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Abstract. An extended volume of fluid method is developed for two-phase direct numerical sim-

ulations of systems with one viscoelastic and one Newtonian phase. A complete set of governing

equations is derived by conditional volume-averaging of the local instantaneous bulk equations

and interface jump conditions. The homogeneous mixture model is applied for the closure of the

volume-averaged equations. An additional interfacial stress term arises in this volume-averaged

formulation which requires special treatment in the finite-volume discretization on a general un-

structured mesh. A novel numerical scheme is proposed for the second-order accurate finite-volume

discretization of the interface stress term. We demonstrate that this scheme allows for a consis-

tent treatment of the interface stress and the surface tension force in the pressure equation of

the segregated solution approach. Because of the high Weissenberg number problem, an appro-

priate stabilization approach is applied to the constitutive equation of the viscoelastic phase to

increase the robustness of the method at higher fluid elasticity. Direct numerical simulations of

the transient motion of a bubble rising in a quiescent viscoelastic fluid are performed for the pur-

pose of experimental code validation. The well-known jump discontinuity in the terminal bubble

rise velocity when the bubble volume exceeds a critical value is captured by the method. The

formulation of the interfacial stress together with the novel scheme for its discretization is found

crucial for the quantitatively correct prediction of the jump discontinuity in the terminal bubble

rise velocity.

1. Introduction

The hydrodynamics of single rising bubbles in a quiescent viscoelastic fluid matrix have been

subject of numerous studies since the pioneering work of Astarita and Apuzzo [2], who first reported

that the bubbles may exhibit a jump discontinuity in the steady rise velocity when their volume

exceeds a critical value. The critical bubble volume is characterized by a sharp increase in the

steady rise velocity. This jump phenomenon can change the bubble rise velocity by about an order

of magnitude, which makes it a subject of considerable importance in many process engineering

applications, such as bubble columns. Astarita and Apuzzo related the jump in the bubble rise

velocity to a change of shape of the rising bubble, i.e. they observed the formation of a “teardrop”

shape which may cause the transition to a different flow regime. Hassager [14] observed a change

of the flow field around the bubble, in particular the appearance of a downward flow in the central

wake of the bubble, which is known in literature as the so-called negative wake effect. Later,

flow measurements have substantiated the appearance of the negative wake [11]. The issue on the

theoretical explanation for these three characteristic phenomena of rising bubbles in viscoelastic

liquids led to a controversial debate over the past decades (for a review we refer to [7, 57]). Indeed,

until now no complete theory has been proposed that explains the velocity jump discontinuity, and

its derivation is not meant to be the goal of the present work also. Rather, the present work aims

at the development of a numerical method, capable of predicting the velocity jump phenomenon

and the flow field around the rising bubble in three dimensions. From that, we expect a detailed

picture of the local state of stress around both subcritical and supercritical bubbles, which is hardly

accessible in experiments. The numerical results for the steady bubble rise velocity are quantitatively

compared with the well-characterized reference fluid and experimental data by Pilz and Brenn [39].

A literature survey of previous numerical studies on a bubble rising in a quiescent viscoelastic

fluid is shown in table 1. The majority of studies published on this topic addresses the qualitative

investigation of the bubble shape. Until now, finite element methods have been predominantly used
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in combination with both diffuse interface models [55] and sharp interface models [37, 38]. Pilla-

pakkam et al. [38] reported the first numerical results for the velocity jump discontinuity and the

negative wake effect. They presented both transient and steady state results of bubbles rising in a

hypothetical polymer solution, modelled by the Oldroyd-B constitutive equations. Their simulations

show a sharp increase in the steady rise velocity when the bubble exceeds a certain critical volume.

Moreover, their results indicate that the bubble shape might become asymmetric, in particular

for supercritical bubbles, which substantiates our intention to use a three-dimensional numerical

approach. Recently, Fraggedakis et al. [10] reported numerical results for the velocity jump discon-

tinuity, using an axisymmetric arbitrary Lagrangian-Eulerian mixed finite element method. They

approximated the reference fluid in [39] with an exponential Phan-Thien Tanner (EPTT) constitu-

tive equation, obtaining good agreement with the experimental data in [39] for the subcritical rise

velocities and bubble shapes. However, their numerical method suffers from stability issues when

the bubbles exceeds the critical volume. To the best of our knowledge, numerical results for the ve-

locity jump discontinuity have not previously been reported using the volume of fluid (VoF) method.

Due to their inherent mass conservation property and robustness in handling strong morphological

changes, the VoF method seems to be an appropriate choice for the simulation of rising bubbles in

a viscoelastic fluid.

Subject of Investigation

Reference Numerical Method Fluid Rheology
Bubble
Shape

Negative
Wake

Jump
Discontinuity

[35]
axisymmetric
finite difference
method

FENE-CR x

[48]
two-dimensional
lattice Boltzmann
method

Oldroyd-B x

[37]
three-dimensional
level-set finite
element method

Oldroyd-B x

[21]
axisymmetric
coupled level set
VoF method

Oldroyd-B x

[55]
three-dimensional
phase-field finite
element method

Oldroyd-B x

[33]
axisymmetric
boundary integral
method

FENE-CR x

[38]
three-dimensional
level-set finite
element method

Oldroyd-B x x x

[10]

axisymmetric
arbitrary Lagrangian-
Eulerian finite
element method

EPTT x x (x)*

*method is unstable for supercritical bubbles

Table 1. Literature overview for numerical studies of rising bubbles in a quiescent vis-
coelastic fluid.

The VoF method [15] is an interface capturing method which is widely used for sharp interface

direct numerical simulations (DNS). Besides the VoF method, several other popular interface captur-

ing methods can be found in literature, such as the level-set method or the marker and cell method.

In the VoF method, the sharp interface is captured by a phase indicator function. VoF methods

can be classified depending on the advection scheme that is used to propagate the sharp interface.

A common technique in literature is the geometrical advection based on an interface reconstruction

technique. However, it is well-known that geometrical advection schemes are very difficult to im-

plement in three dimensions on general unstructured grids [22, 28]. On general unstructured grids,

the most common practice is to advect the volumetric phase fraction algebraically with numerical

schemes by solving a scalar transport equation. In this work, we follow the approach of an algebraic

VoF. This avoids the issues related to the complexity of the geometrical interface reconstruction and

advection on unstructured grids, but it poses a huge challenge on the numerical schemes that need

to keep the interface sharp and free of oscillations. Over the years, several numerical schemes for
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the algebraic advection of the sharp volume fraction field have been proposed from which we have

to select a reasonable combination for the case of multi-dimensional flows on general unstructured

grids. In section 4.2 we give a detailed discussion on the choice of suitable numerical schemes for the

present study. We shall note that this choice is, even though being motivated by several physical

and numerical arguments, not unique and different numerical schemes may work out as well.

The objectives of this work are to investigate the capability of the algebraic VoF method for the

challenging issue of a rising bubble in a quiescent viscoelastic fluid matrix. First, we propose an

extended VoF method for the two-phase system consisting of one viscoelastic and one Newtonian

phase. Secondly, the model is validated by a comparison between simulation results and experi-

mental data by [39]. We study whether the numerical method is capable of qualitatively predicting

the characteristic phenomena mentioned above. Moreover, we provide a quantitative comparison

between the measured steady state rise velocities and the simulation results. Finally, we present

transient results for the start-up flow when a spherical bubble is initially at rest and starts to rise

until a steady state is reached. For the implementation we use the OpenFOAM [50] package, which

provides an algebraic VoF solver (interFoam) for inelastic fluids on general unstructured meshes

and, being written in C++, it offers the capability of a highly flexible and modular code design for

our developments.

2. Continuum Modeling

Let us consider a domain Ω(t) ⊂ R3, and let Σ(t) ⊂ R3 be a two-dimensional smooth surface,

cutting Ω into two subdomains (bulk phases), Ωϕ(t) ∪ Ωψ(t) ∪ ΣΩ(t), with ΣΩ := Σ ∩ Ω. Let us

further denote the interface unit normal pointing towards the phase Ωψ as nΣ.

2.1. Bulk. Assuming incompressible, isothermal and laminar flow, the local conservation equations

for mass and momentum in the bulk read

∇·u = 0 in Ω \ Σ,(1)

ρ∂tu + ρ (u·∇) u = ∇·S + ρb in Ω \ Σ,(2)

where u is the velocity, ρ is the density and the term ρb represents body forces with the mass specific

density b. The term ∇·S represents contributions from contact forces, where S is the Cauchy stress

tensor of second rank. We split S into an isotropic part, a viscous solvent component and an elastic

polymer contribution

S := −pI + τ s + τ p,(3)

where p is the pressure. Suppose that the viscous stress obeys Newton’s law, i.e.

τ s = 2µD,(4)

where µ is the solvent viscosity and D = 1
2

(
∇u +∇u>

)
. For a multimode approximation of the

relaxation spectrum, the elastic polymer contribution equals the combination of all K modal polymer

stress contributions

τ p =

K∑
k=0

τ pk.(5)

For a macroscopic fluid element, the modal polymer stress is governed by a statistical distribution of

its internal microstructure, viz. the conformation of the macro-molecules; cf. [3, 26, 25]. Therefore,

the modal polymer stress is directly related to a conformation tensor Ck, which may be regarded

as the average distribution of all microscopic configurations of the polymer macromolecules in the

macroscopic fluid element. In particular, the conformation tensor is usually related to the second

moment of a distribution function of all molecular configurations [26] which implies that, by defini-

tion, it is a symmetric and positive definite (spd) tensor of second rank. Indeed, the spd property

of the conformation tensor is a universal requirement for the derivation of a class of numerical sta-

bilization methods, applied in the present work, as will be discussed in section 2.3. In this work, we

assume further that the modal polymer stress τ pk is a linear function of the symmetric and positive
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definite polymer conformation tensor Ck, such that

τ pk =
ηk

τk(1− ζk)
(h0,kI + h1,kCk) ,(6)

where ηk is the polymer viscosity, τk is the relaxation time and ζk is a material parameter (some-

times called “slip parameter”). Note that (6) may be derived from a closed form of the Kramers’

expression for the polymer stress tensor [4, 26]. The coefficients hj,k depend on the molecular model

and the closure approximation. For most rheological models the scalar coefficients hj,k are either

functions of the first invariant of Ck, i.e. hj,k = ĥj,k(tr Ck), or constants (cf. table 2). To obtain

a complete system, additional constitutive equations for Ck are required. In this work, we restrict

our considerations to partial differential conformation tensor constitutive equations of the form

∂tCk + (u·∇) Ck − L·Ck −Ck·L> =
1

τk
P (Ck) in Ω \ Σ,(7)

where L := ∇u>−ζkD and the material parameter ζk ∈ [0, 2], characterizing the degree of non-affine

response of the polymer chains to an imposed deformation. For ζk = 0 the motion becomes affine

in which case the left-hand side of (7) reduces to the upper-convected derivative, first proposed by

Oldroyd [36]. Let us note that (7) is generic with respect to the model-specific fluid relaxation. The

relaxation is introduced by a specification of the tensor function P (Ck). We impose the restriction

that P (Ck) is a real analytic tensor function of Ck, such that

(8) O·P (Ck) ·O> = P
(
O·Ck·O>)

for every orthogonal tensor O. In this case, P (Ck) is said to be an isotropic tensor-valued function

of the spd second-rank tensor Ck. It has been shown [42, 41] that every real analytic and isotropic

tensor-valued function P (Ck) of one second-rank tensor Ck has a representation of the form

(9) P (Ck) = g0,kI + g1,kCk + g2,kC
2
k,

where g0,k, g1,k and g2,k are isotropic invariants (isotropic scalar functions) of Ck and hence can be

expressed as functions of its three scalar principal invariants, i.e. gi,k = ĝi,k(I1,k, I2,k, I3,k), i = 0, 1, 2.

The principal invariants I1,k, I2,k, I3,k are

(10) I1,k = tr Ck, I2,k =
1

2

[
I2
1,k − tr C2

k

]
, I3,k = det Ck.

We use only models for which g2,k = 0, i.e. the quadratic term in (9) vanishes. Table 2 summarizes

the model-specific expressions for the constitutive equations, used in this work.

constitutive model ζk g0,k g1,k g2,k h0,k h1,k

Maxwell/Oldroyd-B 0 1 −1 0 −1 1
LPTT ∈ [0, 2] 1 + εk

1−ζk
(tr Ck − 3) −g0,k 0 −1 1

EPTT ∈ [0, 2] exp
[

εk
1−ζk

(tr Ck − 3)
]
−g0,k 0 −1 1

Table 2. Model-dependent scalar-valued tensor functions for the generic constitutive
equation (7) and (9).

