) = 34384 (right).

version shows a much higher convergence rates for the first 100 iterations and is a viable option if
an O(100) reduction of the residual is considered to be satisfactory. For higher accuracy however a
more effective strategy would be required.

A detailed investigation of alternative preconditioning strategies is nevertheless outside the scope
of the present work, since in order to be useful for the target applications it should also take into
account the effects of the terms neglected isolating our model problem (5)–(7) from the complete
system (1)–(4). Such an investigation is left for future work.

8 Conclusions
In this paper, we have considered a subset of the equations modeling the SOL layer which captures
two key aspects of the complete system: the role of the electrostatic potential as a Lagrange mul-
tiplier associated with the quasi-neutrality condition and the geometrical complexity of the system
itself. The well-posedness of the reduced problem has been demonstrated and a suitable discretiza-
tion framework has been proposed, paying attention to avoiding computational solutions that would
not generalize to the complete model. The proposed approach has been verified in various numerical
experiments. Virtually every aspect of the present work offers room for extensions and improve-
ments: higher order methods can be considered, the error analysis could be refined, possibly taking
into account the anisotropy of the problem, more efficient algorithms for the iterative solution of
the linear system should be investigated and, most importantly, more terms of the complete model
should be included in the analysis. We hope, nevertheless, that the present work can serve as a
solid starting point for the development of reliable computational models for the simulation of the
SOL layer in fusion devices.
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