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Direct sampling method for retrieving small perfectly conducting cracks

Won-Kwang Park
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Abstract

We consider direct sampling method for finding location of a set of linear perfectly conducting cracks with
small length from collected far-field data corresponding to the single incident field. To show the feasibility
of direct sampling method, we first prove that the indicator function of direct sampling method can be
represented by the Bessel function of order zero and the length of cracks. Results of numerical simulations
are shown to support the fact that the imaging performance is highly depending on the length of cracks. To
explain the fact that imaging performance is highly depending on the rotation of crack, we perform further
analysis of direct sampling method by establishing a representation by the Bessel functions of order zero
and one.
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1. Introduction

This work concerned on direct sampling method for a fast imaging of small, linear perfectly conducting
cracks located in two-dimensional space R

2. It is well-known that direct sampling method is a fast, simple
and effective imaging technique. Furthermore, it requires only a few (one or two) incident fields and does
not requires additional operations (e.g., singular value decomposition, solving adjoint problems or ill-posed
integral equations, etc.). Due to this reason, it applied to many inverse scattering problems [6, 5, 1, 2, 3].

Based on these studies, it turns out that direct sampling method is an effective in full-view inverse
scattering problem. Specially, based on the relationship between Bessel function of order zero and the
indicator function of direct sampling method [1, 3], the reason of detection of targets has been investigated.
However, the analysis is not fully reliable in the imaging of cracks, for example, cracks whose lengths
are significantly smaller than those of the others are theoretically undetectable and identified location is
different corresponding to the direction of propagation. Hence, a further analysis of indicator function of
direct sampling method still needs to be performed, which is the motivation for our work.

In this paper, we carefully identify mathematical structure of indicator function of direct sampling
method. In detail, we prove that the indicator function can be represented by the Bessel functions of order
zero and one, length and rotation of cracks, and the direction of propagation. This is based on the fact
that the far-field pattern can be represented by the asymptotic expansion formula in the presence of small,
linear perfectly conducting cracks (see [8] for instance). From the identified structure, we explain the reason
of unexplained phenomenon and find two methods of improvement by applying multiple incident fields and
frequencies. Throughout careful analysis and numerical experiments, we demonstrate the improvement of
direct sampling method theoretically and numerically.

This paper is organized as follows. In Section 2, we survey two-dimensional forward problem, asymptotic
expansion formula due to the existence of small cracks, and indicator function of direct sampling method. In
Section 3, we carefully identify the structure of indicator function by establishing a relationship with Bessel
functions of order zero and one, length and rotation of cracks, and the incident field direction to explain the
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identification of direct sampling method is highly depending on not only the length and rotation of cracks but
also the direction of incident field. To support identified structure, several results of numerical simulations
exhibited. In Section 4, we introduce two methods of improvement by applying multiple directions of
incident fields and multiple frequencies. Furthermore, we perform numerical simulations to examine the
improvement. Section 5 contains a short conclusion and some remarks on future work.

2. Forward problem and direct sampling method

2.1. Two-dimensional forward problem and far-field pattern

In this section, we introduce the two-dimensional direct scattering problem forM different, well-separated
linear perfectly conducting cracks of length 2ℓm, denoted by Σm, m = 1, 2, · · · ,M , located in the homoge-
neous space R

2. For a more detailed description, we recommend [9]. Throughout this study, we denote Σm

as
Σm =

{

cm = Rφ[xm, ym]T : −ℓm ≤ xm ≤ ℓm
}

,

for m = 1, 2, · · · ,M , and let Σ be the collection of cracks. Here cm is the center of Σm and Rφ denotes
rotation by φ. We assume that the Σm are sufficiently separated from each other such that

k|cm − cm′ | ≫ 1− 1

4
=

3

4
,

where k denotes the positive wavenumber, which is of the form k = 2π/λ. Here, λ is the given wavelength
and assume that 2ℓm ≪ λ and kℓm → 0+ for all m = 1, 2, · · · ,M . In this study, following from [3], we
consider the plane-wave illumination: let ψinc(x,d) = eikd·x be the given incident field with fixed propagation
direction d ∈ S