2.2. Interface. The equations above are valid in the two bulk phases, Ωϕ and Ωψ, respectively. At

Σ, additional balance equations (jump conditions) are needed in order to obtain a complete system.

Let us therefore define the jump JΦK of a quantity Φ at Σ as

JΦK (x) = lim
h→0+

(Φ(x + hnΣ)−Φ(x− hnΣ)) , x ∈ Σ.(11)

At the interface Σ we impose the following conditions: first, there is no phase change, i.e. the mass

flux across Σ is zero. Secondly, there is no-slip of the bulk phases at Σ. Then, the interfacial jump
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conditions are given by

JuK = 0 on Σ,(12)

J(pI− τ )K·nΣ = σκnΣ +∇Σ·SΣ on Σ,(13)

u·nΣ = VΣ on Σ,(14)

where the local curvature is defined as κ = ∇Σ·(−nΣ), the extra stress reads τ = (2µD + τ p) and

SΣ is the interfacial stress tensor. In (13), ∇Σ = PΣ·∇ is the surface gradient operator, where

PΣ := I − nΣ ⊗ nΣ is the projection onto the local tangent plane. (14) is the kinematic condition

for the advection of the interface in absence of phase change, with VΣ denoting the speed of normal

displacement of Σ. For the interfacial stress tensor SΣ a constitutive model is needed. In a similar

way as for the bulk phase, SΣ can be decomposed into

SΣ = σPΣ + τΣ,(15)

where the first term on the r.h.s. contains the surface tension σ which is assumed to be constant

in the present work, i.e. we assume that there is no gradient driven flow on the interface. The

term τΣ represents the intrinsic interfacial extra stress that needs to be closed by a constitutive

model for the rheology of the fluid interface. A non-zero τΣ may arise from a possible adsorption

of polymer molecules at the interface, developing a local microstructure along the interface, e.g.

an interfacial monolayer. If the interfacial rheological stress in such an interfacial microstructure

becomes sufficiently large compared to the bulk-fluid stresses acting across the interface, the intrinsic

interfacial response needs to be considered by a rheological model for τΣ. In the present work, we

assume that the microscale intrinsic interfacial stress is sufficiently small compared to the bulk-fluid

stresses, such that it can be neglected in our macroscopic model, i.e. τΣ = 0. Since σ is assumed to

be constant, we obtain for the tangential contributions in (13) the condition

−JPΣ·τ ·nΣK = 0.(16)

Moreover, assuming that there is only one viscoelastic bulk fluid in phase ϕ, we have

−JPΣ· (2µD) ·nΣK + PΣ·τ pϕ·nΣ = 0.(17)

The component normal to the interface of (13) reads

JpK− JnΣ· (2µD) ·nΣK + nΣ·τ pϕ·nΣ = σκ.(18)

Hence, the fluid interface is governed by the bulk-fluid stress contributions acting in the interface

normal direction which are balanced by the surface tension force. For the shear stresses the slip

condition (17) holds at the interface. In section 3, we derive the volume-averaged (va)-VoF equations

by applying a volume averaging procedure to the local instantaneous balance equations, given above.

In the volume-averaged (va)-VoF equations, we use the momentum jump condition in the form

J(pI− (2µD))K·nΣ + τ pϕ·nΣ = σκnΣ on Σ(19)

as a closure relation.

2.3. Stabilization. Because of the high Weissenberg number problem (HWNP) [23, 24], a numer-

ical stabilization is applied, in order to increase the robustness of the numerical method. Here, we

use the unified mathematical and numerical stabilization framework for the general conformation

tensor constitutive equations (7) and (9) as proposed in [34]. The stabilization framework can be

seen as a generalization of the logarithm conformation representation (LCR), first proposed by Fat-

tal and Kupferman in [9]. In detailed validation studies of computational benchmarks, it has been

found that the change-of-variable representations of the present stabilization framework improve the

convergence at high Weissenberg numbers considerably [34]. Below, we give a brief summary of the

stabilization framework used in the present work. For a detailed description, we refer to [34].

Let F(C) be a real analytic tensor function of the spd second-rank tensor C, such that

(20) O·F(C)·O> = F(O·C·O>)
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for every orthogonal tensor O, i.e. let F(C) be an isotropic tensor-valued function of C. If C is

governed by the generic constitutive equation (7), then F(C) satisfies

(21)
DF(C)

Dt
= 2B·Υ·C + Ω·F(C)−F(C)·Ω +

1

τ
Υ·P (C) ,

where we exploit the property that the spd conformation tensor is diagonalizable, i.e. C = Q·Λ·Q>
with the diagonal tensor Λ containing the three real eigenvalues and the orthogonal tensor Q

containing the corresponding set of eigenvectors. Then, F(C) = F(Q·Λ·Q>) = Q·F(Λ)·Q>.

Moreover, the deformation terms in the convective derivative can be decomposed into the first three

terms on the r.h.s. of (21), containing the tensors B and Ω (see appendix A for the computation).

Note that such a local decomposition, first proposed in [9], is in general necessary to transform the

convective derivative with some tensor function F(C). Regarding the choice of the transformation

function, we impose two fundamental requirements that F(C) must satisfy in order to obtain both a

numerically robust, but also a physically meaningful result: first, F(C) must flatten the locally steep

spatial conformation tensor profiles such that the stiffness of the advection problem is substantially

reduced. Secondly, F(C) must be chosen such that C = F−1 (F(C)) preserves the positivity of the

conformation tensor. A reasonable choice that satisfies both conditions is the k-th root of C, and

the logarithm of C to base a. Table 3 shows the corresponding Υ terms for such functions. The

F(C) Υ

conformation tensor C I

k-th root of C R = Q·Λ 1
k ·Q> 1

kR1−k

logarithm of C to base a S = Q·loga(Λ)·Q> 1
ln(a)a

−S

Table 3. Function F(C) and Υ terms in (21) for the conformation tensor representation,
the k-th root of C representation, and the logarithm of C to base a representation.

specific representations for R and S are then given by

DR

Dt
=

2

k
B·R + Ω·R−R·Ω +

1

kτ

(
g0R

1−k + g1R + g2R
1+k
)
,(22)

DS

Dt
=

2

ln(a)
B + Ω·S− S·Ω +

1

ln(a)τ

(
g0a
−S + g1I + g2a

S
)
.(23)

3. VoF model

Within the finite volume framework, the method of volume-averaging [1, 44, 51] is a well-known

technique for the rigorous derivation of multiphase balance equations that are valid on the discrete

level throughout the entire computational domain. In multiphase flows, this approach is usually

called conditional volume-averaging, because a phase-indicator is introduced to distinguish between

the bulk phases before volume-averaging is applied. For Newtonian two-phase flows, the concept of

conditional volume-averaging has been successfully applied in the past for the derivation of Newto-

nian va-VoF formulations [46, 54, 29]. In previous works, the Newtonian law was used as a closure

model for the extra stress tensor in the momentum equation. Indeed, a similar closure is applied

here for the viscous solvent part of the stress tensor of viscoelastic fluids. However, the elastic poly-

mer stress tensor is modeled by partial differential constitutive equations which need to be written

in a volume-averaged form, too. In this section, we propose a va-VoF formulation that contains

additional contributions for the solvent and polymer stress of a viscoelastic phase.

3.1. Volume-averaged VoF equations. The volume-averaged VoF equations are obtained by

averaging the local instantaneous bulk equations from section 2 over the volume Ω. In order to

distinguish between the two bulk phases ϕ and ψ in the domain Ω, we introduce the phase-indicator
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function

χi(x, t) :=

{
1 if x ∈ Ωi at time t,

0 otherwise,
(24)

where i = ϕ,ψ. The phase-indicator function describes the distribution of the bulk phases in Ω.

On the interface, χi(x, t) is not defined although its left- and right-sided limits exist there. In

the conditional volume-averaging approach, the local instantaneous bulk equations are multiplied

with the phase-indicator function before volume averaging is applied. Detailed descriptions of the

conditional volume-averaging technique can be found elsewhere [45, 53, 8, 18]. Here, we briefly

introduce the definitions and operators of the conditional volume-averaging approach that are used

in the derivation of the viscoelastic va-VoF equations of the present work. Let Φ be some scalar or

tensor quantity such that Φ(t, ·) is continuous in Ω(t) and Φ(·,x) is continuously differentiable in

Ωϕ ∪ Ωψ. The volume average of Φ over Ω is defined as

Φ :=
1

|Ω|

∫
Ω

Φ(x, t) dV(25)

and the intrinsic phase average or phasic average over Ωi is defined as

Φ
i

:=
1

|Ωi|

∫
Ωi

Φ(x, t) dV.(26)

Taking the volume average of the phase indicator function, we obtain the definition of the volumetric

phase fraction αi

αi := χi =
1

|Ω|

∫
Ω

χi(x, t) dV =
1

|Ω|

∫
Ωi

1 dV =
|Ωi|
|Ω|

.(27)

The volumetric phase fraction is constrained by αϕ + αψ = 1 and 0 ≤ αi ≤ 1. With (26) and (27),

we obtain for the conditional volume average of Φ the relation

χiΦ =
|Ωi|
|Ω|

1

|Ωi|

∫
Ωi

Φ(x, t) dV = αiΦ
i
.(28)

Similarly, we define the surface average of Φ as
︷︸︸︷
Φ =

1

|Ω|

∫
ΣΩ

Φ(x, t) dA,(29)

where ΣΩ := Σ∩Ω is the surface area inside Ω. Finally, we need the volume-averaged differentiation

rules which address the exchange of time and space derivatives with the averaging operator [45, 53,

8, 18]:

χi∂tΦ = ∂t

(
αiΦ

i
)
−

︷ ︸︸ ︷
Φiu

Σ·ni,(30)

χi∇Φ = ∇
(
αiΦ

i
)

+
︷ ︸︸ ︷
Φini,(31)

χi∇·Φ = ∇·
(
αiΦ

i
)

+
︷ ︸︸ ︷
Φi·ni,(32)

where ni is the outwardly directed unit normal of phase i, uΣ is the velocity of the interface and Φi

is the value of Φ in phase i. Equation (30) is known as the Leibnitz rule for volume averaging, while

(32) represents the two-phase Gauss divergence theorem for volume averaging. The differentiation

rules (30) to (32) have been rigorously derived, e.g., by Anderson and Jackson [1], Slattery [44]

and Whitaker [51, 52, 16]. We use the rules above to reformulate the conditional volume averaged

equations in their most common form as a combination of volume and interface terms. Starting

from the conditional volume-averaged mass balance

χi∂tρ+ χi∇·(ρu) = 0,(33)

we derive a transport equation for the volumetric phase fraction. For this purpose, we apply (30)

and (32) to (33) and assuming that ρ is constant in Ωi, we get

ρi
(
∂tαi +∇·(αiui)) = ρi

︷ ︸︸ ︷
(uΣ − ui)·ni,(34)
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where the surface integral on the r.h.s. is the phase specific mass flux from Ωi across the interface

which necessarily has to vanish in the absence of phase change. Employing further the continuity

equation ∇·ui = 0 yields

∂tαi + ui·∇αi = 0.(35)

Note that due to αϕ + αψ = 1, we need to consider only one transport equation (35) for either αϕ
or αψ. The conditional volume-averaged momentum equation reads

χi∂tρu + χi∇·(ρuu) = χi∇·S + χiρb.(36)

Applying the differentiation rules above, we obtain

∂t(αiρiu
i) +∇·(αiρiuiui) = ∇·(αiSi) + αiρib + ρi

︷ ︸︸ ︷
ui(u

Σ − ui)·ni +
︷ ︸︸ ︷
Si·ni,(37)

where the first surface integral on the r.h.s. vanishes in the absence of phase change, resulting in

∂t(αiρiu
i) +∇·(αiρiuiui) = ∇·(αiSi) + αiρib +

︷ ︸︸ ︷
Si·ni .(38)

Note that for the derivation of the convective term in (37) and (38) we have assumed that the volume

average of the product of two quantities shall equal the product of two averaged quantities, i.e. we

demand that all scales are well-resolved in the DNS, such that we can neglect possible dispersive

fluxes caused by fluctuating velocity components. Moreover, the interfacial terms of both phases

ϕ and ψ on the r.h.s. in (38) are related to each other by the averaged form of the interface jump

condition (19), i.e.
︷ ︸︸ ︷
Sϕ·nϕ +

︷ ︸︸ ︷
Sψ·nψ =

︷ ︸︸ ︷
J(pI− (2µD))K·nΣ +

︷ ︸︸ ︷
τ pϕ·nΣ = σ

︷ ︸︸ ︷
κnΣ .(39)

3.2. Closure. The homogeneous mixture model is a widely used closure for volume averaged two-

phase flow models in which it is assumed that the two phases may be treated as a single homogeneous

continuum. The concept is based on the one-field assumption for the balance equations. That is,

the volume averaged balance equations for mass and momentum of the two phases are reformulated

by one set of balance equations, valid for both phases within the whole computational domain.

