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Abstract

In this paper, our aim is to present (1) an embedded fracture model (EFM) for coupled flow and

mechanics problem based on the dual continuum approach on the fine grid and (2) an upscaled model for

the resulting fine grid equations. The mathematical model is described by the coupled system of equation

for displacement, fracture and matrix pressures. For a fine grid approximation, we use the finite volume

method for flow problem and finite element method for mechanics. Due to the complexity of fractures,

solutions have a variety of scales, and fine grid approximation results in a large discrete system. Our

second focus in the construction of the upscaled coarse grid poroelasticity model for fractured media.

Our upscaled approach is based on the nonlocal multicontinuum (NLMC) upscaling for coupled flow

and mechanics problem, which involves computations of local basis functions via an energy minimization

principle. This concept allows a systematic upscaling for processes in the fractured porous media, and

provides an effective coarse scale model whose degrees of freedoms have physical meaning. We obtain a

fast and accurate solver for the poroelasticity problem on a coarse grid and, at the same time, derive a

novel upscaled model. We present numerical results for the two dimensional model problem.

Introduction

In the reservoir simulation, mathematical modeling of the fluid flow and geomechanics in the fractured

porous media plays an important role. A coupled poroelastic models can help for better understanding of

the processes in the fractured reservoirs. In this work, we consider an embedded fracture model (EFM) for

coupled flow and mechanics problems based on the dual continuum approach. The mathematical model is
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described by the coupled system of equations for displacement and fracture/matrix pressures [35]. Coupling

of the fracture and matrix equations is derived from the mass exchange between the two continua (transfer

term) and based on the embedded fracture model. For the geomechanical effect, we consider deformation of

the porous matrix due to pressure change, where pressure plays a role of specific source term for deformation

[28, 27, 26, 29, 5, 6]. Fundamentally, the system of equations is coupled between flow and geomechanics,

where displacement equation includes the volume force, which is proportional to the pressure gradient, and

the pressure equations include the term, which describes the compressibility of the medium.

Fracture networks commonly have complex geometries with multiple scales, and usually have very small

thickness compared to typical reservoir sizes. Due to high permeability, fractures have a significant impact

on the flow processes. A common approach to the fracture modeling is to model them as lower dimensional

problems [33, 15, 20, 13]. The result is a coupled mixed dimensional flow models, where we consider flow

in the two domains (matrix and fracture) with mass transfer between them. In this work, the fractures are

not resolved by grid but included as an overlaying continuum with an exchange term between fracture and

matrix that appears as an additional source (Embedded Fracture Model (EFM)) [23, 37, 36]. This approach

is related to the class of multicontinuum model [3, 39, 14]. Instead of the dualcontinuum approach, we

represent fractures directly using lower dimensional flow model embedded in a porous matrix domain. In

EFM, we have two independent grids for fracture networks and matrix, where simple structured meshes can

be used for the matrix.

For geomechanics, we derive an embedded fracture model, where each fracture provides an additional

source term for the displacement equation. This approach is based on the mechanics with dual porosity

model [42, 45]. In this model, we suppose displacement continuity on the fracture interface. For the discrete

fracture model, a specific enrichment of the finite element space can be used for accurate solution of the

elasticity problem with displacement discontinuity [1]. In this paper, we focus on the fully coupled poroelastic

model for embedded fracture model and construct an upscaled model for fast coarse grid simulations. For

the fine grid approximation, we use the finite volume method (FVM) for flow problem and the finite element

method (FEM) for geomechanics. FVM is widely used as discretization for the simulation of flow problems

[4, 38]. We use a cell centered finite volume approximation with two point flux approximation (TPFA) for

pressure. FEM is typically used for approximating the solid deformation problem. We use a continuous

Galerkin method with linear basis functions with accurate approximation of the coupling term.

Fine grid simulation of the processes in fractured porous media leads to very expensive simulations due to

the extremely large degrees of freedoms. To reduce the cost of simulations, multiscale methods or upscaling

techniques are used, for example, in [24, 18, 41, 32, 25]. In our previous works, we presented multiscale

model reduction techniques based on the Generalized multiscale finite element method (GMsFEM) for flow in

fractured porous media [2, 9, 19]. In GMsFEM approach, we solve a local spectral problem for the multiscale

basis construction [16, 17, 8, 7]. This gives us a systematic way to construct the missing degrees of freedom

via multiscale basis functions. In this work, we construct an upscaled coarse grid poroelasticity model

with embedded fracture model. Our approach uses the general concept of nonlocal multicontinua (NLMC)

upscaling for flow [10, 11] and significantly generalized it to the coupled flow and mechanics problems. The

local problems for the upscaling involves computations of local basis functions via an energy minimization
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principle and the degrees of freedom are chosen such that they represent physical parameters related to the

coupled flow and mechanics problem. We summarzie below the main goals of our work:

• a new fine grid embedded fracture model for poroelastic media (coupled system),

• a new accurate and computationally effective fully coarse grid model for coupled multiphysics problem

using NLMC whose degrees of freedoms have physical meaning on the coarse grid.

