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Abstract

We investigate structured grids aligned to the contours of a two-dimensional
flux-function with an X-point (saddle point). Our theoretical analysis finds that
orthogonal grids exist if and only if the Laplacian of the flux-function vanishes
at the X-point. In general, this condition is sufficient for the existence of a
structured aligned grid with an X-point. With the help of streamline integration
we then propose a numerical grid construction algorithm. In a suitably chosen
monitor metric the Laplacian of the flux-function vanishes at the X-point such
that a grid construction is possible.

We study the convergence of the solution to elliptic equations on the pro-
posed grid. The diverging volume element and cell sizes at the X-point reduce
the convergence rate. As a consequence, the proposed grid should be used with
grid refinement around the X-point in practical applications. We show that grid
refinement in the cells neighbouring the X-point restores the expected conver-
gence rate.
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1. Introduction

A magnetic X-point is particularly advantageous for the confinement of par-
ticles and thermal energy inside a magnetic fusion device [1]. For this rea-
son, two- and three-dimensional simulations that encompass the X-point in
the cross-section of magnetically confined fusion plasmas have emerged in past
years [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12]. There, so-called flux-surfaces [1] bound the
idealized toroidally symmetric physical domain. Analytically, the flux-surfaces
are represented by the contour lines of the flux-function ψ, which at an X-point
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has a vanishing gradient and an indefinite Hessian matrix. It has proven advan-
tageous to use grid points that align with this flux-function in numerical simu-
lations. This is especially true in the closed field line region, where flux-aligned
structures like zonal flows regulate the turbulent transport [13]. Furthermore,
once the domain of interest is bounded by flux-surfaces, a ”flux-aligned” grid
allows for an easy treatment of boundary conditions.

Unfortunately, structured grids (grids generated by a coordinate transfor-
mation) aligned to flux-surfaces may lead to numerical issues when an X-point
is present in the domain. This is because one coordinate of a structured aligned
grid is necessarily the flux-function ψ itself or a monotonous function of it1.
Since ψ has per definition a saddle point with ∇ψ = 0, the Jacobian of the co-
ordinate transformation vanishes at this point and the transformation becomes
singular. This also entails vanishing or diverging elements in the metric ten-
sor, which appear in the physical equations transformed to the new coordinate
system and therefore enter the numerical discretization. However, these issues
do not directly manifest in the grid points themselves. In fact, with the help
of streamline integration [14, 15] it is fairly straightforward to numerically con-
struct grid points that are aligned with the flux-surfaces. What is unclear is
whether

• these then actually represent a (homeomorphic) coordinate transforma-
tion,

• a numerical scheme can cope with the singularity (consistence),

• the convergence rate of a numerical scheme is affected by the singularity.

For example, in an elliptic equation the solution depends on all points in the
domain and we cannot a priori know whether singular points reduce or prevent
the global convergence rate of the solution. We are the first to address these
concerns, which have not been studied systematically in the literature so far.
Nevertheless, results from simulations on structured aligned grids have already
been published [9, 10, 11, 12] without investigating or solving the above issues.
We believe that the therein presented conclusions require a discussion in the
light of the numerical uncertainties and the results in the present article.

Let us mention that, of course, the use of coordinate patches or entirely
unstructured grids is always possible and circumvents the problem [4, 16, 17, 18].
Still, we investigate the use of structured grids in this contribution as they have
several advantages. First of all, numerical methods on structured grids are very
easily implemented. Unstructured coordinate patches introduce an overhead due
to the additional bookkeeping induced by the explicit topological information
of grid patches or cells. Furthermore, this overhead necessarily leads to a loss
in performance over structured grids since for example in the computation of
derivatives the additional topological information needs to be separately loaded

1 This is just a re-expression of the alignment condition.
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from the system memory. This is detrimental for memory bandwidth bound
problems.

For completeness let us also mention recent approaches to use non flux-
aligned grids for the discretization of model equations [19, 20, 21]. Like un-
structured grids, these avoid numerical issues with the X-point but shift the
problem to the question of how to correctly implement a flux-aligned boundary.

Finally, let us note that even though we motivated the problem from within
the field of magnetic confinement fusion, its nature is purely mathematical. Our
results therefore apply to any situation in which an alignment of a numerical
grid to a two-dimensional function with X-point is desirable. Also note that
in this contribution the discussion of O-points (extrema of the flux-function) is
missing. This is because we assume the Hessian matrix of the flux-function to be
indefinite in our derivation and the results therefore do not apply to O-points.

In this contribution we investigate how structured grids can be consistently
constructed and how numerical methods behave when there is an X-point present
in the computational domain. In Section 2 we discuss general properties of struc-
tured grids aligned to flux-surfaces from an analytical point of view. We derive
a consistency equation that all structured grids aligned to a flux-function have
to obey. Based on this we derive necessary and sufficient conditions to fulfil this
equation. We then propose a grid generation algorithm for orthogonal grids
in Section 3. Our algorithm is based on streamline integration [14, 15] and
assumes that the Laplacian of the flux-function vanishes at the X-point. This
technique allows the efficient computation of grid coordinates as well as the
corresponding Jacobian and therefore metric elements up to machine precision.
We pay special attention to the discretization of the separatrix (the contour
line through the X-point). In the following Section 4 we then show how our
algorithm applies to cases with a non-vanishing Laplacian at the X-point. We
introduce the concept of a monitor metric. Finally, in Section 5 we apply our
algorithm first to an analytical example and second to a practical problem taken
from the field of magnetically confined fusion. With the analytical example we
in particular show how grid generation algorithms fail without monitor metric.
For the second case we solve an elliptic equation on our generated grid and show
convergence rates of a local discontinuous Galerkin discretization of various or-
der [22]. If the solution varies across the X-point, we need grid refinement to
restore the convergence of our solution, which otherwise deteriorates to order
one in the cell-size due to the diverging volume element.

2. Structured grids with X-point

Given is a two-dimensional flux-function ψ(x, y) in some coordinates x and
y. At one point xX , yX this function has a saddle point (the X-point), where
the gradient vanishes and the Hessian matrix is indefinite. Let us assume the
existence of a metric tensor2 g with elements given in the coordinates x and y.

