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Effectivity and Efficiency of Selective Frequency Damping for the Computation
of Unstable Steady-State Solutions

J. Casacuberta, K. J. Groot, H. J. Tol, S. Hickel

Aerodynamics Group, Faculty of Aerospace Engineering, Technische Universiteit Delft
Kluyverweg 1, 2629 HS Delft, The Netherlands

Abstract

Selective Frequency Damping (SFD) is a popular method for the computation of globally unstable steady-state
solutions in fluid dynamics. The approach has two model parameters whose selection is generally unclear. In
this article, a detailed analysis of the influence of these parameters is presented, answering several open questions
with regard to the effectiveness, optimum efficiency and limitations of the method. In particular, we show that
SFD is always capable of stabilising a globally unstable systems ruled by one unsteady unstable eigenmode and
derive analytical formulas for optimum parameter values. We show that the numerical feasibility of the approach
depends on the complex phase angle of the most unstable eigenvalue. A numerical technique for characterising the
pertinent eigenmodes is presented. In combination with analytical expressions, this technique allows finding optimal
parameters that minimise the spectral radius of a simulation, without having to perform an independent stability
analysis. An extension to multiple unstable eigenmodes is derived. As computational example, a two-dimensional
cylinder flow case is optimally stabilised using this method. We provide a physical interpretation of the stabilisation
mechanism based on, but not limited to, this Navier-Stokes example.

1. Introduction

Understanding fluid flow instabilities is of fundamental importance for laminar-turbulent transition and for flow
control. Flow instabilities can be characterised through linear stability analysis, for which it is necessary to obtain
an accurate representation of the laminar base flow solution [1, 2]. Letting f be the non-linear Navier-Stokes
operator applied to a state variables q vector, with adequate boundary and initial conditions, the Navier-Stokes
equations can be written as

q̇ = f(q), (1)

where the dot expresses the time derivative. The steady state of eq. (1) satisfies q̇s = f(qs) = 0. The stability ap-
proach relies on decomposing the instantaneous flow field into the base flow qs plus a time-dependent infinitesimally
small perturbation field q′ such that

q(x, t) = qs(x) + εAq
′(x, t), 0 < εA � 1, (2)

where x represents the spatial coordinates and t the time [2, 3]. Stability analysis requires an accurate solution of
the base flow as the stability properties critically depend on its spatial derivatives.

The difficulty in computing time-independent Navier-Stokes solutions arises for globally unstable flow fields,
inasmuch as the instantaneous flow naturally diverges from the steady state [4]. To overcome this obstacle, mainly
two numerical methods are employed in the literature: Newton iteration methods [5] are the classical approach;
however, these methods may have severe practical limitations due to the sensitivity to the initial guess and the
required computational cost for large and strongly nonlinear systems [6, 7]. In the past years, the Selective Frequency
Damping (SFD) method developed by Åkervik et al. [4] has arisen as a solid alternative. Its robustness and ease
of implementation into existing time-stepping methods have made it increasingly popular to the point that it is
generally the preferred method for aeronautical applications [8].

Based on control theory, SFD adds a linear forcing term to eq. (1), which drives the flow field q towards qs [4].
As this target solution is not known beforehand, qs is substituted by a low-pass filtered version of q, denoted by q̄.
The evolution equation for q is then rewritten as

q̇ = f(q)− χ(q − q̄), χ ∈ R+. (3)
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The forcing is a linear reaction term proportional to the high-frequency content of the flow. Its effectiveness in
quenching unstable frequencies and hence suppressing the associated instabilities depends on the feedback control
coefficient χ. Åkervik et al. [4] suggest an exponential kernel filter to compute q̄. Since the implementation of the
integral formulation of the filter would generally imply infeasible memory requirements in practice, its differential
formulation is considered instead:

˙̄q =
q − q̄

∆
, ∆ ∈ R+. (4)

The time constant ∆ is related to the cut-off frequency (ωc) of the low-pass filter through ∆ = 1/ωc. The
performance of SFD depends on the two aforementioned parameters of the model, χ and ∆, which must be chosen
as inputs of the simulation. Appropriate values depend on the flow problem and hence their selection is key to
the method’s effectiveness and efficiency as they determine the stability and convergence rate [4, 6, 9, 10]. Not
every combination of χ and ∆ guarantees that the flow field is driven towards the steady state, and even if so, the
required computational time may be so large that the approach is impractical. Hence, how to select adequate χ
and ∆ is a common predicament in the literature.

SFD has nonetheless been very successfully applied to two- and three-dimensional flow configurations: Åkervik
et al. [4] first applied the method for stabilising a separation bubble with success and the steady solution of a
confined separated flow was obtained by Åkervik et al. [11]. Pier [12] computed the base flow around a sphere to
analyse local and global instabilities developing in the wake. Schmid [13] analysed the stability of the flow in a
square cavity by using a reference solution computed with SFD. Bagheri et al. [14] successfully applied SFD to
stabilise a jet in crossflow and Fani et al. [15] found the base flow for a three-dimensional T-mixer. Loiseau et al.
[16] studied roughness-induced transition by performing stability analyses using base-flow solutions computed with
SFD. More recently, Richez et al. [8] applied SFD to stabilise RANS simulations of the turbulent separated flow
around an airfoil at stall and Kurz and Kloker [17] computed with SFD the steady state of a three-dimensional
boundary layer over a swept wing with roughness elements. Significant contributions to the advancement of the
methodology where published by Jordi et al. [9], who developed an alternative SFD formulation, and Cunha et al.
[6], who developed an optimisation method for SFD simulations based on Dynamic Mode Decomposition (DMD).

The model parameters χ and ∆ are commonly based on rough estimations introduced by Åkervik et al. [4] or
on parametric studies of simplified models. Jordi et al. [9, 10] used a scalar model problem to infer the behaviour of
SFD when applied to a real flow problem. By using this model, Jordi et al. [9] generate stability curves identifying
the influence of χ and ∆ and indicate that SFD is incapable of stabilising steady unstable eigenmodes, corroborating
the results of Vyazmina [18]. It was observed that increasing χ may not always guarantee convergence, contrary
to the consensus introduced by Åkervik et al. [4]. Jordi et al. [10] hypothesised that the parameter values that
optimise the scalar model problem also optimise the full flow problem and developed a coupled approach, which
combines the computation of partially converged flow fields, stability analyses and parameter optimisation for the
model problem. Cunha et al. [6] use DMD of the controlled flow field to determine parameters that minimise the
growth rate of the least stable DMD mode.

There are cases in which SFD reportedly failed [18, 19]. It was claimed that cases in which the flow field
presents steady unstable eigenmodes, SFD is unable to drive the simulation towards the steady state. Several
authors indicate that too large χ yield infeasible simulation times [4, 6, 19]. Massa [20] and Teixeira and Alves [7]
reported that stabilising a flow field that is unstable to more than one eigenmode can be a challenging task. In
particular, Massa [20] claimed that SFD fails to converge towards the base flow if unstable eigenvalues with high
amplification rates and low-frequency weakly unstable eigenvalues are both present in the flow field. In conclusion,
a better understanding of χ and ∆ is required to establish the feasibility of the method in the first place.

In this paper, the role played by χ and ∆ is analysed in detail. We aim to answer the main open question
presented by literature:

Which values of χ and ∆ are effective and most efficient?