Nonlocal multicontinua (NLMC) upscaling for processes in the fractured porous media provides an ef-

fective coarse scale model with physical meaning, and leads to a fast and accurate solver for coupled poroe-

lasticity problem. To capture fine scale processes at the coarse grid model, local multiscale basis functions

are presented. Constructing the basis functions based on the constrained energy minimization problem in

the oversampled local domain is subject to the constraint that the local solution vanishes in other continua

except the one for which it is formulated. Multiscale basis functions have spatial decay property in local

domains and separate background medium and fractures. The proposed upscaled model has only one coarse

degree of freedom (DOF) for each fracture network. Numerical results show that our NLMC method for

fractured porous media provides an accurate and efficient upscaled model on the coarse grid.

The paper is organized as follows. In Section 1, we construct an embedded fracture model for poroelastic

media. Next, we construct fine grid approximation using FVM for flow problem and FEM for mechanics

in Section 2. In Section 3, we construct an upscaled coupled coarse grid poroelasticity model using NLMC

method and present numerical results in Section 4.

1 Embedded fracture model for poroelastic medium

The proposed mathematical model of a coupled flow and mechanics in fractured poroelastic medium contains

an interacting model for fluid flow in the porous matrix, flow in fracture network and mechanical deformation.

The matrix is assumed to be linear elastic and isotropic with now gravity effects. The mechanical and flow

models are coupled through hydraulic loading on the fracture walls and using the effective stress concept

[42, 35]. For fluid flow, we consider a mixed dimensional formulation, where we have a coupled problem for

fluid flow in the porous matrix in Ω ∈ Rd (d = 2,3), and flow in the fracture network on γ ∈ Rd−1 (see

Figure 1 for d = 2).

Porous matrix flow model. Using the mass conservation and Darcy law in the domain Ω:

∂m

∂t
+ div(ρqm) = ρfm, qm = −km

νf
grad pm, x ∈ Ω, (1)

where m is the fluid mass, pm is the matrix pressure, qm is Darcy velocity, νf is the viscosity, ρ is the fluid

density, and fm is the source term.

Due to the motion of the solid skeleton and Biot’s theory, we have the following relationships [12, 28, 27,

26]

m−m0 = ρ

(
1

M
(pm − p0) + αεv

)
, (2)
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Figure 1: Schematic illustration of the problem with embedded fracture model.

where subscript 0 means reference state, α is Biot coefficient, M is Biot’s modulus, εv is the volumetric

strain (the trace of the strain tensor, εv = tr ε) and

1

M
= Φcf +

1

N
,

1

N
=
α− Φ0

Ks
, cf =

1

ρ

dρ

dpm
.

Here Ks is the solid grain stiffness, cf is the fluid compressibility and Φ is the Lagrange’s porosity (also

known as reservoir porosity).

From equation (2), we can express the reservoir porosity change induced by mechanical deformation as

Φ− Φ0 = αεv +
1

N
(pm − p0), (3)

The permeability of the matrix is updated using the current porosity by the power-law relationship

km = k0

(
Φ

Φ0

)n
. (4)

where the cubic law with n = 3 usually used [40, 44].

Therefore by assuming slightly compressible fluids, for the fluid flow in the porous matrix, we have the

following parabolic equation

1

M

∂pm
∂t

+ α
∂εv

∂t
− div

(
km
νf

grad pm

)
= fm,

defined in the domain Ω.

For the case of fractures porous medium, we should add mass trasfer term between matrix and fracture

1

M

∂pm
∂t

+ α
∂εv

∂t
− div

(
km
νf

grad pm

)
+ Lmf = fm, (5)
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where for the mass exchange between matrix and fracture, we assume a linear relationship

Lmf = βmf (pm − pf ).

This mass exchange term occurs only on the fracture boundary.

Fracture flow model. For the highly permeable fractures, we use the following reduced dimension

model for the fluid flow on γ ∈ R(d−1) [35, 21]:

∂(ρb)

∂t
+ div(ρ qf )− ρLmf = ρff , qf = −bkf

νf
grad pf , x ∈ γ, (6)

where b is the fracture aperture, pf is the fracture pressure, qf is the average velocity of fluid along the

fracture plane that can be calculated using the cubic low (kf = b2). For the calculation of the fracture

aperture b, we can use following relation b(t) = zpf (t), where z = 2(1−ν2)
E and deformation proportional to

the fracture pressure pf , where η is the Poisson’s ratio, E is the elastic modulus [22, 34].

