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Abstract

In [Z. Hu, R. Li, and Z. Qiao. Acceleration for microflow simulations of high-order mo-
ment models by using lower-order model correction. J. Comput. Phys., 327:225-244, 2016],
it has been successfully demonstrated that using lower-order moment model correction is a
promising idea to accelerate the steady-state computation of high-order moment models of
the Boltzmann equation. To develop the existing solver, the following aspects are studied
in this paper. First, the finite volume method with linear reconstruction is employed for
high-resolution spatial discretization so that the degrees of freedom in spatial space could be
reduced remarkably without loss of accuracy. Second, by introducing an appropriate param-
eter τ in the correction step, it is found that the performance of the solver can be improved
significantly, i.e., more levels would be involved in the solver, which further accelerates the
convergence of the method. Third, Heun’s method is employed as the smoother in each level
to enhance the robustness of the solver. Numerical experiments in microflows are carried out
to demonstrate the efficiency and to investigate the behavior of the new solver. In addition,
several order reduction strategies for the choice of the order sequence of the solver are tested,
and the strategy ml−1 = dml/2e is found to be most efficient.

Keywords: Boltzmann equation; High-order moment model; Lower-order moment model
correction; Multi-level method; Microflow

1 Introduction

In the past few decades, the simulation of the Boltzmann equation has attracted a great
deal of attention in a variety of high-tech fields such as rarefied gas dynamics in astronautics
and fluid mechanics in micro-electro-mechanical systems, where the mean free path of fluid
molecules becomes comparable to the characteristic length of the problem. Because of the
inherent high dimension of variables and the complicated expression of the binary collision
operator, an accurate and efficient simulation of the Boltzmann equation still encounters great
challenges even for the computers nowadays. Lots of work has been done to overcome these
difficulties. One of the important efforts is to reduce the computational cost of the collision
operator by employing simplified collision operators instead of the original one [1, 18, 20, 29], or
developing fast algorithms for it via spectral methods [14,33].
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Another famous work is the Grad moment method first proposed in [15], which tries to reduce
the degrees of freedom in velocity space without loss of accuracy by using a certain Hermite
spectral expansion with parameters adaptive to the local physical quantities of the fluid. The
derived system of equations is a semi-discretization of the Boltzmann equation from numerical
point of view, yet it is usually regarded as the Grad moment model, or macroscopic transport
model in today’s literature, see e.g. [30]. This model is actually hierarchically extended with
respect to the expansion order, and is expected to converge to the underlying Boltzmann equation
rapidly as the expansion order increases. Unfortunately, the original Grad moment models are
found to be lack of hyperbolicity [4] and may yield unphysical subshocks [16]. A number of
methods have been proposed to regularize the Grad moment models [3,5,7,12,24,26,31]. Among
them, a systematic approach to guarantee the global hyperbolicity of the moment model up to
arbitrary order was introduced in [3, 5], which makes the practical application of high-order
moment models possible. The resulting hyperbolic moment models are of interest to us in the
current paper.

In [7–10], a systematic numerical method, abbreviated as the NRxx method, has been de-
veloped for the regularized moment model of arbitrary order. The unified framework of the
NRxx method makes the numerical implementation of the high-order moment model without
much difficulties. However, the developed time-stepping NRxx method turns out to be inef-
ficient, when steady-state simulations or models with a sufficiently large order are taken into
consideration. It can be seen in [9, 33] that steady-state simulations of the moment model with
the order larger than 20 may need to be applied for numerical purpose. In such a situation, the
moment model would include thousands of nonlinear equations, which are deeply coupled with
each other. This immediately leads to an enormous amount of computational cost, especially
for the steady-state computation in which a long time simulation is always required. Due to the
importance of steady-state simulations in microflows and the frequent employment of high-order
moment models, we are mainly concerned in this paper about the acceleration of simulations in
such cases.

Observing the fact that almost all equations of a moment model are contained in the moment
model with a larger order, it might be possible to accelerate the computation of the high-order
moment model by using a lower-order moment model. A natural way is to employ the solution of
the lower-order moment model to provide the initial guess in the computation of the high-order
moment model. Unfortunately, it is found from our investigation that this approach does not help
much in improving the convergence of the simulation, although the convergence history would
become smoother. Inspired by the well-known multigrid method [2, 17], which could accelerate
the convergence of a basic iteration greatly by reducing error components from the problem at
various levels, it might be feasible to improve the computational efficiency of high-order moment
models by adopting a lower-order moment model correction as the coarse grid correction in
multigrid method. Following the framework of nonlinear multigrid method [17], a nonlinear
multi-level moment (NMLM) solver for the high-order moment model could then be obtained
by providing appropriate transformation operators between the moment models with different
orders. Such an idea could be as effective as expected also based on the following observation:
the resulting NMLM solver would not only be viewed as a multigrid solver of velocity space for
the Boltzmann equation, but also coincide to some extent with the p-multigrid method [13,19] or
spectral multigrid method [25,28], by recalling the derivation of the moment model. In fact, this
idea has been first proposed and numerically investigated in our previous paper [22]. To the best
of our knowledge, it might be the first effort on developing multigrid method of velocity space for
the Boltzmann equation. It is shown in [22] that a significant improvement in efficiency of the
steady-state computation could be obtained even for the moment model with a relatively small
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order such as 4 and 5, which indicates the idea of using lower-order moment model correction
is quite promising to accelerate the simulation.