Five follow-up questions immediately arise:

1. Does SFD fail to stabilise systems with unstable steady eigenmodes?

2. Does the method’s feasibility depend on specific eigenvalue properties?

3. Given adequate ∆, does increasing χ always yield a stabilised system?

4. How can multiple discrete unsteady eigenmodes be accounted for?

5. What is the physical mechanism represented by the stabilised system?

The main findings presented in this article answer the aforementioned questions: in §3, we show that, in absence
of steady unstable eigenmodes, SFD is always capable of stabilising globally unstable flow fields ruled by one (or
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a complex conjugate pair of) unstable eigenmode(s). We derive formulas for χ and ∆ that ensure convergence
towards the steady state and thereby prove that SFD is unable to suppress steady instabilities. We show that the
governing non-dimensional parameter is the ratio of the growth rate over the frequency of the unstable eigenvalue.
This parameter rules the difficulty in stabilising the flow, which allows us to define a threshold for feasibility in
practice. The analysis is then extended to flow configurations ruled by more than one unstable eigenmode. In §4 the
flow unleash technique is described, which allows characterising the properties of the unstable eigenmode without
performing an independent stability analysis. In §5, we introduce a parameter optimisation method based on the
inference of the stability properties of the relevant eigenmodes. Analytical expressions are derived for χ and ∆ that
minimise the spectral radius of the simulation and scalar-problem-optimising parameters are demonstrated to be
suboptimal. The method is generally applicable; here, it is tested for a two-dimensional incompressible cylinder
flow. For this case a physical interpretation of the stabilisation mechanism is presented in §6.

2. Methodology

2.1. Original SFD formulation
Equations (3) and (4) can be discretised using any time-marching scheme. In case of convergence, q and q̄ have

the same steady state, q̇s = ˙̄qs = 0 and qs = q̄s. We therefore can use the difference between them as convergence
criterion εR = ||q − q̄||L2 , with εR representing the so-called SFD residual of the simulation. As time progresses
and εR → 0, the linear forcing term in eq. (3) approaches zero and the steady solution of eq. (3) becomes identical
to that of eq. (1). This guarantees that no artificial base flow solutions are created in spite of the fact that the
system is changed. The (linear) dynamics of the modified system can be addressed through the linearisation of eqs.
(3) and (4) yielding: [

q̇′

˙̄q′

]
=

 J − χI χI

I
∆

− I
∆


︸ ︷︷ ︸

G

[
q′

q̄′

]
, (5)

where q̄′ indicates the perturbation of the q̄ field, J denotes the Jacobian of f(q) around qs and I denotes the
identity operator. The relation between the eigenvalues µ = µr+iµi of the original system, −iJ, with the eigenvalues
λ = λr + iλi of the modified system, −iG, was derived by Åkervik et al. [4] and is here rewritten as

λ1,2 =
1

2

(
µ− iχ− i

∆
± i

∆

√
(1−∆[iµ+ χ])

2
+ 4χ∆

)
, µ, λ ∈ C. (6)

The subindices of λ1,2 express that every original eigenvalue µ is mapped onto two λ eigenvalues. This is a
consequence of doubling the dimension of the system by introducing q̄. Garnaud et al. [21] derived an expression
for the inverse mapping, which maps the λ’s back onto the µ’s:

µ = λ+ iχ

(
1− 1

1− iλ∆

)
. (7)

The time independency of the linearised system permits prescribing the following ansatz for the perturbation field

q′(x, t) =

∞∑
j=−∞

Aj q̃j(x)e−iµjt︸ ︷︷ ︸
p′
j(x,t)

, Aj ∈ C, (8)

where Aj is the amplitude coefficient, and q̃j(x) is the complex valued shape function corresponding to the jth

eigenvalue µj [2, 3] and µ−j = −µj . Accordingly, an eigenmode with associated eigenvalue µ is stable if µi < 0,

neutral if µi = 0, and unstable if µi > 0. The variable p′
j = q̃j(x)e−iµjt is introduced to include the temporal

behaviour of the eigenmode.
The same exponential dichotomy applies to λ when considering the controlled SFD eigenspectrum. In that case

q̃ represents the shape function corresponding to the eigenvalue λ. Åkervik et al. [4] observe that the controlled
eigenvalues λ1,2 have associated eigenvectors q̃1,2 which are a phase-shifted version of q̃. In fact q̃1,2 = β1,2q̃, where

β1,2 = 1 +
λ1,2 − µ

iχ
. (9)

This illustrates that the SFD eigenvalue problem does not introduce new eigenfunction shapes. The exponential
temporal behaviour associated to q̃j will be expressed as p̄′

j .

3



2.2. Encapsulated formulation of SFD

The encapsulated formulation of SFD (hereafter referred to as ESFD) described by Jordi et al. [9] allows the
application of SFD without modifying the core of Computational Fluid Dynamics (CFD) solvers. ESFD separates
the linear and non-linear parts of eqs. (3) and (4):

[
q̇

˙̄q

]
=

[
f(q)

0

]
+

 −χI χI

I
∆

− I
∆

[ q

q̄

]
=

[
f(q)

0

]
+ TDT−1

[
q

q̄

]
(10)

with

D =

 0 0

0 −
(
χ+

1

∆

)
I

 and T =

[
I −χ∆I
I I

]
. (11)

The non-linear subsystem contains the Navier-Stokes operator f , whose implementation in a CFD solver is repre-
sented by the functional Φ, that maps the discrete solution from a temporal state tn to tn+1 = tn + τ . The linear
subsystem is integrated analytically over the time step τ :[

(q?)n+1

(q̄?)n+1

]
=

[
Φ(qn)

q̄n

]
;

[
qn+1

q̄n+1

]
= T eDτT−1︸ ︷︷ ︸

H

[
(q?)n+1

(q̄?)n+1

]
, (12)

where q? and q̄? represent intermediate solutions of (3) and (4) when applying the splitting method and

H =
1

1 + χ∆

 I + χ∆Ie−(χ+ 1
∆ )τ χ∆I

(
1− e−(χ+ 1

∆ )τ
)

I − Ie−(χ+ 1
∆ )τ χ∆I + Ie−(χ+ 1

∆ )τ

 =

 h11I h21I

h12I h22I

 . (13)

2.3. Parametrisation of the behaviour of SFD

Equation (6) links the linearised dynamics of the original system and that of the controlled system. For a
complete characterisation of the functionality of SFD, it is necessary to establish another link between the exact
linearised system dynamics and the discrete numerical solutions. First and foremost, a main objective is to find χ
and ∆ that stabilise the numerically represented system. However, the inverse approach is also of interest. When
a simulation performed using SFD does not converge towards the base flow, it may be because the flow’s inherent
unsteady nature is not completely quenched (physical instability), due to the numerical methods used to integrate
the controlled system (numerical instability), or a combination of both.

Cunha et al. [6] state that, under certain conditions, the spectral properties of eq. (5) can be represented as
superposition of mono-modal problems, for which eq. (5) is assumed equivalent to

[
ṗ′
j

˙̄p′
j

]
=

 (−iµj − χ)I χI

I
∆

− I
∆


︸ ︷︷ ︸

Gj

[
p′
j

p̄′
j

]
, j = 1, 2, . . . ,∞. (14)

Two main approaches are presented next to characterise the eigenvalues α associated to an SFD simulation. By
integrating eq. (14) between two temporal states tn and tn+1, one obtains[

(p′
j)
n+1

(p̄′
j)
n+1

]
= eGjτ

[
(p′
j)
n

(p̄′
j)
n

]
= Bj

[
(p′
j)
n

(p̄′
j)
n

]
, j = 1, 2, . . . ,m. (15)

The exact eigenvalues of Bj = eGjτ are

αjex1,2
= e−iλj

1,2τ . (16)

We see that only pairs of χ and ∆ values which locate all λ1,2 in the lower half-plane lead to convergence.
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Figure 1: Eigenvalue spaces relevant in SFD: µ (empty circles), λ (red crosses), σ (green squares), αex (purple circles) and αnum (blue

diamonds). µj = 0.2 + 0.4i; −0.6 + 0.2i; 0.7 + 0.1i, σj = e−iµjτ , χ = 0.5, ∆ = 5 and τ = 2.