Since
∂(ρb)

∂t
= ρ

∂b

∂t
+ b

∂ρ

∂t
= ρ

(
∂b

∂t
+ bcf

∂pf
∂t

)
, (7)

and by assuming slightly compressible fluids [21]

ρ

(
∂b

∂t
+ bcf

∂pf
∂t

)
≈ ρ0

(
∂b

∂t
+ bcf

∂pf
∂t

)
,

div(ρ qf ) ≈ ρ0 div qf , ρLmf ≈ ρ0Lmf , ρff ≈ ρ0ff .

Therefore, we have the following equation on fracture γ

∂b

∂t
+ bcf

∂pf
∂t
− div

(
b
kf
νf

grad pf

)
+ Lfm = ff , x ∈ γ, (8)

where, for the mass exchange between matrix and fracture, we assume a linear relationship between the flux

and pressure difference, namely,

Lfm = βfm(pf − pm).

Let βfm = ηfβ and βmf = ηmβ, where β is the trasnfer term proporsional to the matrix permeability,

ηf and ηm are the geometric factors, that will be described in next section. Then we have

am
∂pm
∂t

+ α
∂εv

∂t
− div(bm grad pm) + ηmβ(pm − pf ) = fm, x ∈ Ω,

af
∂pf
∂t

+
∂b

∂t
− div(bf grad pf ) + ηfβ(pf − pm) = ff . x ∈ γ,

(9)

where am = 1/M , af = bcf , bm = km/νf , bf = bkf/νf . β is the transfer term proportional to the matrix

and fracture probabilities, ηf and ηm are geometric factors that will be defined in next section. Pressure

coupling term expresses the conservation of the flow rate (the fluid that is lost in the fractures goes into

the porous matrix). Here we assume that the fractures have constant aperture, in general case, we can use

b(t) = z pf (t) as a relationship between fracture width and pressure.

Mechanical deformation model. The balance of a linear momentum in the porous matrix is given

by

− div σT = 0, σT = σ − αpmI, x ∈ Ω, (10)
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where pm is the matrix pressure, σT is the total stress tensor, σ is the effective stress [35]. Relation between

the stress σ and strain ε tensors is given as

σ = λεvI + 2µε(u), ε(u) = 0.5(∇u+ (∇u)T ),

where u is the displacement vector in the porous matrix, and λ and µ are the Lame’s coefficients.

For incorporating of the fracture pressure into the model, we assume negligible shear traction on the

fracture walls and consider normal tractions on the fractures [35] with τf = −pfnf , where nf is the normal

vector to the fracture surface. After some manipulation, we obtain following equation in domain Ω

− div (σ − αpmI) +rfpf = 0, x ∈ Ω, (11)

where rf comes from the integration over fracture surface (
∫
γ
pf nf ds) and contains direction of the fracture

pressure influence. In presented model, we follow the classic dual porosity model and add fracture pressure

effects as additional source (reaction) term. In more general case, fractures are modeled by an interface

condition, where displacements have discontinuity across a fracture but stress is continuous [1].

2 Fine grid approximation of the coupled system

Let Th = ∪iςi be a fine scale finite element partition of the domain Ω and Eγ = ∪lιl is the fracture mesh

(see Figure 1). The implementation is based on the open-source library FEniCS [30, 31]. We use geometry

objects for construction of the discrete system for coupled problem. For approximation of the flow part

of the system, we use cell centered finite volume approximation with two point flux approximation. For

displacement, we use Galerkin method with linear basis functions [43].

In this work, we use the two dimensional problem for illustration of the robustness of our method. In

particular, we consider the following coupled system of equations for displacements (two displacements, ux

and uy) and fluid pressures (fracture and matrix, pf and pm)

am
∂pm
∂t

+ α
∂εv

∂t
− div(bm grad pm) + ηmβ(pm − pf ) = fm, x ∈ Ω,

af
∂pf
∂t

+
∂b

∂t
− div(bf grad pf ) + ηfβ(pf − pm) = ff . x ∈ γ,

− div (σ(u)− αpmI) + rfpf = 0, x ∈ Ω.