Although the solver in [22] worked well in the computation of steady states of high-order
moment models, there is still room left for further improvement, from both the accuracy and
the efficiency points of view. First of all, since the piecewise constant approximation is used
in the spatial discretization, the numerical solution is of first order only, which is too diffusive
to deliver numerical solution with high resolution. Then from the numerical experiments in
[22], it is found that the stability of the solver is sensitive to the correction from the lower
level, i.e., the convergence of the solver will be negatively affected if the correction from the
lower level is directly used, while the situation can be improved effectively by rescaling the
correction. Furthermore, different smoothing and order reduction strategies are tested in a
variety of benchmark problems, and numerical results highlight some insight on designing quality
method.

Based on the above consideration and observation, in this paper, we further develop the
solver proposed in [22], from the following aspects,

• The finite volume method with linear reconstruction is employed for spatial discretiza-
tion of the target moment model, so that the degrees of freedom in spatial space could
be reduced greatly while still being able to give accurate results in comparison to the
first-order discretization which has been utilized in [22]. Following the basic idea of the
NRxx method, the derived discretization will have a unified form with respect to the order
of the model, thus can also be solved under a unified framework for the moment model up
to an arbitrary order.

• To enhance the stability of the resulting NMLM solver when a lot of levels are involved, a
relaxation parameter is introduced in the step of updating the solution after each lower-
order moment model correction is obtained. The computation of this correction step is
also simplified a lot, so is much faster than the original way used in [22].

• A second-order time-stepping scheme, namely, Heun’s method, is used as the smoother of
the NMLM solver. Based on our numeircal experience, there are several advantages by
using Heun’s method. Comparing to the SGS-Newton iteration proposed in [21], Heun’s
method can be implemented much easier, while comparing to the SGS-Richardson iteration
proposed in [22], Heun’s method exhibits better performance, especially when a large
Knudsen number is considered. It is worth mentioning that Heun’s method would enhance
the robustness of the NMLM solver.

• Numerical experiments of three benchmark spatially one-dimensional problems are carried
out to investigate the performance and behavior of the new NMLM solver. Various order
reduction strategies, including ml−1 = ml − 1, ml−1 = ml − 2, ml−1 = ml − 4, and
ml−1 = dml/2e, are taken into account for the choice of the order sequence of the NMLM
solver. It is shown that the convergence rate of the NMLM solver is effectively improved
as the total levels increases. Among the order reduction strategies we have tested, it turns
out that the best strategy is ml−1 = dml/2e.

The numerical experiments successfully show that both the numerical accuracy of the solution
and the computational efficiency of the solver are improved significantly, compared with the
ones in [22].

The rest of this paper is arranged as follows. A brief review of the underlying model equations
in microflows as well as the related spatial discretization is given in Section 2. The details of
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the nonlinear multi-level moment solver are then described in Section 3. Numerical experiments
are carried out in Section 4 to show the performance and behavior of the proposed nonlinear
multi-level moment solver. At last, some concluding remarks are given in Section 5.

2 The governing equations and their discretization

In this section, we briefly review the Boltzmann equation in steady state, and the globally
hyperbolic moment models, then introduce a unified spatial discretization with linear recon-
struction for the given models.

2.1 The steady-state Boltzmann equation

In the gas kinetic theory, the Boltzmann equation is used to describe the evolution of gas
molecules. It has the form

ξ · ∇xf + F · ∇ξf = Q(f), (1)

when the steady state of the fluid has been achieved. Here f(x, ξ) is the molecular distribution
function, in which x ∈ Ω ⊂ RD (D = 1, 2, or 3) and ξ ∈ R3 are the spatial position and
the particle velocity respectively. The vector F stands for the acceleration of molecules due
to external force fields, and the right-hand side Q(f) is the collision term. Upon the collision
number assumption (cf. [11, 18]), it is given by

Q(f) =

∫
R3

∫
S2+
B(|ξ − ξ∗|,n)(f ′f ′∗ − ff∗) dndξ∗, (2)

where f ′ = f(x, ξ′), f∗ = f(x, ξ∗), f
′
∗ = f(x, ξ′∗), and the pairs (ξ, ξ∗) and (ξ′, ξ′∗) are the pre-

and post-collision velocities of a colliding pairs of particles, with the unit vector n ∈ S2
+ directed

along the line joining the centers of them. The collision kernel B is a non-negative function
depending on the potential between gas molecules.

Such a binary collision term causes a great challenge in numerical simulation. Simplified
collision models, such as the BGK-type relaxation models [1, 20, 29] and the linearized collision
model [18], have been proposed to replace it while still being able to predict the major physical
features of interest in a variety of situations.