2This metric later becomes the monitor metric.
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We now express a coordinate system ζ, η with ζ aligned to ψ(x, y) as3

dζ = f(ψ)(ψxdx+ ψydy) (1a)

dη = a(x, y)
√
g[−ψydx+ ψxdy]− b(x, y)[ψxdx+ ψydy] (1b)

Equation (1a) expresses the alignment property dζ = f(ψ)dψ with f(ψ) 6= 0.
Our choice for the form of dη in Eq. (1b) becomes apparent further down in
the text. It is a re-expression of the general exact 1-form in two dimensions,
dη = ηxdx + ηydy. In place of ηx and ηy we introduce the two free functions
a(x, y) 6= 0 (if f or a were zero at a point, the coordinate transformation would
become singular) and b(x, y). We have the contravariant components of ∇ψ,

ψx := gxxψx + gxyψy, ψy := gxyψx + gyyψy

and the element of the volume form
√
g := (gxxgyy − gxygxy)1/2. Then, ηx =

−√gψya−ψxb and ηy =
√
gψxa−ψyb, which is invertible for a and b if (∇ψ)2 =

ψxψx + ψyψy 6= 0. In fact, we then have

a =
ψxηy − ψyηx√

g(∇ψ)2
, b = −ψ

xηx + ψyηy
(∇ψ)2

. (2)

Recall the familiar rules for tensor transformation (e.g. [23]). The elements of
the inverse metric tensor g−1 in the transformed coordinates read(

ḡζζ ḡζη

ḡηζ ḡηη

)∣∣∣∣
ζ(x,y),η(x,y)

= (∇ψ)
2

(
f2 −bf
−bf a2 + b2

)∣∣∣∣
x,y

,
√
ḡ
−1

= (∇ψ)2af,

(3a)

which shows that we obtain an orthogonal grid (a grid in which the base vectors
are orthogonal in the given metric) with b = 0. We denote ḡij as the elements
of g−1 in the transformed coordinate system ζ, η and analogous

√
ḡ the element

of the volume form in transformed coordinates.
Let us emphasize here that the metric tensor g is not necessarily the canon-

ical, Cartesian metric. We only assume that g, as well as the coordinates x and
y, are well-defined and do not expose any singularities. Further note that our
choice of notation is based on differential forms rather than what is traditionally
used in the plasma physics literature [14]. In this way the relation between the
metric tensor and the more fundamental objects (covariant and contravariant
base vectors) is disentangled. This becomes advantageous in Sections 3 and 4,
where we want to freely choose the metric tensor.

Now, we place ourselves in a reverse position. If ψ and the metric g are
given, is it possible to find ζ and η in the form presented in Eq. (1)? In fact,
this question is equivalent to finding conditions for the functions a, b and f such
that the right-hand sides of Eqs. (1a) and (1b) are exact forms. Recall that the

3 Here and in the following we use the notation ψx := ∂ψ/∂x, ψxx := ∂2ψ/∂x2, ...
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Poincaré lemma states that a closed form is exact [23]. Therefore, fdψ has a
potential ζ if d(fdψ) = 0. This results in

fyψx − fxψy = 0

and is fulfilled if f is a function of ψ only. In order for the coordinate η to exist
it must hold that d[(−a√gψy− bψx)dx+(

√
gψxa−ψyb)dy] = 0. In coordinates

that is
∂

∂x
(
√
gaψx − bψy) +

∂

∂y
(
√
gaψy + bψx) = 0.

This can be rewritten to

a∆ψ +∇ψ · ∇a+ {ψ, b} = 0, (4)

where ∆ψ is the Laplacian operator given by

∆ψ :=
1
√
g

(
∂

∂x
(
√
gψx) +

∂

∂y
(
√
gψy)

)
(5)

and we identified the Poisson bracket4

{ψ, b} :=
1
√
g

(ψxby − ψybx).

It is the recovery of the Laplacian, the gradient and the Poisson bracket in
Eq. (4) that justifies our choice of Eq. (1b).

Since the flux-function ψ(x, y) and the metric g are given, Eq. (4) is a con-
straint on the functions a(x, y) and b(x, y). We call Eq. (4) the consistency
equation and for the remainder of this section we focus on its implications. Ap-
parently, the problematic point is the X-point, where ψx and ψy vanish, but ∆ψ
might not. We therefore ask under what circumstances well-defined solutions
a and b exist, depending on the properties of ψ at the X-point. A vanishing
Laplacian is in fact a very desirable quality of ψ. At this point an example is
instructive.

Example 1. We consider ψ = 1
2 (x2 − y2) and f(ψ) = 1 in the canonical

(Cartesian) metric, for which ∆ψ = 0. One possible choice for the second
coordinate is η = xy. Equation (2) yields at once a = 1 and b = 0 that is, we
have obtained an orthogonal coordinate system (b = 0). The non-zero metric
elements are ḡζζ = ḡηη = x2+y2 from which we can compute the volume element√
ḡ = 1/(x2 + y2).

4 The interested reader will recognize that this is indeed the correct definition of the Poisson
bracket since the volume form in two-dimensions can be identified with the symplectic (area)
2-form. The elements of the inverse symplectic form are the Poisson brackets of the coordinates
among themselves [23].
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It turns out that ∆ψ = 0 at the X-point is sufficient for the existence of
well-defined a and b solving Eq. (4). We prove this by actually constructing an
algorithm in Section 3.

The following theorem shows what a vanishing Laplacian means in geomet-
rical terms. Without loss of generality we assume ψ(xX , yX) = 0 and call the
curve given implicitly by ψ(x, y) = 0 the separatrix.

Theorem 1. If ∆ψ|xX ,yX = 0 in a given metric g, then the tangent vectors to
the separatrix are orthogonal at the X-point in this metric.

Proof. Let us expand ψ around the X-point

ψ(x, y) =
1

2
(x− xX , y − yX)T

(
ψxx ψxy
ψxy ψyy

)∣∣∣∣
xX ,yX

(
x− xX
y − yX

)
+ . . .

Neglecting higher order terms the equation ψ(x, y) = 0 then yields a quadratic
equation for x− xX , y − yX with the two solution vectors

s1,2 =

(
−ψxy ±

√
ψ2
xy − ψxxψyy

ψxx

)∣∣∣∣∣
xX ,yX

.

Now we use that the Laplacian of ψ in the metric g vanishes at the X-point

gxxψxx + 2gxyψxy + gyyψyy = 0,

where we used that ψx = ψy = 0 at the X-point. With this we can readily

compute
∑2
ij=1 gijs

i
1s
j
2 = 0 that is s1 and s2 are perpendicular at the X-point

in the metric g.

Now, we can of course ask what happens if ∆ψ 6= 0 at the X-point. The first
observation we make is that for such a non-orthogonal X-point no coordinate
system can exist such that a and b as well as their derivatives are bounded.

Theorem 2. If a and b as well as their derivatives are bounded, then it must
hold that ∆ψ = 0 at the X-point.

Proof. Since ψx = ψy = 0 at the X-point, Eq. (4) gives a∆ψ = 0. For a 6= 0
this can only be satisfied if ∆ψ = 0.

Let us now turn our attention to the case in which either a or b is allowed
to diverge at the X-point. Special cases worth investigating are a = 1 as in the
grid proposed by [24] and b = 0, which yields an orthogonal grid. It turns out
that ∆ψ = 0 at the X-point is also a necessary condition for well-defined a and
b to exist in these cases:

Theorem 3. If ψ is a smooth function on a bounded domain that includes a
non-orthogonal X-point with ∆ψ 6= 0, then there exists no flux-aligned coordinate
system (ζ, η) for which a = 1 and b is well defined at the X-point. Analogously
there exists no flux-aligned coordinate system for which b = 0 and a is well
defined at the X-point.
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Proof. Substituting a = 1 into equation (4) gives

{ψ, b} = −∆ψ

and thus
−ψybx + ψxby = −√g∆ψ.