(12)

Using implicit scheme for approximation of time, a finite volume approximation for pressures and standard

Galerkin method for displacements, we have following approximation∫
Ω

am
pm − p̌m

τ
dΩ +

∫
Ω

α
εv − ε̌v

τ
dΩ−

∫
Ω

div(bm grad pm)dΩ +

∫
Ω

ηmβ(pm − pf )dΩ =

∫
Ω

fmdΩ,∫
γ

af
pf − p̌f

τ
dγ +

∫
γ

b− b̌
τ

dγ −
∫
γ

div(bf grad pf )dγ −
∫
γ

ηfβ(pm − pf )dγ =

∫
γ

ffdγ,∫
Ω

(σ(u), ε(v))dΩ−
∫

Ω

(αpmI, ε(v))dΩ +

∫
Ω

(rfpf , v)dΩ = 0,

(13)

where (p̌m, p̌f , ǔ) are solutions from the previous times step and τ is the given time step.
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Using the two point flux approximation for pressure equations, we obtain

am
pm,i − p̌m,i

τ
|ςi|+ α

εvi − ε̌vi
τ
|ςi|+

∑
j

Tij(pm,i − pm,j) + βil(pm,i − pf,l) = fm|ςi|, ∀i = 1, Nm
f

af
pf,l − p̌f,l

τ
|ιl|+

bl − b̌l
τ
|ιl|+

∑
n

Wln(pf,l − pf,n)− βil(pm,i − pf,l) = ff |ιl|, ∀l = 1, Nf
f

(14)

where Tij = bm|Eij |/∆ij (|Eij | is the length of interface between cells ςi and ςj , ∆ij is the distance between

mid point of cells ςi and ςj), Wln = bf/∆ln (∆ln is the distance between points l and n), |ςi| and |ιl| is the

volume of the cells cells ςi and ιl. Nm
f is the number of cells in Th, Nf

f is the number of cell for fracture

mesh Eγ . Here, we use ηm = 1/|ςi| and ηf = 1/|ιl|. Also, βil = β if Eγ ∩ ∂ςi = ιl and equals zero otherwise.

Matrix form. Combining the above schemes, we have following discrete system of equations for y =

(pm, pf , ux, uy) in the matrix form (
1

τ
M +A

)
y = F, (15)

where

M =


Mm 0 0 0

0 Mf 0 0

0 0 0 0

0 0 0 0

 , F =


Fm + 1

τMmp̌m + 1
τ (Bm,x +Bm,y)ǔ

Ff + 1
τMf p̌f

0

0

 ,

A =


Am +Q −Q 1

τBm,x
1
τBm,y

−Q Af +Q 0 0

−Bm,x −Bf,x Dx Dxy

−Bm,y −Bf,y Dxy Dy

 ,

Mm = {mm
ij}, mm

ij =

{
am|ςi|/τ i = j,

0 i 6= j
, Mf = {mf

ln}, mf
ln =

{
af |ιl|/τ l = n,

0 l 6= n
,

Am = {Tij}, Af = {Wln}, Q = {qil}, qil =

{
β i = l,

0 i 6= l
,

Fm = {fmi }, fmi = fm|ςi|, Ff = {ffl }, fmi = ff |ιl|.

Here D is the elasticity stiffness matrix

Dx = [dxij ] =

∫
Ω

σx(ψi) : εx(ψj) dΩ, Dy = [dyij ] =

∫
Ω

σy(ψi) : εy(ψj) dΩ, Dxy = [dxyij ] =

∫
Ω

σx(ψi) : εy(ψj) dΩ,

Bm,x = [bm,xij ] =

∫
Ω

(αpm,i, εx(ψj))dΩ, Bm,y = [bm,yij ] =

∫
Ω

(αpm,i, εy(ψj))dΩ,

Bf,x = [bf,xlj ] = −
∫

Ω

(rfpf,l, ψj)dΩ, Bf,y = [bf,ylj ] = −
∫

Ω

(rfpf,l, ψj)dΩ,

with linear basis functions ψi and σ =

(
σx σxy

σyx σy

)
and ε =

(
εx εxy

εyx εy

)
We remark that the dimension of fine grid problem is given by

Nf = Nm
f +Nf

f + 2Nv
f ,

where Nv
f is the number of vertices on the fine grid.
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3 Coarse grid upscaled model for coupled problem

Consider a coarse grid partition TH = {Ki} of the domain, where Ki is the i-th coarse cell. Let K+
i be the

oversampled region for the coarse cell Ki obtained by enlarging Ki by a few coarse grid blocks. For our coarse

grid approximation, we will construct multiscale basis functions using the nonlocal multicontinua method

(NLMC)[11]. In general, the construction of the multiscale basis functions starts with an auxiliary space,

which is constructed by solving local spectral problems [10], and then we take eigenvectors that correspond

to small (contrast dependent) eigenvalues as basis functions. These spectral basis functions represent the

channels (high contrast features). Using the auxiliary space, the target multiscale space is obtained by

solutions of constraint energy minimization problems in oversampling domain K+
i . subject to a set of

orthogonality conditions related to the auxiliary space. More precisely, for each auxiliary basis function,

we will find a corresponding multiscale basis function such that it is orthogonal to all other auxiliary basis

functions with respect to a weight inner product. Our basis functions have a nice decay property away

from the target coarse element. In this paper, we use the NLMC method. In the NLMC method, we use

a simplified construction that separate continua in each local domain Ki (coarse cell). Instead of using an

auxiliary space, we obtain the required basis functions by minimizing an energy over an oversampling domain

K+
i subject to the conditions that the minimizer has mean value zero on all fractures and matrix except the

fracture or matrix that the basis function is formulated for. The resulting multiscale basis functions have a

spatial decay property in local domains and separate background medium and fractures.