The ESFD formulation applied to eq. (14) can be written as:[
(p′
j)
n+1

(p̄′
j)
n+1

]
=

 h11I h21I

h12I h22I

 σj I 0

0 I


︸ ︷︷ ︸

Cj

[
(p′
j)
n

(p̄′
j)
n

]
j = 1, 2, . . . ,m. (17)

Accordingly, σj ∈ C takes the role of Φ and represents the operator that numerically integrates the subsystem
defined by ṗ′

j = −iµjp′
j , such that (p′?

j )n+1 = σj(p′
j)
n in the intermediate step of ESFD. Examples of possible

expressions for σj are:

σj = e−iµjτ (exact solver),

σj = 1− iµjτ (explicit Euler),

σj = 1− iµjτ − 1
2 (µjτ)2 + 1

6 i(µjτ)3 (3rd-order explicit Runge-Kutta).

The coefficients h11, h12, h21 and h22 are linked to the action of the filter and the proportional controller in eqs.
(3) and (4) and σj condenses the information of the numerical time marching scheme. Therefore, the combined
physical and numerical stability is characterised through the eigenvalues of Cj , which read

αjnum1,2
=

1

2

(
h11σ

j + h22 ±
√

(h11σj − h22)2 + 4h12h21σj
)
. (18)

The numerical solution of (3) and (4) can only converge towards the steady state if all αjnum1,2
satisfy |αjnum1,2

| < 1.
The different eigenvalue spaces are summarised in figure 1. The original formulation of SFD, in which the coupled

problem is solved without discretisation and splitting error, is represented by a µ 7→ λ 7→ αex mapping. ESFD
corresponds to a µ 7→ σ 7→ αnum mapping. Even with an exact time marching method, σj = e−iµjτ , αnum 6= αex

due to the fact that [
−iµj 0

0 0

]
and

[
−χ χ
1/∆ −1/∆

]
do not commute and thus Bj 6= Cj , see [22]. However, αnum → αex as τ → 0 and accordingly αex is considered
representative for αnum if conditionally stable time marching methods are used.

The characterisation of the eigenvalues α and the structure of the discretised system presented above allows
to parametrise the evolution of the residual of an SFD simulation. After an initial transient, εR(t) follows an
exponential trend proportional to the growth rate of the least stable eigenvalue of the controlled eigenspectrum,
which we denote by λs.
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3. Analysis

3.1. Effective stabilisation of isolated unstable eigenmodes

In the present section, the influence of χ and ∆ is analysed by studying the µ 7→ λ mapping. For the sake
of simplicity, we first assume that only one instability mode is present in the flow field. The stabilisation of flow
configurations with more than one unstable eigenmode is tackled in subsection 3.2.

The eigenvalues of the controlled system, λ1,2, are the solutions of the quadratic equation

λ2 +

(
i

(
χ+

1

∆

)
− µ

)
λ− 1

∆
iµ = 0, (19)

from which the two useful expressions

λ1 + λ2 = µ− i

(
χ+

1

∆

)
and λ1λ2 = − 1

∆
iµ (20)

can be immediately derived by using Vieta’s formulas.
Åkervik et al. [4] indicate that χ should be larger than the growth rate of the unstable modes present in the flow

field and that 1/∆ ought to be smaller than the frequency of these modes. We denote the most unstable eigenvalue
associated to a flow configuration with µc. As µc

i > 0, the parameters are expected to scale with µc, in such a
way that χ ∼ µc

i and 1/∆ ∼ µc
r. Accordingly, eqs. (20) can be rewritten in non-dimensional form considering the

following change of variables:

χ̂ =
χ

µc
i

, ∆̂ = ∆µc
r, λ̂r =

λr
µc
r

, λ̂i =
λi
µc
i

, (21)

such that

λ̂1,r + λ̂2,r = 1, λ̂1,rλ̂2,r −
(
µc
i

µc
r

)2

λ̂1,iλ̂2,i =
µc
i

µc
r

1

∆̂
, (22)

λ̂1,i + λ̂2,i = 1− χ̂−
(
µc
i

µc
r

)−1
1

∆̂
, λ̂1,iλ̂2,r + λ̂1,rλ̂2,i = −

(
µc
i

µc
r

)−1
1

∆̂
. (23)

It becomes obvious that the non-dimensional expressions that define the µ 7→ λ mapping depend only on the single
non-dimensional parameter (µc

i/µ
c
r); the equations are self-similar when µc

i/µ
c
r is kept constant.

By operating on eqs. (6) and (20), the following asymptotic behaviour can be derived:

lim
χ→0

λn = µ

lim
χ→0

λa = − i

∆


lim
χ→∞

λ1 = 0

lim
χ→∞

λ2 = µr − i∞

 (24)

which reveal the structure of the two λ branches resulting from the complex square root in eq. (6). In the limit when
χ → 0 (linear forcing vanishes), one class of λ solutions corresponds to each of the natural µ eigenvalues, hence
denoted by λn. The complementary λa eigenvalues are artificial solutions associated to the filter and degenerate to
a point located at −i/∆ if χ→ 0. When χ→∞, one set of λ solutions tends to minus infinity in their imaginary
part and µr in their real part, while there is another group that moves towards the origin. The notation λ1 and
λ2 in eq. (24) shall indicate that it is generally not possible to continuously track the natural branch (i.e., the one
associated to µ when χ→ 0) or the artificial branch (i.e., the one associated to −i/∆ when χ→ 0) when χ→∞.
This is illustrated in figure 2(b). A major part of the analysis presented in this article relies on this asymptotic
behaviour. The complementary limiting behaviour in terms of ∆ is

lim
∆→∞

λ1 = 0

lim
∆→∞

λ2 = µ− iχ


lim

∆→0
λn = µ

lim
∆→0

λa = 0− i∞

 (25)

The present approach is limited to flow fields ruled by instabilities with µr 6= 0, which is conform with the
low-pass filter nature of the stabilisation term. Many authors conclude that SFD is unable to stabilise steady
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eigenmodes, [6, 9, 18]. This is confirmed by analysing the µ 7→ λ mapping, when imposing µ = iµi. For this
particular case, the λ1,2 solutions are always purely imaginary and never intersect with each other. Recalling eq.
(20), λ1,iλ2,i = −µi/∆ and if µi > 0, regardless of χ and ∆, it is impossible to place both λ1,2 solutions within the
stable region.

Another fundamental property of SFD is that a stable µ will never be mapped towards the upper semi-plane.
By manipulating the expression of the inverse mapping, eq. (7), a criterion can be derived relating the real parts of
µ and the associated λ1,2 solutions:

µr
λr

= 1 +
χ∆

(1 + λi∆)
2

+ (λr∆)
2 ≥ 1, (26)

which proves that µr, λ1,r and λ2,r share signs and that |λr| ≤ |µr|. By using this result and imposing µi < 0, the
real part of eq. (20) requires that λ1,iλ2,i > 0. The imaginary part of eq. (20) conclusively requires λ1,i < 0 and
λ2,i < 0, proving the statement of Åkervik et al. [4], that stable µ eigenvalues cannot yield unstable λ1,2 solutions.

Next, it is analysed how each λ1,2 solution evolves by fixing ∆ at different discrete positive values, taking χ as
a real continuous variable with χ ∈ [0,∞) and assuming µc

r 6= 0, see figure 2(a). Figure 2(b) contains four pairs of
branches representative of the whole λ solution space. Figure 2(c) complements the results with the gradients with
respect to χ of the λ1,2 solution branches, i.e.,

∂λ1,2

∂χ
=

1

2
i

−1± ∆(iµ+ χ) + 1√
(1−∆[iµ+ χ])

2
+ 4χ∆

 . (27)

For every µ with µr 6= 0, there exists a unique pair of real and positive χ and ∆ values for which λ1 = λ2. These
special SFD parameters are hereafter denoted by χ? and ∆?. The key ingredient to find adequate SFD parameters
is that the critical point

λ? =
1

2
µc
r −

i

∆?
. (28)

is always located within the stable region, regardless of µc. When applying

χ? =
|µc|+ µc

i

2
, (29)

∆? =
2

|µc| − µc
i

(30)

as parameters of the model, the associated λ1,2 solutions are both mapped towards λ? and hence they are always
located in the real direction at half of the real part of µc and at an imaginary coordinate coinciding with the origin
of the artificial branch, see figure 2(b). Due to the fact that λ? is located in the lower half-plane for any unstable
µc, the parameter choice χ = χ? and ∆ = ∆? will always stabilise the linear flow problem in an exponential sense,
asymptotically in time.