The BGK-type collision term reads

Q(f) = ν(fE − f), (3)

where ν is the average collision frequency assumed independent of the particle velocity, and fE

is the equilibrium distribution function which depends on the specific choice of model:

• For the ES-BGK model [20], it is an anisotropic Gaussian distribution defined by

fE(x, ξ) =
ρ(x)

m∗
√

det[2πΛ(x)]
exp

(
−1

2
(ξ − u(x))T [Λ(x)]−1(ξ − u(x))

)
, (4)

where m∗ is the mass of a single gas molecule, and Λ = (λij) is a 3× 3 matrix with

λij(x) = θ(x)δij +

(
1− 1

Pr

)
σij(x)

ρ(x)
, i, j = 1, 2, 3,

in which δij is the Kronecker delta symbol, and Pr is the Prandtl number.
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• For the Shakhov model [29], it reads

fE(x, ξ) =

[
1 +

(1− Pr)(ξ − u(x)) · q(x)

5ρ(x)[θ(x)]2

(
|ξ − u(x)|2

θ(x)
− 5

)]
fM(x, ξ), (5)

where fM is the local Maxwellian given by

fM(x, ξ) =
ρ(x)

m∗[2πθ(x)]3/2
exp

(
−|ξ − u(x)|2

2θ(x)

)
. (6)

In the above equations, ρ, u, θ, σ, and q are macroscopic physical quantities known as density,
mean velocity, temperature, stress tensor, and heat flux, respectively. They can be computed
from the distribution function f as follows

ρ(x) = m∗

∫
R3

f(x, ξ) dξ, ρ(x)u(x) = m∗

∫
R3

ξf(x, ξ) dξ,

ρ(x)|u(x)|2 + 3ρ(x)θ(x) = m∗

∫
R3

|ξ|2f(x, ξ) dξ,

σij(x) = m∗

∫
R3

(ξi − ui(x))(ξj − uj(x))f(x, ξ) dξ − ρ(x)θ(x)δij , i, j = 1, 2, 3,

q(x) =
m∗
2

∫
R3

|ξ − u(x)|2(ξ − u(x))f(x, ξ) dξ.

(7)

It is noticed that when Pr = 1, both the ES-BGK model and the Shakhov model reduce to the
simplest BGK model [1], in which fE is chosen as the local Maxwellian, i.e., fE ≡ fM.

In this paper, we adopt the BGK-type collision term as an example to illustrate our algo-
rithm. However, it is pointed out that the framework of the present algorithm is also suitable
for some other collision models, as can be seen below.

2.2 The moment model of order M

To obtain the steady-state moment models for the Boltzmann equation (1), we first expand
the distribution function f into a series as

f(x, ξ) =
∑
α∈N3

fα(x)H[ũ(x),θ̃(x)]
α (ξ), (8)

where fα(x) are the coefficients, and H[ũ,θ̃]
α (·) are the basis functions defined by

H[ũ,θ̃]
α (ξ) =

1

m∗(2πθ̃)
3/2
θ̃
|α|/2

3∏
d=1

Heαd(vd) exp
(
−v2

d/2
)
, v =

ξ − ũ√
θ̃
, ∀ξ ∈ R3, (9)

in which |α| = α1 + α2 + α3, and Hen(·) is the Hermite polynomial of degree n, i.e.,

Hen(x) = (−1)n exp
(
x2/2

) dn

dxn
exp

(
−x2/2

)
.

The parameters ũ and θ̃ in the basis functions are selected respectively as the local mean velocity
u and the local temperature θ, which are determined from f itself via (7). With this choice, we
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also have the following relations

f0 = ρ, fe1 = fe2 = fe3 = 0,
3∑
d=1

f2ed = 0,

σij = (1 + δij)fei+ej , qi = 2f3ei +
3∑
d=1

f2ed+ei , i, j = 1, 2, 3,

(10)

from (7), where e1, e2, e3 represent the multi-indices (1, 0, 0), (0, 1, 0), (0, 0, 1), respectively.
Based on the derivation of the globally hyperbolic moment system proposed in [3, 5, 8], we

then get a system of equations for u, θ, and fα, |α| ≤M , which is called the moment model of
order M , as follows

D∑
j=1

[(
θ
∂fα−ej
∂xj

+ uj
∂fα
∂xj

+ (1− δ|α|,M )(αj + 1)
∂fα+ej

∂xj

)

+
3∑
d=1

∂ud
∂xj

(
θfα−ed−ej + ujfα−ed + (1− δ|α|,M )(αj + 1)fα−ed+ej

)
+

1

2

∂θ

∂xj

3∑
d=1

(
θfα−2ed−ej + ujfα−2ed + (1− δ|α|,M )(αj + 1)fα−2ed+ej

) ]

=

3∑
d=1

Fdfα−ed +Qα, |α| ≤M,

(11)

where Fd is the dth component of the acceleration F , and Qα are the coefficients in the expansion
of the collision term under the same basis functions as f , namely,

Q(f) =
∑
α∈N3

Qα(x)H[u(x),θ(x)]
α (ξ). (12)

For the BGK-type collision term (3), we have

Qα = ν(fE
α − fα),

where the analytical computational formula of fE
α can be found in [8] and [9] for the Shakhov

model and the ES-BGK model respectively. For the binary collision operator (2) as well as the
linearized collision model [18] with some special kernel B, the computation of Qα can be found
in [33].