This homogeneous mixture model is a good assumption if the following requirements are satisfied:

First, both phases are assumed to move with the local center of mass velocity. Hence, the local

volume averaged relative velocity ur = uψ − uϕ between the two phases is assumed to be zero

within the averaging volume Ω. Secondly, all relevant scales of the flow and the interface topology

are assumed to be resolved, i.e. the model requires a DNS. We apply the homogeneous mixture

model in this work, keeping in mind that we have to set up the simulations such that the interface

topology is sufficiently well resolved. The mixture model equations are derived by taking the sum

of the conditional volume averaged equations for both phases in the system. This results in

∇·um = 0,(40)

∂tαϕ + um·∇αϕ = 0,(41)

∂tρmum + (um·∇)ρmum = ∇·
(
αϕS

ϕ
)

+∇·
(
αψS

ψ
)

+ ρmb + σ
︷ ︸︸ ︷
κnΣ,(42)

where we have used the following definitions for the mixture density ρm and the center of mass

velocity um, respectively:

ρm = αϕρϕ + αψρψ,(43)

um =
αϕρϕuϕ + αψρψuψ

ρm
.(44)

For the derivation of (40) - (42), the mixture model assumption has been applied, stating that

the local volume averaged relative velocity must vanish, i.e. ur = 0 in Ω. In (42), the momentum

jump condition (39) has been employed to express the sum of the interface stress terms. After the

application of the mixture model, the system is still not complete. Additional closure assumptions

are required to express the stress tensor terms and the surface tension force term on the r.h.s of

(42). The next subsection proposes how to integrate the constitutive relationships for the stress into

the mixture model equations.
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3.2.1. Constitutive equations for the stress tensor. According to (3), the divergence of the stress

tensor in (42) may be split into three contributions, viz.∑
i

∇·
(
αiS

i
)

= −
∑
i

∇
(
αip

i
)

+
∑
i

∇·
(
αiτ s

i
)

+∇· (αϕτ pϕ) , i = ϕ,ψ.(45)

The first term on the r.h.s in (45) contains the volume averaged pressure. The homogeneous mixture

model demands that there is one pressure field which is shared by both phases in Ω. Hence, it has

become customary to denote the pressure as

p := pϕ = pψ,(46)

from which it follows that

−
∑
i

∇
(
αip

i
)

= −∇p.(47)

The second term on the r.h.s in (45) contains the volume averaged purely viscous stress tensor. In

accordance with (4), we apply the constitutive equations of a Newtonian fluid to the viscous solvent

to obtain ∑
i

∇·
(
αiτ s

i
)

=
∑
i

∇·
[
µiαi

(
∇ui +∇ui

>
)]
, i = ϕ,ψ.(48)

In order to close (48), we search an expression in terms of the center of mass velocity (44). Defining

τ sm = µm
(
∇um +∇um

>) ,(49)

where the mixture solvent viscosity is defined as

µm := αϕµϕ + αψµψ(50)

and comparing with (48), it turns out that for the mixture model the relationship between (48) and

(49) is given by

∇·τ sm =
∑
i

∇·
[
µiαi

(
∇ui +∇ui

>
)]
.(51)

Note that (51) is satisfied only if the phase relative velocity ur is assumed to be zero. For the

implementation into a numerical code, the divergence term ∇·τ sm is written in a more convenient

form according to

∇·τ sm = ∇· [µm (∇um +∇um
>)]

= ∇· (µm∇um) +∇um·∇µm,(52)

where we used (40), that is the divergence of the barycentric velocity um is zero. The Laplacian

term on the r.h.s. in (52) is discretized implicitly in this work. Finally, we consider the third term

on the r.h.s in (45) containing the volume averaged polymer stress tensor. This term is present only

in phase ϕ. Due to the stabilization approach for high Weissenberg numbers [34], the constitutive

equations for the polymer stress are transformed to an equivalent set of equations with respect to

the conformation tensor as (6). Conditional volume-averaging of the algebraic relation (6) yields

αϕτ p
ϕ

= αϕ
ηϕ

τϕ(1− ζϕ)

(
C
ϕ − I

)
.(53)

The conformation tensor is modeled by the partial differential constitutive equation in the general

form (7). Conditional volume-averaging of (7) yields

χϕ∂tC + χϕ (u·∇) C− χϕL·C− χϕC·L> =
χϕ
τϕ

P (C).(54)

Employing the differentiation rules (30) to (32) and assuming a well-resolved DNS in which disper-

sion and fluctuation terms are negligibly small, we find

∂t

(
αϕC

ϕ
)

+ (uϕ·∇)αϕC
ϕ − αϕL

ϕ·Cϕ − αϕC
ϕ·(Lϕ)> =

αϕ
τϕ

P
(
C
ϕ
)
,(55)
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where we assume that ︷ ︸︸ ︷
Cϕ(uΣ − uϕ)·nϕ = 0,(56)

since there is no phase change. The volume-averaged equations (53) and (55) constitute the basis for

the closure of the mixture model. In order to derive a closure, it is significant that we are facing a

slightly different problem than above. We know a priori that the polymer stress exists only in phase

ϕ and is zero in phase ψ. Moreover, as described in section 2.2, no intrinsic interfacial rheology is

considered. Therefore, we consider whether the definition of a complete set of mixture quantities

is the most adequate strategy for the closure of the present system. Introducing a mixture stress

implies the assumption that it appears in both phases, at least during the derivation. The result

can then be applied, assuming a zero stress tensor field in one of the two phases. However, since this

is more general than we need, we try to avoid the issue of finding a proper closure for the problem

when both phases are viscoelastic. Due to the complicated structure of the constitutive relationships

in the general (model-independent) mathematical framework of this work, it is a rather challenging

task to arrive at a complete set of appropriate definitions for all quantities in question. To obtain

a complete system, an alternative approach for the specific situation, where we have one polymeric

phase ϕ, appears to be more straightforward. Without the aim of finding a proper definition for all

mixture quantities, we assume that there are two polymeric phases and define Cm := αϕC
ϕ

+αψC
ψ

.

Summing up the constitutive equations for both phases, we find after some algebraic manipulations

(see appendix B)

∂tCm + (um·∇) Cm − Lm·Cm −Cm·(Lm)>

=
αϕ
τϕ

P
(
C
ϕ
)

+
αψ
τψ

P
(
C
ψ
)
,(57)

which is valid under the mixture model assumption ur = 0. Inserting Cψ = 0 into (57) we find the

constitutive equation for phase ϕ

∂t

(
αϕC

ϕ
)

+ (um·∇)αϕC
ϕ − αϕLm·Cϕ − αϕC

ϕ·(Lm)> =
αϕ
τϕ

P
(
C
ϕ
)

(58)

for the mixture model. Equation (58) may be inserted together with the algebraic relation for the

polymer stress (53) into the stress divergence term of the momentum balance. Furthermore, by

inserting the phase fraction transport equation (35) into (58), we find

∂tC
ϕ

+ (um·∇) C
ϕ − αϕLm·Cϕ − αϕC

ϕ·(Lm)> =
αϕ
τϕ

P
(
C
ϕ
)
.(59)

With respect to (53), the transport of the phasic average C
ϕ

instead of αϕC
ϕ

is equivalent. Solv-

ing the constitutive equation for the phasic average of the conformation tensor (59) would be a

legitimate choice for a limited range of Weissenberg numbers. However, a change-of-variable repre-

sentation similar to (21) is significantly more robust over a wide range of Weissenberg numbers and,

therefore, is being pursued. To set up the change-of-variable representation, the constitutive equa-

tion (59) must be transformed as shown in section 2.3. For the volume-averaged change-of-variable

representation of (59) we finally arrive at

∂tF(C
ϕ

) + (um·∇)F(C
ϕ

)

= αϕ

(
2Bm·Υϕ·Cϕ

+ Ωm·F(C
ϕ

)−F(C
ϕ

)·Ωm +
1

τϕ
Υ
ϕ·P(C

ϕ
)

)
.(60)

The representation (60) is the volume-averaged counterpart for the mixture model of the generic

change-of-variable representation (21) for a single-phase system. It is valid only if phase ϕ is vis-

coelastic, while phase ψ is not. The application of a certain tensor function F(C
ϕ

) can affect the

numerical stability, as described in section 2.3. According to the benchmark results [34], a reason-

able compromise between efficiency, stability and accuracy is the 4th-root tensor function, which

is used in this work. An essential advantage of the root conformation tensor representation is that

the back-transformation of the generic transport variable G := F(C
ϕ

) to the polymer stress tensor

does not necessarily require a diagonalization of the conformation tensor, which is exploited here to

reduce the computational costs.
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Equations (53), (60) and the transformations in Table 3 constitute the closure for the polymer

stress tensor. Having a complete system, we consider one further aspect of the polymer stress

divergence term of the momentum balance. Decomposing the polymer stress term with the product

rule yields

∇· (αϕτ pϕ) = αϕ∇·τ pϕ + τ p
ϕ·∇αϕ.(61)

This decomposition may be used to separate pure interface contributions in the second term on the

r.h.s. of (61) from the remainder before some numerical discretization is applied. Inserting Φ = 1

into (31), it is easy to see that

∇αϕ =
︷︸︸︷
nΣ,(62)

demonstrating the connection between the gradient of the phase fraction and the surface average

of the interface normal vector. Even though the l.h.s. and the r.h.s. of (61) are identical from a

mathematical point of view, they are not after certain numerical differencing schemes are applied.

In this respect, it is beneficial to employ the same differencing scheme for the gradient of the phase

fraction in the interface term on the r.h.s. of (61) as for the surface tension force term. In this way,

the directional consistency between the contributions acting in interface normal direction can be

realized on the discrete level. The discretization practice of (61) is described in detail in section 4.

3.2.2. Surface tension force. In the following, we briefly describe the incorporation of the surface

tension in (42). Using the relationship (62), the surface tension force in (42) can be reformulated as

fσ = σ
︷ ︸︸ ︷
κnΣ = σ

︷︸︸︷
κ ∇αϕ.(63)

This formulation was proposed by Brackbill et al. [6] in the widely used continuous surface force

(CSF) model, which shall be employed here. The CSF model is based on the idea that the sur-

face tension force acting on the sharp interface may be replaced by a continuous volumetric force

density acting locally within the interfacial transition region 0 < αϕ < 1. The curvature in (63) is

approximated as

︷︸︸︷
κ =

︷ ︸︸ ︷
∇Σ·(−nΣ) ≈ −∇·

(
∇αϕ
|∇αϕ|

)
,(64)

which is consistent with the original CSF model.

4. Numerical method

4.1. Finite volume discretization.

4.1.1. Domain discretization. The space discretization is carried out by a subdivision of the com-

putational domain into a set of convex control volumes (CVs), that do not overlap and completely

fill the computational domain. Fig. 1 shows a generic CV VP of general polyhedral shape around a

computational point P that is located in its centroid. VP is bounded by a set of flat faces f . sf is

defined for each face as the outward-pointing vector normal to f with the magnitude of the surface

area of f , i.e. sf = nf |sf |, where nf is the face unit normal vector. Each face of VP is shared with

one neighboring CV.

4.1.2. Equation discretization. In the discretization of the viscoelastic VoF equations proposed in

section 3 on a general unstructured mesh, special care must be taken to the treatment of the polymer

stress term at the fluid interface. To satisfy the interface balance in the volume-averaged framework,

the discretization of the interface stress term and the surface tension force term should be carried

out on the same stencil in the pressure equation of our segregated solution approach. Moreover,

since we are using a collocated variable arrangement in the computational grid where all dependent

variables are stored in the center of the CVs, the gradients of the volume-fraction in the interface

terms require special cell-face interpolation techniques, as proposed by Rhie and Chow [40], to

prevent unphysical checkerboard pressure and velocity fields. For the surface tension force at the

cell-face, it is well-known that if the cell-face gradient along the PN direction is discretized on a

compact stencil in terms of the adjacent cell-centroid variables, such decoupling can be removed.