The case ∆ = ∆?, represented by the solid black line in figure 2, establishes a threshold separating two main
trends of the solution branches. Considering ∆ < ∆?, the natural branch approaches the origin as χ grows,
whereas the artificial branch tends to −i∞. The dash-dotted line and the dotted line in figure 2 correspond to
subcritical cases following the aforementioned trend. The dash-dotted natural branch never crosses the real axis;
the associated eigenvalues never become stable. On the other hand, there is a specific χ-range for which the dotted
branch of natural λ solutions are located within the stable region. For sufficiently large χ values, the dotted natural
branch solution crosses the real axis a second time. The real axis is not crossed for larger χ, so increasing the
control coefficient further will be counter productive. For ∆ > ∆?, the overall trend is inverse; the artificial branch
approaches 0 from the upper semi-plane when χ → ∞, whereas the natural branch tends to −i∞. The dashed
line in figure 2 is representative of this supercritical behaviour. Besides the structure of the branches, another
relevant difference exists between subcritical and supercritical cases. For ∆ < ∆? the dominant eigenvalue is always
associated with the natural branch, thus changing continuously with χ. Contrarily, for ∆ > ∆? this role switches
from one branch to the other; as χ is increased, the artificial branch claims dominance over the natural branch as
the imaginary parts of the eigenvalues intersect.

Åkervik et al. [4] claim that very large χ will always drive the system towards the base solution, but possibly
at a low convergence rate. The present results prove that this is not the case. Regardless of whether the case is
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Figure 2: (a) χ and ∆, (b) solution branches in the λ space and (c) solution branches in the ∂λ/∂χ space. Start of the natural branches
(green circles), start of the artificial branches (blue diamonds), end points of all solutions (red squares), coordinates of χ? and ∆? in
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encompassing all start and end points of the ∂λ1,2/∂χ branches in (c) (magenta).

subcritical or supercritical, there is always a branch that for large χ approaches the origin from above, yielding
unstable eigenvalues. In figure 2(c), the branches of the gradient field approaching 0 for growing χ cross the real
axis close to the origin, and thereafter always yield ∂λi/∂χ < 0. This may, at a first glance, seem surprising as
we just proved that no stable µ can be mapped onto the unstable region; however, a λ solution associated to an
unstable µ eigenvalue may switch from one region to another depending on the selected values of χ and ∆.

These results, which are graphically observed in figure 2, can also be proven by considering the complex argument
of λ1λ2 = − 1

∆ iµ, cf. eq. (20),

ϕ1 + ϕ2 = arg

(
− 1

∆
iµ

)
= −arctan

(
µr
µi

)
= arctan

(
µi
µr

)
− π

2
= ϕµ −

π

2
(31)

with ϕ1 and ϕ2 denoting the arguments of λ1 and λ2 respectively; ϕµ represents the argument associated to the
eigenvalue µ. Equation (31) shows that for a given µ, the sum of the arguments of the λ1,2 solutions is constant and
independent of χ and ∆. In particular, (31) implies that the constant value must correspond to ϕ1 +ϕ2, and can be
conveniently evaluated for χ→ 0, where the angle associated to the natural solution is ϕµ and the angle associated
to the artificial solution is arg (−i/∆) = −π/2. Evaluating the λ1,2 solutions for χ→∞, eq. (31) becomes

lim
χ→∞

ϕ1 + lim
χ→∞

ϕ2 = lim
χ→∞

ϕ1 + lim
λ2,i→−∞

(
arctan

(
λ2,i

µr

))
︸ ︷︷ ︸

−π/2

= ϕµ −
π

2
, (32)

assuming, without loss of generality, that µc
r > 0. This conclusively implies:

lim
χ→∞

ϕ1 = ϕµ = arctan

(
µi
µr

)
. (33)

That is, the solution branch that approaches the origin follows an asymptote having the same argument as µ. If
µi > 0, ϕµ > 0 and the least stable branch always approaches 0 from the upper semi-plane. Thus, choosing large
χ yields unstable behaviour of the system.

3.2. Stabilisation of systems with more than one unstable eigenmode

The parameters χ? and ∆? always stabilise a flow field ruled by one unstable eigenvalue µc, under the condition
µc
r 6= 0. The present section extends the analysis to cases ruled by more than one unstable eigenmode. It is initially

assumed that N unstable µ eigenvalues associated to the uncontrolled system are located in the upper half-plane.
The most unstable eigenvalue, i.e., the one with the highest growth rate µi, is denoted by µc, while the other
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Figure 3: Stability curves in the µ space using (35). (a) µ eigenvalues mapped towards neutral λ1 or λ2 with χ = χ?(µc) and
∆ = ∆?(µc). (b) regions encompassing µaux for which χ = χ?(µaux) and ∆ = ∆?(µaux) will stabilise µc. µci/µ
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r: 0.5 (dashed red); 0.75

(dash-dotted light green); 1 (solid black); 2 (dotted blue) and 4 (dashed-dotted dark green). µc (yellow circles).

unstable eigenvalues are denoted by µk, k ∈ {1, 2, . . . ,N− 1}, and satisfy µc
i ≥ µk

i > 0. The proposed methodology
relies on applying χ? and ∆? as parameters of the model using µc in eqs. (29) and (30), due to the fact that µc is
by definition the most critical eigenvalue to be stabilised. Thereafter, the part of the µ space that is mapped into
the stable region is analytically determined.

For that purpose, eq. (20) is used in combination with two restrictive conditions: the model parameters are
determined as χ = χ?(µc) and ∆ = ∆?(µc) and the bounding curve of the stability domain (loci of neutral stability)
is determined by imposing that either λ1,i = 0 or λ2,i = 0. The results are independent of the latter choice due to
the symmetry of the problem. Two intermediate results can be immediately derived:

1. For a generic unstable µ, when one of its associated λ solutions lies on the real axis, the complementary λ
solution is stable. This validates the usage of the condition λ1,i = 0 or λ2,i = 0 to define stability regions in
the µ space.

2. The complementary λ solution satisfies
λrµr = −λiµi, (34)

meaning that the lines connecting the origin of the complex plane with a generic unstable µ and its associated
stable λ are orthogonal.

The geometrical curve encompassing the µ eigenvalues for which one λ solution is neutral satisfies(
µi
µr

)3

− 2

(
µi
µr

)2 |µc|
µr

+

(
µi
µr

)(
1 +
|µc|2

µ2
r

)
− 1

2µr
(|µc|+ µc

i ) = 0. (35)

Figure 3(a) shows four examples of curves plotted following eq. (35). As stated earlier, the SFD mapping is self-
similar with respect to the parameter µc

i/µ
c
r. Thus the curves maintain their shape for constant µc

i/µ
c
r. All µk

below the curves will be stabilised, while those located above will remain unstable in the λ space.
The cases in which one or more µk have large µk

i /µ
k
r (relative to µc

i/µ
c
r), are potential candidates to remain

unstable, as can be inferred from figure 3(a). A possible solution to this is to define an auxiliary value, µaux ∈ C,
which may not correspond to any physical eigenmode of the flow, but χ?(µaux) and ∆?(µaux) could lead to a global
stabilisation. For that purpose, equation (35) can be used inversely. Another approach is to determine the values
µaux = µaux

r + iµaux
i for which the corresponding χ? and ∆? imply neutral λ1,i(µ

c) or λ2,i(µ
c). Figure 3(b) plots

limiting curves computed following this second approach.
When aiming to stabilise µc and all µk, the intersection of all regions encompassed by the µaux boundaries has

to be found, if it is not empty. Figure 4 shows that the parameter choice χ = χ?(µc) and ∆ = ∆?(µc) or χ = χ?(µk)
and ∆ = ∆?(µk) cannot lead to a global stabilisation of the system. However, for the case in figure 4(a) there
exists a complementary finite range of χ and ∆ for which SFD stabilises the system.