By the method of characteristics we obtain curves x(t), y(t), and b(t) such that

ẋ(t) = −ψy(x(t), y(t)), ẏ(t) = ψx(x(t), y(t)), ḃ = −√g∆ψ(x(t), y(t)).

This implies

b(t) = b(0)−
∫ t

0

√
g∆ψ(x(t′), y(t′)) dt′.

Without loss of generality we assume that the X-point is located at (0, 0) and
that ∆ψ(0, 0) > 0. Now, we consider characteristics curves (x1(t), y1(t)) and
(x2(t), y2(t)) such that limt→∞(x1(t), y1(t)) = 0 and limt→−∞(x2(t), y2(t)) = 0.
Then b(0, 0) = limt→∞ b1(t) = −∞ and b(0, 0) = limt→−∞ b2(t) = ∞. Thus,
we have obtained a contradiction. The proof for b = 0 is analogous with the
characteristic curves given by ψx(x(t), y(t)) and ψy(x(t), y(t)) and we replace b
with ln a.

One might be tempted to conjecture that assuming a is bounded is already
enough to rule out the existence of a coordinate system altogether. However,
this is not the case as the next example shows.

Example 2. We consider ψ = 1
2 (2x2−y2) with f(ψ) = 1 and g as the canonical

metric and look for η given by a polynomial. One possibility is η = xy, which
leads to

a =
2x2 + y2

4x2 + y2
, b = − xy

4x2 + y2
.

Note that we can easily determine that a > 0. The volume element is given by√
ḡ = 1/(2x2 + y2) and, as before, diverges as we approach the X-point.

The major difference between the coordinate system considered in Example
2 compared to the orthogonal grid in Example 1 is that the limits of a and
b differ as we approach the X-point from different directions. Thus, there is
no uniquely defined value of a and b at the X-point, although a perhaps more
serious concern for both coordinate systems is the fact that the volume element√
ḡ diverges as we approach the X-point. This is clearly an undesirable property

as it means that the X-point is not adequately resolved.
We thus ask the question: is it possible to construct a coordinate system

such that the volume element remains bounded as we approach the X-point?
The following theorem gives a negative answer.

Theorem 4. If ψ is a smooth function on a bounded domain that includes an
X-point, then there exists no flux-aligned coordinate system (ζ, η) ∈ Ω, where Ω
is a bounded domain, for which

√
ḡ is bounded at the X-point.

7



Proof. Substituting equation (2) into
√
ḡ
−1

= (∇ψ)2af gives

√
ḡ
−1

= f{ψ, η} = f(ψxηy − ψyηx)/
√
g.

With ψ given and an arbitrary (but fixed)
√
ḡ
−1

this yields a first order partial
differential equation that can be solved for η. Employing the method of char-
acteristics we obtain x(t), y(t), and η(t) which satisfy the following relations

ẋ(t) = −fψy(x(t), y(t)), ẏ(t) = fψx(x(t), y(t)), η̇(t) =
√
ḡ/g
−1

(x(t), y(t)).

Let us assume, without loss of generality, that the X-point is located at (0, 0).
We now pick a characteristic curve (x(t), y(t)) starting at (x0, y0) 6= 0 that passes
through the X-point (the existence of such a curve follows from the fact that at
least one coordinate line must pass through the X-point). Since, (ẋ(t), ẏ(t))→ 0
as we approach the X-point, we have limt→∞(x(t), y(t)) = 0 (strictly speaking
t→ −∞ is another possibility that is handled by exactly the same argument as
is given below for t→∞).

Now, let us assume that the volume element
√
ḡ is bounded as we approach

the X-point. Then we can find a constant δ such that
√
ḡ
−1 ≥ δ which implies

lim
t→∞

η(t) = lim
t→∞

∫ t

0

√
ḡ/g
−1

(x(t), y(t)) dt ≥ lim
t→∞

δt =∞,

which is a contradiction to the assumption that (ζ, η) ∈ Ω with Ω bounded.
Thus, we conclude that

√
ḡ →∞ as we approach the X-point.

In summary, we have proven three major results for structured flux-aligned
grids:

1. A vanishing Laplacian of the flux-function at the X-point is equivalent to
orthogonality of the tangent vectors to the separatrix.

2. Orthogonal grids and the grid proposed by Reference [24] exist if and only
if the Laplacian of the flux-function vanishes at the X-point.

3. The volume element in the transformed coordinate necessarily diverges at
the X-point.

3. Orthogonal grid generation for ∆ψ = 0 at the X-point

In this section we construct an algorithm for the case ∆ψ = 0 at the X-
point. We begin to show how a structured orthogonal grid can be constructed in
an arbitrary metric, then choose a discretization of the computational domain
and finally summarize the proposed algorithm. Note that this algorithm is
an extension of one of our previously suggested algorithms in Reference [15].
We consider only two dimensions but let us remark that the extension of the
coordinate system to three dimensions is straightforward in axisymmetric cases5.

5 Identify x, y with the cylindrical coordinates R,Z. The toroidal angle ϕ is used as the
third coordinate, which is orthogonal to R,Z and the associated metric element is gϕϕ = R2.
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3.1. Orthogonal grid construction

In general, the coordinate system ζ, η, orthogonal in the prescribed metric
g, with ζ aligned to ψ, is described by Eq. (1) with b = 0:

dζ = f(ψ)(ψxdx+ ψydy) (6a)

dη = a(x, y)
√
g(−ψydx+ ψxdy) (6b)

This yields the determinant of the Jacobian matrix J−1 = (∇ψ)2af
√
g. From

the rules of inverse coordinate transformations we directly see that the con-
travariant basis vector fields are

∂

∂ζ
= xζ

∂

∂x
+ yζ

∂

∂y
=

1

(∇ψ)2f

(
ψx

∂

∂x
+ ψy

∂

∂y

)
(7a)

∂

∂η
= xη

∂

∂x
+ yη

∂

∂y
=

1

(∇ψ)2a
√
g

(
−ψy

∂

∂x
+ ψx

∂

∂y

)
(7b)

that is ∂
∂ζ points in the direction of the gradient of ψ and ∂

∂η in the direction

of surfaces given by ψ = const. We choose f(ψ) = f0 = const. With our choice
we directly get

ζ(x, y) = f0ψ(x, y) (8)

such that ζ = 0 at the separatrix.
As explained in Section 2 the function a(x, y) is not arbitrary. Equation (4)

becomes (
ψx

∂

∂x
+ ψy

∂

∂y

)
a = f(∇ψ)2 ∂

∂ζ
a = −a∆ψ. (9)

In order to integrate Eq. (9) we must choose initial conditions for a. This choice
together with the normalization of coordinates depends on the domain that we
want to discretize. Let us remark that if ∆ψ = 0 in the whole domain, we
directly get a conformal grid with our algorithm. This can be seen as then
a(ζ, η) = f0.

