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Abstract. We propose a self-adaptive absorbing technique for quasilinear ultrasound waves in two-
and three-dimensional computational domains. As a model for the nonlinear ultrasound propagation in

thermoviscous fluids, we employ Westervelt’s wave equation solved for the acoustic velocity potential.

The angle of incidence of the wave is computed based on the information provided by the wave-field
gradient which is readily available in the finite element framework. The absorbing boundary conditions

are then updated with the angle values in real time. Numerical experiments illustrate the accuracy

and efficiency of the proposed method.

1. Introduction

Accurate simulation of nonlinear ultrasound offers a path to a better quality of many procedures in
industry and medicine, from non-destructive detection of material damages [8, 25, 42] to non-invasive
treatments of medical disorders [24, 35, 36, 62, 66]. When studying such procedures, there is always a
region of interest: a kidney stone that will be disintegrated or a propagating fatigue crack in a compo-
nent of an aircraft. The large physical space then often has to be truncated for numerical simulations.
To accurately simulate ultrasound, we have to avoid spurious reflections of the wave at the boundary
of the truncated domain.

Absorbing boundary conditions provide a simple and effective way of dealing with unwanted reflec-
tions. They were introduced by B. Engquist and E. Majda in their seminal work [7]. Since then many
approaches have been developed for the non-reflecting boundary conditions; we refer the reader to the
review papers [12, 46] and the references given therein. In spite of such comprehensive research in this
area, only a small portion of the results focus on nonlinear models.

A class of semilinear wave equations and nonlinear Schrödinger equations was investigated in [56, 57].
Results for nonlinear hyperbolic systems of the form ut + A(u)ux = 0 were obtained in [16]. An ap-
proach based on the operator splitting method was used in [39] to derive absorbing conditions for a
semilinear wave equation of the form utt − a2∆u = f(u). In [52, 53], nonlinear ultrasound propagation
was investigated in this context for the first time, and absorbing conditions were developed for the
Westervelt equation in the pressure form.

Another commonly used approach for avoiding spurious reflections is the Perfectly Matched Layer
(PML) technique. Developed by J.-P. Bérenger in [2], this method introduces an artificial absorbing
layer around the computational domain. Linear acoustic wave equations have been extensively studied
in this context; see, for example, [1, 17, 18, 29, 49].

The main downside of absorbing conditions is that they are sensitive to the angle of incidence of
the wave. As a rule of thumb, they perform bad if the range of incidence angles is large. The infor-
mation on the incidence angles can be included in the conditions to tackle this issue; we refer to the
work in [19, 20, 37]. However, these angles are not a priori known in a realistic computational setting.
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The idea behind the self-adaptive technique is to compute the local wave vector and then update the
absorbing conditions with the angle information in real time. This approach was applied in [63] to the
Schrödinger-type equations, where the wave number was computed via the Gabor transform. In [54],
the linear wave equation was investigated in this context. It was proposed to divide the absorbing
boundary into segments and compute the local incidence angle by employing the Fourier transforma-
tion only in the vicinity of the boundary. The self-adaptive approach to absorption can also be found
in earlier works on acoustic scattering [27, 40].

The goal of our work is to develop an efficient self-adaptive absorbing technique for nonlinear ultra-
sound propagation. As a model equation, we employ a classical quasilinear acoustic model - Westervelt’s
equation. We first extend the results from [52, 53] by considering the potential form of Westervelt’s
equation and the non-zero angle of incidence θ. In addition, we derive the absorbing conditions for
two- and three-dimensional computational domains. The derivation relies on choosing an appropriate
linearization of the equation around a reference solution. The absorbing conditions are then formally
derived for this linearization, after which we bring back the nonlinear term.

To obtain the angle θ in practice, we develop a self-adaptive method that locally computes the
incidence angle and updates the absorbing conditions on the fly. Unlike the self-adaptive approach
taken in [54], we base the local angle computation on the gradient of the wave field. Computation of
the local propagation direction in isotropic media based on the information provided by the wave-field
gradient has been investigated in [26, 48, 51, 64, 65, 67]. This approach is particularly suitable for our
finite-element framework since the gradient information is already available at every time step in our
simulations. The use of the field gradient information in the absorbing conditions was already investi-
gated for the Helmholtz equation in [13]. There it was proposed to replace the normal derivatives that
appear in the absorbing conditions by the derivatives in the direction of the wave propagation. In the
linear regime, our approach can be understood as an extension of the gradient method in [13] for a
time-dependent wave model.

We organize the rest of the paper as follows. We begin in Section 2 by introducing the model and
setting the problem. Section 3 contains the derivation of absorbing conditions for a given angle of inci-
dence of the wave. In Section 4, we present the numerical scheme for solving the initial-boundary value
problem for the Westervelt equation. Section 5 describes the computation of the local incidence angle
via the information provided by the wave field gradient. Finally, in Section 6, we present numerical
experiments which illustrate the accuracy of the proposed adaptive boundary conditions.

2. Modeling and problem setting

The weakly nonlinear models in thermoviscous acoustics that are commonly used are obtained as an
approximation of the compressible Navier-Stokes system. We here briefly reflect upon the derivation,
which will give us a better understanding of the often-employed Westervelt equation. Mathematically
rigorous justification of the classical acoustic models can be found in [32]. For a detailed insight into
the acoustic field theory, we refer to [5, 15, 33].

Propagation of waves can be described by the time, the density %̄, the pressure ū and the velocity v̄,
decomposed into their ambient value and the acoustic perturbation

%̄ = %0 + %,

ū = u0 + u,

v̄ = v0 + v;

see [33]. We call % the acoustic density, u the acoustic pressure, and v the acoustic particle velocity.
The equations governing the wave propagation are then given by

• the equation of momentum conservation

(%0 + %)vt +
%0

2
∇(v · v) +∇u =

(
4νV

3
+ ηV

)
∆v,

• the equation of mass conservation

%t + %0∇ · v = −%∇ · v − v · ∇%,
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• the pressure-density relation

% =
1

c2
u− 1

%0c4
B

2A
u2 − κ

%0c4

(
1

cΩ
− 1

cu

)
ut.

Above, ηV denotes the bulk viscosity and νV the shear viscosity. The constant κ stands for the adiabatic
exponent, cu and cΩ denote the specific heat capacitance at constant pressure and constant volume,
respectively. The parameter of nonlinearity B/A is an indicator of the nonlinearity of the medium.
Finally, c denotes the speed of sound in the fluid.