Since the moment model (11) contains the classic hydrodynamic equations when M ≥ 2, it is
usually viewed as the macroscopic transport model or the extended hydrodynamic model in the
literature. While from numerical point of view, it can be also viewed as a semi-discretization
of the Boltzmann equation in the velocity space, by noting that the solution of it forms an
approximation of the distribution function by

f(x, ξ) ≈
∑
|α|≤M

fα(x)H[u(x),θ(x)]
α (ξ). (13)

This makes it much easier to develop numerical solvers for the moment model of arbitrary order
under a unified framework. Meanwhile, any solver developed for the moment model can be also
regarded as a solver for the underlying Boltzmann equation.
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Obviously, the moment model (11) is a nonlinear system coupling all moments, including the
mean velocity u, the temperature θ, and the coefficients fα, together. And it is easy to show
that the number of equations in a moment model of order M is

MM =

(
M + 3

3

)
. (14)

With the additional relations (10), we have that the total number of independent variables is the
same. It follows that the system is very large, e.g.,M10 = 286 andM26 = 3654, resulting a huge
computational cost for a general designed numerical method, when a high-order moment model
is taken into account. However, a high-order moment model such as M = 10 is commonly
employed in practical simulations, as can be seen in [9, 33], where we can even see that the
moment model with M = 26 or larger order is necessary for some cases.

In the following, we use g ∈ F [ũ,θ̃]
M to denote a truncated expression of a series similar to

(13), where F [ũ,θ̃]
M is a linear space spanned by H[ũ,θ̃]

α (ξ) for all α with |α| ≤M .

2.3 Spatial discretization with linear reconstruction

From now on, we restrict ourselves to spatially one-dimensional case for simplicity. Following
the framework of the NRxx method, which was developed in [7–10], we can obtain a unified
finite volume discretization for the moment model (11) of an arbitrary order. The main idea
is to treat all moments together as the truncated expansion (13), instead of dealing with them
individually.

Suppose {xi}Ni=0 constitute a mesh of the spatial domain [0, LD], and fi(ξ), fLi (ξ), and fRi (ξ)
are the discrete distribution function, respectively, on the center, the left boundary, and the right
boundary of the ith grid cell [xi, xi+1]. Then the finite volume discretization of the Boltzmann
equation (1) over the ith cell reads

F (fRi (ξ), fLi+1(ξ))− F (fRi−1(ξ), fLi (ξ))

∆xi
= G(fi(ξ)), (15)

where ∆xi = xi+1 − xi is the length of the ith cell, F (·, ·) is the numerical flux defined at the
boundaries of the cell, and G(·) represents the discretization of the acceleration and collision

terms of the Boltzmann equation (1). Let us further assume that fi(ξ) ∈ F [ui,θi]
M , that is,

fi(ξ) =
∑
|α|≤M

fi,αH[ui,θi]
α (ξ), (16)

where ui and θi are the local mean velocity and the local temperature, respectively, such that
the relation (10) holds for the coefficients fi,α. Then by projecting all terms of (15), numerical

fluxes F (fRi−1, f
L
i ), F (fRi , f

L
i+1) and the right-hand side G(fi), into F [ui,θi]

M , and matching the

resulting coefficients in (15) for the same basis function H[ui,θi]
α (ξ), we can obtain a system which

equivalently is a discretization of the moment model (11) over the ith cell. Apparently, the set of
ui, θi and fi,α constitutes the solution of the moment model (11) on the ith cell. Consequently,

we would simply say fi(ξ) ∈ F [ui,θi]
M is the solution of the moment model on the ith cell below.

For the left boundary distribution function fLi (ξ) and the right boundary distribution func-

tion fRi (ξ) of the ith cell, which are assumed to belong to F [uLi ,θ
L
i ]

M and F [uRi ,θ
R
i ]

M , respectively, it
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is enough to give the computational formulae for parameters uLi , uRi , θLi , θRi and all expansion
coefficients fLi,α, fRi,α with |α| ≤M . By linear reconstruction, they are calculated by

uLi = ui −
∆xi

2
gi, uRi = ui +

∆xi
2
gi,

θLi = θi −
∆xi

2
gi, θRi = θi +

∆xi
2
gi,

fLi,α = fi,α −
∆xi

2
gi,α, fRi,α = fi,α +

∆xi
2
gi,α,

(17)

where gi, gi and gi,α are reconstructed slopes of the corresponding moments in the ith cell. A
first-order discretization can be obtained by setting all slopes to be 0. While in this paper we
consider a second-order discretization by employing

gi =
ui+1 − ui−1

∆xi + (∆xi−1 + ∆xi+1)/2
,

gi =
θi+1 − θi−1

∆xi + (∆xi−1 + ∆xi+1)/2
,

gi,α =
fi+1,α − fi−1,α

∆xi + (∆xi−1 + ∆xi+1)/2
,

in which ui±1, θi±1 and fi±1,α are the solution of the moment model on the (i± 1)th cell.
Finally, from the explicit form of the moment model (11), it is not difficult to deduce that

the expansion coefficients of G(fi) in F [ui,θi]
M is given by Gi,α =

∑3
d=1 Fi,dfi,α−ed +Qi,α. Yet the

calculation of the expansion coefficients of the numerical flux F (·, ·) in F [ui,θi]
M is usually required

a transformation between two spaces, F [u,θ]
M and F [ũ,θ̃]

M , since the function in F [ũ,θ̃]
M rather than

F [ui,θi]
M is always involved. Such a transformation is the core of the NRxx method, and has been

provided in [6, 7]. In our algorithm presented below, this transformation will also be employed
frequently without being explicitly pointed out. Additionally, the numerical flux used in [9] is
adopted in our experiments for comparison.