3.2. Domain

Our goal is to generate a structured grid in a domain bounded by ψ0 < 0
and ψ1 > 0. We assume that this region forms an “8” shape, or a “surface with
two holes” above and below the X-point. However, we cut the domain below the
X-point. We are then left with a region as depicted in Fig. 1. Here, we show a
sketch of the coordinate transformation. To the left we depict the physical space
and to the right the computational space. The physical space is covered by 6
coordinate patches labelled A to F. The topology can be understood by following
the neighbouring coordinate lines 1 and 4 as well as 2 and 3. When passing the
separatrix, line 1 becomes adjacent to line 2, while line 3 changes neighbour
to line 4. Also note that patch A is periodic and that patches C and E are
connected. This type of structured grid, in which the topology between blocks
has to be separately given, is called block-structured [25]. When implementing
derivatives on the computational grid this topology has to be taken into account.

9
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ψ(x,y)
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η

x(ζ,η), 
y(ζ,η)

x
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ψ0

ψ1

∂η
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4
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C D
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∂ζ

Figure 1: Sketch of coordinate transformation. The coordinates x and y (the physical space)
are pulled back to the orthogonal coordinates ζ, η (computational space). Note the special
topology of the 6 coordinate patches induced by the X-point. Patch A is periodic in η, which
is depicted by the “double lines”. Patches C and E are connected, which we depict with the
red dashed line.
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3.3. Normalization

Now, the problem is how and at what points to fix initial conditions for a
in order to integrate Eq. (9). We require that a(x, y) is continuous and differ-
entiable. One suggestion would be to set a = a0 on an arbitrary contour line
ψ(x, y) = ψ0. This is indeed a valid choice for the case without X-point. How-
ever, as discussed above, the X-point exchanges the neighbours of streamlines
that pass by it. This means that even though a is continuous on neighbouring
streamlines of ∂/∂ζ initially, it is not guaranteed to be at later stages. Imagine
we chose a = const on the inner flux surface in Fig. 1. When we integrate
Eq. (9) along ∂/∂ζ beyond the separatrix some streamlines like number 2 and 3
change neighbours. This potentially induces discontinuities among the coordi-
nate patches. Another uncertainty is the value of a at the X-point itself since we
approach the X-point from two different sides (line 1 and 2 for example). Simi-
lar issues appear if a is chosen on a flux surface on the outside of the domain.
Our solution to this problem is to initialize a on the separatrix itself. Follow-
ing streamlines along ∂/∂ζ away from the separatrix neighbouring streamlines
stay neighbours. Thus, if a is continuous on the separatrix, the discontinuities
among coordinate patches can be avoided.

We trace the separatrix with the streamline of ∂
∂η at ζ = 0. It can be

parameterized by any suitable function. For the sake of discussion, let us choose
the geometric angle θ defined with respect to an arbitrary point inside the
innermost flux surface (cf. Reference [15]).

dx

dθ

∣∣∣∣
ζ=0

=
xη
θη

=
−ψy

ψxθy − ψyθx
(10a)

dy

dθ

∣∣∣∣
ζ=0

=
yη
θη

=
ψx

ψxθy − ψyθx
(10b)

dη

dθ

∣∣∣∣
ζ=0

=
1

θη
=

√
g(∇ψ)2

ψxθy − ψyθx
a0 (10c)

We normalize a0 such that η ∈ [0, 2π] when we follow the separatrix in patch
A in Fig. 1, that is,

2π =

∮
ψ=0

dη =

∮ 2π

0

dη

dθ

∣∣∣∣
ζ=0

dθ

or

f0 = a0 =
2π∫ 2π

0
dθ

√
g(∇ψ)2

ψxθy−ψyθx

. (11)

As initial point for the integration of Eq. (10) we can use any point with
ψ(x, y) = 0. These can be found with a standard bisection algorithm. Note
that we cannot numerically integrate Eq. (10) across the X-point due to the
vanishing gradient in ψ. However, we can integrate towards and close to the
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X-point. This might be numerically expensive since very small step sizes have
to be used, but can be achieved with sufficient accuracy.

Having chosen values for f0 and a0 the coordinate transformation is now
completely fixed. In order to find any coordinate x(ζ, η), y(ζ, η) together with
its Jacobian we integrate the streamlines of ∂/∂η and ∂/∂ζ given in Eq. (7). We
do this by first integrating ∂/∂η on the separatrix (where a0 is known) up to
the desired η and then following ∂/∂ζ up to ζ with the obtained starting point.
In order to get a we simply integrate Eq. (9) along the coordinate lines.

dx

dζ

∣∣∣∣
η=const

=
ψx

f0(∇ψ)2
(12a)

dy

dζ

∣∣∣∣
η=const

=
ψy

f0(∇ψ)2
(12b)

da

dζ

∣∣∣∣
η=const

= − ∆ψ

f0(∇ψ)2
a (12c)

First, however, we need to discuss how the computational domain should be
discretized.

3.4. Discretization of the computational domain

As mentioned in the introduction and visible in Fig. 1 the computational
domain is a product space. In order to keep this property also numerically we
discretize the ζ and η coordinates separately, i.e. we construct Nζ equidistant
cells in ζ and Nη equidistant in η. Now, in order to maintain an integer number
of equidistant cells in every block we impose certain restrictions. Let us define
Lin
ζ = |f0ψ0| as the length of blocks A, C and E in ζ and Lout

ζ = |f0ψ1| as the

length of blocks B, D and F. With this we have Lζ := Lin
ζ +Lout

ζ . Furthermore,

we define Lout
η as the length of patch C, D, E and F in η and Lin

η as the length

of A and B in η. We have Lη := Lin
η + 2Lout

η and now define

qζ := Lout
ζ /Lζ qη := Lout

η /Lη. (13)

Now, in order to guarantee an integer number of cells in each block we require
that N in

ζ := (1− qζ)Nζ , Nout
ζ := qζNζ , N

in
η := (1− 2qη)Nη, and Nout

η := qηNη
are integer numbers. Note that qζ being rational is a restriction on Lζ and
thus on the choice of ψ0 and ψ1. Only one of the two can be chosen freely.
Analogously, the condition in η is fulfilled by a proper choice of the boundaries
in η. Furthermore, with this procedure we, in particular, achieve that the X-
point always appears as the corner of a cell and never lies inside a grid cell.

3.5. Grid refinement

For the purposes of this study we use a very basic grid refinement technique.
The idea is to simply divide each of mζ cells in the ζ coordinate on each side of
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the separatrix by dζ equidistant small cells and analogously in η we divide each
of mη cells next to the X-point by dη. This means that in total we then have

N ref
ζ = Nζ + 2mζ(dζ − 1), N ref

η = Nη + 4mη(dη − 1) (14)

cells in the ζ and η directions. The factor 2 in ζ appears because we refine the
cells left and right of the separatrix each. In η we have to consider that the
X-point appears twice (cf. Fig. 1). Note that if we were to divide all cells in ζ
by a factor dζ , the refined grid would consist of N ref

ζ = dζNζ cells. In particular,
this means that if the error of a numerical scheme is dominated by the refined
patch, then the refined grid is equivalent to an unrefined grid with dζNζ grid
points (analogous in η). The product space property is preserved in order to
keep the implementation effort to a minimum.