This system of equations is approximated by one model, whereby every term of order two and higher
in the acoustic Mach number is neglected. This approach results in

(1)


1
c2utt −∆u− b

c2
∆ut =

1

%0c4
B

2A
utt +

%0

c2
∂2

∂t2
(v · v),

%0vt = −∇u,
where the so-called sound diffusivity b is given by

b =
1

%0

(
4νV

3
+ ηV

)
+

κ

%0

(
1

cV
− 1

cu

)
.

The acoustic velocity potential ψ is then introduced to obtain a scalar equation; it is related to the
acoustic pressure by

u ≈ %0ψt,(2)

and to the acoustic particle velocity by

v = −∇ψ.(3)

By expressing (1) in terms of ψ, integrating with respect to time and taking the resulting constant of
integration to be zero, we arrive at the Kuznetsov equation

1

c2
ψtt −∆ψ − b

c2
∆ψt =

B/A

c4
ψtψtt +

2

c2
∇ψ · ∇ψt;(4)

cf. [38]. If the cumulative nonlinear effects dominate the local ones in the sense of

2

c2
∇ψ · ∇ψt ≈

2

c2
ψtψtt,(5)

a simplification of (4), known as the Westervelt equation [60], is obtained

1

c2
ψtt −∆ψ − δ∆ψt =

k

c2
ψtψtt.(6)

Above we have introduced the notation

δ =
b

c2
, k =

1

c2
(B/A+ 2).(7)

After numerically solving (6), the pressure field can be obtained in a post-processing step via the relation
(2). We mention as well that the Westervelt equation in the pressure form is given by

1

c2
utt −∆u− δ∆ut =

k

%c2
(uutt + u2

t ).(8)

Equation (8) can be obtained from (1) by employing the approximation (5) which in terms of the
velocity and pressure reads as

%0

2
v · v ≈ u2

2%0c2
.
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3. Absorbing conditions for the Westervelt equation

We consider the Westervelt equation (6) on a three-dimensional spatial domain Ω = {(x, y, z) : x <
0, y, z ∈ R}. We restrict ourselves in the problem description to the case of constant coefficients c, b,
and k

3.1. Linearization of the Westervelt equation. Following the approach from [52] where equation
(8) was considered, we derive absorbing conditions for the Westervelt equation in the potential form
(6) by first transforming it into a linear equation, deriving the non-reflecting conditions for this linear
model and then “plugging” back in the nonlinear term.

It is clear that the linearization of the equation plays a crucial role in deriving the absorbing con-
ditions. A possible linearization of the Westervelt equation around a reference solution ψref is given
by

1

c2
ψtt −∆ψ − δ∆ψt =

k

c2
β(x, y, z, t)ψtt,(9)

where β = ψref
t . We note that, unlike in the derivation of the Westervelt equation in Section 2, here we

do not split ψ into a background and oscillatory part, instead we assume ψref to be a solution of the
equation. This linearization is analogous to the one employed in [52] for the equation in the pressure
formulation (8).

We propose an alternative linearization. Note that the right-hand side of the Westervelt equation

(6) can be rewritten as
1

2

k

c2
(ψ2
t )t. We linearize the term ψ2

t as ψref
t ψt and study the following equation

1

c2
ψtt −∆ψ − δ∆ψt =

1

2

k

c2
(β(x, y, z, t)ψt)t,(10)

where again β = ψref
t . The absorbing boundary conditions based on linearizations (9) and (10) are

numerically compared in Section 6.
We first derive absorbing conditions for the linear equation (10) and a given angle of incidence.

After obtaining the conditions for such a model, the coefficient β is set back to ψt to obtain nonlinear
conditions.

We remark that the linearization via Taylor expansion around a reference solution ψref is not con-
sidered here since it would introduce the term ψref

t ψref
tt into the linearized equation; we also refer to the

discussion in [52].

3.2. Derivation of absorbing conditions for the angle of incidence θ. We study here the deriva-
tion of the absorbing conditions for the linearization (10); equation (9) can be treated analogously. To
derive the conditions, we could use the frozen coefficient approach which first transforms the variable
coefficient equation into its constant-coefficient counterpart by ”freezing” its coefficients at a given point
before employing the Fourier transform in the (y, z, t) coordinates; cf. [7, Section 1]. Although the main
focus of the present work is the derivation of the zero-order (adaptive) absorbing conditions, we still
follow the approach based on the pseudo-differential calculus since it allows to arrive at a general system
for determining the correcting terms beyond order zero in the absorbing conditions; see system (19)
below.

We first rewrite the linearized equation (10) in the operator form as

Pu = 0,(11)

where the operator P is given by

P =

(
1

c2
− 1

2

k

c2
β(x, y, z, t)

)
∂2
t − ∂2

x − ∂2
y − ∂2

z − δ∂2
x∂t − δ∂2

y∂t − δ∂2
z∂t −

1

2

k

c2
βt(x, y, z, t)∂t.(12)
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At this point we also introduce

(13)
α0(x, y, z, t) =

√
1

c2
− 1

2

k

c2
β(x, y, z, t),

α1(x, y, z, t) =
1

2

k

c2
βt(x, y, z, t).

Note that the well-posedness results for the Westervelt equation rely on the fact that the factor 1−kψt
next to the second time derivative remains positive; see [30, 31, 34]. Therefore, it is reasonable to
assume that the term under the square root in (13) is positive for sufficiently small data. We note that
we proceed heuristically since the rigorous justification of the derivations given below would also require
C∞ regularity of α0 and α1 which is not proven here.

Absorbing boundary conditions for (11) can be derived by employing the pseudo-differential calculus
and factorization of the operator P according to L. Nirenberg’s procedure [47, Chapter II]. We briefly
summarize the procedure here for the convenience of the reader. A detailed account on the pseudo-
differential operators can be found in [22, 47, 61].

Definition 1. [23, 61] Let the set Sm, where m ∈ R, be defined as the set of all functions q(t, τ) ∈
C∞(Rd × Rd) such that for any two multi-indices k and l, there is a positive constant Ckl depending
only on k and l, such that

|∂kt ∂lτq(t, τ)| ≤ Ckl(1 + |τ |)m−|l|, t, τ ∈ Rd.

Sm is called the space of symbols of order m. We set S−∞ = ∩m∈RSm.

Definition 2. [61, Definition 5.2] Let q be a symbol. The pseudo-differential operator Q associated to
q is defined by

(Qϕ)(t) = (2π)−d/2
∫
Rd

eit·τ q(t, τ)Fϕ(τ) dτ,

where ϕ is a function from the Schwartz space, and F denotes the Fourier transform.