1. Here S1 denotes the two-dimensional unit circle centered at the origin. And let ψ(x,d) be
the time-harmonic total field that satisfies the following Helmholtz equation

△ψ(x,d) + k2ψ(x,d) = 0 in R
2\Σ (1)

with Dirichlet boundary condition
ψ(x,d) = 0 on Σ. (2)

Let ψscat(x,d) = ψ(x,d) − ψinc(x,d) be the scattered field ψscat(x,d) that satisfy the Sommerfeld
radiation condition

lim
|x|→∞

√

|x|
(

∂ψscat(x,d)

∂ |x| − ikψscat(x,d)

)

= 0

uniformly in all directions θ = x/ |x|. We denote ψ∞(θ,d) as the far-field pattern of the ψscat(x,d) that
satisfies

ψscat(x,d) =
eik|x|
√

|x|

{

ψ∞(θ,d) +O
(

1

|x|

)}

, |x| −→ +∞

uniformly in all directions θ = x/|x| ∈ S
1. Based on [9], ψ∞(θ,d) can be represented as the following

single-layer potential with unknown density function ϕ(cm,d):

ψ∞(θ,d) = − 1 + i

4
√
πk

M
∑

m=1

∫

Σm

e−ikθ·cmϕ(cm,d)dcm. (3)

Based on [8], the far-field pattern ψ∞(θ,d) can be represented as the following asymptotic expansion formula,
which plays a key role in the analysis of the imaging function of the direct sampling method.
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2.2. Indicator function of direct sampling method

Now, we briefly introduce the indicator function of direct sampling method for finding location of Σm

from a set of measured far-field pattern data

Ψ := {ψ∞(θn,d) : n = 1, 2, · · · , N} .

Throughout this paper, we assume that total number of N is sufficiently large and consider the full-view
inverse scattering problem, i.e., we set

θn =

[

cos
2πn

N
, sin

2πn

N

]T

.

Then, for a search point x ∈ R
2, the indicator function of direct sampling method is given by

I(x) := |〈ψ∞(θn,d), e
−ikθn·x〉|

||ψ∞(θn,d)||L2(S1)||e−ikθn·x||L2(S1)
, (4)

where

〈f1, f2〉 :=
N
∑

n=1

f1f2 and ||f ||L2(S1) =
√

〈f, f〉.

Following [3], it has been confirmed that I(x) satisfies the relation

I(x) ≈
M
∑

m=1

J0(k|x− cm|). (5)

This means that I(x) plots peaks of magnitude 1 at x = cm and has small magnitude elsewhere so that
location of cm can be identified via the map of I(x). Here J0 denotes the Bessel function of the first kind
of order zero.

On the basis of the relation (5), the feasibility of direct sampling method can be explained. However,
following two phenomenon can be observed through the simulation but the the reason of phenomenon not
be explained theoretically:

1. the value of I(x) is highly depending on the length ℓm of Σm, refer to Figure 3.

2. if ℓm are same, the value of I(x) is highly depending on the rotation Rφ, refer to Figure 4.

Motivated by this, we carefully analyze the indicator function to explain unexpected results.

3. Structure analysis of indicator function

3.1. Analysis of indicator function: dependency of the length of cracks

First, we explore the structure of indicator function by establishing a relationship with Bessel function
of order zero and length of cracks. For this, we adopt an asymptotic expansion formula due to the presence
of Σm, refer to [8]. This plays a key role of our analysis.

Lemma 3.1 (Asymptotic expansion formula). If ψ(x,d) satisfies (1) and (2), and ψinc(x,d) = eikd·x, then
following asymptotic expansion formula holds for 0 < ℓm < 2 and ℓm ≪ λ/2:

ψ∞(θ,d) =

M
∑

m=1

2π

ln(ℓm/2)
eikd·cme−ikθ·cm +O

(

1

| ln ℓm|2
)

. (6)

Following result is useful to explore the structure. A rigorous derivation is in [10].
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Lemma 3.2. For a sufficiently large N , θn, θ ∈ S
1, and x ∈ R

2, the following relation holds:

N
∑

n=1

eikθn·x =

∫

S1

eikθ·xdθ = 2πJ0(k|x|).