Particularly relevant are the µaux when curves of figure 3(b) cross the imaginary axis. Denoting lu and ll as
the upper and lower limits respectively, and operating on eq. (35) using the second approach described above, it is
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possible to show that

lu(µc) =
|µc|2

µc
i

, ll(µ
c) = µc

i , (36)

such that the non-dimensional distance between lu and ll is:

lu(µc)− ll(µc)

µc
i

=

(
µc
i

µc
r

)−2

. (37)

This result highlights the relevance of the non-dimensional parameter µc
i/µ

c
r once again. As shown in figure 3(b),

the length defined by lu(µc)−ll(µc) can be considered indicative of the broadness of the range of χ and ∆ values that
drive the system towards the base flow. If µc is unknown initially and χ and ∆ ought to be tested by trial-and-error,
the stabilisation of flow fields ruled by a µc with a large complex argument will be difficult. Furthermore, from the
topology of the limiting curves in figure 3(b), it follows that SFD will only stabilise a flow field ruled by more than
one unstable eigenmode if

ll(µ
c) ≤ lu(µk), (38)

which implies

µc
i ≤
|µk|2

µk
i

=
|µk|

sinϕk
= |µk|

√
1 +

(
µk
i

µk
r

)−2

, (39)

with ϕk being the argument of a given µk. This result confirms the trend observed in figure 3(a). For SFD to be
able to drive the system towards the base flow when several unstable eigenvalues are present, all µk are required
to have a small µk

i /µ
k
r ratio and a large modulus relative to µc

i . Equation (39) indicates under which conditions
the statement given by Massa [20], claiming that SFD fails to stabilise flow fields ruled by large growth rates and
low-frequency low-energy eigenmodes, holds. We see that the difficulty does not strictly come from a growth rate
difference, but from the presence of µk with large µk

i /µ
k
r value located close to the origin.

3.3. Feasibility and required accuracy

Refocussing the attention on flow problems ruled by one unstable µc with µc
r 6= 0, the parameters χ? and ∆?

always effectively stabilise the problem. In practice, however, the effectiveness depends on the accuracy of the
available estimate for µc. Accordingly, the sensitivity of χ? and ∆? with respect to the input parameter µc for a
flow problem unstable to a single discrete eigenmode is of high relevance. We consider the perturbed eigenvalue:

µε = µ(1 + ε) = µr(1 + ε) + iµi(1 + ε), |ε| � 1. (40)

Evaluating χ?ε = χ?(µε) and ∆?
ε = ∆?(µε) for different values of the error parameter ε, the regions of the µ

eigenspectrum having one of their associated λ solutions on the real axis (neutral stability) are determined. This
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Eigenvalue argument Affordable error Stabilisation difficulty

µc
i/µ

c
r < 1.12 εmax > 10% easy

2.82 > µc
i/µ

c
r > 1.12 10% > εmax > 1%

µc
i/µ

c
r > 2.82 εmax < 1% hard

Table 1: Classification of flow instabilities based on the required accuracy in the computation of χ? and ∆? to guarantee convergence
towards the steady state.

approach resembles that presented in §3.2. By operating on eq. (20), applying χ = χ?ε and ∆ = ∆?
ε and setting

λ1,i = 0 or λ2,i = 0, the following condition is derived:

(1 + εmax)2 −

µi

µr
+

(
1 + 4

(
µi

µr

)2
)√

1 +
(
µi

µr

)2

2 µi

µr

(
1 + 4

(
µi

µr

)2
) (1 + εmax) + 1 = 0. (41)

The solutions of the quadratic equation (41) indicate the maximum allowed relative error εmax for a given eigenvalue
µ that is aimed to be stabilised. Fundamental for the present analysis is the fact that eq. (41) only depends on the
non-dimensional parameter µi/µr. Accordingly, all µ eigenvalues with an equal argument have a common tolerance
and, as a consequence, share the same difficulty to be stabilised when using SFD. The higher µi/µr, the smaller
εmax and the higher the required relative digital precision of µc, χ? and 1/∆?. Small relative perturbations around
the required true values of χ? and ∆? may lead to ineffectiveness for cases ruled by an instability with a large
µc
i/µ

c
r. These results are linked to the behaviour of the limiting curves shown in figure 3(b); the higher µc

i/µ
c
r, the

closer the curves to µc. A classification of instabilities based on the feasibility of SFD is presented in table 1.

4. The flow unleash technique

4.1. Methodology

Accurately determining the parameter µc requires a stability analysis, in turn requiring the base flow. We
present a new technique, here referred to as flow unleash, through which we can accurately estimate µc with only
one SFD or ESFD simulation. The unleash technique relies on driving the controlled simulation to a low enough
residual level εR = ||q− q̄||L2

at time t = tu. Then we continue the simulation for t ≥ tu with χ = 0 and maintain q̄
constant and equal to the last converged value, i.e., q̄(x, t) = q̄(x, tu) for t ≥ tu. By setting the control coefficient
to χ = 0, residual disturbances can grow and the unstable system will depart from the converged base state. To
that end, the computed base flow is perturbed at t = tu by adding random white noise with amplitude εR to the
solution. When the small perturbation dynamics is dominated by the most unstable eigenmode of the flow, the
residual curve εR(t) is linear and corresponds to the exponential growth rate µc

i and ln (εR) should therefore show
a linear trend whose slope matches µc

i until non-linear saturation sets in.

4.2. Numerical set-up

An incompressible Navier-Stokes flow case defined by a two-dimensional circular cylinder at Re = DU∞/ν = 100
is used as an application example. The Direct Numerical Simulations (DNS) of the cylinder flow have been performed
using a conservative Finite-Volume (FV) Immersed Boundary Method (IBM) [23, 24]. The cylinder has diameter
D. The two-dimensional domain x = [x, y]T has the extent −16D ≤ x ≤ 25D in the streamwise direction and
−22D ≤ y ≤ 22D in the transverse direction, which matches the domain used by Barkley [25]; the centre of the
cylinder is located at (0, 0). The structured mesh contains 5.1 × 105 hexahedral cells, with smooth hyperbolic
refinement towards the cylinder in both directions. Uniform inflow velocity U∞ is imposed at the inlet, no-slip
conditions are applied at the surface of the cylinder and the pressure is fixed at the remaining boundaries. The
flow field is initialised at a uniform streamwise velocity. The Navier-Stokes equations are advanced in time using
an explicit third-order Runge-Kutta method with CFL = 1; a global time-stepping approach is used, since we are
interested in studying the global properties of the flow field in time. ESFD is used to compute the base solution.