3 The nonlinear multi-level moment solver

This section is devoted to develop an efficient solver for a given high-order moment model
(11) with the unified second-order discretization (15), by using the lower-order moment model
correction. We first introduce a basic iteration to solve the moment model of a certain order,
then illustrate the main ingredients of a nonlinear multi-level moment solver for the high-order
moment model.

3.1 Basic iteration

We would like to rewrite the discretization (15) over the ith cell into the form

Ri(f) = ri(ξ), (18)

where Ri(f) is the local residual on the ith cell given by

Ri(f) =
F (fRi (ξ), fLi+1(ξ))− F (fRi−1(ξ), fLi (ξ))

∆xi
−G(fi(ξ)), (19)
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and ri(ξ) ∈ F [ui,θi]
M is a known function introduced to make (18) suitable for a slightly more

general problem. For the discretization (15), we have ri(ξ) ≡ 0. It is clear that the above
discretization gives a nonlinear system coupling all unknowns, i.e., ui, θi and fi,α, with i =
0, 1, . . . , N−1, and |α| ≤M , together. As stated in [22], it is quite difficult to design an efficient
iteration for such a nonlinear system based on the Newton-type method, especially for the case
that the order M is sufficiently large. Alternatively, a simple relaxation method, referred to
the SGS-Richardson iteration, was proposed in [22,23] for the discretization (18) without linear
reconstruction. It turns out that the SGS-Richardson iteration could also work for the second-
order discretization (18). Nevertheless, we would employ Heun’s method instead of it in the
current implementation for better performance in the situation when the acceleration by using
lower-order moment model correction is considered.

Given an approximate solution fni (ξ), i = 0, 1, . . . , N − 1, Heun’s method first calculates an
intermediate approximation f∗i (ξ), i = 0, 1, . . . , N − 1, by

f∗i (ξ) = fni (ξ) + ω (ri(ξ)−Ri(fn)) , (20)

and then get the new approximate solution fn+1
i (ξ), i = 0, 1, . . . , N − 1, by

fn+1
i (ξ) = fni (ξ) + ω

(
ri(ξ)− 1

2
(Ri(f

n) +Ri(f
∗))

)
, (21)

where the parameter ω is selected according to the CFL condition

ωmax
i

{
λmax,i

∆xi

}
< 1,

in which λmax,i is the largest value among the absolute values of all eigenvalues of the hyperbolic
moment model (11) on the ith cell. Similar to the SGS-Richardson iteration, each calculation
of (20) and (21) does numerically consist of two steps. As an example, for (20), we first find an

approximation f∗∗i (ξ) in F [uni ,θ
n
i ]

M , such that its expansion coefficients f∗∗i,α in terms of the basis

functions H[uni ,θ
n
i ]

α (ξ) are calculated by

f∗∗i,α = fni,α + ω (ri,α −Ri,α) , |α| ≤M,

where fni,α, ri,α, and Ri,α represent expansion coefficients respectively of fni (ξ), ri(ξ) and Ri(f
n)

in terms of the same basis functions. Then we calculate u∗i and θ∗i from f∗∗i (ξ), and project

f∗∗i (ξ) into F [u∗i ,θ
∗
i ]

M to obtain f∗i (ξ).
A single level solver, for the moment model (11) of a certain order on a given mesh, is then

obtained by performing Heun’s method repeatedly until the norm of the global residual R̃ with
R̃i(ξ) = ri(ξ) − Ri(f) is smaller than a given tolerance, which indicates the steady state has
been achieved. Here, the same norm as in [22] is adopted in our numerical experiments.

3.2 Lower-order moment model correction

In order to improve the efficiency of steady-state computation when the moment model with
a high order M is involved, we now turn to consider the acceleration strategy using the lower-
order moment model correction, as proposed in [22]. The key point is to establish an appropriate
relationship between the high-order problem and the lower-order problem.

For convenience, the underlying problem resulting from the discretization (18) of a high
order M is rewritten into a global form as

RM (fM ) = rM . (22)

9



Suppose we get an approximate solution for the above problem and denote it by f̄M with its ith

component f̄M,i(ξ) ∈ F [ūM,i,θ̄M,i]
M . Then following [22], the lower-order problem can be defined

by

Rm(fm) = rm , Rm(ĨmM f̄M ) + ImM
(
rM −RM (f̄M )

)
, (23)

where ImM and ĨmM are the restriction operators transferring functions from the high Mth-order
function space into a lower mth-order function space, and usually do not require the same. The
lower-order operator Rm is the same discretization operator as the high-order counterpart RM ,
except that Rm is applied on the moment model of a lower order m. As a result, the lower-order
problem (23) can be solved by the same method as the high-order problem (22). Once the
solution fm of the lower-order problem (23) is obtained, the solution of the high-order problem
(22) could be then corrected by

f̂M = f̄M + τIMm

(
fm − ĨmM f̄M

)
, (24)

where IMm is the prolongation operator transferring functions from the mth-order function space
to the Mth-order function space, and τ ∈ (0, 1] is a relaxation parameter introduced to enhance
the stability of the final solver. For the case τ = 1, it reduces to the correction employed in [22].