Figure 2: Multiscale basis functions on mesh 20× 20 for local domain K4 for pressures and displacements.

For the fractures, we write γ = ∪Ll=1γ
(l), where γ(l) is the l-th fracture network and L is the total number

of fracture networks. We also write γj = ∪Lj

l=1γ
(l)
j , where γ

(l)
j = Kj ∩ γ(l) is the fracture inside the coarse

8



cell Kj and Lj is the number of fractures in Kj . Again, for construction of multiscale basis functions, we

solve constrained energy minimization problem in the oversampled local domains subject to the constraint

that the local solution has zero mean on other continua except the one for which it is formulated.

For construction for coarse grid approximation for the coupled problem, we construct multiscale basis

function for (pm, pf , ux, uy). For simplicity, we ignore the coupling term between pressure and displacements

and find multiscale basis functions for pressure and displacements separately. In general coupled poroe-

lastic basis functions can be constructed using the coupled poroelastic system and the constrained energy

minimization principle.

Multiscale basis function for matrix and fracture pressures. To define our multiscale basis

functions, we will minimize an energy subject to some constraints. In the following, we will define the

constraints. We remark that we will find a set of multiscale basis functions for each coarse cell Ki, and these

basis functions have support in K+
i . Thus the following constraints are needed for each Ki, and they are

defined within K+
i . For each coarse cell Kj ∈ K+

i :

(1) background medium (ψ0
l ) : ∫

Kj

ψi0 dx = δi,j ,

∫
γ
(l)
j

ψi0 ds = 0, l = 1, Lj ,

We note that these constraints are defined for the matrix part in Ki, and they require the resulting basis

function to have mean value on each continuum in K+
i except the continuum corresponding to the matrix

part in Ki.

(2) l-th fracture network in Ki (ψil):∫
Kj

ψil dx = 0,

∫
γ
(l)
j

ψil ds = δi,jδm,l, l = 1, Lj ,

where Li is the number of fracture networks in Ki. We note that these constraints are defined for a fracture

network in Ki, and they require the resulting basis function to have mean value on each continuum in K+
i

except the continuum corresponding to a specific fracture network in Ki

For the construction of the multiscale basis functions, we solve the following local problems in K+
i using

an operator restricted in K+
i . This results in solving the following local problems in K+

i :
A
K+

i
m +QK

+
i −QK

+
i CTm 0

−QK
+
i A

K+
i

f +QK
+
i 0 CTf

Cm 0 0 0

0 Cf 0 0



ψm

ψf

µm

µf

 =


0

0

Fm

Ff

 (16)

with zero Dirichlet boundary conditions on ∂K+
i for ψm and ψf . Here we used Lagrange multipliers µm and

µf to impose the constraints for multiscale basis construction. We remark that we have used the notations

ψm, ψf , µm, µf to denote the vector representations of the corresponding functions in terms of fine scale basis.

For example ψm is the vector of coefficients of the matrix pressure expanded in terms of fine scale basis.

We set Fm = δi,j and Ff = 0 for construction of multiscale basis function for porous matrix ψ0 = (ψ0
m, ψ

0
f ).

For multiscale basis function for fracture network, we set Fm = 0 and Ff = δi,jδm,l. In Figure 2, we depict

9



multiscale basis functions for oversampled region K+
i = K4

i (four oversampling coarse cell layers) on coarse

mesh 20× 20.

Multiscale basis function for displacements. The construction is similar to that of pressure. More

precisely, we construct a set of basis functions ψX,i := (ψX,ix , ψX,iy ) and ψY,i := (ψY,ix , ψY,iy ), which minimize

the energy for elasticity problem operator restricted in the region K+
i and satisfy the constraints described

below for all Kj ⊂ K+
i :

(1) X-component, ψX,i : ∫
Kj

ψX,ix dx = δi,j ,

∫
Kj

ψX,iy dx = 0,

(2) Y-component, ψY,i : ∫
Kj

ψY,ix dx = 0,

∫
Kj

ψY,iy dx = δi,j .

For further error reduction, we can add additional basis function for heterogeneous source term.