3.6. Algorithm

Let us finally summarize the grid generation in the following algorithm. We
assume that ψ0 is given and we choose rational numbers qζ and qη such that
ψ1 = −qζψ0/(1 − qζ), η0 = −2πqη/(1 − 2qη) and η1 = 2π(1 + qη/(1 − 2qη)).
Furthermore, we assume that the ζ coordinate is discretized by a list of Nζ
values ζi with i = 0, 1, . . . Nζ − 1 and η is discretized by a list of Nη values ηj
with j = 0, 1, . . . Nη − 1. Nζ and Nη are chosen such that qζNζ and qηNη are
integer numbers. Finally the list of ζi and ηi can be extended by the refinement
points as described in Section 3.5.

1. Find the X-point. The X-point is often known or can be computed alge-
braically. Numerically, the zeroes of ∇ψ can be found very efficiently with
a few Newton iterations, especially since the Hessian matrix of ψ and its
inverse are given analytically.

2. Find an arbitrary point (x, y) with ψ(x, y) = 0 and a suitable parameter-
ization of Eq. (10) around the X-point.

3. Integrate Eq. (10) with a0 = 1 over Θ = [0, 2π] in patch A and use Eq. (11)
to compute f ≡ f0 and a0 = a(ψ0). Use any convenient method for the
integration of ordinary differential equations.

4. Integrate the streamline of Eq. (7b) with ψ = 0 and a = f0 from η =
0 . . . ηj for all j. The result is a list of coordinates x(0, ηj), y(0, ηj) on the
separatrix. These are divided into N in

η coordinates in patch A, and Nout
η

coordinates in patches C and E each.

5. Using this list and a = f0 as starting values integrate Eq. (12) from
ζ = 0 . . . ζi for all i and all ηj . This gives the map x(ζi, ηj), y(ζi, ηj)
as well as a(ζi, ηj) for all i and j.

6. Last, using these results and Eq. (6) evaluate the derivatives ζx(ζi, ηj),
ζy(ζi, ηj), ηx(ζi, ηj), and ηy(ζi, ηj) for all i and j.

4. The monitor metric approach for ∆ψ 6= 0 at the X-point

For the following it is important to note that the theorems in Section 2 do not
explicitly forbid the existence of a grid in the case ∆ψ 6= 0, only the existence
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of an orthogonal grid. The notion of orthogonality, however, and especially the
value of ∆ψ, depends on the given metric tensor g (recall Eq. (5) at this point).
So what if we were allowed to change the metric tensor g such that ∆ψ would
vanish at the X-point? For example, consider the canonical metric gij = δij

and ψxx + ψyy 6= 0. If we change the canonical metric to an orthogonal metric
gxx := −ψyy, gyy := ψxx, we can easily show that ∆ψ = 0 at the X-point in
this metric. In this case the consistency equation (4) allows the existence of
an orthogonal grid. Indeed, our idea for the construction of a grid for the case
∆ψ 6= 0 at the X-point begins with changing the given metric to a more suitable
metric. Then we use the algorithm in Section 3.6 to generate an orthogonal
grid in the changed metric. This procedure of allowing the metric to be variable
instead of a fixed given entity is called the monitor metric approach [25, 15].

Of course, now the question arises what happens to the physical, Cartesian
metric, which we denote G in the following. So far we have only considered the
situation with one metric tensor g, the monitor metric. The important step is to
allow the existence of two metric tensors. The first one is the artificial monitor
metric tensor g and the second one is the physical metric tensor G.

If we allow two metric tensors in our domain, we have in fact two different
notions of angles and distances. We can measure angles, distances and areas
either in g or in G. This in particular means that if two vectors are orthogonal
in one metric they might not be in the other. This is why the monitor metric
approach does not violate our results from Section 2, which are true for both g
and G. For example, even if we can construct an orthogonal grid in the monitor
metric g, in which the Laplacian of ψ vanishes, it is still non-orthogonal in the
physical metric G, in which the Laplacian of ψ does not vanish, and thus does
not violate Theorem 3, which forbids the existence of an orthogonal grid for
∆ψ 6= 0. Unfortunately, there is no way around Theorem 4 and both volume
elements

√
ḡ and

√
Ḡ will diverge at the X-point.

It is important to realize that the monitor metric g is an independent ten-
sor and has nothing to do with the physical metric G. In fact, we would not
even need a monitor metric tensor. The formulas in Section 2 can be simpli-
fied by defining χij :=

√
ggij and we could then speak of a monitor tensor χ,

which must be symmetric and positive definite. This approach would be slightly
more general as it also allows for the inclusion of adaption functions (see Refer-
ence [15]). For this discussion, however, we keep the metric tensor formulation
for the sake of accessibility.

Finally, note that we use the monitor metric g only for the construction of
our grid. The physical equations still use the physical metric tensor G, which
therefore also has to be transformed to the new coordinates. This is possible
because with the help of Eq (6) we numerically construct not only the grid
points x(ζ, η) and y(ζ, η) but also the elements of the Jacobian matrix. With
the Jacobian matrix it is of course possible to transform any tensor to the ζ, η
coordinate system, in particular the metric tensor G.
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4.1. A constant monitor metric

The task is the construction of a suitable monitor metric. We suggest the
constant tensor

gcte = α−1/2

(
v+vT

+

λ+
−

v−vT
−

λ−

)
, (15)

where v+ and v− are the normalized Eigenvectors of the Hessian matrix of ψ
at the X-point. λ+ and λ− are the corresponding Eigenvalues. Since at the
X-point (saddle point) the Hessian matrix is indefinite we can choose λ− to
be the negative and λ+ to be the positive Eigenvalue. We choose α such that
the determinant of gcte is unity. With this choice gcte is symmetric, positive
definite and ∆ψ = 0 at the X-point. A symbolic calculation shows us the
explicit expression

gcte = α−1/2

(
ψ2
yy − ψxxψyy + 2ψ2

xy −(ψxx + ψyy)ψxy
−(ψxx + ψyy)ψxy ψ2

xx − ψxxψyy + 2ψ2
xy

)
,

α =
(
ψ2
xy − ψxxψyy

) (
(ψxx − ψyy)

2
+ 4ψ2

xy

)
, (16)

where all derivatives of ψ are evaluated at the X-point. Note that gcte reduces
to the identity if ψxx = −ψyy.

4.2. The bump monitor metric

As mentioned above, the monitor tensor in Eq. (16) produces non-orthogonal
grids. This could be an issue if orthogonality at the boundary is a requirement,
e.g. for the implementation of von Neumann boundary conditions. In fact, we
need the monitor metric to take effect only in the vicinity of the singularity.
The remaining grid may stay orthogonal in the physical metric G. We therefore
introduce the bump-function with amplitude 1 and radius σ centred on the
X-point

ε(x, y) =

e1+

(
(x−xX )2

σ2
+

(y−yX )2

σ2
−1

)−1

for (x− xX)2 + (y − yX)2 < σ2

0 else
.