For validation purposes, the system’s transient behaviour and stability obtained from the DNS is compared
with the results from global linear stability analysis [26]. The stability analysis is performed for the base flow
obtained from the instantaneous converged solution of the ESFD simulation. A Galerkin projection of the linearised
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Figure 5: (a) SFD residual εR = ||q − q̄||L2
(solid lines) using χ = 0.5 and ∆ = 3. Fits to exponential parts (dashed lines). Unleash

times (yellow squares) at εR = 10−3 (black), 10−4 (blue), 10−5 (green), 10−6 (red). Location of null curvature in the linear range of the
unleashed curves (red circles). (b) µ- (empty circles) and λ- (crosses) eigenspectrum from stability analysis computed with εR = 10−6

base flow.

incompressible Navier-Stokes equations is performed to obtain an explicit discrete expression for the Jacobian J and
to form the eigenvalue problem. The global eigenspectrum for the uncontrolled and controlled flow is respectively
obtained as the eigenvalues of the matrices −iJ and −iG. The stability analysis is performed on the domain
−5D ≤ x ≤ 20D, −12.5D ≤ y ≤ 12.5D. An unperturbed flow is assumed at both the cylinder, the inflow
boundary and the transverse boundaries. A stress-free condition is prescribed at the outflow boundary. For the
spatial discretisation, third-order C0 multivariate spline elements [27, 28] are used to represent the velocity field.
The pressure is eliminated from the equations by using a space of solenoidal velocity fields and a suitable choice of
the variational formulation. Details regarding the numerical method are provided in [29].

4.3. Application to the cylinder flow

The results corresponding to four unleashed cases are shown in figure 5(a), using εR(tu = 10−3, 10−4, 10−5, and
10−6. The first main observation is that the expected linear growing trend of the residual curves starts developing
after a significant number of time steps from the unleash. There is an initial transient after which the global mode
develops. The exponential growth can be observed after all stable modes have died out. Regarding the range over
which ln (εR) grows linearly, two noteworthy considerations must be done. First of all, the point at which the linear
growth starts developing depends on the amplitude of the noise imposed at t = tu. However, the slope of the
residual curves is independent of the initial disturbances, as expected. Secondly, the residual curves’ slopes for the
cylinder flow case are observed to increase asymptotically as εR decreases. From a physical point of view, throughout
the controlled SFD simulation, the stabilised shear field must develop in time. Thus, for the present simulations,
initialised with a uniform flow field, the growth rate of the associated Kelvin-Helmholtz (K-H) instability changes
as the wake approaches the steady state. At a low enough residual level, the shear field can be assumed to be fully
developed and µc approaches a limiting value. Following the same physical interpretation, the growth rate of the
least stable eigenvalue of the controlled eigenspectrum, λs

i , changes throughout the controlled simulation. This may
explain the slight bending of the residual curve of the SFD-stabilised simulation with respect to the expected linear
behaviour for large εR, see figure 5(a). This is further discussed in §6.

The characterisation of µc requires to estimate the real part of µc. For that purpose, we suggest to compute the
frequency from the time-signal measured with strategically placed probes. The probes are placed in areas where the
eigenmode develops. This eigenmode associated to µc is represented in figure 6(b,d). The total measurement time
is restricted to the linear growth phase. As pointed out by Barkley [25], the frequency of the eigenmode and the
nonlinear limit cycle defer for non-critical Reynolds numbers. Therefore, the approach adopted by some authors,
as for instance [8], to select ∆ based on the frequencies captured in the fully developed non-linear flow is generally
inadequate. When applying the flow unleash technique, the dominant frequency measured in the linear flow regime
matches with the natural frequency of the unstable eigenmode developing in the flow, as shown in table 2.

To illustrate the accuracy of the flow unleash technique, table 2 compares µc obtained with this method, from
stability analysis (using the q and q̄ fields as base flows) and with the value reported by Barkley [25]. One of
the main advantages of the flow unleash technique is that the perturbation characterisation is carried out using
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εR Flow unleash Stability analysis (q) Stability analysis (q̄)

10−3 − ±0.7826 + 0.1426i ±0.7873 + 0.1431i
10−4 0.7240 + 0.1164i ±0.7181 + 0.1287i ±0.7183 + 0.1287i
10−5 0.7139 + 0.1257i ±0.7145 + 0.1278i ±0.7145 + 0.1278i
10−6 0.7135 + 0.1271i ±0.7142 + 0.1277i ±0.7142 + 0.1277i

Table 2: µcD/U∞ inferred using the flow unleash technique, global stability analysis using q or q̄ as the base flow at εR. Barkley [25]
presents the value ±0.7395 + 0.1298i.
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Figure 6: Dominant eigenmode (v′) when the base flow is unleashed, associated to µc. (a) shows the xy-field, while (b) shows the
profile along y = 0. Solid black lines: q − q̄ from DNS, dashed red lines and red symbols: real part of global eigenfunctions from linear
stability analysis.

the same numerical set-up as the flow simulation. Thus, the captured modal behaviour does correspond to the
true perturbation dynamics in the simulation. On the other hand, when applying the flow unleash technique,
the accuracy of the user-inferred eigenmode stability properties is subject to measurement errors. To minimise
ambiguity, we propose to compute the value of µc

i = ∂ ln (εR) /∂t from the residual curves at the point of null
curvature. The uncertainty of these measurements of µc

i for the present cylinder simulations is approximately
±0.002U∞/D. Here µc

r is determined as the average of the dominant frequency computed at probes placed at
(2,−1); (2, 1); (6,−1); (6, 1). Table 2 also shows the convergence of µc with respect to εR when performing both
stability analyses and DNS simulations, both methods match up to the measurement precision at εR = 10−6.

By keeping q̄ constant after the flow is unleashed, the field q − q̄ becomes representative of the perturbation,
q′ = [u′ v′]T , developing in the unleashed flow field. This is valid under the assumption that q̄(x, tu) sufficiently
approximates qs(x), which sets a requirement in the convergence level. Hence, the variable q− q̄ can be compared
to the eigenfunction of the unstable eigenmode developing in the unleashed flow field. Figure 6 shows that the
mode ruling the flow unleash DNS matches the eigenmode of the stability analysis.

5. Optimisation

5.1. The role of stable eigenmodes

Jordi et al. [10] claim that the pair of χ and ∆ that optimises the scalar problem (14) for µc also optimises the
full flow problem. One result of §3.1 was that χ? and ∆? minimise the spectral radius of the scalar problem, since λ?

represents the configuration for which max {λi(µc)} is located at the furthest possible distance from the real axis.
Therefore, the application of the optimisation routine presented by Jordi et al. [10] and the expressions for χ? and ∆?

are expected to yield the same convergence rate. To optimise the SFD set-up, however, the role played by the stable
eigenvalues has to be considered as well, because the ultimate convergence rate of an SFD simulation is determined
by the least stable eigenvalue λs, which does not necessarily correspond to λc

1,2 = λ1,2(µc). This philosophy also
underlies the recently proposed Newton-Krylov method by Citro et al. [30], taking advantage of accounting for the
slower decaying modes. The location of the least stable eigenvalue λs of the controlled eigenspectrum depends on
the associated µs eigenvalue and the choice of parameters of the model χ and ∆.

When the stable eigenvalues are considered in the optimisation process, the choice χ? and ∆? leads to a
suboptimal convergence rate, shown as follows. By combining the real part of the first expression with the imaginary
part of second expression in eq. (20), we obtain

λ2,r

(
λ1,i +

1

∆

)
+ λ1,r

(
λ2,i +

1

∆

)
= 0. (42)
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Figure 7: (a) Least stable λi isocontours (solid lines) in the µ space with χ = χ?(µc) and ∆ = ∆?(µc) considering µc = 1 + 1i.
Boundary for which max {λ1,i, λ2,i} ≶ µi (dashed line). (b) Path of λ-solutions varying χ in the range [0, χopt] with ∆ = ∆opt (solid
black arrows) and χ in the range [0, χ?] with ∆ = ∆? (dotted lines). (c) Zoom. µ (empty circles), −i/∆opt (yellow diamond), −i/∆?

(blue diamond), λ for (χ,∆) = (χopt,∆opt) (red thick crosses), and λ for (χ,∆) = (χ?,∆?) (green thin crosses).