This results in solving the following local problems in K+
i :

D
K+

i
x D

K+
i

xy STx 0

D
K+

i
xy D

K+
i

yy 0 STy

Sx 0 0 0

0 Sy 0 0



ψx

ψy

µx

µy

 =


0

0

Fx

Fy

 (17)

with zero Dirichlet boundary conditions on ∂K+
i for ψx and ψy. We set (Fx, Fy) = (δi,j , 0) and (0, δi,j) for

construction of multiscale basis function for X and Y-components. In Figure 2, we depict multiscale basis

functions for displacements in oversampled domain K+
i = K4

i .

In general, the permeability or elastic coefficients can be heterogeneous, where for high-construct cases

more basis should be used and constrained energy minimization (CEM) GMsFEM can identify important

modes [10].

We note that, the fracture contributions are divided in each coarse cell and then coupled. Each local

fracture network introduce an additional degree of freedom for current coarse cell. In general, CEM-GMsFEM

can be applied, where local spectral problem automatically identify important modes [10].

Coarse scale coupled system. We first define a projection matrix using the multiscale basis functions

R =


Rmm Rmf 0 0

Rfm Rff 0 0

0 0 Rxx Rxy

0 0 Ryx Ryy

 ,

where

RTmm =
[
ψ0,0
m , ψ1,0

m . . . ψNc,0
m

]
, RTff =

[
ψ0,1
f . . . ψ0,L0

f , ψ1,1
f . . . ψ1,L1

f , . . . , ψNc,1
f . . . ψ

Nc,LNc

f

]
,

RTmf =
[
ψ0,0
f , ψ1,0

f . . . ψNc,0
f

]
, RTfm =

[
ψ0,1
m . . . ψ0,L0

m , ψ1,1
m . . . ψ1,L1

m , . . . , ψNc,1
m . . . ψ

Nc,LNc
m

]
,

RTxx =
[
ψX,0x , . . . ψX,Nc

x

]
RTxy =

[
ψX,0y , . . . ψX,Nc

y

]
RTyx =

[
ψY,0x , . . . ψY,Nc

x

]
RTyy =

[
ψY,0y , . . . ψY,Nc

y

]
.
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In the above definition, ψi,lm is the basis function for matrix pressure corresponding to the coarse block Ki

and the continuum l. The definition for ψi,lf is the basis function for fracture pressure corresponding to

the coarse block Ki and the continuum l. The notation ψi,lm stands for both the function and its vector

representation in fine grid basis. We note that we construct only decoupled multiscale basis functions for

flow and mechanics. Coupled construction of the multiscale basis functions can provide better results and

will be considered and investigated in the future works.

Finally, we obtain following upscaled coarse grid model(
1

τ
M̄ + Ā

)
ȳ = F̄ , (18)

where Ā = RART , F̄ = RF , ȳ = (p̄m, p̄f , ūx, ūy). Here p̄m, p̄f , ūx, ūy are the average solution on coarse grid

cell for matrix, fracture, displacement X and Y components, respectively. For mass matrix, we can use a

property of the constructed multiscale basis functions, and obtain diagonal mass matrix by direct calculation

on the coarse grid

M̄ =


M̄m 0 0 0

0 M̄f 0 0

0 0 0 0

0 0 0 0

 ,

where M̄m = diag{am|Ki|}, M̄f = diag{af |γi|}. The coarse grid upscaled model has only one coarse degree

of freedom (DOF) for each fracture network and provides an effective coarse scale model with physical

meaning, and leads to a fast and accurate solver for the coupled poroelasticity problem.

4 Numerical results

We present numerical results for poroelastic model in Ω with length of 1 meter in both directions. We

consider two test cases: (1) domain with 30 fractures and (2) domain with 60 fractures. In Figures 3 and 4,

we show computational coarse and fine grids, where the fractures are depicted with red color and fine mesh

with blue color. For fracture network, we constructed separate mesh and for domain Ω, we use structured

fine mesh. We consider two coarse grids with 400 cells and with 1600 cells. The coarse grids are uniform.

For coupled poroelastic model, we use following parameters:

• Elastic parameters: µ = E
2(1+ν) and λ = Eν

(1+ν)(1−2ν) , where E = 10× 109, ν = 0.3 and α = 0.1,

• Flow parameters am = 10−6, af = 10−7, bm = 10−11, bf = 10−6 and β = 10−10.

Boundary condition for the displacement: ux = 0.0 on the left and right boundaries, uy = 0.0 on the bottom

and top. We set a point source at the two coarse cells with q = 0.01 and set initial pressure p0 = 107. We

simulate tmax = 10 years with 50 time steps for multiscale and fine scale solvers.