3.3 Restriction and prolongation

Currently, only the case that both high-order problem (22) and lower-order problem (23) are
defined on the same spatial mesh is taken into consideration. For such a case, it is sufficient to
give the definition of the restriction and prolongation operators on an individual element of the
spatial mesh. Hence, we omit the index i of the spatial element below without causing confusion.

It is not easy to design proper restriction and prolongation operators directly based on the
high-order moment set {uM , θM , fM,α, |α| ≤ M}, and the lower-order one {um, θm, fm,α, |α| ≤
m}. With the help of the unified expression (16) combining all moments together, however,
these transferring operators could be constructed and implemented very simple and efficient
following the idea of the p-multigrid method [13,19].

Note that the high-order solution f̄M as well as the associated residual rM − RM (f̄M ) are

expressed as a function in F [ūM ,θ̄M ]
M . And the initial discretization of the lower-order problem

(23) is formulated in F [ūm,θ̄m]
m with ūm = ūM and θ̄m = θ̄M , as explained in [22]. It follows

that the basis functions of F [ūm,θ̄m]
m coincide with the first Mm functions of the basis functions

of F [ūM ,θ̄M ]
M . Using the orthogonality of the basis functions, we thus define both the solution

restriction operator ĨmM and the residual restriction operator ImM as the truncation operator that

simply gets rid of the part in terms of the basis functions H[ūM ,θ̄M ]
α (ξ) with |α| > m.

In the following, we will give the implementation of the correction step used in this paper,
in which the prolongation operator will also be described in detail. First of all, the correction
step in [22] can be summarized as

1. Compute the lower-order correction fm− ĨmM f̄M in F [ūM ,θ̄M ]
m , by calling the transformation

from F [um,θm]
m into F [ūM ,θ̄M ]

m .

2. Retruncate the lower-order correction from F [ūM ,θ̄M ]
m into F [ūM ,θ̄M ]

M , by remaining the
coefficients with |α| ≤ m unchanged, and setting the coefficients with |α| > m to be 0.
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3. Add the right-hand side of (24) together in F [ūM ,θ̄M ]
M , compute the new macroscopic ve-

locity ûM and temperature θ̂M , and then get the new approximate solution f̂M by calling

the transformation from F [ūM ,θ̄M ]
M into F [ûM ,θ̂M ]

M .

Instead of the above three steps in [22], we propose the following strategy for the correction

ûM = (1− τ)ūM + τum, θ̂M = (1− τ)θ̄M + τθm,

f̂M,α =

{
(1− τ)f̄M,α + τfm,α, |α| ≤ m,
f̄M,α, m < |α| ≤M.

(25)

The motivation for proposing the new correction is based on the following observation.
For the case τ = 1 in [22], it is found that the coefficients of the right-hand side (24),

corresponding to the basis functionsH[ūM ,θ̄M ]
α (ξ) with |α| ≤ m, entirely come from the projection

of fm in F [ūM ,θ̄M ]
M , since we have

f̄M − IMm ĨmM f̄M =
∑

m<|α|≤M

f̄M,αH[ūM ,θ̄M ]
α (ξ).

As the macroscopic velocity ûM and temperature θ̂M depend only on the ūM , θ̄M and expansion
coefficients with |α| ≤ 2 from (7) and (8), we can deduce that ûM = um and θ̂M = θm if the
lower order m ≥ 2. Therefore, the correction step can be implemented more efficient by avoiding
the transformation between different function spaces, and simply setting f̂M as

ûM = um, θ̂M = θm, f̂M,α =

{
fm,α, |α| ≤ m,
f̄M,α, m < |α| ≤M.

Although the above f̂M,α with m < |α| ≤ M is slightly different from the previous calculation,
the performance of the final solver is similar in our numerical experiments.

It is noted that only τ = 1 can be handled in [22], while our new correction strategy can be
applied to the more general cases when τ 6= 1.

3.4 Multi-level algorithm

If the lower-order problem (23) still has a relatively large order, it is straightforward to
solve it by employing a much lower-order moment model correction as illustrated in previous
subsections. A nonlinear multi-level moment (NMLM) iteration for the underlying discretization
problem (15) is then obtained by recursively applying the lower-order moment model correction.

Let us introduce ml, l = 0, 1, . . . , L, to denote the order of the lth-level problem, and suppose
2 ≤ m0 < m1 < · · · < mL. Then the (l+1)-level NMLM iteration produces the new approximate
solution fn+1

ml
from a given approximate solution fnml , denoted by fn+1

ml
= NMLMl(f

n
ml
, rml), as

the following algorithm.

Algorithm 1 (Nonlinear multi-level moment (NMLM) iteration).

1. If l = 0, call the lowest-order solver, which would be given later, to obtain the new
approximate solution fn+1

m0
; otherwise, go to the next step.

2. Pre-smoothing: perform s1 steps of Heun’s method beginning with the initial approxima-
tion fnml to obtain a new approximation f̄ml .
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3. Lower-order moment model correction:

(a) Compute the high-order residual as R̄ml = rml −Rml(f̄ml).
(b) Prepare the initial guess of the lower-order problem by the restriction operator Ĩ

ml−1
ml

as f̄ml−1
= Ĩ

ml−1
ml f̄ml .