By combining Lemmas 3.1 and 3.2, we can obtain the following structure of indicator function. The
result is follows.

Theorem 3.3 (Structure of indicator function). Assume that total number of observation direction N is
sufficiently large. Then, I(x) can be represented as

I(x) ≈
∣

∣

∣

∣

∣

M
∑

m=1

J0(k|x− cm|)
ln(ℓm/2)

∣

∣

∣

∣

∣

(

max

∣

∣

∣

∣

∣

M
∑

m=1

1

ln(ℓm/2)

∣

∣

∣

∣

∣

)−1

. (7)

Proof. Applying (6) to (4), we can evaluate

〈ψ∞(θn,d), e
−ikθ·x〉 ≈

N
∑

n=1

M
∑

m=1

2π

ln(ℓm/2)
eikd·cme−ikθn·cme−ikθn·x

=
M
∑

m=1

2π

ln(ℓm/2)
eikd·cm

(

N
∑

n=1

eikθn·(x−cm)

)

.

With this, by applying Lemma 3.2, we can obtain

〈ψ∞(θn,d), e
−ikθn·x〉 ≈

M
∑

m=1

(2π)2

ln(ℓm/2)
eikd·cmJ0(k|x− cm|).

Since, ||e−ikθn·x||L2(S1) = 1, |eikd·cm | = 1, and J0 has maximum value 1, applying Hölder’s inequality, we
arrive (7). This completes the proof.

Remark 3.1. Based on the identified structure (7), we can observe that the location of cm can be detected
by plotting I(x). However, if the length of Σm is significantly shorter than the others, its location will not
be detectable. Hence, we can conclude that the imaging performance of direct sampling method is highly
depending on the length of crack.

3.2. Numerical simulations: part 1

In this section, results of numerical simulations are presented to support identified structure of (7). For
this, three linear cracks Σm with lengths 2ℓm were used throughout the numerical simulations:

Σ1 =
{

[s+ 0.6, 0.2]T : −ℓ1 ≤ s ≤ ℓ1
}

Σ2 =
{

Rπ/4[s− 0.4, s− 0.35]T : −ℓ2 ≤ s ≤ ℓ2
}

Σ3 =
{

R7π/6[s− 0.25, s+ 0.6]T : −ℓ3 ≤ s ≤ ℓ3
}

.

The wavelength λ was set to 0.5 and N = 30 elements of Ψ were collected, where all elements of Ψ were
generated by solving the Fredholm integral equation of the second kind along the cracks Σm introduced in
[11, Chapter 4].

Example 3.1 (Imaging of cracks with the same length). Figure 1 shows map I(x) for d = [0, 1]T when the
lengths of all Σm are the same, say, ℓm ≡ 0.05. As for the traditional results [3], although there exists some
artifacts but the exact locations cm can be identified clearly.
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Figure 1: Map of I(x) for λ = 0.5 when ℓm ≡ 0.05, m = 1, 2, 3.
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Figure 2: Map of I(x) for λ = 0.5 when ℓ1 = 0.05, ℓ2 = 0.04, and ℓ3 = 0.03.

Example 3.2 (Imaging of cracks with different lengths). In this example, we consider the imaging of cracks
when all the lengths are different. Figure 2 shows map of I(x) for d = [0, 1]T when ℓ1 = 0.05, ℓ2 = 0.04,
and ℓ3 = 0.03. Based on this result, we can observe that the value of I(c3) is smaller than the values I(c1)
and I(c2) because the length of Σ3 is shorter than the others. Although some artifacts are exists in the
map, we can identify locations of all cracks.

Example 3.3 (Imaging of cracks with extremely different lengths). In this example, we consider the imaging
of cracks when one crack is significantly longer than the others. Figure 3 shows map of I(x) for d = [0, 1]T

when ℓ1 = 0.05 and ℓ2 = ℓ3 = 0.01. As discussed, only Σ1 can be identified clearly via the map of I(x)
because the lengths of the remaining cracks (here, Σ2 and Σ3) are significantly shorter than that of Σ1.
Unfortunately, it is very to identify the location of Σ2 and Σ3 due to the appearance of artifacts.