(17)

With Eq. (17) we introduce

gbump(x, y) = 1 + ε(x, y)
(
gcte − 1

)
, (18)

where 1 is the identity tensor.

5. Applications of the algorithm

In this section we want to test the suggested algorithm in Section 3.6. We
first present a completely analytical scenario and then proceed by solving el-
liptic equations for a more realistic test case. Please find codes and implemen-
tation details in the latest Feltor release [26]. Specifically, we generated the
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results in Sections 5.2-5.4 with the programs separatrix_orthogonal_t.cu,
conformalX_elliptic_b.cu, geometryX_refined_elliptic_b.cu as well as
geometry_diag.cu residing in the subdirectory feltor/inc/geometries/.

5.1. A simple example

It is instructive to analyse how the algorithm behaves in an analytical ex-
ample. To this end let us consider again the flux-function from Example 2

ψ =
1

2

(
2x2 − y2

)
together with the canonical metric tensor. We directly have ψx = 2x, ψy = −y
and ∆ψ = 1 6= 0 in the canonical metric. The monitor metric (16) for the
present problem becomes

g =

(
1/
√

2 0

0
√

2

)
.

In this monitor metric we have ψx =
√

2x and ψy =
√

2y and ∆ψ = 0. Equa-
tion (12), parameterized by y, is therefore solved by a = 1 and x(y) = ±x2

0/2y,
which are the contour lines of the “correct” η = xy coordinate we discussed in
Example 2. In Fig. 2a we show the resulting grid.

Now, it is interesting to discuss what goes wrong if no monitor metric is
used in connection with a non-vanishing Laplacian. Without monitor, Eq. (12)
parameterized by y reads

dx

dy
= −2x

y
,

dy

dy
= 1,

da

dy
=
a

y
.

As initial conditions for x and y we choose the separatrix given by y0 = ±
√

2x0.
As proposed in the algorithm we choose a0 = 1 = const on the separatrix. We
then have the solutions a(y) = y/y0 and x(y) = ±y3

0/(y
2
√

2), which we plot in
Fig. 2b and which lead to

a(x, y) =

(
|y|√
2|x|

)1/3

.

This form of a(x, y) is clearly problematic since then Ḡηη = 1/(a2(∇ψ)2) and

the volume form
√
Ḡ = 1/(a(∇ψ)2) diverge on the y = 0 line and become 0 for

x = 0. Note that Ḡηη determines the physical cell-size (length) lη =
√
Ḡηη4η,

where 4η is the cell-size in the computational domain. If Ḡηη becomes very
small, then so will lη. This is clearly visible in Fig. 2b on the x = 0 line.
Now, a large variation in grid-size in a small region of the physical domain is
highly undesirable in any numerical scheme. In advection type systems a small
cell-size deteriorates the CFL condition, while in inversion problems the large
variations in cell-size makes the discretization matrix highly ill-conditioned. On
the other hand, large cell-sizes lη at y = 0 mean that this region cannot be
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accurately resolved. The cell-sizes seem unproblematic in Fig. 2b at y = 0.
However, the problem manifests in convergence studies, where the cell-size 4η
in the computational domain tends to zero. Since lη =

√
Ḡηη4η and Ḡηη →∞

at y = 0, the physical cell size lη might not tend to zero or not at the same
rate as 4η. This behaviour deteriorates or completely inhibits convergence of
a numerical scheme. We therefore conclude that using the algorithm without a
proper monitor metric is inadvisable.
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(a) with monitor (non-orthogonal)
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(b) without monitor (orthogonal)

Figure 2: Grids constructed for ψ = (2x2 − y2)/2 with (a) and without (b) monitor metric.
We plot the contours ψ ∈ ±{0, 0.07, 0.2, 0.4} in dotted blue; in solid orange we have the η
coordinates through the separatrix y0 = ±

√
2x0 with the points x0 ∈ ±{0.1, 0.2, 0.3, 0.4, 0.5}.

Without monitor metric the physical metric element Ḡηη becomes 0 on the x = 0 line and
diverges on the y = 0 line. We indicate this inconsistency with the solid red lines in (b).

5.2. Tokamak grids

Before we can construct a grid for a realistic scenario we need to construct an
analytical flux-function with X-point. Reference [27] presents “One size fits all”
analytic solutions to the Grad-Shafranov equation using Solov’ev profiles. The
solution ψ depends on thirteen coefficients. The exact values reside in the file
geometry_params_Xpoint.js in feltor/inc/geometries of the accompanying
dataset [26]. We will use this solution for ψ throughout the remainder of this
section.

In Fig. 3 we show the grid produced by our algorithm with and without
refinement. In the regular grid Fig. 3a the cell distribution is fairly homogeneous
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(a) regular grid (b) refined grid

Figure 3: Orthogonal grids (in the monitor metric Eq. (18)) with P = 1, Nζ = 8 andNη = 176.
We have qζ = 1/4 and qη = 1/22. Regular grid (a), and refined grid with mζ = mη = 1 and
dζ = dη = 4 (b). Note that the nodes represent cell centres and not the actual cell boundaries.
The grey lines denote the domain boundaries at ψ0 = −15 and ψ1 = 5. We also plot the line
ψ = 0 to visualize the separatrix. Note the non-orthogonality at the X-point.
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except in the vicinity of x = y = 350, where cells become very large on the
outside of the domain, and around the X-point. In the unrefined grid Fig. 3a
the cells adjacent to the X-point are too large to sufficiently resolve this area.
The resolution is improved in the refined version of the grid in Fig. 3b. Here, we
divide the last cell on each side of the X-point in both the ζ and the η direction
by four (i.e. mζ = mη = 1 and dζ = dη = 4).

The here proposed refinement strategy is sufficient for the present study.
However, in any production code the refinement techniques should be re-evaluated.
The downside of the chosen product space refinement is that cells become un-
necessarily small in the regions outside the X-point region. This is unfavourable
for advection type equations. The goal must be to keep the cell sizes as homoge-
neous as possible across the domain so as not to deteriorate the CFL condition
for advection-diffusion type problems. Fortunately, the X-point is a single point
such that the refinement is local and shouldn’t present any performance issues.
A direct solution could be giving up the product space property of the compu-
tational space and restricting the refinement to the area around the X-point.
This, however, increases the implementation complexity. Let us point out here
that there are advanced techniques available that might be worth considering
for an efficient implementation. For elliptic grids it is known that with the help
of adaption functions and monitor metrics the distribution of cells across the
domain can be controlled. In this way the coordinate transformation itself in-
cludes a grid refinement [25, 28, 15, 29]. Although these techniques are very
powerful their applicability to the present case remains to be explored. The
difficulty lies in the fact that an elliptic equation has to be inverted on the do-
main, which can prove difficult to achieve due to the diverging metric at the
X-point. A converging solver, however, is a prerequisite for the generation of
elliptic grids. This motivates the following study.