3.2.1. Propagation without losses. Following the approach in [52], we first derive the absorbing condi-
tions with the assumption that δ = 0. This assumption facilitates the derivation of the conditions based
on the pseudo-differential factorization. The δ-term will be included as a post-processing step based on
energy arguments.

The derivation of the conditions relies on the fact that the operator P can be factorized into in the
form

P = − (∂x −A (x, y, z, t, ∂y, ∂z, ∂t)) (∂x − B (x, y, z, t, ∂y, ∂z, ∂t)) +R (x, y, z, t, ∂y, ∂z, ∂t) ;(14)

see [47, Lemma 1]. In (14), the operators A and B are pseudo-differential operators with the symbols
a(x, y, z, t, η, ζ, τ) and b(x, y, z, t, η, ζ, τ), respectively, from the space S1. The conditions on A that we
will develop will have the effect of associating A with waves that travel out of the computational domain.
The pseudo-differential operator R is a smoothing operator with the full symbol r(x, y, z, t, η, ζ, τ) that
belongs to S−∞.

The symbols a and b formally admit asymptotic expansions

a(x, y, z, t, η, ζ, τ) ∼
∑
j≥0

a1−j(x, y, z, t, η, ζ, τ),

b(x, y, z, t, η, ζ, τ) ∼
∑
j≥0

b1−j(x, y, z, t, η, ζ, τ),

where a1−j and b1−j denote homogeneous functions of degree 1− j with respect to τ ; see [61, Theorem
5.10]. We note that the symbol a(x, y, z, t, η, ζ, τ)b(x, y, z, t, η, ζ, τ) of the product of A and B has an
asymptotic expansion as well

a(x, y, z, t, η, ζ, τ)b(x, y, z, t, η, ζ, τ) ∼
∑
j≥0,

k+l+n=j,
k,l,n≥0

(−1)n

n!
∂nτ a1−l(x, y, z, t, η, ζ, τ)∂nt b1−k(x, y, z, t, η, ζ, τ);
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see [61, Theorem 7.1].
According to [41, Theorems 1 and 2], absorbing boundary conditions on the boundary x = 0 are

given in the form

(∂x −A (x, y, z, t, ∂y, ∂z, ∂t))ψ
∣∣∣
x=0

= 0.

Since the symbol a of A has an infinite expansion, in numerical simulations this expansion is truncated
after a certain number of terms. Absorbing conditions of order k ∈ N0 are then on the symbolic level
given by ∂x − k∑

j=0

a1−j(0, y, z, t, η, ζ, τ)

ψ
∣∣∣
x=0

= 0.(15)

The higher-order absorbing conditions, although numerically more accurate, are also significantly more
involved when it comes to implementation. We compute the absorbing conditions of order zero for the
given angle of incidence θ. Combined with the proposed self-adaptive technique, this approach allows
to improve the accuracy of zero-order conditions, yet keeps them easy to implement.

We recall how the operator P was defined in (12) and then develop factorization (14) to obtain

(16)
α2

0 ∂
2
t − ∂2

x − ∂2
y − ∂2

z − α1∂t

= − ∂2
x + (A+ B)∂x + Bx −AB +R.

By employing the asymptotic expansion of symbols a, b, and ab, equation (16) reduces on the symbolic
level to

(17)

α2
0(iτ)2 − (iη)2 − (iζ)2 − α1(iτ)

∼=
∑
j≥0

(a1−j + b1−j)∂x +
∑
j≥0

∂xb1−j −
∑
j≥0,

k+l+n=j,
k,l,n≥0

(−1)n

n!
∂nτ a1−l∂

n
t b1−k,

Above, we have denoted the dual variables to t, y, and z by τ , η, and ζ, with the correspondence ∂t ↔ iτ ,
∂y ↔ iη, and ∂z ↔ iζ. Following the notation in [7], ∼= stands for ”within a smooth error” since we have
dropped R. We note that the operator R can only be controlled in terms of its smoothness. However,
its action on the solution is expected to be negligible for high frequencies that are present in ultrasound
waves.

To determine a1 and b1, we equate the symbols with the same degree of homogeneity with respect
to τ and get the system {

a1 + b1 = 0

a1b1 = −(α2
0(iτ)2 − (iη)2 − (iζ)2),

(18)

assuming that α2
0τ

2 ∼= η2 + ζ2. The system that determines the coefficients {a1−j , b1−j}j≥1 is then
given by

(19)


a1−j + b1−j = 0, j ≥ 1,

−α1(iτ)δj1 = −
∑
j≥1,

k+l+n=j,
k,l,n≥0

(−1)n

n!
∂nτ a1−l∂

n
t b1−k + ∂xb1−j ,

where δ denotes the Kronecker delta. From (18), we find that

a1 = −
√
α2

0(iτ)2 − (iη)2 − (iζ)2

and

b1 =
√
α2

0(iτ)2 − (iη)2 − (iζ)2.



SELF-ADAPTIVE ABSORBING BOUNDARY CONDITIONS 7

Note that the sign of a1 determines the propagation direction of the wave. To obtain the absorbing
conditions for the given angle of incidence, we freeze the coefficient β in (12) by assuming that it is
constant in space and time. The dispersion relation for (10) when β is constant is as follows

α2
0(iτ)2 − (iξ)2 − (iη)2 − (iζ)2 = 0.(20)

The wave vector is given by (ξ, η, ζ). If we denote by θ ∈ [0 ◦, 90 ◦] the angle between the incident wave
and the outer normal to the boundary, we have for τ > 0

sin θ =

√
η2 + ζ2√

ξ2 + η2 + ζ2
=

√
η2 + ζ2

α0τ
;

see Figure 1.

�
~n

~k = (�; �; �)�

�abc

x

y

z

~n

~k = (�; �; �)�

�

�abc
x

y

z

Figure 1. Illustration of the interplay between the wave vector ~k, outward normal
vector ~n, and the angle of incidence θ.

Therefore, we can express a1 as

a1 = − α0(iτ)

√
1− η2 + ζ2

α2
0τ

2
= −α0(iτ) cos θ.

According to (15), the absorbing conditions of order zero are then given by

∂ψ

∂n
= −α0 ψt cos θ.(21)

We mention that for a variable coefficient problem with jumps outside the computational domain, it
is not possible to build an exact ABC based on local computations. After returning to β = ψt and

α0 =

√
1

c2
− 1

2

k

c2
ψt, we obtain the absorbing boundary conditions for the inviscid Westervelt equation

in the potential formulation for a given angle of incidence θ:

c
∂ψ

∂n
+

√
1− k

2
ψt ψt cos θ = 0.(22)

3.2.2. Propagation with losses. We next want to incorporate the b term into the conditions. This was
not possible before since we needed b = 0 to make use of the pseudo-differential factorization and the
dispersion relation (20). Instead, we employ a reasoning based on an energy argument.