The key aspect of the present section is to propose a similar discretization practice for the interface
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Figure 1. A generic control volume VP around the computational point P .

polymer stress term in the pressure equation of the segregated solution approach. The interface

polymer stress is discretized at the cell-face of the CVs on a compact stencil to prevent decoupling

and to obtain consistency with the discretization of the surface tension force at the cell-face. In

the following, we drop the index m of the mixture quantities in the notation for the sake of better

readability. A second-order accurate approximation in space and time of the discretized momentum

equation (42) for the CV of Fig. 1 can be written as

VP
M t

ρ (un − uo) +
∑
f

ρfφ
β∗

f uβf −
∑
f

µf
β∗sf · (∇u)

β
f

=
∑
f

(
sfu

β∗

f

)
·
∑
f

(
sfµ

β∗

f

)
+ αϕ

∑
f

sf ·(τ pϕ)β
∗

f + VPqβ
∗
,(65)

where q represents some explicitly evaluated source terms that shall be discretized at a later stage,

q := −∇p+ ρb + σ
︷︸︸︷
κ ∇αϕ + τ p

ϕ·∇αϕ,(66)

and φf = sf ·uf is the volumetric flux. The quantity β is the temporal off-centering coefficient in

the interpolation between the old time steps o and the new time steps n, i.e. for any scalar, vector

or tensor quantity Φβ
f we have

(67) Φβ
f =

1

1 + β
Φn
f +

β

1 + β
Φo
f .

In (67), a value of β = 1 equals a second-order Crank-Nicolson scheme, while β = 0 results in a first-

order Euler scheme. In this work, we use a small amount of off-centering, i.e. β = 0.95, to increase

the stability of the Crank-Nicolson scheme. Since we are using a segregated solution approach, some

components of (65) cannot be discretized fully implicitly, such as the non-linear convection term

and the source terms. We mark quantities that are lagged by one outer iteration at the current time

level as Φn∗

f . For a lagged quantity, the temporal interpolation (67) can be reformulated as

(68) Φβ∗

f =
1

1 + β
Φn∗

f +
β

1 + β
Φo
f .

Specifically, the linearization of the convection term in (65) is achieved by computing the volumetric

flux φβ
∗

f according to (68). Note that in the segregated solution approach, the system of equations

is solved multiple times within one time step. Therefore, we have Φn∗

f = Φo
f when the equations

are solved for the first time after the time index is increased by one. But as the number of outer

iterations on the same time-level is increased, Φn∗

f is updated with the latest values, subsequently

to the solution of the respective equations, such that it converges successively towards Φn
f .
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In the linearized convection term in (65), the face-centroid velocity unf is handled implicitly using

the high-resolution differencing scheme Gamma [20]. The Gamma scheme guarantees the bound-

edness of the solution by combining second-order accurate central differencing with unconditionally

bounded upwind differencing. For the blending factor between the linear and the upwind scheme, we

use the value βm = 1/10, which is recommended in [20], in order to preserve second-order accuracy

and to avoid convergence problems.

The derivative sf · (∇u)
n
f in the diffusion term of (65) is discretized according to [30] as

(69) sf · (∇u)
n
f =

|sf |
nf ·df (unN − unP )︸ ︷︷ ︸

orthogonal contribution

+

(
sf −

|sf |
nf ·df df

)
· (∇u)

n∗

f︸ ︷︷ ︸
non-orthogonal correction

,

where df = xN − xP represents the connection vector of the two computational points P and N .

The orthogonal contribution is handled implicitly by evaluating the current second-order accurate

central difference of the neighboring cells directly at face f . The non-orthogonal correction term

is evaluated explicitly by linear interpolation of the cell-centroid gradients at P and N to face f

according to

(70) (∇u)
n∗

f = ξf (∇u)
n∗

P + (1− ξf ) (∇u)
n∗

N ,

where the linear interpolation factor to interpolate between the cell-centroids P and N is defined

as ξf = fN/PN . In (70), the cell-centroid gradients are computed using a discretized form of the

Gauss’ theorem so that for the centroid P of a CV with VP we have

(71) (∇u)
n∗

P =
1

VP

∑
f

(
sfu

n∗

f

)
.

In pressure-based solution approaches, the momentum equation is not necessarily solved. Instead,

an additional pressure equation is constructed from the discretized continuity and momentum equa-

tions. The pressure-velocity coupling problem is then handled in a segregated iterative procedure by

solving the pressure equation and subsequently updating the velocity, using the new pressure. In this

work, the pressure-implicit with splitting of operators (PISO) algorithm [17] is used to time-advance

the pressure and the velocity. Detailed explanations of the PISO algorithm in OpenFOAM can be

found, e.g., in [31]. However, for the VoF solver interFoam, the pressure equation is constructed

with a modified pressure defined by

pd = p− ρb·xP ,(72)

∇pd = ∇p− ρb− b·xP∇ρ.(73)

In (72), the hydrostatic pressure is removed from p to yield the modified pressure pd. Using the

modified pressure as dependent variable is advantageous in a collocated variable arrangement with

respect to the numerical treatment of density jumps at the interface. To avoid decoupling of the

fields by an interpolation of the cell-centered density gradient term to the face, the density gradient

is considered in the Rhie and Chow correction by a compact discretization directly at the cell-face.

Substituting the pressure gradient in (65) with (73), the discretized momentum equation can be

written as a linear algebraic equation as

aPunP +
∑
N

aNunN = rP − (∇pd)nP − b·xP (∇ρ)
n∗

P + σ
(︷︸︸︷
κ
)n∗
P

(∇αϕ)
n∗

P +
(
τ p

ϕ)n∗
P ·(∇αϕ)

n∗

P ,(74)

where the coefficients aP and aN read

aP =
1 + β

M t
ρ+

1

VP

∑
f

µf
|sf |

nf ·df + acP ,(75)

aN = − µf
VP

|sf |
nf ·df + acN .(76)

The term rP in (74) contains all explicitly evaluated lagged and old-time level terms, except for

the other terms on the r.h.s. of (74), which are still formulated in a non-discretized form. The

coefficients acP and acN in (75) and (76) represent the contributions from the discretization of the
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convection term, using the Gamma discretization scheme. For the purpose of the derivation of the

pressure equation, ∇pnd must be considered at the new time-level n. Moreover, since the PISO

algorithm is an iterative procedure in which the pressure and velocity are sequentially updated, we

introduce another symbol ′ to denote lagged terms with respect to the outer PISO iterations. With

the definition

hP := rP −
∑
N

aNun
′

N ,(77)

equation (74) can be rearranged to express the cell-centroid velocity as

unP =
hP
aP

+
1

aP

[
−(∇pd)nP − b·xP (∇ρ)

n∗

P + σ
(︷︸︸︷
κ
)n∗
P

(∇αϕ)
n∗

P +
(
τ p

ϕ)n∗
P ·(∇αϕ)

n∗

P

]
.(78)

This cell-centroid velocity is used to construct a cell-face velocity equation as

(79) unf =

(
h

a

)
f

+

(
1

a

)
f

[
− (∇pd)nf − b·xf (∇ρ)

n∗

f + σ
(︷︸︸︷
κ
)n∗
f

(∇αϕ)
n∗

f +
(
τ p

ϕ)n∗
f ·(∇αϕ)

n∗

f

]
,

where
(
h
a

)
f

and
(

1
a

)
f

are computed by linear interpolation (70) of the cell-centroid expressions at

P and N , next to the face f . Inserting (79) into the discretized continuity equation

(80)
∑
f

sf ·unf = 0,

yields, after rearranging, the pressure equation

(81)
∑
f

(
1

a

)
f

sf · (∇pd)nf =
∑
f

(
φn
′

f + φn
∗

f

)
,

where the term sf · (∇pd)nf is discretized analogous to (69) as

(82) sf · (∇pd)nf =
|sf |

nf ·df ((pd)
n
N − (pd)

n
P )︸ ︷︷ ︸

orthogonal contribution

+

(
sf −

|sf |
nf ·df df

)
· (∇pd)n′f︸ ︷︷ ︸

non-orthogonal correction

.

The cell-face fluxes φn
′

f and φn
∗

f in (81) read

φn
′

f = sf ·
(

h

a

)
f

,(83)

φn
∗

f =

(
1

a

)
f

[
−γbsf ·(∇ρ)

n∗

f + γσκsf ·(∇αϕ)
n∗

f + ŝn
∗

f ·(∇αϕ)
n∗

f

]
.(84)

In (84), the scalar coefficient in the body force reads γb = b·xf , the coefficient in the surface tension

force reads

(85) γσκ = σ
(︷︸︸︷
κ
)n∗
f
,

where the curvature is obtained according to the CSF model (64) by linear interpolation of the

cell-centered values, i.e.

(86)
(︷︸︸︷
κ
)n∗
P

= − 1

VP

∑
f

sf ·
(

(∇αϕ)
n∗

f

|(∇αϕ)
n∗

f |

)
,

to the cell-face. The modified vector ŝn
∗

f in the interface stress term in (84) reads

(87) ŝn
∗

f = sf ·(τ pϕ)n∗f .

With (87), we find

(88) ŝn
∗

f ·(∇αϕ)
n∗

f =
∣∣∣̂sn∗f ∣∣∣nf ·(∇αϕ)

n∗

f +
(
ŝn
∗

f −
∣∣∣̂sn∗f ∣∣∣nf) ·(∇αϕ)

n∗

f .

Inserting a compact discretization of the volume-fraction gradient at the cell-face as

(89) nf ·(∇αϕ)
n∗

f =
1

nf ·df
(

(αϕ)
n∗

N − (αϕ)
n∗

P

)
+

(
nf −

1

nf ·df df

)
· (∇αϕ)

n∗

f
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into (88), we obtain the new scheme for the interface stress term as

(90) ŝn
∗

f ·(∇αϕ)
n∗

f =

∣∣∣̂sn∗f ∣∣∣
nf ·df

(
(αϕ)

n∗

N − (αϕ)
n∗

P

)
+

ŝn
∗

f −

∣∣∣̂sn∗f ∣∣∣
nf ·df df

 · (∇αϕ)
n∗

f .

Similar to (69), the first term on the r.h.s. of (90) is computed directly at the cell-face f as the second-

order accurate central difference between the two neighboring cell-centroids, while the second term

on the r.h.s. of (90) represents the correction, which is obtained by interpolating the cell-centroid

gradients to the cell-face. With (90) it becomes obvious that the discretization of the interface

stress term is computed on the same computational stencil as the surface tension force term. Both

contributions can be combined to yield

(91)
(
γσκsf + ŝn

∗

f

)
·(∇αϕ)

n∗

f = γ⊥

(
(αϕ)

n∗

N − (αϕ)
n∗

P

)
+ k· (∇αϕ)

n∗

f ,

where

γ⊥ =
γσκ |sf |+

∣∣∣̂sn∗f ∣∣∣
nf ·df(92)

and

k = γσκsf + ŝn
∗

f −
γσκ|sf |+

∣∣∣̂sn∗f ∣∣∣
nf ·df df .(93)

This completes the discretization of the fluxes in the pressure equation (81) on general unstructured

meshes. After solving the pressure equation (81), the reconstructed cell-face flux

(94) φnf = φn
′

f + φn
∗

f −
(

1

a

)
f

sf · (∇pd)nf
is conservative, which means that

(95)
∑
f

φnf = 0.

The discretization of the constitutive equation can be carried out in the same way as proposed in

[34] for a single-phase system. Defining the generic working variable G := F(C
ϕ

) and applying the

discretization described above to the volume-averaged constitutive equation (60), we have

(96)
VP
M t

(Gn
P −Go

P ) +
∑
f

φβ
∗

f Gβ
f = VPQβ∗

GP
,

where Qβ∗

GP
represents the explicitly evaluated source terms. The corresponding linear algebraic

equation has the form

(97) aPGn
P +

∑
N

aNGn
N = RP ,

where the coefficients aP and aN read

aP =
1 + β

M t
VP + acP ,(98)

aN = acN(99)

and where the symmetric tensor RP contains the remaining old-time level terms and the lagged

terms.