5.3. Discretization of an elliptic equation

The two-dimensional elliptic equation ∆φ = ρ in the new coordinates reads

∂

∂ζ

(√
Ḡ

(
Ḡζζ

∂φ

∂ζ
+ Ḡζη

∂φ

∂η

))
+

∂

∂η

(√
Ḡ

(
Ḡηζ

∂φ

∂ζ
+ Ḡηη

∂φ

∂η

))
=
√
Ḡρ,

(19)

where we multiplied with the volume element to make the left hand side sym-
metric. In this equation Ḡ denotes the Cartesian metric G transformed to the
new coordinate system. We use this equation to test the quality of our grids.

We use a local discontinuous Galerkin method to discretize this equation on
the computational (ζ, η) domain [22]. This method approximates the solution
by a order P −1 polynomial in each cell with P being the number of polynomial
coefficients. In contrast to finite element methods the approximation is allowed
to be discontinuous at cell boundaries. As described in Reference [21] we com-
pute the left side of Eq. (19) by discretizing the first derivatives ∂/∂ζ and ∂/∂η
with a forward discretization. These are just the discretizations we would have
for the discretization of first derivatives in a Cartesian grid. Of course, we need
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to take into account the special topology of the computational space (cf. Fig. 1).
Note that the derivative is a topological entity, which means that no metric is
needed to define a directional derivative on a manifold [23]. The metric elements
can be multiplied to the first derivatives by simple point-by-point multiplica-
tion. The second derivatives can be computed by using the adjoint of the first
derivatives. Note that in the local discontinuous Galerkin scheme we need to
add jump terms to the discretizations to penalize the discontinuities at the cell
boundaries [22]. Without these the numerical solutions fail to converge at all.
We are then finally left with a self-adjoint discretization of the elliptic operator.

It is a priori unclear whether our numerical scheme can cope with the di-
verging metric elements at the X-point, even if the metric or any other function
is never evaluated at the X-point itself. Note that the coordinate singularity
is weak in the sense that the integration over the volume element yields the
correct volume of the domain. We verified this numerically, that is we numeri-
cally evaluate the volume

∫
dζdη

√
Ḡ(ζ, η) using Gauss–Legendre integration in

computational space. We find equivalent results to integrating
∫

Ω
dxdy directly

(with Ω being the physical domain) in Cartesian coordinates using a simple
quadrature rule. Thus, the weakly formulated discontinuous Galerkin scheme
should be able to cope with the diverging metrics without any necessary adap-
tions.

5.4. Convergence tests

We now test the convergence with a “bump” solution

φ(x, y) =

e1+

(
(x−x0)2

σ2
+

(y−y0)2

σ2
−1

)−1

for (x− x0)2 + (y − y0)2 < σ2

0 else
(20)

with centre (x0, y0) = (480,−300) and radius σ = 70. This solution has no
variation across the X-point situated at approximately (xX , yX) = (431,−433).
The boundary conditions are homogeneous Dirichlet in ζ and η. We plot the
analytic solution Eq. (20) for the given parameters in Fig. 4. We can insert
Eq. (20) into Eq. (19) to compute the corresponding right hand side analytically.
With this right hand side given we then compute a numerical solution φnum to
Eq. (19). The relative error and the order of convergence can be defined in the
L2 norm as

ε =

∫ ζ1ζ0 dζ
∫ η1
η0

dη
√
Ḡ(φnum − φana)2∫ ζ1

ζ0
dζ
∫ η1
η0

dη
√
Ḡφ2

ana

1/2

, O =
ln[ε(2N)/ε(N)]

ln(2)
, (21)

where
√
Ḡdζdη is the correct volume form in the ζ, η coordinate system. The

order O is computed via two consecutive errors, between which the number of
cells N is doubled.

In Table 1 we show the error and corresponding orders for various polynomial
orders and grid resolutions. A ratio ofNη/Nζ = 20 is chosen such that the aspect
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Figure 4: The location of our two “bump” solutions, the upper located at (xX , yX) =
(431,−433) with σ = 70 and the lower bump located near the X-point at (x0, y0) =
(420,−470) with σ = 50. We also indicate the location of the separatrix with the white
line.

P=1 P=2 P=3 P=4
Nζ Nη error order error order error order error order

4 88 5.46E+00 5.71E-01 5.95E-01 1.81E-01
8 176 4.53E-01 3.59 4.37E-01 0.39 1.35E-01 2.14 3.01E-02 2.59
16 352 2.33E-01 0.96 4.68E-02 3.22 1.06E-02 3.68 2.08E-03 3.86
32 704 1.99E-02 3.55 6.28E-03 2.90 8.14E-04 3.70 1.59E-04 3.71
64 1408 8.63E-03 1.21 1.33E-03 2.24 9.66E-05 3.07 1.32E-05 3.60
128 2816 4.41E-03 0.97 3.34E-04 2.00 1.32E-05 2.87 1.70E-06 2.95

Table 1: Convergence table for the bump solution Eq. (20) away from the X-point for various
polynomial orders. No grid refinement is used. Error and order are defined via Eq. (21).
Average orders are: (2.06, P = 1); (2.15, P = 2); (3.09, P = 3); (3.34, P = 4).
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ratio of the resulting cells is approximately unity. We observe a rather irregular
convergence for all values of P . We attribute this behaviour to the irregular
shapes of the grid cells at the location of the bump comparing Fig. 4 to Fig. 3.
Although in this example there is no variation of the solution at the X-point
the grid cells nevertheless become larger in its vicinity. Also the aspect ratio
of the cells in the upper half of the bump are different from the aspect ratio in
the lower half. We compute an average order of convergence with the values at
Nζ = 4 and Nζ = 128 in an attempt to smooth the variations. The expected
order P is then approximately recovered for P = 2 and P = 3. For P = 1
the average order is approximately 2, however, the orders of the two finest grids
indicate that only the expected first order is recovered. For P = 4 the computed
average order is more than 20% too small. On the other side the absolute errors
in the P = 4 grids are the smallest among all grids. Finally, note that we also
observed this irregular convergence in a similar example in Reference [15], where
no X-point was present in the domain.

Let us now turn our attention to the case when variations around the X-point
appear in the solution. We use the bump defined in Eq. (20) with (x0, y0) =
(420,−470) and σ = 50. This is the lower bump in Fig. 4.