We use DOFc to denote problem size of the coarse-grid upscaled model and DOFf for the fine grid

system size. To compare the results, we use the relative L2 error between coarse cell average of the

11



Figure 3: Computational grids with 30 fracture lines. First: Coarse grid 20 × 20 with 400 cells. Second:

Coarse grid 40 × 40 with 1600 cells. Third: Fine grid for matrix domain Ω with 14641 vertices and 28800

cells (blue). Fine gird for fracture domain γ with 1042 cells (red and white)

Figure 4: Computational grids with 60 fracture lines. First: Coarse grid 20 × 20 with 400 cells. Second:

Fine grid for matrix domain Ω with 14641 vertices and 28800 cells (blue). Fine gird for fracture domain γ

with 1312 cells (red and white)

Ks ep eux
euy

Coarse grid 20× 20

1 4.740 86.865 82.598

2 0.723 43.721 37.034

3 0.369 6.716 4.668

4 0.359 2.718 2.854

Ks ep eux
euy

Coarse grid 40× 40

1 1.986 96.667 95.454

2 0.191 78.718 74.957

3 0.174 30.550 25.220

4 0.158 4.1302 3.321

6 0.157 1.127 1.233

Table 1: Numerical results of relative errors (%) at the final simulation time. DOFf = 59124 and DOFc =

1393. Test case with 30 fractures.
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Figure 5: Fine scale solution for pressure (p∗ = (p − p0)/p0) and displacements (from left to right) for the

different time layers t5, t15 and t50 (from top to bottom). Test case with 30 fractures.

fine-scale solution p̄finem , ūfinex , ūfiney and upscaled coarse grid solutions p̄m, ūx, ūy

ep = ||p̄finem − p̄m||L2 , eux
= ||ūfinex − ūx||L2 , euy

= ||ūfiney − ūy||L2 ,

||v̄f − v̄||2L2 =

∑
K(v̄Kf − v̄K)2∑

K(v̄Kf )2
, v̄Kf =

1

|K|

∫
K

vf dx, v = p, ux, uy,
(19)

for matrix pressure and displacements.

Fine grid solution for computational domain with 30 fractures is presented in Figure 5 for the different time

instants t5, t15 and t50, where tn = nτ . On the first column of the figure, we depict pressure p∗ = (p−p0)/p0,

on the second and third row columns – displacements ux and uy. Comparison of the fine grid and coarse grid

upscaled solutions are presented in Figure 6 at final time. We perform computations on the coarse grid with

400 cells with 4 oversampling layers in the construction of basis functions (K+ = K4). In the first column,

we depict fine grid pressure solution; in the second column – reconstructed fine scale solution from upscaled

13



Figure 6: Numerical results for pressure (p∗ = (p− p0)/p0) and displacements at final time. Test case with

30 fractures. First row: pressure, pm. Second row: displacement, ux. Third row: displacement, uy. First

column: fine scale solution with DOFf = 59124. Second column: reconstructed fine scale solution from

upscaled coarse grid solution with DOFc = 1393. Third column: coarse cell average for fine scale solution.

Fourth column: coarse cell average for upscaled coarse grid. Coarse grid 20× 20 (K+ = K4).

coarse grid solution, in the third column – coarse cell average for fine scale solution and in the fourth column

– coarse cell average for upscaled coarse grid. Fine grid system has size DOFf = 59124. By performing

NLMC method, we reduce size of system to DOFc = 1393. At final time, we have less than one percent of

error for pressure and near 2.5% for displacement.

In Table 1, we present relative errors at final time for two coarse grids and for different numbers of

oversampling layers for the oversample region Ks with s = 1, 2, 3, 4 and 6, where Ks is obtained by extending

K by s coarse grid layers. From the numerical results, we observe a good convergence behavior, when we take
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Figure 7: Fine scale solution for pressure (p∗ = (p − p0)/p0) and displacements (from left to right) for the

different time layers t5, t15 and t50 (from top to bottom). Test case with 60 fractures.

sufficient number of oversampled layers. For the coarse mesh with 400 cells, when we take 4 oversampling

layers, we have 0.359% relative error for pressure, for displacement – 2.718% (ux) and 2.854% (uy). For the

coarse mesh with 1600 cells with 6 oversampling layers, relative error is 0.157% for pressure, for displacement

– 1.127% (ux) and 1.233% (uy). We note that, on the 20 × 20 coarse mesh, the size of upscaled system is

DOFc = 1393 and for the 40 × 40 coarse mesh, we have DOFc = 5165. From the Table 1, we observe

that we can use smaller number of oversampling layers for pressure than for displacements. For pressure is

enough to take 2 oversampling layers for obtaining errors smaller than one percent for both coarse grids, on

the other hand for displacements we should take 4 or 6 oversampling layers in coarse grids 20×20 and 40×40,

respectively. Note tat, in general the presented algorithm can work with different numbers of oversampling

layers for pressure and displacement due to coupled construction of the coarse grid system.