Example 3.4 (Influence of incident direction). In this example, we consider the influence of incident direction.
Figure 4 shows maps of I(x) for d = [cos(3π/4), sin(3π/4)]T and d = [cos(π/6), sin(π/6)]T . It is interesting
to observe that although three peaks of large magnitudes are appear in the map of I(x), identified locations
are inaccurate. Furthermore, identified locations are shifted when applied incident direction d is varied.
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Figure 3: Map of I(x) for λ = 0.5 when ℓ1 = 0.05, ℓ2 = ℓ3 = 0.01.

Unfortunately, we cannot explain this phenomenon via the structure (7). Hence, further analysis of indicator
function is needed to explain this result.

3.3. Analysis of indicator function: dependency of the rotation of cracks

In order to explain the results in Figure 4, we explore the structure of indicator function by establishing
a relationship with Bessel function of order zero and one, incident direction, and rotation of cracks. For
this, we adopt second-order asymptotic expansion formula due to the presence of Σm, refer to [8]. In this
section, we assume that ℓm ≡ ℓ for m = 1, 2, · · · ,M .

Lemma 3.4 (Asymptotic expansion formula: higher order). If ψ(x,d) satisfies (1) and (2), and ψinc(x,d) =
eikd·x, then following asymptotic expansion formula holds for 0 < ℓ < 2 and ℓ≪ λ/2:

ψ∞(θ,d) =
M
∑

m=1

(

2π

ln(ℓ/2)
eikd·cme−ikθ·cm − πℓ2

∂eikd·cm

∂t(cm)

∂e−ikθ·cm

∂t(cm)

)

+O(ℓ3), (8)

where ∂/∂t(cm) denotes the tangential derivative at cm ∈ Σm.

And we introduce a useful relation derived in [10].

Lemma 3.5. For a sufficiently large N , θn, θ,ϕ ∈ S
1, and x ∈ R

2, the following relation holds:

N
∑

n=1

(ϕ · θn)e
ikθn·x =

∫

S1

(ϕ · θ)eikθ·xdθ = 2πi

(

x

|x| · ϕ
)

J1(k|x|).

By combining Lemmas 3.4 and 3.5, we can obtain the following structure of indicator function. The
result is follows.

Theorem 3.6 (Structure of indicator function). Assume that total number of observation direction N is
sufficiently large. Then, I(x) can be represented as

I(x) = |Φ1(x) + Φ2(x,d)|
max
x∈R2

|Φ1(x) + Φ2(x,d)|
, (9)
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Figure 4: Map of I(x) for d = [cos(3π/4), sin(3π/4)]T (top) and d = [cos(π/6), sin(π/6)]T (bottom).

where

Φ1(x,d) =
2

ln(ℓ/2)

M
∑

m=1

eikd·cmJ0(k|x− cm|) (10)

Φ2(x,d) = −k2ℓ2i
M
∑

m=1

(

(d · t(cm))eikd·cm
)(

x− cm

|x− cm| · t(cm)

)

J1(k|x− cm|). (11)

Proof. Based on Lemma 3.6 and an elementary calculus, we can evaluate

N
∑

n=1

∂eikd·cm

∂t(cm)

∂e−ikθn·cm

∂t(cm)
e−ikθn·x =

N
∑

n=1

(

(ikd · t(cm))eikd·cm
)(

(ikθn · t(cm))eikθn·(x−cm)

)

= −k2
(

(d · t(cm))eikd·cm
)( N

∑

n=1

(θn · t(cm))eikθn·(x−cm)

)

= −2πik2
(

(d · t(cm))eikd·cm
)(

x− cm

|x− cm| · t(cm)

)

J1(k|x− cm|)

7



With this, applying (8) to (4) and Theorem 3.3, we can obtain

〈ψ∞(θn,d), e
−ikθ·x〉 ≈

N
∑

n=1

M
∑

m=1

(

2π

ln(ℓ/2)
eikd·cme−ikθn·cme−ikθn·x − πℓ2

∂eikd·cm

∂t(cm)

∂e−ikθn·cm

∂t(cm)
e−ikθn·x

)

=
(2π)2

ln(ℓ/2)

M
∑

m=1

eikd·cmJ0(k|x− cm|)

− 2π2k2ℓ2i
M
∑

m=1

(

(d · t(cm))eikd·cm
)(

x− cm

|x− cm| · t(cm)

)

J1(k|x− cm|).