(c) Calculate the right-hand side of the lower-order problem (23) as rml−1
= I

ml−1
ml R̄ml +

Rml−1
(f̄ml−1

).

(d) Recursively call the NMLM iteration (repeat γ times with γ = 1 for a V -cycle, γ = 2
for a W -cycle, and so on) to get the new approximation of the lower-order problem
as

f̃ml−1
= NMLMγ

l−1(f̄ml−1
, rml−1

).

(e) Correct the high-order solution f̂ml by the formula (25).

4. Post-smoothing: perform s2 steps of Heun’s method beginning with f̂ml to obtain the new
approximation fn+1

ml
.

Performing the above (L+1)-level NMLM iteration until the steady state has been achieved,
we consequently get an (L + 1)-level NMLM solver for the moment model (11) of order mL.
Obviously, the one-level NMLM solver reduces to the single level solver of Heun’s method.

For the lowest-order solver, the Heun method is applied again by noting that the lowest-order
problem is analogous to the problem on the other order levels. As the lowest-order problem is
indeed not necessary to be solved accurately, only s3 steps of Heun’s method will be performed
in each calling of the lowest-order solver, to make the final NMLM solver more efficient. Here
s3 is a positive integer a little larger than the smoothing steps s1 + s2.

Another technical issue is the choice of the order sequence ml, l = L,L − 1, . . . , 1, 0, of
the NMLM solver. Three order reduction strategies, i.e., ml−1 = ml − 1, ml−1 = ml − 2,
and ml−1 = dml/2e, have been numerically investigated in [22]. It turns out that all three
order reduction strategies could usually accelerate the steady-state computation, and the most
efficient strategy should be ml−1 = dml/2e, the second should be ml−1 = ml − 2, and the third
should be ml−1 = ml − 1. In the next section, we will investigate the performance of all these
three order reduction strategies again on the proposed new NMLM solver.

From our observation, the convergence rate and the efficiency of the NMLM solver usually
become better as the total levels increases. However, the choice τ = 1 in the correction step (25)
to some extent introduces instability of the NMLM solver when too many levels is employed,
and a too small τ , e.g., τ = 0.5 would also make the NMLM solver inefficient. As the optimal τ
is difficult to be determined and need to be further studied, we currently set τ = 0.9 throughout
our numerical experiments.

4 Numerical experiments

Three numerical examples, i.e., the planar Couette flow, the force driven Poiseuille flow and
the Fourier flow, are given in this section to illustrate the main features of the proposed NMLM
solver. The dimensionless case with the molecular mass m∗ to be 1 is considered without loss
of generality. To complete the problem, the Maxwell boundary conditions derived in [8] for
the moment model are employed for all examples. Since such boundary conditions could not
determine a unique solution for the steady-state moment model (11) as mentioned in [21], the
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solution is corrected as in [21,27] at each NMLM iteration, to recover the consistent steady-state
solution with the time-stepping scheme and the solvers proposed in [21] and [22].

In all numerical tests, the V -cycle NMLM solver with s1 = s2 = 2 and s3 = 5 is performed
under CentOS system on an Xeon workstation with a 12-core processor and core speed 3.00GHz.
All computations are starting at the global Maxwellian with

ρ0(x) = 1, u0(x) = 0, θ0(x) = 1. (26)

The tolerance indicating the achievement of steady state is set to be 10−8. We have observed
that the behavior of the NMLM solver are very similar for the BGK-type collision models. Hence
only results for the ES-BGK collision model with the Prandtl number Pr = 2/3 are presented
below.

4.1 The planar Couette flow

We first consider the planar Couette flow, a frequently used benchmark test in microflows.
The same settings as in [9, 21] are adopted in our tests. To be specific, the gas of argon is
considered in the space between two infinite parallel plates that is separated by a distance of
LD = 1. Both plates have the temperature θW = 1, and move in the opposite direction along
the plate with a relative speed uW = 1.2577. The dimensionless collision frequency ν is given
by

ν =

√
π

2

Pr

Kn
ρθ1−w, (27)

where Kn is the Knudsen number, and w is the viscosity index set to be 0.81. There is no
external force acting on the gas, i.e., F ≡ 0, so the gas is only driven by the motion of the plates
and would finally reach a steady state.

Numerical solutions of the moment models (11) for density ρ, temperature θ, shear stress
σ12 and heat flux q1 on the uniform grid with N = 200 cells are listed in Figure 1 and 2 for
Kn = 0.1199 and 1.199 respectively. The solutions obtained by the discrete velocity method [27]
are provided as a reference. We omit the discussion on the accuracy and convergence of our
results with respect to M here, since we are actually reproducing the results obtained in [9],
where the validation of them has been investigated in detail. We would just like to mention that
the moment model of orderM = 10 is sufficient to give satisfactory results for Kn = 0.1199, while
in the case Kn = 1.199 the moment model up to order M = 23 or 26 is necessary. Moreover,
a careful comparison shows that the present second-order spatial discretization with N = 200
gives a slightly better results than those obtained in [9,21] by the first-order spatial discretization
with N = 2048, which indicates a remarkable improvement in efficiency is obtained.

Now we turn to investigate the efficiency and behavior of the NMLM solver proposed in
previous sections. As we have done in [22], the NMLM solvers with various levels and order
reduction strategies for the above Couette flow are performed on three uniform grids with
N = 100, 200 and 400, respectively. Due to the similar features of the NMLM solver with
respect to M , only partial results are provided here.