4.2. Interface capturing. An algebraic VoF method is used to capture the interface. In such a

method, the interface representation is known implicitly from the distribution of the volume fraction

in the computational domain. A geometrical reconstruction of the interface is not required, which

dramatically reduces the difficulty of implementation in multidimensions on general unstructured

computational grids [22, 28]. The interface is advected by solving the mixture model transport

equation for the volume fraction (41). Thus, the accuracy of the interface representation and

transport depends strongly on the numerical differencing scheme applied to the advection term
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in (41). The high accuracy numerical differencing scheme is required to simultaneously maintain

sharpness of the interface, boundedness and conservation of the phase fraction. For the advection

of a sharp profile it is well-known that higher-order schemes suffer from a lack of boundedness,

i.e. they give rise to over- and undershoots, leading to unphysical results [49]. Several procedures

have been developed to avoid such errors, which can be divided in two categories. The VoF-based

interface capturing schemes apply a flux-limiter to the cell-face fluxes that enforces a one-dimensional

monotonicity criterium. Widely used high resolution interface capturing schemes are the CICSAM

scheme [46, 47] and the HRIC scheme [32]. Both schemes are based on the normalized variable

formulation [27], together with the convection boundedness criterion [12]. Such schemes can be

applied in complex two- and three-dimensional flows on general unstructured computational grids,

however they neither guarantee the solution to remain sharp nor bounded in this case. An alternative

approach which is used here is the multi-dimensional FCT method, introduced by Boris and Book [5]

and extended to multiple dimensions by Zalesak [56]. The FCT method is a fully multi-dimensional

flux limiting strategy that applies a local weighting-procedure between an unconditionally bounded

low order upwind differencing scheme and an anti-diffusive higher order correction scheme, such that

the higher order flux is used to the greatest extent possible to keep the solution bounded between

some local extrema. Given the time-explicit discretization of the volume fraction transport equation

(41), i.e.

VP
M t

(
αnϕ − αoϕ

)
+
∑
f

φβ
∗

f = 0,(100)

where the flux φf at the cell-face f is defined as φf = sf ·ufαϕf , the FCT method introduces a

blending between a lower-order flux φf,L and a higher-order flux φf,H as

VP
M t

(
αnϕ − αoϕ

)
+
∑
f

φβ
∗

f,L +
∑
f

λf

(
φβ
∗

f,H − φ
β∗

f,L

)
= 0,(101)

where λf is the flux limiter defined on each cell-face f . Here, λf has to be determined in an

appropriate manner to ensure that the higher-order fluxes do not introduce any new local extrema

into the solution. The bounds are estimated for each CV from a local stencil at the point P and

the CVs n cell-face neighbors as

αϕ,P,min := min
(
αβ
∗

ϕ,P , α
β∗

ϕ,N,1, ..., α
β∗

ϕ,N,n

)
,(102)

αϕ,P,max := max
(
αβ
∗

ϕ,P , α
β∗

ϕ,N,1, ..., α
β∗

ϕ,N,n

)
.(103)

Then, to satisfy the condition αϕ,min ≤ αnϕ ≤ αϕ,max, a cell-based limiter can be obtained. Defining

the correction φβ
∗

f,corr := φβ
∗

f,H − φ
β∗

f,L in (101) and considering the fluxes into the CV, we define

P+ = −
∑
f

min
(

0, φβ
∗

f,corr

)
,(104)

Q+ =
VP
M t

(
αϕ,P,max − αoϕ

)
+
∑
f

φβ
∗

f,L,(105)

R+ = −
∑
f

min
(

0, λfφ
β∗

f,corr

)
.(106)

Similarly for the fluxes away from the CV, we have

P− =
∑
f

max
(

0, φβ
∗

f,corr

)
,(107)

Q− =
VP
M t

(
ααo

ϕ−ϕ,P,min

)
−
∑
f

φβ
∗

f,L,(108)

R− =
∑
f

max
(

0, λfφ
β∗

f,corr

)
.(109)



AN EXTENDED VOF METHOD FOR BUBBLES RISING IN A VISCOELASTIC LIQUID 17

With the definitions (104) to (109), the least upper and greatest lower bound on the fraction, which

must multiply all higher order fluxes, is then given by

S± = max

[
0,min

(
1,
Q± +R∓

P±

)]
.(110)

Note that the choice (110) is slightly different from Zalesak’s [56], since it additionally takes into

account the higher-order net flux of the CV. The cell-face limiter λf is obtained from the bounds

at the points P and N on either side of the face f as

λf =

 min
(
S−P , S

+
N

)
if φβ

∗

f,corr > 0,

min
(
S+
P , S

−
N

)
if φβ

∗

f,corr < 0.
(111)

The FCT limiter estimation is carried out with the so-called MULES algorithm in OpenFOAM.

Unlike Zalesak’s FCT [56], the MULES algorithm applies an iterative strategy for the estimation of

λf . Initially, the limiter is computed with (102) to (111), using an initial guess of λf = 1. Then

(106) and (109) to (111) are computed again with the result for λf from the previous iteration. In

total two additional iterations are applied in this work.

While the FCT method is powerful to preserve the boundedness of the solution in multi-dimensional

flows on general unstructured meshes, the sharpness of the interface is not inherently guaranteed.

The latter aspect primarily depends on how the cell-face fluxes φβ
∗

f,L and φβ
∗

f,H are computed. The

most natural choice is to apply a combination of upwind differencing for φβ
∗

f,L and downwind differ-

encing for φβ
∗

f,H , which will result in a compressive overall scheme in (101). Downwind differencing

will introduce anti-diffusion to counteract the numerical diffusion of the first-order upwind scheme,

applied for φβ
∗

f,L. For the higher order flux φβ
∗

f,H , we apply the inter-Gamma scheme [19], which is

a reasonable choice since it uses a certain amount of downwind differencing and shows good shape

preserving properties at small CFL numbers [13]. The inter-Gamma scheme is based on the NVD ap-

proach. As such, it is subject to similar issues as mentioned above if it is used for multi-dimensional

flows on general unstructured computational grids. Under certain conditions, it might fail to keep

the interface sharp. One possible source of errors is related to the fact that the scheme’s compres-

sion is completely governed by the one-directional convective fluxes through the cell-faces of the

CV. As a consequence, the scheme’s interface compression is not necessarily directed bi-normal to

the interface orientation, unless the scheme’s geometric weights are modified to account for the local

interface orientation at the cell-face. However, even with a modification of the geometric weights

the interface compression of the inter-Gamma scheme can locally become too small in magnitude

to balance the numerical diffusion of the interface. To circumvent such errors, we use an alternative

approach in OpenFOAM which combines the higher-order flux in (100) with an extra compressive

flux as
VP
M t

(
αnϕ − αoϕ

)
+
∑
f

φβ
∗

f +
∑
f

φβ
∗

f,cα
β∗

f,ϕ(1− αβ
∗

f,ϕ) = 0.(112)

This is sometimes referred to as the interface compression scheme by Weller [43]. As can be seen

from (112) it is formally equivalent to the addition of a “counter-gradient” transport term to the

volume fraction equation. Containing the factor αβ
∗

f,ϕ(1 − αβ
∗

f,ϕ), this extra term is only active in

the interface region. One advantage of the method is that the compressive flux φβ
∗

f,c is computed

such that it is acting in the direction of the interface unit normal vector nΣ,f = (∇αϕ)f/|(∇αϕ)f |.
However, there is no physical justification for the appearance of this extra flux, it is motivated by

purely numerical considerations, i.e. to sharpen the interface by bi-normal interface compression. In

this work φβ
∗

f,c is modeled by

φβ
∗

f,c = min

cα
∣∣∣φβ∗f ∣∣∣
|sf |

,max


∣∣∣φβ∗f ∣∣∣
|sf |

 (nΣ,f ·sf ) .(113)
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The idea behind (113) is that the magnitude of the cell-face flux φβ
∗

f is used as a local measure for

the interface diffusion speed which is being counteracted by φβ
∗

f,c. The model coefficient cα controls

the amount of interface compression and is chosen to be 1.

4.3. Moving reference frame. To save computational costs we use a local adaptive mesh re-

finement with a finer spatial resolution in the neighborhood of the fluid interface and a coarser

resolution far away from the bubble. In an inertial frame of reference, the local adaptive mesh

refinement needs to be adjusted during the simulation as the bubble moves inside the domain. Such

a re-meshing procedure causes additional workload. When transforming the system into a moving

reference frame that is attached to the motion of the rising bubble, re-meshing can be avoided. In

the moving reference frame, additional forces will appear due to the different acceleration of the

bubble observed in both frames. Denoting the frame acceleration with aF , the body force in the

non-inertial frame becomes

ρmb = ρm (g − aF ) ,(114)

where the g is the gravitational acceleration and the frame acceleration aF is given by

aF =
duF
dt

.(115)

The time-dependent velocity uF is also prescribed at the inlet of the computational domain. The

velocity uF is computed in every time step of the simulation, based on the relative movement of the

center of mass of the bubble. To dampen small oscillations in the velocity field a PD controller is

applied for the computation of uF .

5. Results

Numerical results for a bubble rising in a viscoelastic fluid are presented in this section. A

particular focus is put on the study of characteristic effects of the rising bubble, such as the jump

discontinuity of the steady state rise velocity and the negative wake behind the trailing end of the

bubble. The major goal is to achieve quantitative agreement of the bubble rise velocities between

the numerical results and experimental measurements for both subcritical and supercritical volumes.

Furthermore, the local flow patterns around the bubble are analyzed to obtain a better knowledge

of the non-trivial relations between the bubble rise velocity, the bubble shape, and the viscoelastic

stress.

5.1. Experiments, case setup and boundary conditions. In the experiments by Pilz and

Brenn, the rise of individual air bubbles in viscoelastic polymer solutions was investigated [39]. The

aqueous polymer solutions were prepared using de-ionised water, stirring for several hours, allowing

the solutions to rest for 24 hours, and taking every care to avoid that surfactants entered the liquids.

The liquid was contained in a 450 mm high cylindrical vessel with square-shaped cross section of

120 mm side length. The bubbles were formed by accumulating below a spoon-like concave body in

the liquid varying numbers of approximately 2 mm3 bubbles produced from the end of a 0.09 mm

capillary by sucking air into the liquid through the capillary. The volume of the bubbles to be

investigated was varied by this technique. The bubbles released from the spoon were allowed to

rise for some 15 to 35 bubble diameters before entering the containment. The bubble rise velocity

measurement was carried out 350 mm above the bottom of the vessel, where the bubbles were at

their state of steady rise and shape. The bubble volume and velocity were measured based on

processing of bubble images acquired with a video camera at the framing rate of 30 Hz. Bubble

volumes ranged between 3 mm3 and 990 mm3. Velocities were of the order of some mm/s to some

100 mm/s, so that continuous illumination with a mercury lamp was appropriate for producing

sharp bubble images. The aqueous polymer solutions were prepared using de-ionised water, taking

every care to avoid that surfactants entered the liquids.

The three-dimensional computational domain used in this study consists of a cube. The dimen-

sions of the computational domain are adapted to the respective size of the bubble. In each case,

the domain length is 21.7 times larger than the initial bubble diameter. The simulation is initi-

ated by placing a spherical bubble in the center of the domain. Because the system is solved in a
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moving reference frame, the velocity boundary conditions of the computational domain need to be

adjusted relative to the motion of the reference frame in each timestep. This is achieved by defining

a Dirichlet boundary condition for the velocity on each side of the domain. This Dirichlet boundary

condition is set with the time-dependent frame velocity uF . In every time step of the simulation,

the boundary values are updated. For the pressure, the polymer stress and the volumetric phase

fraction, we apply zero-gradient boundary conditions. Only on the horizontal bottom side of the

cube different boundary conditions are used. Here, we expect an outflow. On the bottom side we

apply zero-gradient boundary conditions for the velocity, the polymer stress and the volumetric

phase fraction. For the pressure a Dirichlet boundary condition is used with a constant value.