To this end, we test the linearized equation (10) with ψt, integrate over space and (0, t), where t ≤ T ,
and integrate by parts with respect to time, to arrive at the following identity:

(23)

E0[ψ](t) + δ

∫ t

0

‖∇ψt‖2L2(Ω) ds

=E0[ψ](0) +

∫ t

0

∫
Ω

(
1
2 (α2

0)t + α1

)
ψ2
t dxds+

∫ t

0

∫
∂Ω

(
∂ψ

∂n
+ δ

∂ψt
∂n

)
ψt dxds,
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where the energy is given by

E0[ψ](t) =
1

2

(
‖α0(t)ψt(t)‖2L2(Ω) + ‖∇ψ(t)‖2L2(Ω)

)
.

This identity suggests to modify the conditions (21) to include the sound diffusivity as follows

∂ψ

∂n
+ δ

∂ψt
∂n

= −α0 ψt cos θ on Γabc.(24)

These conditions facilitate the extraction of energy through the boundary since (23) becomes

(25)

E0[ψ](t) + δ

∫ t

0

‖∇ψt‖2L2(Ω) ds+

∫ t

0

∥∥∥√α0 cos θ ψt

∥∥∥2

L2(∂Ω)
ds

=E0[ψ](0) +

∫ t

0

∫
Ω

( 1
2 (α2

0)t + α1)ψ2
t dxds,

from which by employing Gronwall’s inequality it follows that

E0[ψ](t) + δ

∫ t

0

‖∇ψt‖2L2(Ω) ds+

∫ t

0

∥∥∥√α0 cos θ ψt

∥∥∥2

L2(∂Ω)
ds ≤ C(T )E0[ψ](0),

provided 1
2 (α2

0)t + α1 ∈ L∞(0, T ;L∞(Ω)).

We therefore adopt conditions (24). After returning to β = ψt and α0 =

√
1

c2
− 1

2

k

c2
ψt in (24) and

recalling that δ = b/c2, we obtain the nonlinear conditions

c2
∂ψ

∂n
+ b

∂ψt
∂n

= − c
√

1− k

2
ψt ψt cos θ on Γabc.(26)

We note that in realistic settings the sound diffusivity b in fluids is small; see, e.g., [33]. It is also known
that the presence of a large b damping in the model would imply a parabolic instead of a wave-like
behavior of the equation resulting in an exponential decay of the energy; cf. [30, Theorem 3.3].

Setting k to zero in (26) corresponds to conditions for a linear, strongly damped wave equation. If
in addition b = 0, we end up with the standard linear absorbing conditions for the angle θ

c
∂ψ

∂n
+ ψt cos θ = 0 on Γabc;(27)

see [19, 37].

Remark 1 (One- and two-dimensional domains). In a one-dimensional setting, system (18) for deter-
mining the symbols a1 and b1 simplifies to{

a1 + b1 = 0

a1b1 = −α2
0(iτ)2.

In a two-dimensional setting, system (18) simplifies to{
a1 + b1 = 0

a1b1 = −(α2
0(iτ)2 − (iη)2).

It is then straightforward to show that conditions (26) hold in 1D and 2D as well, where in 1D the angle
θ can be interpreted as being set to θ = 0◦.

Remark 2 (A different linearization). Employing linearization (9) would result in the following ab-
sorbing conditions

c2
∂ψ

∂n
+ b

∂ψt
∂n

= − c
√

1− kψt ψt cos θ on Γabc.(28)

The performance of conditions (26) and (28) is compared in Section 6, where the proposed conditions
(26) significantly outperform (28).
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Remark 3. In our experiments, we employ the gradient information to compute the angle of incidence
θ via

cos θ =
|∇ψ · n|√

ψ2
x + ψ2

y + ψ2
z

on Γabc,

assuming that ∇ψ 6= 0 on the absorbing boundary. The linear conditions (27) for the angle θ are then
equivalent to

c|∇ψ|+ ψt = 0 on Γabc.(29)

Therefore, in the linear regime, conditions (29) can be seen as the extension of the absorbing conditions
proposed in [13] for the Helmholtz equation to the linear time-dependent wave model.

4. Numerical treatment

After deriving the absorbing boundary conditions for the potential form of the Westervelt equation
(6), we next focus on the numerical schemes used in simulations. We begin by formulating the initial-
boundary value problem that has to be solved.

4.1. The initial-boundary value problem for the Westervelt equation. We consider the follow-
ing problem for the Westervelt equation:

(30)



ψtt − c2∆ψ − b∆ψt =
1

c2
(B/A+ 2)ψtψtt in Ω× (0, T ),

ψ = g on Γexc × (0, T ),

c
∂ψ

∂n
+
b

c

∂ψt
∂n

= −
√

1− σkψt ψt cos θ(ψ) on Γabc × (0, T ),

∂ψ

∂n
= 0 on ΓN × (0, T ),

ψ = ψt = 0 in Ω× {0}.

The wave source is given in the form of inhomogeneous Dirichlet conditions on the excitation part of
the domain boundary Γexc ⊂ ∂Ω. In our numerical tests, the excitation signal is always taken to be a
modulated sine wave, that is growing over time until its maximal amplitude is reached, i.e.

(31) g(t) =

(f2/4)t2A sin(ωt), t < 2/f,

A sin(ωt), t ≥ 2/f,

where f denotes the frequency, ω = 2πf the angular frequency, and A the maximal amplitude of the
signal.

We have introduced the parameter σ within the square root of the absorbing conditions in (30). In
this way, we generalized in one formula all the absorbing conditions that we want to compare. Indeed,
setting σ = 0 yields the adaptive absorbing conditions for the linear strongly damped wave equation

c
∂ψ

∂n
+
b

c

∂ψt
∂n

= −ψt cos θ(ψ),(32)

which we denote from now on in experiments by “ABC0
W adaptive”. In case also θ = 0 everywhere, we

denote them just by ABC0
W. Setting σ = 1/2 recovers our new nonlinear adaptive conditions, denoted

by “ABC
1/2
W adaptive”. If the angle is always set to zero, we denote them just by ABC

1/2
W . Finally,

σ = 1 leads to conditions based on the second linearization (9), which are denoted in the experiments
by “ABC1

W adaptive” and ABC1
W.