Hence, we can obtain (9) by applying Hölder’s inequality. This completes the proof.

Remark 3.2. Based on the existing results, I(x) is expected to exhibit peaks of magnitude of 1 at the
location x = cm ∈ Σm and of small magnitudes at x /∈ Σm. However, based on the identified structure
(9), value of I(x) is close to 1 when |Φ(x, cm,d)| reaches its maximum value. This means that identified
location is highly depending on the direction of propagation d and unit tangential direction t(cm), i.e.,
rotation of Σm. For example, if d = −t(cm) and x − cm is parallel to t(cm) then, |Φ(x, cm,d)| does not
have its maximum value at x = cm. This is the reason why inaccurate location of Σm is identified via the
direct sampling method.

Now, let us consider the effect of Φ2(x,d) in (11).

Corollary 3.7. Assume that M = 1. Then, if x is close to c such that 0 < k|x− c| ≪
√
2 then

|Φ2(x,d)| ≪ |Φ1(x,d)| (12)

and if x is far away from c such that k|x− c| ≫ 0.75 then

|Φ1(x,d)|, |Φ2(x,d)| −→ 0+ (13)

for all x ∈ R
2.

Proof. Let Γ(n) denotes the Gamma function and x is close to c such that 0 < k|x− c| ≪
√
2. Then, based

on the asymptotic form of Bessel function

Jn(x) ≈
1

Γ(n+ 1)

(x

2

)n

,

we can observe that

|Φ1(x,d)| =
∣

∣

∣

∣

2

ln(ℓ/2)
eikd·cJ0(k|x− c|)

∣

∣

∣

∣

≤
∣

∣

∣

∣

2

ln(ℓ/2)

1

Γ(1)

∣

∣

∣

∣

=

∣

∣

∣

∣

2

ln(ℓ/2)

∣

∣

∣

∣

.

Since kℓ→ 0+,

|Φ2(x,d)| =
∣

∣

∣

∣

k2ℓ2
(

(d · t(c))eikd·c
)(

x− c

|x− c| · t(c)
)

J1(k|x− c|)
∣

∣

∣

∣

≤ (kℓ)2|J1(k|x− c|)| ≈ π2

Γ(2)

k|x− c|
2

≪ (kℓ)2√
2

−→ 0.

Hence, the value of |Φ2(x,d)| can be negligible and we can conclude (12) holds.
Now, we let x is far away from c such that k|x−c| ≫ 0.75. Then based on the asymptotic form of Bessel

function

Jn(x) ≈
√

2

πx

(

cos
(

x− nπ

2
− π

4

)

+O
(

1

|x|

))

,

8



we can observe that

|Φ1(x,d)| ≤
2
√
2

| ln(ℓ/2)|
√

k|x− c|
≪ 8

√
2

3| ln(ℓ/2)| −→ 0+

and

|Φ2(x,d)|
(kℓ)2

√
2

√

k|x− c|
≪ 4

√
2(kℓ)2

3
−→ 0 + .

Hence, we can conclude (13) holds. This completes the proof.

Remark 3.3. Fortunately, based on Corollary 3.7, the term (11) does not significantly contribute to the
imaging performance. Hence, we can say that identified location is close to the true location cm. This
means that it can be regarded as good initial guess and exact location of Σm can be retrieved via the
Newton-type iteration scheme, two-stage method or level-set strategy, refer to [9, 12, 13, 14, 15, 16].

4. Two methods of improvement

From now on, we investigate two methods of improvement for obtaining better results than the traditional
direct sampling method. The first one is the application of multiple number of incident directions and the
second one is the multi-frequency based imaging technique. Notice that since we try to improve imaging
performance only, we do not consider the shift phenomenon considered in Section 3.3.