5.2. Fluid rheology. The aqueous polymer solution used in the present work was characterized

by Pilz and Brenn [39] by means of shear and elongational rheometry. Elongational rheometry was

used for the determination of a characteristic relaxation time for the system, while the shear data

was used to fit the viscosity. This procedure has been shown to result in a reliable estimation of the

parameters for the constitutive equations presented in Table 2, to model the physics of the rising

bubble in the polymer solution. For the numerical experiments of the present work, we use the

values of the relaxation time and the zero-shear viscosity proposed in [39]. Let us note that because

of the solvent-polymer stress splitting, the total viscosity is decomposed as η0 = µ+ η. Depending

on the rheological model, further parameters need to be estimated. The flow curve of the polymer

solution in simple shear flow is shown in Figure 2. From this curve it can be seen that the polymer

solution is shear-thinning. This behavior cannot be captured with simple two-parameter constitutive

equations, like the Oldroyd-B model. Hence, we use the four-parameter exponential Phan-Thien

Tanner (EPTT) model, which is frequently used in the literature for viscoelastic polymer solutions

with shear-rate dependent flow behavior. A parameter fit of both models in simple shear flow is

shown in Figure 2. An overview of all parameters is given in Table 4. The Oldroyd-B model is

w[%] ρϕ[kg/m3] η[Ns/m2] µ[Ns/m2] τ [s] σ[N/m] ε ζ

0.8 1000.9 1.483 0.03 0.203 0.07555 0.05 0.12

Table 4. Parameters for the polymer solution used for the investigation.

obviously not shear-rate dependent but exhibits a constant total viscosity over γ̇. The EPTT model

shows a shear-thinning behavior, which better corresponds to the measurements. Let us note that a

closer fit to the experimental flow curve could be obtained by changing the relaxation time, which is

what we want to avoid, because we trust the elongational data used to estimate τ . Thus, we adjust

only the parameters ε, ζ and the viscosity ratio µ/η0, while keeping τ unchanged. In simple shear

flow, a change of ε and ζ results in a different slope of the viscosity curve, but does not shift the

curve along the shear-rate coordinate. Hence, when keeping τ unchanged, the viscosity curve must

have a steeper slope to achieve good agreement with the experiments.

Regarding the flow curves in Figure 2, an important question is how shear-thinning affects the

velocity jump discontinuity. Results from other researchers [38] suggest that the velocity jump

occurs also for rheological models with shear-rate independent viscosities. This means that shear-

thinning cannot be a necessary condition for the appearance of the velocity jump discontinuity. In

the preparation of this work we made similar observations, using the Oldroyd-B equations. However,

because the experiments unquestionably show that the polymer solution is shear-thinning, we use

the EPTT equations for all numerical simulations of this study.

5.3. Convergence of the bubble rise velocity. We study the dependence of the numerical

results for the bubble rise velocity on the spatial resolution of the computational mesh and the time

step. To demonstrate that the grid resolution is sufficient to obtain mesh-independent rise velocities,

we compare the numerical results of two different meshes. The mesh M1 is aimed to be used for the

productive simulations of this work. We compare the rise velocities obtained on the mesh M1 with

the results obtained on a coarser mesh M2. If the values for the rise velocities on the two meshes
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Figure 2. Flow curves for the aqueous 0.8 % weight P2500 solution. The symbols show
the measurements in simple shear flow [39]. The curves show the viscosity (l.h.s.) and the
shear stress (r.h.s.), using the Oldroyd-B and the EPTT model with the parameters given
in Table 4. Note that in the constitutive equations the relaxation time is not adjusted to
the shear data; it is obtained from the measurements in elongational flow instead. For this
reason, little freedom is left to shift the curve of the EPTT equation along the shear-rate
axis.

do not differ considerably, we consider the desired mesh M1 as sufficiently well resolved to achieve

convergence in the rise velocities. A similar procedure is carried out regarding the time step size.

The parameters of the two different meshes are shown in Table 5. Local adaptive mesh refinement

Name nCV nCV,min/db lCV,min/db L/db

M1 1577864 108 9.42× 10−3 21.7

M2 790300 84 1.19× 10−2 21.7

Table 5. Mesh characteristics. Number of control volumes nCV of the mesh, ratio of
the number of control volumes per bubble diameter nCV,min/db on the finest refinement
level, minimum length of the CV per bubble diameter lCV,min/db on the finest refinement
level and ratio of the domain length per bubble diameter L/db.

is used to obtain high spatial resolution in the vicinity of the bubble interface and to save computa-

tional resources in less important regions far away from the bubble, by an increased mesh-spacing.

Details of the computational meshes are shown in Figure 3. The fine mesh M1 has ≈ 1.58 million

computational CVs and a ratio of 108 CVs per initial bubble diameter on the finest refinement

level. In the coarse mesh M2 the total number of cells is approximately reduced by half, while

keeping the local distribution of the mesh refinement zones unchanged. The ratio of CVs per bubble

diameter is reduced to 84 in M2. For both meshes the domain length is 21.7 times larger than

the bubble diameter. This relatively large L/db ratio is sufficient to eliminate wall effects in the

flow field around the bubble. In order to show that the numerical results are independent from the

time step size, we compare the numerical results, obtained with a constant time step of 2 × 10−6

seconds with the results, obtained with twice this time step size. Note that the time step sizes in

our simulations are specified, depending on the fluid relaxation time. An additional criterion makes

sure that the CFL number stays below the value 0.25. The time step 2× 10−6 seconds, used in the

present investigations, is small enough to fulfill the CFL criterion in every time step throughout the

simulation, such that the time step size never falls below 2× 10−6 seconds.
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Figure 3. Visualization of the three-dimensional computational mesh M1. Left: Cutting
planar mesh slice through the center of the computational domain. Right: Detail of the
mesh in the vicinity of the bubble. The initial bubble shape is represented in gray.

Figure 4 shows the transient bubble rise velocity as a function of time for a bubble accelerating

from rest in a quiescent viscoelastic fluid. On the l.h.s. two numerical simulations with similar
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Figure 4. Transient bubble rise velocity as a function of time of a bubble accelerating
from rest in a viscoelastic fluid. Left: Convergence with mesh resolution, using the time-
step size 4t = 2 × 10−6s. Right: Convergence with the time step, using the mesh
M2.

settings were carried out on mesh M1 and mesh M2, respectively. The deviation between the

results obtained with the two different mesh resolutions is relatively small, such that we consider

the fine mesh M1 as sufficiently well resolved to obtain convergence in the bubble rise velocities.

All subsequent results are therefore obtained on the fine mesh M1. On the r.h.s. of Figure 4, the

transient rise velocity over time is shown for two different time step sizes, 2 × 10−6 and 4 × 10−6,

respectively. The deviation between the numerical results, obtained with the two different time step

sizes is sufficiently small to consider the results of the present work as independent of the time step

size.

5.4. Transient results. This section addresses the transient behavior of a spherical bubble accel-

erating from rest in a quiescent viscoelastic fluid. The bubble is driven by the force of buoyancy,
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which is counteracted by the viscous stress and components of the polymer stress tensor of the

viscoelastic fluid, acting in the neighborhood of the fluid interface as a resistance to the bubble

motion. Directly at the fluid interface, the stress is balanced by the surface tension force, according

to the interface jump condition (19). Hence, if the stress components in interface normal direction

become sufficiently large compared to the surface tension force, the bubble may deform and become

non-spherical. Every change in the bubble shape in turn affects the local stress distribution around

the fluid interface. The non-trivial interactions between the transient deformation of the bubble

and the transient evolution of the local stress distribution around the fluid interface result in a

non-monotonous behavior of the transient rise velocity. Depending on the material properties of the

viscoelastic fluid, the transient rise velocity response curve may run through several local minima

and maxima until a steady state is reached. Furthermore, the timescale of these dynamics before

the transition towards the terminal rise velocity is relatively long. Regarding the velocity jump dis-

continuity, a question of considerable importance is whether the dynamics in the rise velocity and

the transient deformation-stress interactions at the fluid interface show a substantial difference for

the subcritical and the supercritical bubble volume. To obtain a more precise picture, the transient

rise velocity is studied for several subcritical and supercritical bubble volumes. The bubble shape

is evaluated at some characteristic points in the bubble rise velocity graph.

Figure 5 shows the transient rise velocities as functions of time. Results for five different bubble

0 0.1 0.2 0.3
0

20

40

60

80

100

120

time t in s

ve
lo
ci
ty

u
b
in

m
m
/
s

30 mm3

40 mm3

50 mm3

60 mm3

70 mm3

Figure 5. Transient rise velocity ub of bubbles rising in a viscoelastic fluid. The bubble
volume is varied from 30 to 70 mm3. Between 40 mm3 and 50 mm3, the terminal rise
velocity increases by a factor of ≈ 3.5.

volumes are plotted, from which the two smaller volumes are subcritical while the three larger

volumes are supercritical. This becomes obvious from the large difference in the terminal bubble

rise velocities between the volumes 40 mm3 and 50 mm3. The comparison shows that the initial rise

behavior is dominated by buoyancy; all bubbles accelerate from rest which results in a monotonous

increase of the rise velocity. The slope of the rise velocity curve becomes steeper as the volume

is increased. With progressing time, the acceleration decreases in size and even becomes negative.

The rise velocity runs through a local maximum and decreases in size. This decrease of the rise

velocity indicates that the stress layers of the viscoelastic fluid around the bubble become large

enough to influence the motion of the bubble. The increasingly pronounced elastic stress response

of the fluid changes the local flow field in the neighborhood of the bubble, which results in this

overall deceleration of the bubble. The results suggest that this period is also crucial for the jump

discontinuity in the bubble rise velocity. The differences between the subcritical and the supercritical

states start to become more and more obvious. For the subcritical volumes, the rise velocity decreases

to smaller values and, after passing a local minimum, remains on a relatively small level. For the
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supercritical volumes, the local minimum in the rise velocity is reached at higher absolute values and

is followed by a second period of strong acceleration, giving rise to a steep increase in the transient

rise velocity. This difference eventually results in the velocity jump discontinuity, as the rise velocity

asymptotically approaches a significantly higher terminal value.

Figure 6 gives an impression of the dependence between the transient rise velocity and the bubble

shape for different bubble volumes. The interface is represented as the 0.5 isosurface of the volume
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Figure 6. Transient evolution of the bubble shape for three different volumes rising in
a viscoelastic fluid. The small volume 30 mm3 is subcritical, while the two larger volumes
50 mm3 and 70 mm3 are supercritical. For each volume, the respective bubble shapes are
visualized at four characteristic instants in time. Note that the interface is represented as
a constant iso-surface of the volume fraction field and therefore does not correspond to
the exact position of the interface, which cannot be determined precisely in the algebraic
VoF method.

fraction field. Three different bubble volumes are visualized at four characteristic points in time. An
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overall comparison reveals that the transient change of the bubble shape becomes more pronounced

as the volume is increased. In particular, the subcritical volume with 30 mm3 experiences relatively

small changes of the bubble shape, compared to the two supercritical volumes, 50 mm3 and 70 mm3.

The transient rise behavior can be divided into different zones with respect to the deformation of

the bubble. At the beginning of the simulation, each bubble is initialized as a sphere. As the bubble

accelerates, the changes of the bubble shape are relatively insignificant. The bubble becomes slightly

ellipsoidal before reaching the first local maximum in the rise velocity (point 1 in the diagram).

From this point on, the changes in the bubble shape become increasingly rapid. This increased

deformation of the bubble seems to be closely related to the formation of a remarkable stress layer

around the bubble interface. The bubble starts to be stretched in the vertical direction, while the

rise velocity decreases. The maximum vertical length of the bubble is reached roughly at point

2. This point also represents a local minimum in the bubble rise velocity. Between point 2 and

point 3, the bubble contracts significantly in the vertical direction, while the rise velocity increases

again. For the supercritical bubbles, the particular shape of the trailing end appears increasingly

pronounced between points 2 and 3. As time elapses further, the overall dimensions of the bubble

do not change considerably. The bubble rise velocity slightly oscillates, at least for supercritical

bubbles for which we observe a slightly asymmetric motion. The respective bubble shapes in point

4 represent the steady state results in this work.

In Figure 7 we study the dependence between the transient bubble rise velocity and the negative

wake behind the trailing end of the rising bubble. The evaluation shows that the formation of the
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Figure 7. Onset of the negative wake in the transient bubble rise velocity. Left: In the
diagram the rise velocity of three supercritical bubbles is plotted over time. The presence
of the negative wake is highlighted in blue. Right: Flow fields of the rising bubble at
points 1 and 3 in the diagram on the l.h.s. of the figure. The reverse flow appears first in
a small region closely behind the bubbles trailing end.

negative wake behind the bubble’s trailing end is a continuous dynamic process. In the diagram on

the l.h.s. of Figure 7, the onset of the negative wake is highlighted in the curves for the transient

rise velocities. The points 1 to 3 display the time when the flow reversal in the wake of the bubble

first appears, for the respective three supercritical bubble volumes. The local flow fields directly at

the onset of the reversal of the velocity are shown in Figure 7. It can be seen that the reversal of the

velocity appears first in a relatively small region, located directly behind the bubble’s trailing end.