We start from the weak form of the problem (30). We are looking for a solution in

{ψ ∈ C1([0, T ];H2(Ω)) ∩ C2([0, T ];H1(Ω)) | ψ = g on Γexc × (0, T )}
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such that∫
Ω

((1− kψt)ψttv + c2∇ψ · ∇v + b∇ψt · ∇v) dΩ +

∫
Γabc

c
√

1− σkψt ψt cos θ(ψ) v dS = 0

for all test functions in {v ∈ H1(Ω) | v = 0 on Γexc × (0, T )} a.e. in time, with (ψ,ψt)|t=0 = (0, 0).
We assume that the problem (30) is well-posed, although the rigorous proof is beyond the scope of
the current work. Results on the well-posedness of the Westervelt equation in the pressure form with
nonlinear absorbing conditions for the angle of incidence θ = 0◦ can be found in [53, 55].

4.2. Finite element discretization and time integration. We follow the standard discretization
methods for nonlinear acoustics based on finite elements [10, 21, 28, 33, 43, 58]. The finite element
method is employed in space with lowest order conforming elements on simplicial meshes.

The mass M, stiffness K, and damping matrix C as well as the nonlinearity tensor T are assembled
in the usual manner; see [33, 43]. By dividing the set of degrees of freedom into the set of Dirichlet
degrees D and the set of interior degrees I, the semi-discrete problem reads as follows

(33)


MI,Iψ̈I

+ KI,IψI
+ CI,Iψ̇I

− T I,I,I[ψ̈I
, ψ̇

I
, ·]− T I,D,I[ψ̈I

, ψ̇
D
, ·]

−T D,I,I[ψ̈D
, ψ̇

I
, ·]−AI(ψ, ψ̇, θ(ψ)) = F (t) in (0, T ),

ψ = ψt = 0 at t = 0.

The right-hand side of the equation is given by

F (t) = −MI,Dψ̈D
−KI,DψD

−CI,Dψ̇D
− T D,D,I[ψ̈D

, ψ̇
D
, ·].

The underlined quantities ψ, ψ̇, and ψ̈ denote the coefficient vectors of ψ,ψt, and ψtt resulting from the
spatial finite element discretization. The compact notation with index sets D and I is used to extract
the respective rows and columns of matrices and vectors that belong to Dirichlet and interior degrees
of freedom.

The absorbing boundary vector A is formally given by

(34)

A(ψt, θ(ψ)) = (Ai(ψt, θ(ψ)))i∈DOF(Γabc),

Ai(ψt, θ(ψ)) =

∫
Γabc

c
√

1− σkψt ψt cos θ(ψ)Ni dS.

Above, Ni stands for the finite element ansatz function of the i-th global degree of freedom, while
DOF(Γabc) is the set of degrees of freedom belonging to the absorbing boundary.

The nonlinearity tensor T is used to resolve the nonlinear bulk term in the weak formulation in
a fixed-point iteration. The same also holds for the absorbing boundary vector which is iteratively
updated with the current values of ψt, ψtt as well as updates for the angle θ.

The system (33) is a nonlinear system of ordinary differential equations of second order with |I|
components. It remains to solve it by using a suitable time integrator. Following [43], we employ
the Generalized-α scheme in combination with the Newmark relations for time integration. Values
of the Generalized-α parameters (αm, αf ) and the Newmark parameters (βnm, γnm) that are used in
experiments are chosen according to the stability and accuracy criteria stated in [4]:

αm =
2ρ∞ − 1

1 + ρ∞
, αf =

ρ∞
1 + ρ∞

, βnm =
1

(1 + ρ∞)2
, γnm =

1

2

3− ρ∞
1 + ρ∞

where we take ρ∞ = 1/2; see also Table 1 for the resulting values.

In comparison to the numerical solvers proposed in [10, 43], a new aspect of our method is the
computation of the angle of incidence θ(ψ). The angle is computed once in every time step before the
first assembly of the absorbing boundary vector. Details on how we compute the angle can be found in
Section 5.
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Table 1. Time stepping parameters

parameter value

Newmark-parameters
βnm 4/9

γnm 5/6

Generalized-α parameters
αm 0

αf 1/3

Nonlinear iteration parameters
TOL 10−6

κmax 100

5. Computation of the angle of incidence

It remains to see how we can compute the angle of incidence θ that the local wave vector encloses with
the outward normal to the absorbing boundary at a given point on Γabc. To reduce the computational
cost, we compute the angle θ once per time step and do not update it within the nonlinear fixed-point
iteration.

According to [51, 65], the Poynting vector P(ψ) of a wave field ψ can be used to compute its local
propagation direction. The vector P(ψ) is given by

(35) P(ψ) = −∂ψ
∂t
∇ψ.

Since neither the sign nor the norm of the propagation vector plays a role when computing the
incidence angle, we restrict ourselves to the spatial gradient alone to determine the main propagation
direction of the wave. Such an approach was also taken in [26, 64, 67] for wave fields in an isotropic
medium. In our case, this method of computing the local propagation direction works especially well
since, although globally discontinuous, the element-wise gradient information is readily available at
every time step in the finite element framework. We also refer to [48] for a further discussion on the
use of the Poynting vector in angle decomposition methods.

We conduct experiments with zero initial data and Dirichlet conditions on part of the boundary, and
so most of the potential field is at rest at the beginning of the simulation. However, numerical noise
of low magnitude can be present at the absorbing boundary before the wave reaches it. Such behavior
could be accounted to weak ill-posedness; see [44]. To tackle this issue, we implement a switch. When
going over all elements adjacent to the absorbing boundary, we only compute the element-wise angle of
incidence once the local wave amplitude (in terms of absolute value of the elements degrees of freedom)
exceeds a certain percentage p1 of a reference value; see Algorithm 1, line 3. We take the reference value
to be the source amplitude of the wave. In the case that the source amplitude is not known a priori, an
alternative would be to compute the maximum field amplitude in the interior of the domain and take
this as a reference value. As long as the criterion is not matched, the local angle of incidence is set to
0; see Algorithm 1, line 14. We note that a similar approach was taken in [54]. In all our numerical
experiments, we set p1 = 0.1.