4.1. Improvement of indicator function: multiple directions of incident fields

First, we consider an improvement of the direct sampling method using a set of measured far-field pattern
data:

F := {ψ∞(θn;dl) : n = 1, 2, · · · , N, l = 1, 2, · · · , L} ,
where we assume that the total number L of the incident fields is small and set

dl = [cos θl, sin θl]
T =

[

cos
2πl

L
, sin

2πl

L

]T

.

In several researches [1, 2, 3], an indicator function of the direct sampling method with a few number of
incident fields is designed as follows:

IIF(x) := max
x∈R2

{I(x; l) : l = 1, 2, · · · , L} , (14)

where I(x; l) with incident direction d = dl is

I(x; l) := |〈ψ∞(θn,dl), e
−ikθn·x〉|

||ψ∞(θn,dl)||L2(S1)||e−ikθn·x||L2(S1)
.

Unfortunately, it is still difficult to identify cracks with relatively small lengths. Due to this reason, we
suggest an alternative indicator function IAIF(x, L) for improving (14):

IAIF(x, L) :=
|Ψ(x, L)|

max
x∈R2

|Ψ(x, L)| , (15)

where

Ψ(x, L) :=
L
∑

l=1

e−ikdl·x〈ψ∞(θn;dl), e
−ikθn·x〉. (16)

Theoretical reason of improvement is derived as follows.
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Theorem 4.1. Assume that total number of observation direction N is sufficiently large and incident
direction L is small. Then, by letting cm − x = |cm − x|[cosϕm, sinϕn]

T , IAIF(x, L) can be represented as
follows:

IAIF(x, L) =
|Ψ1(x) + Ψ2(x, L)|

max
x∈R2

|Ψ1(x) + Ψ2(x, L)|
, (17)

where

Ψ1(x) =
M
∑

m=1

2π2

ln(ℓm/2)
J0(k|x− cm|)2

Ψ2(x, L) =
1

L

M
∑

m=1

L
∑

l=1

∞
∑

s=1

2π2is

ln(ℓm/2)
J0(k|x− cm|)Js(k|x− cm|) cos(s(ϕm − θl)).

Proof. Based on the proof of Theorem 3.3, Ψ(x, L) can be written

Ψ(x, L) =

L
∑

l=1

e−ikdl·x〈ψ∞(θn;dl), e
−ikθn·x〉 =

L
∑

l=1

e−ikdl·x

(

M
∑

m=1

(2π)2

ln(ℓm/2)
eikdl·cmJ0(k|x− cm|)

)

=

M
∑

m=1

(2π)2

ln(ℓm/2)
J0(k|x− cm|)

(

L
∑

l=1

eikdl·(cm−x)

)

.

Since L is not sufficiently large, we cannot apply Lemma 3.2. Instead of this, applying Jacobi-Anger
expansion

eiz cosφ = J0(z) + 2

∞
∑

s=1

isJs(z) cos(sφ) (18)

yields

L
∑

l=1

eikdl·(cm−x) =

L
∑

l=1

eik|cm−x| cos(ϕm−θl) =

L
∑

l=1

(

J0(k|cm − x|) + 2

∞
∑

s=1

isJs(k|cm − x|) cos(s(ϕm − θl))

)

.

Hence, we arrive

Ψ(x, L) =

M
∑

m=1

(2π)2

ln(ℓm/2)
J0(k|x− cm|)

(

LJ0(k|cm − x|) + 2

L
∑

l=1

∞
∑

s=1

isJs(k|cm − x|) cos(s(ϕm − θl))

)

and correspondingly, we can obtain the result (17). This completes the proof.

Remark 4.1. Based on the structures (7) and (17), we can easily observe that

IIF(x) ∝ |J0(k|x− cm|)| and IAIF(x, L) ∝ J0(k|x− cm|)2. (19)

Two-dimensional plot for (19) is shown in Figure 5. By considering the oscillation pattern, we can easily
observe that IAIF(x, L) yields better images owing to less oscillation than IIF(x) does. Furthermore, based
on Ψ2(x, L), unexpected artifacts in the map of IAIF(x, L) are mitigated when L is sufficiently large. This
result indicates why increasing total number of incident fields guarantee good results.