Hence, for a fixed µ and variable χ and ∆, either one λ solution is located above −i/∆ and the complementary
solution is located below −i/∆, or both solutions cross in imaginary part at λ1,i = λ2,i = −1/∆. The latter can
only occur if [4]

µi − χ+
1

∆
= 0. (43)

For a general eigenspectrum with many µ 6= µc, eq. (42) implies that the choice χ = χ?(µc) and ∆ = ∆?(µc)
places the solutions of each pair λ1,2 6= λc

1,2 above and below λ?(µc) respectively. For this particular parameter
choice, eq. (43) yields µc

i − χ?(µc) + 1/∆?(µc) = 0; thus all eigenvalues with µi 6= µc
i have λ1,2 located above and

below λi = −1/∆. The implication for the optimisation of the SFD set-up is that the choice χ? and ∆? entails the
existence of λ solutions with λi > λ?i . The optimisation of the scalar problem thus generally implies suboptimal
convergence of the full flow problem, since its application does not guarantee the minimisation of λs

i > λ?i .
Next, a new hypothetical optimal configuration is proposed. To illustrate the role of χ and ∆ in the µ 7→ λ

mapping, Åkervik et al. [4, figure 2] consider µ on the horizontal straight line, i.e., µ = µr + bi, b ∈ R. Here, the
analysis is restricted to b < 0, characterising stable eigenvalues. All µ are mapped onto two solution branches, one
of them giving the least stable λ eigenvalue depending on the relation between b, χ and ∆. The µ’s located close
to the imaginary axis will be shifted upwards the most, the maximum being attained at µr = 0. For a given full
µ spectrum, the least stable λs may be associated to either the steady eigenvalue with the largest growth rate or
less stable unsteady eigenvalues depending on their relative location on the complex plane and the parameters χ
and ∆. Figure 7(a) is representative of this, illustrating that the largest λi correspond to µ located close to the
imaginary axis.

When the previous analysis is extended to a general flow problem with discrete µ, the candidates to take the
role of λs are stable, steady (or low-frequency) eigenmodes. It is unlikely for µc to take the role of λs, because the
steady and low-frequency stable eigenvalues will be shifted upwards, while µc shifts downwards. The spectral radius
is hypothetically minimised when the least stable λ solutions intersect max

{
λc

1,i, λ
c
2,i

}
in the imaginary coordinate

at the furthest possible downwards distance from λi = 0.
The µ value corresponding to λs is denoted by µs and can be characterised by measuring the slope of the

controlled SFD residual curve. This slope is proportional to λs
i and the frequency of the dominant wave-like

perturbations in the controlled flow field corresponds to λs
r. Using the inverse mapping eq. (7), the value of µs can

be determined.
For the cylinder flow case, the least stable µ that rules effective SFD simulations corresponds to a steady mode.

That is, in the range of χ and ∆ values that stabilises µc. For this reason, we assume µs to be purely imaginary
in the analysis in the following section. By evaluating the slope of the SFD residual curve at εR = 10−6, it is
obtained that µsD/U∞ = −0.0423i. The optimal configuration of the λ eigenvalues is illustrated in figures 7(b) and
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Figure 8: Dominant eigenmode of the flow (u′) when applying SFD, associated to λs. (a) shows the xy-field, while (b) shows the profile
along y = 0. Solid black lines: q − q̄ from DNS, dashed green lines and green symbols: real part of global eigenfunctions from linear
stability analysis.

(c). The arrows indicate the path followed by the selected µ when χ is increased from 0 at a fixed ∆. The final χ
and ∆ (χopt,∆opt), have been computed by using the method that we describe in §5.2. The artificial λ solutions
emanating from the point located at −i/∆opt are far from becoming the least stable eigenvalues of the controlled
eigenspectrum in this case. The natural λ solutions corresponding to µc and µs define the minimal spectral radius
and cross in their imaginary part when χ = χopt and ∆ = ∆opt. Note that the crossing in the imaginary part
can take place for different combinations of χ and ∆. Within this set, χopt and ∆opt correspond to the absolute
minimum spectral radius.

In the linear controlled perturbation regime, the field q − q̄ closely resembles the eigenfunction associated to
λs obtained through an independent stability analysis, see figure 8, which yields µsD/U∞ = −0.0529i. Although
the eigenvalue deviates from the growth measured from the slope of the SFD residual curve, the shape of the fields
yield a convincing match. The main difference is observed close to the outflow boundary, and steady modes are
indeed sensitively affected by boundary conditions.

5.2. Computation of optimal χ and ∆

The optimisation method presented next relies on running a controlled SFD or ESFD simulation and unleashing
the flow afterwards. From the residual curves of the unleashed and controlled flow simulations, µc and µs can
be inferred following the approaches described in §4 and §5.1, respectively. We define ψ ∈ R as the imaginary
coordinate at which the vertical crossing of the λ’s corresponding to µc and µs occurs. By operating on eq. (20),
the minimal ψ

ψopt =
µs
i

2− (µc
r)2

2µs
i(µs

i−µc
i)

(
µc
i

µs
i

− (µc
r)

2

2µs
i (µs

i − µc
i )

+
|µc|
|µs|

)
. (44)

is obtained for

∆opt =
µs
i

ψopt

(
(µc

r)2

2(µs
i−µc

i)

(
ψopt

µs
i
− 1
)
− ψopt − µs

i + µc
i

) , (45)

χopt = − 1

∆opt
− ψopt + µs

i

(
1 +

1

ψopt∆opt

)
. (46)

In deriving these formulas, it is assumed that µs = iµs
i , i.e., the controlled simulation is ruled by the critical steady

eigenmode.
The residual curves corresponding to different model parameters are compared in figure 9. The spectral radius

obtained with χopt and ∆opt is 0.9734. This value closely resembles the optimal one of 0.979 reported by Cunha et al.
[6], obtained through DMD. Following eq. (16), the optimal spectral radius presented in this article corresponds to
λs
iD/U∞ = −0.0270; the spectral radius obtained by Cunha et al. [6] is given by λs

iD/U∞ = −0.021. A similar
convergence rate is obtained using the analytical expressions with µc and µs either inferred from the controlled and
unleashed residual curves or those obtained with the stability analysis. The first case appears to yield a slightly
lower computational time, which means that the eigenvalues inferred through the application of the flow unleash
technique are more representative for the dynamics in the simulation than the stability analysis. This may be
related to the sensitivity of the stable steady mode to the outflow boundary conditions, as mentioned before. The
stability analysis provides the full spectrum. We can thus verify that the found control parameters yield the optimal
spectral radius accounting for the full eigenspectrum. No other eigenmode becomes dominant in this particular
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Figure 9: Comparison of the L2 norm of q − q̄ along ESFD simulations performed using different SFD parameters. The values of χ
and ∆ considered for each simulation are: χopt = 0.2524 and ∆opt = 2.1173, optimal values computed by inferring µc and µs through
the application of the technique of flow unleash (solid black line and yellow diamonds); χsp = 0.2608 and ∆sp = 2.1524, optimal values
computed with a previous knowledge of uncontrolled eigenspectrum (solid red line and red pentagons); χ? = 0.4259 and ∆? = 3.3465
(solid magenta line and magenta squares); χ = 0.4510 and ∆ = 3.1440, reported by Jordi et al. [10] (solid blue line and blue circles);
χ = 1 and ∆ = 5 (solid green line and green triangles). All values of χ and 1/∆ are given in units of U∞/D.

case. The usage of χ?(µc) and ∆?(µc), which is suboptimal, yields the same performance as the parameters used
by Jordi et al. [10], a result which is in agreement with the analysis exposed in §5.1. The optimised configuration
reduces the computational time by 35%. A much larger reduction by 75% is observed when comparing χopt and
∆opt and general SFD parameters, χ = 1 and ∆ = 5. At t ≈ 400U∞/D, the usage of χopt and ∆opt has converged
the base flow to a residual level one order of magnitude lower than with the values presented by Jordi et al. [10]
and three orders of magnitude lower than the usage of χ = 1 and ∆ = 5.