Algorithm 1 summarizes our method of computing the incidence angle. Within the algorithm, indices
in the exponent indicate the time step.
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Algorithm 1: Angle-computation algorithm

Initialization:

1 Formally set |∇ψ(−1)
el | =∞ and θ0

el = 0 ◦ for all elements el

In time step n = 1, 2, ... do

2 for el ∈ {elements : element has an edge/face on the absorbing boundary}
3 if max{|ψni | : dofi belongs to el} > p1 · A then

4 enable angle computation for el

5 end

6 if angle computation is enabled for el then

7 Evaluate ∇ψ(~x, tn−1) within el → save as ∇ψn−1
el

8 if |∇ψn−1
el | ≤ p2 max

k<n−1
|∇ψkel| then

9 set θnel = θn−1
el

10 else

11 compute θnel = arccos

(
|〈∇ψn−1

el , ~nel〉|
|∇ψn−1

el |

)
12 end

13 else

14 set θnel = 0 ◦

15 end

16 end

Note that even once the local amplitude of the wave at a given element is large enough for the angle
computation to start, unreliable angle values can be computed at points where a local wave maximum or
minimum hits the boundary since the gradient is close to zero. As a remedy, we propose that gradients
with the Euclidean norm below some threshold should not influence the angle of incidence. Whenever
such a small gradient appears, we use the angle of the last time step; see Algorithm 1, line 9. We employ
a percentage p2 of a reference value for the threshold. As the reference value we take the local gradient
history of the given element and pick the norm-wise maximum over the past time steps; see Algorithm
1, line 8. We compute a new angle of incidence only in cases where the threshold is surpassed, i.e.,
when the local gradient is sufficiently large; cf. Algorithm 1, line 11. To also reduce the oscillations
with respect to time in the angle distribution, in all experiments we choose a relatively high threshold
of p2 = 0.5.

Together with the previously introduced switch, the above approach allows steering the sensitivity of
the angle computation algorithm by adapting the parameters p1 and p2. If these parameters are close
to 1, the angle is only computed for very high amplitudes and local gradients, while for most other
parts of the boundary the angle remains zero. On the other hand, small values of p1 and p2 lead to
highly sensitive angles reacting to even small perturbations in the wave field.

6. Numerical results

We proceed with numerical simulations where we put our self-adaptive technique to the test. Compu-
tational domains Ω used in numerical experiments are sketched in Figure 2. The dashed lines symbolize
the boundaries of the reference domain Ωref where we compute the reference solution ψref. The reference
solution is always first computed on Ωref, then restricted to the actual domain Ω, and compared with
the potential field obtained on Ω by employing the absorbing conditions.
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We mention again that in all numerical simulations conforming finite elements of lowest order on
simplicial meshes are used. Geometry and mesh are generated by using the Gmsh software package [11].

~k~n

�




�abc

�exc

�exc

�abc




~k
~n

�

�abc




�exc

Figure 2. Computational domains used in simulations. (Top left) Channel with an
inclined absorbing boundary, (Top right) Octant of a “plate with hole” geometry,
(Bottom) Geometry of a focusing transducer.

6.1. Domain with an inclined absorbing boundary. In our first experiment, we consider a two-
dimensional channel geometry, where the upper (absorbing) boundary Γabc is tilted by a given angle of
θ; see Figure 2. The waves originate from the excitation boundary Γexc at the bottom of the rectangle
and travel straight upwards. We impose homogeneous Neumann boundary conditions on the sides of

the domain. The wave vector ~k in this setting points straight upwards. Therefore, the angle that the
wave vector and the outward normal ~n of Ω at Γabc enclose is exactly θ for the absorbing boundary.

We compute the reference solution ψref on a larger domain without the absorbing boundary and then
conduct a simulation on Ω. To get an impression on how the wave propagates in the present setting,
Figure 3 shows the potential field ψ at different time snapshots. Material parameters were chosen to
be the ones of water, i.e.

c = 1500 m/s, b = 6 · 10−9 m2/s, ρ = 1000 kg/m3, B/A = 5;

see [33, Chapter 5], while the excitation (31) has an amplitude of A = 0.01 m2/s2 and a frequency of
210 kHz. The experiment was conducted for two different angles

θ ∈ {20◦, 50◦}.

For spatial discretization, we take 13045 (20◦ case) and 13046 (50◦ case) degrees of freedom in space
for the channel width of 0.02 m and channel length (in the middle) of 0.03 m. In time, 9800 time steps
were taken to cover the interval from t0 = 0 until T = 9.45 · 10−5 s.
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The error plots are given in Figure 4. We observe that the conditions that do not take the angle of
incidence into consideration significantly deteriorate when the angle increases. For the angle of inci-
dence θ = 50◦, the maximal relative error is more than 20 % for the linear conditions and around 17 %
for the nonlinear conditions with the fixed angle θ = 0◦. In comparison, the self-adaptive technique
when combined with the nonlinear conditions (26) allows for the error to remain around 1 %. Note
that linearization (10) and the resulting absorbing conditions (26) clearly outperform conditions (28).
We, therefore, proceed in the following experiments with testing only (26) in combination with the
self-adaptive technique. We also observe that the nonlinear conditions (26) that use an approximate
angle computation via the gradient of the wave field perform similarly to the conditions that employ
the exact angle.

Figure 3. Time-snapshots of the potential field.
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Figure 4. Inclined plane boundary: Relative L2(Ω) error of the potential ψ(t)
over the simulation time with θ = 20◦ . (Left) Nonlinear vs. linear conditions with
and without adaptivity, (Right) Performance of adaptive conditions with numerically
computed vs. the exact incidence angle θ.

It is also interesting to see how the errors are distributed over the domain Ω, i.e., where they
originate from and how far they spread. Figure 6 shows the error fields |ψ(t) − ψref(t)| at different
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times for the ABC
1/2
W conditions with and without adaptivity. The first snapshots were taken just as

the first wave hits the absorbing boundary. In the subsequent snapshots, we can see how the erroneous
reflections travel together with the wave across the absorbing boundary. It is evident that there are
fewer reflections present when using the self-adaptive absorbing boundary conditions that take the local
angle information into account.
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Figure 5. Inclined plane boundary: Relative L2(Ω) error of the potential ψ(t)
over the simulation time with θ = 50◦ . (Left) Nonlinear vs. linear conditions with
and without adaptivity, (Right) Performance of adaptive conditions with numerically
computed vs. the exact incidence angle θ.

6.2. Higher source frequency. So far our experiments have been conducted with the same source
excitation. After varying the domain geometry via the angle θ, we investigate the influence of the source
frequency on the quality of absorbing conditions. We now test with the excitation frequency

f = 250 kHz.

All the remaining parameters being the same as before. The domain again has the upper boundary
tilted with the angle of 50 ◦. Figure 7 shows the error plots for the higher frequency. We observe that
conditions ABC0

W asymptotically show the same poor results as conditions ABC0
W with self-adaptivity.