In Figure 9, we present relative errors for pressure and displacements vs time with different number of
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Figure 8: Numerical results for pressure (p∗ = (p− p0)/p0) and displacements at final time. Test case with

60 fractures. First row: pressure, pm. Second row: displacement, ux. Third row: displacement, uy. First

column: fine scale solution with DOFf = 59394. Second column: reconstructed fine scale solution from

upscaled coarse grid solution with DOFc = 1484. Third column: coarse cell average for fine scale solution.

Fourth column: coarse cell average for upscaled coarse grid. Coarse grid 20× 20 (K+ = K4)

oversampling layers Ks, s = 1, 2, 3, 4, 6. All results show good accuracy of the proposed method for coupled

poroelasticity problems in fractured media.

Next, we consider test case with 60 fractures. In Figure 7, we shown solution of the problem for the

different time layers t5, t15 and t50. Comparison of the fine grid and coarse grid upscaled solutions are

presented in Figure 8 at final time for coarse grid with 400 cells and 4 oversampling layers (K+ = K4). In

the first column, we depict fine grid pressure solution; in the second column – reconstructed fine scale solution

from upscaled coarse grid solution, in the third column – coarse cell average for fine scale solution and in
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Figure 9: Relative errors by time for coarse mesh 20× 20 with Ks. Test case with 30 fractures.

Figure 10: Relative errors by time for coarse mesh 20× 20 with K4. Test cases with 30 and 60 fractures.

the fourth column – coarse cell average for upscaled coarse grid. Fine grid system has size DOFf = 59394.

By performing NLMC method, we reduce size of system to DOFc = 1484. At final time, we have 0.4217%

of error for pressure and for displacement – 2.739% (ux) and 3.124% (uy). In Figure 10, we depict relative

errors vs time for K4 on coarse mesh 20×20 for test case with 30 and 60 fractures. We obtain similar results

with good accuracy for both test cases.

Next, we discuss the computational advantages of our approach. The computatonal time is divided into

offline and online stages. In offline stage (preprocessing), we generate local domains, calculate multiscale

basis functions and generate coarse grid system. In online stage, we solve coarse grid problem, with different

imput parameters (source term, boundary conditions, time steps, etc.). Let DOFf is the size of fine scale

solution y = (pm, pf , u), then the dimension of the fine grid coupled problem is DOFf ×DOFf . The coarse

grid system size is DOFc for coupled poroelasticity problem, that depends on the coarse grid size and the

number of local multiscale basis functions. In each local domain (coarse grid cell), we have degree of freedom
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for displacement X and Y components, vof matrix pressure and additional degree of freedom for each fracture

network in current coarse cell. We note that, the number of degree of freedom is similar to classic embedded

fracture model (EFM). For two dimensional problems ,we have M = 3 +Mi ((pm, p
1
f ...p

Mi

f , ux, uy)) degrees

of freedoms in local domain, where Mi is the number of the fracture networks in coarse cell Ki. Therefore,

the size of coarse grid system is DOFc =
∑
Ki

(3 +Mi).

Let Nf is the number of cells for fracture network mesh, Nc and Nv are the number of cells and vertices

on fine grid for domain Ω. Then for two dimensional problems with finite element approximation for dis-

placements equation and finite volume approximation for flow problem, we have DOFf = Nf + Nc + 2Nv.

Then, we can compare a computational cost of solving coarse and fine grid problems. For example in test

case with 30 fractures, a coarse solution has DOFc = 1393 in the coarse grid with 400 cells, where we have

400 and 800 degrees of freedom for matrix pressure and displacement X and Y components, and 193 degrees

of freedom for fractures. For the fine scale system DOFf = 59124 on fine grid with Nv = 14641 vertices

and Nc = 28800 cells. Then, we can obtain accurate solution for multiscale solver using only 2.3% from

DOFf . We note that, the number of Mi in Ki and therefore size of coarse grid system is independent on

fine grid size and a few basis functions can approximate the fine scale solution accurately no matter how fine

is the fine grid. When we use classic direct solver, the solution time of the time dependent coupled fine grid

problem is 81.17 seconds and 5.74 seconds for coarse grid. We have computational gain in the simulations,

because in each time step, the proposed method solves a small coarse grid system compared to the fine-grid

system.

5 Conclusion

In this paper, our goal is to develop an upscaled model for a poroelastic system in fractured media. There

are several contributions. First, we construct an embedded fracture model for a coupled flow and mechan-

ics system. Secondly, based on this system, we develop a nonlocal upscaled model for efficient numerical

simulations. The construction of the upscaled model is motivated by the NLMC method. The main idea is

to construct basis functions for each continuum within a local coarse region such that the resulting coarse

degrees of freedom have physical meanings. Moreover, these basis functions have decay property thanks to

an energy minimization principle, which can guarantee an accurate approximation of the solution. We have

presented several numerical tests to show that our upscaled model can give accurate solutions with a small

computational cost.
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