Once this reverse flow has emerged behind the bubble’s trailing end this region dynamically increases

in size until the conoidal shape of the negative wake is reached in the steady state. Considering these

observations, it is not surprising that there is no abrupt change in the stress field around the bubble
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at the onset of the reverse flow. Rather, it is evident that the stress distribution behind the bubble’s

trailing end is the result of a continuous dynamic process, too. For the supercritical bubbles under

investigation, the onset of the reverse flow takes place in a period of time, when the local stress

maxima around the fluid interface increase continuously. In conjunction with this transient stress

response, the bubble experiences considerable stretching in the vertical direction and the bubble rise

velocity decreases.

5.5. Steady bubble rise velocity. It has been reported that for the viscoelastic fluid under

investigation, the bubbles exhibit a velocity jump discontinuity in the steady rise velocity when

their volume exceeds a critical value [39]. Our goal is to predict this rather abrupt increase of

the steady bubble rise velocity numerically with the proposed VoF method. A comparison of the

steady rise velocity as a function of the bubble volume is shown in Figure 8. The simulation
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Figure 8. Steady bubble rise velocity as a function of the bubble volume for bubbles
rising in a viscoelastic fluid. Comparison between experiments by [39] and the numerical
simulations of the present work.

results obtained with the VoF method are in good quantitative agreement with the experimental

measurements by Pilz and Brenn [39]. We identify a rather abrupt increase of the steady bubble

rise velocity somewhere in the range between 40 mm3 < Vb < 50 mm3, both in the experiments and

the numerical results. Hence, the critical bubble volume is quantitatively predicted correctly in the

numerical simulations. Also, the magnitude of the jump rise velocity is in good agreement with the

experimental data: the numerical results for the steady rise velocities of the supercritical bubbles

coincide with the measured values. For subcritical bubbles the simulation results show a slightly

steeper increase in the rise velocity as the bubble volume is increased, compared to the experimental

values.

5.6. Negative wake. The existence of a negative wake behind bubbles rising in viscoelastic liquids

was proven by flow measurements [11]. The negative wake appears in the flow field which is seen by

a fixed observer in the inertial reference frame. In a small distance from the bubble’s trailing end,

the flow direction reverses with respect to the direction of the bubble motion. This flow in reverse

direction develops in a nearly conoidal region in the wake behind the bubble. Up to now, the relation

between the negative wake and the velocity jump discontinuity has not been completely clarified. It

is usually observed for supercritical bubbles, while very small bubbles with volumes Vb � Vb,crit do

not show this effect. However, this does not mean that there could not exist a transition zone for
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subcritical bubbles, which are not significantly smaller than Vb,crit, where the negative wake appears

(at least temporarily), while the rise velocity remains subcritical.

The negative wake is also observed in the present numerical investigation of a rising bubble in

a viscoelastic fluid. Figure 9 shows the velocity vector field in a vertical cutting plane through the

center of the rising bubble for three different bubble volumes, as the terminal rise velocity is reached.

The smallest bubble on the l.h.s. of Figure 9 with Vb = 30 mm3 is subcritical. The velocity vectors

subcritical Vb = 30 mm3 supercritical Vb = 50 mm3 supercritical Vb = 70 mm3

Figure 9. Velocity vector field in a veritcal cutting plane through the rising bubble.
The color scale is related to the vertical velocity component (in z-coordinate), where blue
represents a negative vertical velocity and red represents a positive velocity in vertical
direction. The negative wake behind the bubble is visible for the two supercritical states.

in the neighborhood of the fluid interface correspond to the direction of motion of the rising bubble;

they are all directed upwards. In the middle of the figure, the flow field of a supercritical bubble with

Vb = 50 mm3 is visualized. In the wake behind the bubble’s trailing end, the velocity vectors are

oriented in reverse direction to the bubble rise velocity. The spatial dimension of the negative wake

can also be seen from the color scheme, where blue represents negative velocities with respect to the

vertical motion of the rising bubble. This bubble size is relatively close above the critical bubble

volume of 46 mm3. A larger supercritical bubble with Vb = 70 mm3 is shown on the r.h.s. of the

figure. The velocity vectors are oriented quite similar to the smaller supercritical bubble, resulting

in a qualitatively similar flow pattern. The negative wake is visible in an approximately conoidal

region behind the bubble’s trailing end. However, slight deviations from axial symmetry are found

in the velocity field, at least for supercritical bubble volumes. Its spatial extent differs only slightly

from the smaller subcritical bubble. The comparison of the flow patterns in Figure 9 suggests that,

above the supercritical volume, the flow field around the rising bubble is subject to minor changes

as the volume is further increased. For larger bubble volumes Vb � Vb,crit, we expect little difference

in the flow patterns. We therefore focus our investigations on the range 30 mm3 ≤ Vb ≤ 70 mm3.

Figure 10 gives an impression of the three-dimensional extension of the negative wake behind

the bubble’s trailing end. On the l.h.s. the velocity vectors are plotted in a horizontal cutting

plane through the wake behind the bubble. In a circular region around the center of the plane, the

velocity vectors point downwards, representing the negative wake. In a lateral surface around this

region, the velocity is positive, representing the upwards directed flow that pushes the bubble in the

vertical direction. On the r.h.s., the three-dimensional contour of the negative velocities is plotted

for the supercritical bubble with Vb = 70 mm3. Although the flow field slightly deviates from axial

symmetry, this visualization shows the nearly conoidal shape of the negative wake.

A more quantitative representation of the velocity field around the supercritical bubble with

Vb = 70 mm3 is shown in Figure 11. The velocity vector field is transformed to spherical coordinates

to simplify the understanding of the distribution around the bubble. The origin of the spherical

coordinate system is placed in the bubble’s center of mass. On the l.h.s. the velocity components

ur and uθ in spherical coordinates are plotted in a vertical cutting plane through the bubble center.

From these representations it can be seen that, close to the bubble’s trailing end, the velocity has a
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Figure 10. Three-dimensional flow field of the negative wake of a supercritical bubble.
Left: Velocity vectors in a horizontal plane through the bubble’s wake. Right: Contour of
the bubble (red) and the region of negative vertical flow (blue) behind the trailing end of
the bubble.
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Figure 11. Distribution of the velocity components ur and uθ in spherical coordinates
around a supercritical rising bubble. Left: Visualization of the velocity components in a
vertical plane through the bubble center. Right: Diagram of the local velocity distribution
along the cutting line between the vertical plane and the fluid interface. Note that the
interface is represented as an iso-line of the volume fraction field and therefore does not
correspond to the exact position of the interface, which cannot be determined precisely in
the algebraic VoF method. The diagram provides a rather qualitative impression of the
local velocity distribution around the bubble.

local minimum in the magnitude of both components. This indicates that there could be a stagnation

point, located either at the bubble’s trailing end or closely behind the trailing end. However, this

point cannot be resolved precisely with the algebraic VoF method used in the present work. On the

r.h.s. of Figure 11, the local velocity distribution is plotted along the isoline of the volume fraction

value 0.7 in the vertical cutting plane through the bubble. We use the interface representation of an

isoline, since the exact position of the interface cannot be determined accurately with an algebraic

VoF method. The volume fraction value 0.7 is chosen, because we intend to evaluate the liquid-sided

limit of the viscoelastic fluid, which is represented by the volume faction value 1. Therefore, we

choose a volume fraction value between 0.5 and 1. It is evident that this representation allows only

for a qualitative impression on the local velocity distribution around the bubble. Keeping this in

mind, we observe that the local minimum in the magnitude of both velocity components is visible

at position 0. As we move slightly upwards along the interface, the magnitude of both components

increases steeply. This is the region where a strong flow is pushing the bubble upwards. Moving

further towards the equator, the flow becomes weaker. The radial velocity component changes its

sign approximately at the equator, where the horizontal bubble diameter has its maximum. In the
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upper hemisphere of the bubble, the flow in radial direction increases in size as we move further

towards the top, while uθ remains on a small level.

5.7. Stress distribution. For the investigation of the stress profiles around the fluid interface of

the bubble rising in a viscoelastic fluid, we transform the stress tensor into spherical coordinates.

The origin of the spherical coordinate system is placed in the bubble’s center of mass. In the

neighborhood of the fluid interface, the stress tensor in spherical coordinates has three important

components: the two normal stress components τrr and τθθ and the shear stress τrθ. These stress

components are evaluated below for a subcritical volume and a supercritical volume.

Figure 12 shows the normal stress profiles for τrr and τθθ in spherical coordinates around two

rising bubbles in a viscoelastic fluid. The two bubbles have different volumes; one bubble has a
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Figure 12. Distribution of the normal stress components τrr and τθθ in spherical coor-
dinates around the rising bubble in a viscoelastic fluid. Comparison between a subcritcal
and a supercritical state. Left: Visualization of the stress components in a vertical plane
through the bubble center. Right: Diagrams of the local normal stress distribution along
the cutting line between the vertical plane and the fluid interface. Note that the interface
is represented as an iso-line of the volume fraction field and therefore does not correspond
to the exact position of the interface, which cannot be determined precisely in the algebraic
VoF method. The diagram provides a rather qualitative impression of the local normal
stress distribution around the bubble.

subcritical volume while the other bubble volume is in the supercritical regime. On the l.h.s., the

stress distribution is shown in a vertical cutting plane through the bubble center. A comparison of

the subcritical and supercritical bubbles shows that the normal stress in the neighborhood of the fluid

interface is distributed very different by these two states. Also, the scales differ considerably. The

radial stress component has a maximum behind the trailing end of the bubble. The absolute value
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of this maximum is significantly higher for the supercritical volume. The normal stress component

τθθ has a maximum in the upper hemisphere of the bubble. In this component, the difference of the

maximum values for the subcritical and the supercritical bubble is even more pronounced. It is also

remarkable that the spatial extent of the large positive values in τθθ around the bubble interface is

significantly greater for the supercritical bubble; all values in the upper bubble hemisphere are larger

than the τθθ maximum of the subcritical bubble. On the r.h.s. of Figure 12, the local normal stress

distribution is plotted along the isoline of the volume fraction value 0.7 in the vertical cutting plane

through the bubble. For the reasons given above, this representation allows only for a qualitative

impression on the local stress distribution around the bubble. The characteristic difference between

the subcritical and the supercritical state is obvious from the comparison of the τθθ lines. In the

upper half of the line (for distances > 0.5 from the trailing end), τθθ has much greater values.

The difference in the distribution of the normal stress component τθθ around the bubble becomes

more obvious in the three-dimensional visualization in Figure 13. This figure shows a plot of the

isovalue τθθ = 12 kg/(ms2) in red color

subcritical supercritical

Figure 13. Three-dimensional visualization of the normal stress component τθθ around
the bubble. The isovalue τθθ = 12 kg/(ms2) is used to illustrate the significant difference
in the distribution around the subcritical and the supercritical bubble, respectively.

isovalue τθθ = 12 kg/(ms2), which is slightly smaller than the maximum of the subcritical volume.

In this representation, the upper hemisphere of the supercritical bubble is completely covered by a

normal stress layer with large positive τθθ values, while in the lower bubble hemisphere the values

of τθθ are smaller than 12 kg/(ms2). Another local maximum in the τθθ component is located in the

wake of the supercritical bubble. From a comparison with the cutting plane in Figure 12 it becomes

obvious that this local maximum forms approximately a torus around the region of the negative

wake behind the trailing end of the bubble.

Figure 14 shows the shear stress component τrθ in spherical coordinates. In the upper hemisphere

of the bubble, the magnitude of the shear stress in the neighborhood of the fluid interface is rather

small for both, the subcritical and the supercritical volume. Comparing with the normal stress τθθ,

we can state that the upper hemisphere of the bubble is dominated by the component τθθ, while the

shear stress is insignificant. In the lower hemisphere of the bubble, the magnitude of the shear stress

τrθ remains relatively small over a wide range along the interface. Only in the lower quarter of the

hemisphere, a considerable amount of shearing is present. An extremum is located in a relatively

small region of the upwards directed flow zone, close around the outer dimension of the negative

wake. In this region, τrθ has negative values.

The extra stress components displayed in Figs. 12 to 14 are due to the interplay between the

solvent flow field and the deformation of the polymer molecules in the flow around the bubble.