Example 4.1 (Comparing IIF(x) and IAIF(x, L)). Figure 6 shows the maps of IIF(x) and IAIF(x, L) for
L = 2, 3, 4 incident directions. Based on these results, it is clearly difficult to discriminate the locations of
Σ2 and Σ3 from the map of IAIF(x, L) when L = 2 and 3 due to the appearance of abundant artifacts.
When L = 4 directions are used, it is possible to identify the Σm locations from the map of IAIF(x, L);
however, it still contains some artifacts with large magnitude.
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Figure 5: Two-dimensional plot of |J0(k|x|)| (left) and J0(k|x|)2 (right) for k = 2π/0.5.

It is interesting to observe that although a huge number of artifacts disturbs imaging performance, it is
possible to identify locations of Σ1 and Σ3 from the map of IIF(x) when L = 2 and 4. Hence, it is hard to
say that IAIF(x, L) is an improved version of IIF(x) when L is small. This supports discussion in Remark
4.1.

Example 4.2 (Influence of total number of incident directions). Figure 7 shows the maps of IAIF(x, L) for
L = 5, 6, 7, 8 incident directions. Opposite to the results in Figure 6, map of IAIF(x, L) yields satisfactory
results when the total number of L increases such that L ≥ 5. It is worth observing that the locations of
all Σm were well-identified via the map of IAIF(x, 6); however, due to the existence of some artifacts with
large magnitude, it is still difficult to discriminate the locations of Σ2 and Σ3.

4.2. Improvement of indicator function: application of multiple frequencies

One of famous and useful method is application of multiple wavenumbers kf , f = 1, 2, · · · , F . In this
section, we consider the following multi-frequency indicator function

IMIF(x, F ) :=
|IMF(x, kf )|

max
x∈R2

|IMF(x, kf )|
, (20)

where based on (16), IMF(x, kf ) is given by

IMF(x, kf ) :=

F
∑

f=1

e−ikfd·x〈ψ∞(θn,d, kf ), e
−ikfθn·x〉.

Here, ψ∞(θn,d, kf ) denotes the far-field pattern (3) at wavenumber kf and F denotes total number of
applied wavenumber. Similar to the results [10, 17, 18? , 19], application of multiple frequencies guarantees
better imaging results than the single frequency. Theoretical reason of this phenomenon is follows. In this
case, we apply L = 1 number of incident field.

Theorem 4.2. Assume that total number of observation direction N and applied number of wavenumber
F are sufficiently large. Then, by letting cm − x = |cm − x|[cosϕm, sinϕn]

T and k1 < k2 < · · · < kF ,
IMIF(x, F ) can be represented as follows:

IMIF(x, F ) =
|Ψ3(x) + Ψ4(x)|

max
x∈R2

|Ψ3(x) + Ψ4(x)|
, (21)

11



where

Ψ3(x) =

M
∑

m=1

(2π)2

ln(ℓm/2)

[

kF

(

J0(kF |x− cm|)2 + J1(kF |x− cm|)2
)

− k1

(

J0(k1|x− cm|)2 + J1(k1|x− cm|)2
)]

Ψ4(x) =
M
∑

m=1

(2π)2

ln(ℓm/2)

∫ kF

k1

(

J1(k|x− cm|)2 + 2
∞
∑

s=1

isJ0(k|x− cm|)Js(k|x− cm|) cos(s(ϕm − θ))

)

dk.

Proof. Applying Jacobi-Anger expansion (18) to IMF(x, kf ) yields

IMF(x, kf ) =

F
∑

f=1

e−ikfd·x〈ψ∞(θn,d, kf ), e
−ikfθn·x〉 =

F
∑

f=1

M
∑

m=1

(2π)2

ln(ℓm/2)
eikfd·(cm−x)J0(kf |x− cm|)

=
M
∑

m=1

(2π)2

ln(ℓm/2)

F
∑

f=1

(

J0(kf |cm − x|) + 2
∞
∑

s=1

isJs(kf |cm − x|) cos(s(ϕm − θ))

)

J0(kf |x− cm|)

≈
M
∑

m=1

(2π)2

ln(ℓm/2)

1

kF − k1

∫ kF

k1

(

J0(k|x− cm|)2 + 2

∞
∑

s=1

isJ0(k|x− cm|)Js(k|x− cm|) cos(s(ϕm − θ))

)

dk.