Only our combination of nonlinear conditions with the self-adaptive technique (26) allows for the relative
error to stay around 1 %. By comparing Figure 5 and Figure 7, we also notice that the difference in
the error between the nonlinear and the corresponding linear conditions increases with the frequency,
emphasizing the need to employ nonlinear conditions for high-frequency nonlinear sound waves.
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Figure 6. Potential Difference |ψ(t) − ψref(t)| plotted over time (Horizontal) for

ABC
1/2
W (First row) without adaptivity and (Second row) with self-adaptive angle.
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Figure 7. Inclined plane boundary: Relative L2(Ω) error of the potential ψ(t)
for t ∈ [0, T ] with θ = 50◦ and higher source frequency. (Left) Nonlinear vs. linear
conditions with and without adaptivity, (Right) Performance of adaptive conditions
with numerically computed vs. the exact incidence angle θ.
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6.3. Plate with a hole. We previously tested the new absorbing boundary conditions in a domain
where the angle of incidence was constant over the absorbing boundary. To show that both our approach
of computing the angle of incidence of the wave as well as the nonlinear boundary conditions work in
more realistic settings, we now consider the so-called “plate with a hole” domain. It consists of a square
with a circular hole in the center. In our case, the excitation of the wave takes place at the boundary
of the hole. By using symmetry, we reduce the simulation of the whole domain to half of one of its
quarters; see Figure 2.

An analytical expression for the angle of incidence is also available here which allows us to judge the
quality of our angle approximation. If the origin is at the center of the circular hole and the square has
sides of length a, the angle of incidence is given by

θ(x, y, t) = arccos

(
a/2√

x2 + (a/2)2

)
.(36)

We set a = 0.08 in the experiments. The domain is resolved with 13820 degrees of freedom in space.
For time discretization, we choose 8330 time steps with final time T = 8.0325 · 10−5 s.

Figure 8 shows the angle of incidence computed by our approach at two different points in time and
further illustrates our criterion on computing the incidence angle based on the amplitude of the wave on
the boundary. Note that formula (36) assumes a reflection-free potential field so an exact match of our
angle to the analytical angle distribution cannot be expected. In fact, our method tries to compensate
also for the waves that originate as spurious reflections from the absorbing boundary.
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Figure 8. Computed versus exact angle of incidence θ. (Left) The angle is only
computed on the parts of the absorbing boundary that the wave has reached. (Right)
Angle computation towards the end of the simulation.

As in our last experiment, we proceed by showing the wave field at different time steps as well as the
error comparison of different absorbing boundary conditions; see Figure 9 and Figure 11. This time we
also compute them in terms of the acoustic pressure u = ρψt due to its practical importance. We also
introduce here the relative errors in the L2(0, T ;L2(Ω)) norm, i.e.

eψ =
‖ψ − ψref‖L2(0,T ;L2(Ω))

‖ψref‖L2(0,T ;L2(Ω))
, eu =

‖u− uref‖L2(0,T ;L2(Ω))

‖uref‖L2(0,T ;L2(Ω))
.

In the present experiment, those errors amount to eψ = 1.82 % and eu = 0.93 % for the self-adaptive
conditions and eψ = 5.41 % and eu = 5.17 % for the conditions without adaptivity, giving an overall
improvement of 66.36 % in the potential and 82.01 % in the pressure.
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Plots of the difference field |u(t)− uref(t)| at different times are given in Figure 10. We observe that
with the absorbing conditions that are not adaptive, the amplitude of the error increases over the width
of the domain as the angle grows.

Figure 9. Time snapshots of the pressure field u = ρψt.

Figure 10. Pressure difference |u(t) − uref(t)| plotted over time (Horizontal) for

ABC
1/2
W without (First row) and with (Second row) angle consideration.
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Figure 11. Plate with a hole: Relative L2(Ω) error of (Left) the potential ψ(t)
and (Right) the pressure u(t) = ρψt(t) over the simulation time.
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6.4. High-intensity focused ultrasound (HIFU). We next simulate the potential field generated
by a piezoelectric transducer. Such devices are made of small plates of a piezoelectric material that are
aligned in an arc-shaped array pointing towards a common focal point [6, 59]. When set into motion,
those vibrating plates induce acoustic sound waves that propagate towards the focal point. As it travels,
the wave is focused more and more the closer it comes to the focal point. This technique of generating
high-pressure amplitudes at specific locations is used in medicine to treat kidney stones and certain
types of cancer; see [24, 35, 36, 62, 66]. The pressure levels in the non-focal region are sufficiently low
so that damage to the surrounding tissue is avoided.

For this experiment, the medium of propagation is again chosen to be water with the same physical
parameters as before. The source frequency is again given by f = 210 kHz and the source amplitude
by A = 0.02 m2/s2 which increases at the focal point due to focusing. As depicted in Figure 2, the
absorbing boundary here consists out of three line segments at the left, right and top. Time-snapshots
of the transducer simulation can be seen in Figure 12.

The computational domain was resolved with 13313 degrees of freedom, while for the time stepping
9800 steps and a final time of T = 4.725 · 10−5 s were used.

Figure 12. Snapshots of the pressure field u = ρψt of a propagating, self-focusing wave.

A comparison of the relative L2(Ω) errors at every time step is displayed in Figure 13. Due to
the relevance of measuring the acoustic pressure in HIFU applications, we again also plot the relative
error that the absorbing boundary conditions produce in the pressure u = ρψt. We observe that
the qualitative behavior of the errors and especially also the improvement made by the new adaptive
conditions remains the same. For the adaptive conditions, the relative errors in the L2(0, T ;L2(Ω))
norm are eψ = 4.12 % and eu = 4.46 %, whereas eψ = 7.94 % and eu = 7.27 % if the adaptivity is
not considered, resulting in an improvement of 51.89 % in ψ and even 61.35 % in u. The increase in
computational time when using the adaptive absorbing conditions amounts to 1.5 %.
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Figure 13. HIFU transducer in 2D: Relative L2(Ω) error of (Left) the potential
ψ(t) and (Right) the pressure u(t) = ρψt(t) over the simulation time.
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Since even with the absorbing boundary conditions an impinging wave is not completely absorbed,
there are always some spurious reflections that travel back into the interior of the domain. They then
interact with the “main” wave that still travels towards the boundary and other spurious reflections
originating from different parts of the boundary. Those effects together can accumulate over time,
leading to an increase of the deviation from the reference solution and therefore the error, as can be
observed in Figure 13. These effects appear to be more pronounced in more complicated geometries as
well as with wave focusing.