Following the fluid approaching the upstream stagnation point of the bubble, we see the polymer
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Figure 14. Distribution of the shear stress component τrθ in spherical coordinates
around the rising bubble in a viscoelastic fluid. Left: Comparison between a subcrit-
cal and a supercritical state. Right: Diagram of the local shear stress distribution along
the cutting line between along the cutting line between the vertical plane and the fluid
interface. Note that the interface is represented as an iso-line of the volume fraction field
and therefore does not correspond to the exact position of the interface, which cannot
be determined precisely in the algebraic VoF method. The diagram provides a rather
qualitative impression of the local shear stress distribution around the bubble.

molecules stretched in the θ-direction, according to the biaxial straining flow around the upper

region of the bubble, leading to the dominant normal stress component τθθ [35]. In this flow, the

polymer molecules are stretched into a deformed state, from which they tend to relax on the time

scale of the stress relaxation time. In the lower region of the bubble, downstream from the rear

bubble end, we see a uniaxial state of straining flow. In that flow, the polymers are stretched again,

this time in the radial direction. The related normal stress deforms the bubble into its elongated

form, seen both in the simulation and in the experiment. In comparison to the normal stress

components, the shear stress τrθ remains small throughout the flow field near the bubble surface.

Considering the shear stress continuity across the gas-liquid interface, this is not surprising, given

the dynamic viscosity of the air which is four orders of magnitude smaller than the one of the liquid,

and the shear rate in the bubble of the order of 2 s−1 at a bubble velocity and size of 10 mm/s and

5 mm, respectively. Furthermore, the spatial distribution of the stresses along the bubble surface, in

particular their persistence after build-up due to changes in the flow field, depends on the Deborah

number τub/db. Larger Deborah numbers tend to conserve the stresses farther downstream from

the upper stagnation point.

6. Summary and Conclusions

An extended VoF method was proposed for the three-dimensional DNS of two-phase flows of a

Newtonian and a viscoelastic fluid. The VoF method is based on a one-field formulation of the

volume-averaged two-phase flow equations. Special care was taken on the derivation of a closure for

the polymer stress tensor for this one-field formulation. To improve the stability at moderate and

high Weissenberg numbers, a change-of-variable representation for the constitutive equations of the

polymer stress was incorporated. This general representation includes different rheological models,

such as the Oldroyd-B and the PTT models.

Numerical experiments of a rising bubble in a viscoelastic fluid were carried out to demonstrate the

capability of the flow solver to predict characteristic flow phenomena, such as the rise velocity jump

discontinuity and the negative wake. It is particularly remarkable that good quantitative agreement

between the numerical results and experimental measurements was achieved. In this numerical study,

the velocity jump discontinuity appears at a similar critical volume and has the same magnitude as

in the experimental reference data. Furthermore, the negative wake was shown in the flow patterns
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of the supercritical rising bubbles, which qualitatively corresponds to the experimental observations

reported in literature.

The numerical results for the rising bubble in a viscoelastic fluid provide detailed insight into

the local flow patterns and the stress distribution in the neighborhood of the rising bubble. Slight

deviations from axial symmetry in the velocity and stress fields for supercritical bubble volumes

substantiate the application of a fully three-dimensional approach. The results suggest that the

distribution of the normal stress tensor component τθθ around the fluid interface is significantly

different for subcritical and supercritical bubble volumes. For supercritical volumes, the upper

hemisphere of the bubble is completely covered by a stress layer of relatively large positive τθθ
values, while such a stress layer is not observed for subcritical bubbles. We interpret this normal

stress layer as a zone in which the polymer molecules are being stretched in the tangential direction

along the fluid interface. If we consider a relative coordinate system aligned with the motion of

the rising bubble, the polymer molecules move around the bubble from the top to the bottom. In

the upper hemisphere, the polymer is stretched as it moves along the fluid interface. This stored

energy is released on the lower hemisphere, where τθθ is very small in magnitude. Potentially, this

contraction of the polymer molecules in the lower hemisphere of the bubble contributes to the rise

velocity. Further evidence of this will be provided in a forthcoming study.
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21. E. Jiménez, M. Sussman, and M. Ohta, A computational study of bubble motion in Newtonian and viscoelastic

fluids, Fluid Dynamics and Materials Processing 1 (2005), no. 2, 97–107.

22. L. Jofre, O. Lehmkuhl, J. Castro, and A. Oliva, A 3-d volume-of-fluid advection method based on cell-vertex

velocities for unstructured meshes, Computers & Fluids 94 (2014), 14–29.

23. D.D. Joseph, M. Renardy, and J.-C. Saut, Hyperbolicity and change of type in the flow of viscoelastic fluids,

Arch. Ration. Mech. Anal. 87 (1985), no. 3, 213–251.

24. R. Keunings, On the high Weissenberg number problem, Journal of Non-Newtonian Fluid Mechanics 20 (1986),

209–226.

25. R. Keunings, A survey of computational rheology, Proceedings of the XIIIth International Congress on Rheology,

D.M. Binding et al. (Eds), British Society of Rheology, Glasgow 1 (2000), 7–14.

26. R.G. Larson, Constitutive equations for polymer melts and solutions (Butterworths series in chemical engineer-

ing), Butterworths, Boston, 1988.

27. B.P. Leonard, Universal limiter for transient interpolation modeling of the advective transport equations: The

ultimate conservative difference scheme, NASA Technical Memorandum 1009 (1988), 16.

28. T. Maric, H. Marschall, and D. Bothe, An enhanced un-split face-vertex flux-based vof method, Journal of Com-

putational Physics (2018).

29. H. Marschall, Towards the numerical simulation of multi-scale two-phase flows, Ph.D. thesis, Technische Univer-

sität München, 2011.

30. S.R. Mathur and J.Y. Murthy, A pressure-based method for unstructured meshes, Numerical Heat Transfer, Part

B: Fundamentals: An International Journal of Computation and Methology 31 (1997), no. 2, 195–215.

31. F. Moukalled, L. Mangani, and M. Darwish, The finite volume method in computational fluid dynamics, 1 ed.,

vol. 113, Springer International Publishing, 2015.

32. S. Muzaferija, Computation of free surface flows using interface-tracking and interface-capturing methods, in

Mahrenholtz O., Markiewicz M. (eds.), Nonlinear water wave interaction, Computational Mechanics Publications,

Southampton (1998).

33. C. Málaga and J.M. Rallison, A rising bubble in a polymer solution, Journal of Non-newtonian Fluid Mechanics

141 (2007), 59–78.

34. M. Niethammer, H. Marschall, C. Kunkelmann, and D. Bothe, A numerical stabilization framework for viscoelas-

tic fluid flow using the finite volume method on general unstructured meshes, International Journal for Numerical

Methods in Fluids 86 (2018), no. 2, 131–166.

35. D.S. Noh, I.S. Kang, and L.G. Leal, Numerical solutions for the deformation of a bubble rising in dilute polymeric

fluids, Physics of Fluids A: Fluid Dynamics 5 (1993), no. 6, 1315–1332.

36. J.G. Oldroyd, On the formulation of rheological equations of state, Proceedings of the Royal Society of London.

Series A. Mathematical and Physical Sciences 200 (1950), no. 1063, 523–541.

37. S.B. Pillapakkam and P. Singh, A level-set method for computing solutions to viscoelastic two-phase flow, Journal

of Computational Physics 174 (2001), no. 2, 552–578.

38. S.B. Pillapakkam, P. Singh, D. Blackmore, and N. Aubry, Transient and steady state of a rising bubble in a

viscoelastic fluid, Journal of Fluid Mechanics 589 (2007), 215–252.

39. C. Pilz and G. Brenn, On the critical bubble volume at the rise velocity jump discontinuity in viscoelastic liquids,

Journal of Non-Newtonian Fluid Mechanics 145 (2007), no. 2, 124–138.

40. C.M. Rhie and W.L. Chow, A numerical study of the turbulent flow past an isolated airfoil with trailing edge

separation, AIAA Journal 21 (1983), 1225–1532.

41. R.S. Rivlin, Further remarks on the stress-deformation relations for isotropic materials, Journal of Rational

Mechanics and Analysis 4 (1955), no. 5, 681–702.

42. R.S. Rivlin and J.L. Ericksen, Stress-deformation relations for isotropic materials, Journal of Rational Mechanics

and Analysis 4 (1955), no. 2, 323–425.

43. H. Rusche, Computational fluid dynamics of dispersed two-phase flows at high phase fractions, Ph.D. thesis,

Imperial College of Science, Technology and Medicine, London, 2002.

44. J.C. Slattery, Flow of viscoelastic fluids through porous media, AIChE Journal 13 (1967), no. 6, 1066–1071.

45. J.C. Slattery, Advanced transport phenomena, Cambridge University Press, 1999.

46. O. Ubbink, Numerical prediction of two fluid systems with sharp interfaces, Ph.D. thesis, Imperial College of

Science, Technology and Medicine, London, 1997.

47. O. Ubbink and R.I. Issa, A method for capturing sharp fluid interfaces on arbitrary meshes, Journal of Compu-

tational Physics 153 (1999), no. 1, 26–50.

48. A.J. Wagner, L. Giraud, and C.E. Scott, Simulation of a cusped bubble rising in a viscoelastic fluid with a new

numerical method, Computer Physics Communications 129 (2000), no. 1, 227–232.

49. N.P. Waterson and H. Deconinck, Design principles for bounded higher-order convection schemes - a unified

approach, Journal of Computational Physics 224 (2007), no. 1, 182–207, Special Issue Dedicated to Professor

Piet Wesseling on the occasion of his retirement from Delft University of Technology.



AN EXTENDED VOF METHOD FOR BUBBLES RISING IN A VISCOELASTIC LIQUID 33

50. H.G. Weller, G. Tabor, H. Jasak, and C. Fureby, A tensorial approach to computational continuum mechanics

using object-oriented techniques, Computers in Physics 12 (1998), no. 6, 620–631.

51. S. Whitaker, Diffusion and dispersion in porous media, AIChE Journal 13 (1967), no. 3, 420–427.

52. S. Whitaker, The transport equations for multi-phase systems, Chemical Engineering Science 28 (1973), no. 1,

139–147.

53. S. Whitaker, The method of volume averaging, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1999.
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Appendix A. Computation of the tensors B and Ω

Using the diagonalization C = Q·Λ·Q>, the tensor B can be computed as B = Q·B̃·Q>, where

the elements of the diagonal tensor B̃ are given as a function of the tensor L = Q·L̃·Q> as b̃ii = l̃ii.

The tensor Ω can be computed as Ω = Q·Ω̃·Q>, where the tensor Ω̃ has zero diagonal entries

ω̃ii = 0, while its off-diagonal elements are given by

(116) ω̃ij, i6=j =
λii l̃ij, i6=j + λjj l̃ji, j 6=i

λjj − λii
, i, j = 1, 2, 3.

For a detailed description on the local decomposition of the deformation terms in the convective

derivative, we refer to [34].

Appendix B. Mixture conformation tensor equation

Summing up the volume averaged conformation tensor equations of phase ϕ and phase ψ, we find

∂tαϕC
ϕ

+ ∂tαψC
ψ

+ (uϕ·∇)αϕC
ϕ

+
(
uψ·∇)αψC

ψ

− αϕL
ϕ·Cϕ − αψL

ψ·Cψ − αϕC
ϕ·(Lϕ)> − αψC

ψ·(Lψ)>

=
αϕ
τϕ

P
(
C
ϕ
)

+
αψ
τψ

P
(
C
ψ
)
.(117)

Our goal is to express (117) in terms of the mixture quantities um, Cm and the relative velocity

ur. With the definitions of the mixture velocity (44), the mixture conformation tensor Cm =

αϕC
ϕ

+ αψC
ψ

and the relative velocity ur = uψ − uϕ, we find

∂tCm + (um·∇) Cm +∇·
[
ur

(
αϕαψρϕ
ρm

C
ψ − αϕαψρψ

ρm
C
ϕ
)]

− Lm·Cm − Lϕ,r·αψC
ψ

+ Lψ,r·αϕC
ϕ

−Cm·(Lm)> − αψC
ψ·(Lϕ,r)> + αϕC

ϕ·(Lψ,r)>
=
αϕ
τϕ

P
(
C
ϕ
)

+
αψ
τψ

P
(
C
ψ
)
,(118)

where the definitions for the gradient terms of the relative velocity read

Lϕ,r :=

[
∇
(
αϕρϕ
ρm

ur

)]>
− ζ

2

([
∇
(
αϕρϕ
ρm

ur

)]
+

[
∇
(
αϕρϕ
ρm

ur

)]>)
(119)

Lψ,r :=

[
∇
(
αψρψ
ρm

ur

)]>
− ζ

2

([
∇
(
αψρψ
ρm

ur

)]
+

[
∇
(
αψρψ
ρm

ur

)]>)
.(120)
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With the mixture model assumption ur = 0 (118) reduces to

∂tCm + (um·∇) Cm − Lm·Cm −Cm·(Lm)>

=
αϕ
τϕ

P
(
C
ϕ
)

+
αψ
τψ

P
(
C
ψ
)
.(121)
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