6. Energy budget of the critical stable steady mode

The SFD simulations are ruled by a natural steady mode, which, obstructs the method from performing more
efficiently. Despite the influence of the particular choice of the outflow boundary conditions, the latter arguments
justify taking a closer look into the underlying physical mechanism which this mode represents. To that end, the
Reynolds-Orr equation for q̃ is considered:

λ = −i

∫∫ (
us q̃

∗ · ∂q̃
∂x

+ vs q̃
∗ · ∂q̃
∂y

)
dxdy

||q̃||2
−D +R− iχ

q̃∗ · (q̃ − q̃)

||q̃||2
(47)

where, in this case, q̃ = [ũ ṽ]T , q̃ = [ũ ṽ]T , qs = [us vs]
T , and ||q̃||2 =

∫∫
q̃∗ · q̃ dxdy, see [3] for more details. From

left to right, the terms represent advection, viscous dissipation D, Reynolds stress work R, and the SFD model
terms, where:

D =
i

Re

∫∫ (∣∣∣∣∂ũ∂x
∣∣∣∣2 +

∣∣∣∣∂ũ∂y
∣∣∣∣2 +

∣∣∣∣∂ṽ∂x
∣∣∣∣2 +

∣∣∣∣∂ṽ∂y
∣∣∣∣2
)

dxdy

||q̃||2
,

R =− i

∫∫ (
|ũ|2 ∂us

∂x
+ ũ∗ṽ

∂us
∂y

+ ṽ∗ũ
∂vs
∂x

+ |ṽ|2 ∂vs
∂y

)
dxdy

||q̃||2
.

Given the set-up of the stability problem, no boundary contributions appear in this form of the expression.
By substituting the real-valued, steady mode solution, corresponding to the optimal SFD parameters into eq.

(47), we obtain the budget shown in figure 10. Together, the bars add up to the value of λi, indicated with the
dashed line. Due to the fact that the eigenfunction shapes in the SFD approach are only globally phase shifted
versions of the shapes that would be encountered in the uncontrolled problem, eq. (9), dropping the bars associated
to the SFD terms yields the µi-balance.

The term −us ũ∗∂ũ/∂x is the largest in the budget. It has a stabilising effect, because ũ increases in magnitude
in the streamwise direction, see figure 6(a). This is a typical manifestation of the mechanism by which perturbation
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∫∫

Re(. . .)dxdy/||q̃||2 of indicated terms) of the steady mode for the optimal control parameters (χopt,∆opt)
according to equation eq. (47), λi eigenvalue (dashed line). Reynolds stress, viscous dissipation, advection and SFD model terms are
coloured red, blue, black and green, respectively.

energy leaves the domain. The Reynolds stress −ũ∗ṽ ∂us/∂y is the only destabilising term associated to the
uncontrolled mode. This explains that, as the shear layers develop, this natural mode displays a decreasing decay
rate, as is reflected in the residual curve in figure 5(a). Effectively, through these two main terms, this mode
describes how the shear layers form (steadily) in the base flow in an uncontrolled simulation, the changes being
washed out of the domain.

The action of SFD is to significantly decelerate this process through the term −χ ũ∗(ũ− ũ), having a magnitude
comparable to the productive Reynolds stress. The balance furthermore features the normal Reynolds stress
−|ũ|2 ∂us/∂x, that is destructive as a consequence of the streamwise acceleration of the base flow. All other
significant terms are stabilising, except for the SFD model term −χ ṽ∗(ṽ − ṽ), but it has a very small relative size.

The model terms appear as i q̃
∗· (q̃− q̃)/∆ = λq̃

∗· q̃ in the Reynolds-Orr equation for q̃ (dropping the integrals),
meaning this term is directly responsible for forcing q̄ to the steady state, while a smaller proportional amount of
energy is fed to the q̃ budget; using eq. (9) the proportionality constant in this case is:

χopt∆opt
q̃∗ · (q̃ − q̃)

q̃
∗· (q̃ − q̃)

=
χopt∆opt

β1
= 0.5039, (48)

where β1 is used because the mode under investigation is the natural equivalent. So, the change in q̄ is transferred
to q with the relative amplitude χopt∆opt/β1, and then the dynamics of the q field acts to wash this out of the
domain. The positivity of this constant implies that the q̄ solution is closer to qs than q and its value is a measure
of the difference.

7. Conclusions

We scrutinised the effect of the model parameters χ and ∆ on the effectiveness and efficiency of Selective
Frequency Damping (SFD). We proved that SFD is always able to stabilise systems that are unstable to one mode
with a non-zero eigenfrequency. Simple expressions for the model parameters are presented, denoted by χ? and ∆?,
that are always able to quench an unsteady eigenmode and hence always succeed in driving the system towards the
steady state.

These functionals were derived from the structure of the equations ruling the dynamics of SFD systems, whose
simplified expressions are used to generate other relevant results, such as the demonstration that SFD is not
capable of stabilising systems unstable to steady eigenmodes. Two different, but interconnected, behaviours of the
λ eigenvalues of the controlled system are identified. We proved that choosing too large χ yields unstable behaviour
of the controlled system, as opposed to what is indicated by Åkervik et al. [4]. We found that the SFD equations
are self-similar to the argument of the unstable eigenvalue of the uncontrolled system and that the non-dimensional
parameter µc

i/µ
c
r (the ratio of the growth rate over the frequency of the most unstable eigenvalue µc) rules the
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numerical feasibility of SFD. The larger µc
i/µ

c
r, the larger is the required relative accuracy of χ? and ∆? for the

successful stabilisation of the system. Accordingly, depending on the digital precision of the numerical tools used
to compute the base state, a threshold can be set for which the application of SFD is practically infeasible.

The stabilisation of systems unstable to more than one mode is challenging and can even be impossible depending
on the dynamical characteristics of the system. Difficulties arise when unstable eigenvalues with large µi/µr are
located close to the origin of the complex plane. We derived a simple analytical expression that can be used to
determine whether SFD is capable of driving the system, unstable to multiple modes, towards the base solution.
Under these conditions, a technique is introduced to select adequate χ and ∆ yielding global stabilisation of the
system.

The choice χ? and ∆? generally yields suboptimal performance in terms of convergence rate. Based on the
dynamics of the controlled eigenvalues λ, we proposed a new hypothetical optimal configuration that leads to more
efficient parameters than the current consensus established by Jordi et al. [10]. The optimisation analysis was based
on the fact that the time-asymptotic SFD dynamics are governed by the least stable controlled eigenvalue λs; in
the linear perturbation regime the spectral radius of the simulation is determined by λs

i .
We proposed the flow unleash technique for characterising the stability properties of the unstable eigenmode

associated to the discretised system without having to perform an independent stability analysis. The technique
relies on letting the small perturbation eigenmodes of the system develop on a sufficiently time-converged SFD
base flow. From the controlled and flow unleash SFD simulations, the eigenvalues µs and µc ruling the dynamics
of the stabilised and uncontrolled systems can be inferred. This allowed us to unequivocally determine the SFD
parameters that minimise the spectral radius of the simulation, denoted by χopt and ∆opt. Given the hypotheses
that the base state is unstable to an unsteady discrete mode and the convergence of the stabilised dynamics is
ruled by a stable steady mode, we presented analytical expressions for χopt and ∆opt. By applying the flow unleash
technique to the cylinder case, matching eigenmode dynamics are obtained with the results of independent stability
analyses performed for the same base flow. Following the parameter optimisation method presented in this article,
we observe a significant improvement with respect to the most efficient χ and ∆ reported by Jordi et al. [10].
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