P=1 P=2 P=3 P=4
Nζ Nη error order error order error order error order

4 88 1.65E+01 1.36E+00 7.63E-01 8.74E-01
8 176 2.71E+00 2.60 6.48E-01 1.07 7.32E-01 0.06 3.28E-01 1.42
16 352 3.74E-01 2.86 8.43E-01 -0.38 3.70E-01 0.98 1.48E-01 1.15
32 704 5.72E-01 -0.61 2.98E-01 1.50 8.55E-02 2.11 8.84E-02 0.74
64 1408 1.95E-01 1.55 6.25E-02 2.25 1.83E-02 2.22 2.95E-02 1.58
128 2816 5.36E-02 1.86 3.48E-02 0.85 4.14E-02 -1.18 4.89E-03 2.59

Table 2: Convergence table for the bump solution Eq. (20) on the X-point for various poly-
nomial orders. No grid refinement is used. Error and order are defined via Eq. (21). Average
orders are: (1.65, P = 1); (1.06, P = 2); (0.84, P = 3); (1.50, P = 4).

In Table 2 we show the results of the same experiment as in Table 1. Also in
this case the convergence rates are highly irregular and even negative in some
cases. Again, we compute the average orders, which this time lie between 0.86
and 1.5. From this we conclude that the X-point reduces the convergence rate
to around order 1 for all numbers of polynomial coefficients. Inspection of the
error reveals that indeed the error is entirely dominated by the region around the
X-point. We attribute the loss of convergence to the diverging metric elements.
As seen in Fig 3 these lead to large cell sizes in ζ and η. If we define the cell size
in the computational domain as ∆ζ := Lζ/Nζ and ∆η := Lη/Nη, we compute
the cell sizes in the physical domain by

lζ :=
√
Ḡζζ4ζ =

√
Ḡ
√
Ḡηη4ζ ∝

√
ḡ
√
ḡηη4ζ = (a0|∇ψ|)−14ζ, (22a)

lη :=
√
Ḡηη4η =

√
Ḡ
√
Ḡζζ4η ∝

√
ḡ
√
ḡζζ4η = (f0|∇ψ|)−14η, (22b)
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where we approximate the length in the actual Cartesian metric G with the
length in the monitor metric g. Clearly, the cell sizes lζ and lη diverge at the
X-point due to the vanishing gradient in ψ. Now in the previous tests we looked
for convergence in terms of 4ζ and 4η that is ε ∝ 4ζP . However, it could
be argued that the error should be proportional to lζ instead of 4ζ. As long
as |∇ψ| is well-behaved the definitions are the same, but at the X-point this
makes a difference. This means that even though we reduce 4ζ and 4η in the
computational domain, lζ and lη do not shrink with the same rate, which might
explain the reduced orders in Table 2.

In order to remedy the loss of convergence due to large lζ and lη we use the
grid refinement from Section 3.5. The grid refinement has the goal to reduce
the sizes 4ζ and 4η locally around the X-point until the physical lengths lζ
and lη at the X-point equal the lengths in the remaining regions of the grid. If
the error at the X-point is small enough, the error should then be dominated
by the error in the remaining grid. Theoretically, this should then restore the
expected order.

Numerically, we test this hypothesis using again the bump on the X-point
as a solution to Eq. (19). In Table 3 we show results for a fixed value P = 3.

Nζ ×Nη 4× 88 8× 176 16× 352 32× 704
dζ = dη error order error order error order error order

1 7.63E-01 7.32E-01 3.70E-01 8.55E-02
2 7.32E-01 x 3.23E-01 9.54E-02 1.81E-02
4 3.70E-01 1.36E-01 2.43 2.19E-02 2.64 4.06E-02
8 8.54E-02 1.54E-01 5.28E-02 6.96E-03
16 1.79E-02 1.31E-01 1.41E-02 2.66E-03 3.04
32 5.38E-02 1.51E-01 1.68E-02 2.18E-03

Table 3: Convergence table for the bump solution Eq. (20) on the X-point for P = 3 and
increasing refinement. Note that for Nζ × Nη = 4 × 88 the bump lies entirely in the refined
region. Error and order are defined via Eq. (21). The orders are computed with the error
values in the same row the orders are indicated. For Nζ × Nη > 4 × 88 these are the rows
where the error starts to stagnate with increasing refinement.

We start with unrefined grids (dζ = dη = 1) of increasing resolutions Nζ and
Nη. Then, we divide the last cells adjacent to the X-point into dζ = dη parts
and repeat the inversion of Eq. (19). Note that since we only refine the last cells
adjacent to the X-point the actual region in the physical domain that is refined
changes with grid resolutions. This leads to the effect that the solution for
the lowest resolution lies entirely in the refined region and thus grid-refinement
always leads to an improved error. In this case, the errors are equal to the
corresponding P = 3 column in Table 2, because, as discussed in Section 3.5,
the refined grids are equivalent to the unrefined grids of increased resolution.
Only for higher resolutions in Nζ × Nη we observe error stagnation for higher
grid refinement. If we compute the order with the stagnating values, we recover
P ≈ 3.
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In order to be entirely certain that the error is dominated by the unrefined
region we repeat our experiment with the sum of both upper and lower bumps
as a solution to Eq. (19) visible in Fig. 4. In Table 4 we show results for a fixed

Nζ ×Nη 4× 88 8× 176 16× 352 32× 704
dζ = dη error order error order error order error order

1 7.16E-01 4.57E-01 2.18E-01 4.96E-02
2 5.81E-01 1.92E-01 5.84E-02 1.06E-02
4 3.72E-01 x 1.21E-01 1.62 1.55E-02 2.97 2.35E-02
8 2.71E-01 1.33E-01 3.43E-02 4.19E-03
16 2.55E-01 1.18E-01 1.23E-02 1.66E-03 3.23
32 3.29E-01 1.33E-01 1.41E-02 1.43E-03

Table 4: Convergence table for the two bumps solution shown in Fig. 4 for P = 3 and
increasing refinement. Error and order are defined via Eq. (21). The orders are computed
with the error values in the same row the orders are indicated. These are the rows where the
error starts to stagnate with increasing refinement.

value P = 3.
Now, the error first decreases and then stagnates even for Nζ ×Nη = 4×88.

The stagnating values are comparable to the stagnating values in Table 3 and
the values in the P = 3 column of Table 1. The latter observation strongly
supports the conclusion that with enough refinement at the X-point the error is
dominated by the error in the unrefined region. If we compute the order with
the stagnating values, we indeed recover P ≈ 3. The first value of 1.62 at the
8×176 could be explained by the relatively large errors in the 4×88 and 8×176
grids. Convergence only sets in at higher resolutions.

6. Conclusion

In summary we make two statements. First, a structured aligned orthogo-
nal grid can be consistently constructed only when the separatrix forms a right
angle (∆ψ = 0) at the X-point. We discuss how with the help of a monitor
metric the notion of orthogonality can change in a way that a grid construction
is possible. This is based on our theoretical analysis and the following discus-
sion of our algorithm for structured grid generation. Second, convergence of a
numerical discretization of an elliptic equation on the grid may reduce to or-
der one due to the diverging volume element or cell sizes at the X-point. Our
local discontinuous Galerkin discretization converges with order approximately
P only as long as the solution is constant around the X-point. We show that
grid refinement is needed around the X-point in order to achieve convergence
at order greater than one, if the solution varies across the X-point. This is the
typical situation in a practical application of the grid.
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