6.5. Multi-source wave superposition. Our next experiment is intended to illustrate that the adap-
tive method also works in scenarios with more than one wave source present and when superposition
of waves occurs. In such cases, we can expect a less distinct wave propagation direction. In contrast to
the other examples, here we use a source term on the right-hand side of the Westervelt equation. The
computational domain is given by the square Ω = (0, 0.03)2 and we choose the source term as follows

f(x, y, t) = A sin(ωt)

[
exp

(
−
(
x− xmp1

σx

)2

−
(
y − ymp1

σy

)2
)

−2

3
exp

(
−
(
x− xmp2

σx

)2

−
(
y − ymp2

σy

)2
)]

,

with σx = σy = 0.0005, xmp1 = 0.02, xmp2 = 0.01, ymp1 = ymp2 = 0.015, and A = 1011 m2/s4.
Figure 14 depicts wave propagation at two different time induced by two different source terms within
the computational domain. The transparent region depicts the reference domain. In Figure 15, we can
see the relative L2 errors. We observe that also in this setting the adaptive approach results in a smaller
error and a better overall behavior.

Figure 14. Wave propagation induced by two different source terms.

6.6. 3D Transducer. To also show the capability of our method in three dimensions, we perform
another experiment in a transducer setting, this time in 3D. Due to the high computational costs,
especially for the reference solution on the larger domain Ωref, we choose a source amplitude of A =
0.002 m2/s2, while keeping physical parameters and the excitation frequency the same. Figure 16 shows
the computational domain together with the grid, while Figure 17 depicts the three-dimensional wave
propagation in the given domain.

In Figure 18, we compare the adaptive conditions to the nonlinear conditions with the fixed angle
θ = 0 ◦.

Note that in 3D, in addition to the discretization error, there is also an interpolation error caused
by a mismatch between the grid for the simulation with absorbing conditions and the mesh of the
reference solution. Combined with the L2-norm of the reference solution being small at the beginning
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Figure 15. Multi-source wave superposition: Relative L2(Ω) error of the potential ψ(t)

Figure 16. Three-dimensional transducer geometry with mesh visible on the surface.
Absorbing conditions are employed on the green surface, Dirichlet conditions on the
grey.

of the simulation, this results in the initial peak in the relative error for both adaptive and non-adaptive
conditions. In 2D, the meshing software was able to avoid the interpolation error. In the long term
behavior as well as in the absolute errors, we observe that the adaptive angle information improves
the quality of the conditions. The qualitative behavior of the errors of the new adaptive conditions is
similar in 3D. The relative errors in the L2(0, T ;L2(Ω)) norm are eψ = 8.28 % and eu = 8.3 % if the
adaptivity is considered, whereas eψ = 10.34 % and eu = 10.39 % if the adaptivity is not considered,
resulting in an improvement of 19.92 % in ψ and 20.12 % in u.
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Figure 17. Three-dimensional propagation of the pressure wave u = ρψt. The iso-
volumes show the regions of highest (in absolute value) pressure amplitudes in 3D,
while the two planes show slices through the three-dimensional pressure field.
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Figure 18. HIFU transducer 3D: (Left) Relative L2(Ω) error of the potential
ψ(t), (Right) Absolute L2(Ω) error of the potential ψ(t).

6.7. 3D Acoustic horn. Nonlinear sound propagation has been widely reported to occur in wind
instruments; see [3, 9, 45, 50]. Motivated by this, for our final experiment, we consider a numerical
simulation of an acoustic horn.

The excitation takes place at the bottom of the domain and the waves then travel through a waveguide
with an increasing diameter; see Figure 20. At the end of the waveguide, where the wave starts to
propagate into the ambient space, we employ again the absorbing conditions to truncate the domain at
a spherical boundary. In this experiment we use the physical parameters of air instead of water:

c = 331
m

s
, b = 0.00005

kg

m s
, B/A = 1.2, % = 1.29

kg

m3
;

see [14]. The excitation has a frequency of f = 6.5 kHz and an amplitude of A = 0.01 m2/s2. To keep
the computational cost reasonable, we again use symmetry to reduce the simulation to a quarter of the
actual three-dimensional acoustic horn. The two planes of symmetry are equipped with homogeneous
Neumann conditions; see Figure 19. A comparison of adaptive and non-adaptive conditions is given
in Figure 21. The relative errors in the L2(0, T ;L2(Ω)) norm are eψ = 5.23 % and eu = 5.33 % if the
adaptivity is considered, whereas eψ = 6.11 % and eu = 6.07 % if the adaptivity is not considered,
resulting in an improvement of 14.4 % in ψ and 12.19 % in u.
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Figure 19. Three-dimensional acoustic horn geometry with mesh visible on the sur-
face. Absorbing conditions are employed on the green surface, homogeneous Neumann
conditions on the grey and a wave excitation via inhomogeneous Dirichlet conditions
at the bottom surface.

Figure 20. Three-dimensional propagation of the pressure wave u = ρψt. The iso-
volumes show the regions of highest (in absolute value) pressure amplitudes in 3D.

We observe less of a gain in our recent examples compared to the introductory ones in 2D, which has a
natural explanation. In our simplest 2D setting in Section 6.1, the angle of incidence is constant over the
whole absorbing boundary and large, so the boundary conditions can significantly profit from taking the
angle information into account adaptively. In the later, more advanced examples (e.g., in Section 6.3) a
large portion of the wave leaves the domain with quite small incidence angles. The same also holds for
the application-oriented example of the focusing transducer in Sections 6.4 and 6.6. There, most of the
angles of incidence are smaller than in the introductory examples which results smaller improvement
compared to the standard non-adaptive conditions.

7. Conclusion

We have developed a self-adaptive absorbing technique for sound propagation in the presence of
nonlinearities. Within our approach, the angle of incidence of the wave is computed locally by employing
the information given by the gradient of the wave field. The absorbing conditions are then updated in
real time with the angle values.

The method offers three fundamental advantages. It is sufficiently accurate over a range of angles
of incidence, and it is easy to implement. Moreover, by only relying on the gradient of the wave field
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Figure 21. Acoustic horn 3D: (Left) Relative L2(Ω) error of the potential ψ(t),
(Right) Absolute L2(Ω) error of the potential ψ(t) over the simulation time.

which is readily available in finite element simulations, we can keep the additional computational efforts
low.

Acknowledgements

We thank Dr. Igor Shevchenko for helpful comments. The funds provided by the Deutsche Forschungs-
gemeinschaft under the grant number WO 671/11-1 are gratefully acknowledged.

References

[1] S. Abarbanel, D. Gottlieb, and J. S. Hesthaven, Well-posed perfectly matched layers for advective acoustics,

Journal of Computational Physics, 154 (1999), pp. 266–283.
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