Based on an indefinite integral of Bessel function

∫

J0(x)
2dx = x

(

J0(x)
2 + J1(x)

2

)

+

∫

J1(x)
2dx := xΛ(x) +

∫

J1(x)
2dx,

we can obtain

IMF(x, kf ) ≈
M
∑

m=1

(2π)2

ln(ℓm/2)

[

kF
kF − k1

Λ(kF |x− cm|)− k1
kF − k1

Λ(k1|x− cm|)

+
1

kF − k1

∫ kF

k1

(

J1(k|x− cm|)2 + 2

∞
∑

s=1

isJ0(k|x− cm|)Js(k|x− cm|) cos(s(ϕm − θ))

)

dk

]

.

Therefore, (21) derived. This completes the proof.

Remark 4.2. Based on results in Theorem (4.1) and (4.2), we can easily observe that

IAIF(x, L) ∝ J0(k|x− cm|)2 and IMIF(x, F ) ∝
∣

∣

∣

∣

kF
kF − k1

Λ(kF |x− cm|)− k1
kF − k1

Λ(k1|x− cm|)
∣

∣

∣

∣

. (22)

Two-dimensional plot for (22) is shown in Figure 8. Similar to the Remark 4.1, IMIF(x, F ) will yield better
results owing to less oscillation than IAIF(x, L) does if total number of applied frequencies F and incident
directions L are large and small, respectively. If F and L are sufficiently large, it is hard to compare the
imaging performance because the terms Ψ2(x, L) of (17) and Ψ4(x) of (21) can be disregarded.

Example 4.3 (Influence of total number of frequencies). Now, we perform numerical simulations for sup-
porting Theorem 4.2. In this example, the wavelengths λf are uniformly distributed in the interval [λ1, λF ].
Figure 9 shows maps of IMIF(x, F ) for F = 3, 5, 7, 10. Based on the results, F = 5 is sufficient for obtaining
a good result. Notice that as we discussed in Remark 4.2 and simulation results, increasing F yields more
better image.
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5. Conclusion

In this contribution, we have considered the direct sampling method for imaging cracks with small length.
We investigated that the indicator function of direct sampling method can be represented by the Bessel
function of order zero and one, incident direction, and unit tangential at crack. Based on the investigated
representation of indicator function, we explained why detection performance depends on crack length,
selection of direction of propagation, and rotation of crack.

Based on the investigated structure of indicator function, we proposed two methods for improving imaging
performance. To prove the fact of enhancement, we investigated that proposed indicator functions can be
represented by an infinite series of Bessel functions. Several simulation results were exhibited to support
our investigation and motivate further research. We have considered the imaging of small cracks in this
study, extension to arc-like cracks would be a forthcoming work. Furthermore, following [20], application of
direct sampling method from S−parameter data will be a remarkable research subject. Finally, following
[2], extending the problem to three dimensions would also be an interesting problem.
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Figure 6: Maps of IIF(x) (left column) and IAIF(x, L) (right column) for L = 2 (top), L = 3 (middle), and L = 4 (bottom).
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Figure 7: Maps of IAIF(x, L) for L = 5 (top, left), L = 6 (top, right), L = 7 (bottom, left), and L = 8 (bottom, right).
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Figure 8: Two-dimensional plot of J0(k|x|)2 for k = 2π/0.5 (left) and |kFΛ(kF |x|)− k1Λ(k1|x|)| /(kF − k1) for k1 = 2π/0.7
and kF = 2π/0.3 (right).
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Figure 9: Maps of IMIF(x, F ) for F = 3 (top, left), F = 5 (top, right), F = 7 (bottom, left), and F = 10 (bottom, right).
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