In the case of Kn = 0.1199, the total number of iterations and the elapsed CPU seconds, spent
by the steady-state computation of the solver, as well as the comparison to their counterparts of
the single level solver, are listed in Table 1 for M = 4, 5 and in Table 2-3 for M = 10, where K
and T denote respectively the total number of iterations and the elapsed CPU seconds, and the
corresponding quantities of the single level solver are denoted by Ks and Ts. The convergence
histories of the tests on the uniform grid with N = 200 are plotted in Figure 3-5 for M = 4, 5
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Figure 1: Solution of the Couette flow for Kn = 0.1199 on the uniform grid with N = 200.

and 10 respectively. It can be observed that the NMLM solver, in comparison to the single
level solver, could accelerate the steady-state computation a lot for all tests. In more detail, the
total number of the NMLM iterations, for the same M and the same order reduction strategy,
decreases as the total levels of the solver increases, which indicates the convergence rate is
improved. Consequently, the elapsed CPU time is reduced as the total levels increases. For the
NMLM solver with the same total levels, the convergence rate of the order reduction strategy
ml−1 = dml/2e is better than the strategy ml−1 = ml − 2, and the latter strategy is better than
the strategy ml−1 = ml − 1. Apparently, the computational cost of each NMLM iteration for
these three order reduction strategies is in the ascending sort, since smallest order is employed
in each level of the lower-order moment model correction for the strategy ml−1 = dml/2e, while
largest order is used in each level for the strategy ml−1 = ml − 1. Therefore, among these three
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Figure 2: Solution of the Couette flow for Kn = 1.199 on the uniform grid with N = 200.

order reduction strategies, the most efficient one becomes ml−1 = dml/2e, the second one is
ml−1 = ml − 2, and the third one is ml−1 = ml − 1. Although more total levels can be applied
for the strategies ml−1 = ml − 2 and ml−1 = ml − 1, they might still not be as efficient as the
strategy ml−1 = dml/2e. Taking the tests for M = 10 as an example, the 3-level NMLM solver
with the strategy ml−1 = dml/2e is comparable with 5-level NMLM solver with the strategy
ml−1 = ml − 2, and both of them are more efficient than the 8-level NMLM solver with the
strategy ml−1 = ml − 1. At last, it can also be observed from Table 1-3 that the behavior of
the NMLM solver with respect to the spatial grid number N is just like the one of the single
level solver, that is, the total number of NMLM iterations doubles and the elapsed CPU time
quadruples, as N doubles.

As the Knudsen number increases to Kn = 1.199, the moment model with a larger order
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needs to be considered. A partial numerical results can be found in Table 4 for M = 23 and
in Table 5 for M = 26, respectively. The corresponding convergence histories on the uniform
grid with N = 200 are shown in Figure 6-7. Like the case of Kn = 0.1199, it can be observed
that the NMLM solver behaves similarly to the corresponding single level solver, as the grid
number N increases. The convergence rate of the NMLM solver with the same order reduction
strategies is also improved as the total levels increases. The elapsed CPU time is consequently
reduced except for the tests with M = 26 and ml−1 = ml−2, which is acceptable by noting that
the convergence rate is improved a little, and the computational cost of lower-order moment
model correction at each level could not be neglected, since the order sequence 26, 24, 22, . . .
is adopted. Moreover, oscillation of the residual at the beginning iterations and degeneracy of
the convergence rate are observed for the single level solver, i.e., Heun’s method. This makes
the residual oscillate more wildly and the convergence rate also be degenerated for the NMLM
solver, especially for the solver with the strategy ml−1 = dml/2e, for which the convergence
rate, in contrast to the case of Kn = 0.1199, is now worse than the strategy ml−1 = ml − 2.
Nevertheless, due to the great reduction of the computational cost at each NMLM iteration, the
strategy ml−1 = dml/2e is finally more efficient than the strategy ml−1 = ml − 2. As can be
seen, more than 50% of the total computational cost, compared with the single level solver, is
saved by the 4-level NMLM solver with the strategy ml−1 = dml/2e in all tests for M = 23 and
26. In addition, to seek the balance between the convergence rate and the computational cost
of each NMLM iteration, a new order reduction strategy, namely, ml−1 = ml − 4, is tested for
M = 23. As shown in Figure 6, it is found that the convergence rate of this strategy is better
than the strategy ml−1 = dml/2e, and the elapsed CPU time of the 6-level NMLM solver with
the former strategy is a slightly less than the 4-level NMLM solver with the latter strategy.

Finally, the behavior of the total number of iterations with respect to the order of the moment
model M is investigated. The results are shown in Figure 8. It can be seen that in the case
of Kn = 0.1199, the total number of iterations increases almost linearly with the same ratio
for all tests, as M increases. While in the case of Kn = 1.199, sawtooth polylines are observed
for all tests. To be specific, the single level solver for odd M performs much better than the
solver for successor even M , and the growth rate of the total number of iterations with respect
to odd or even M is nearly the same. This shows better performance of Heun’s method than
the SGS-Richardson iteration, in comparison to the results presented in [22]. For the multi-level
NMLM solver, the different performance for odd or even M becomes more obvious, especially
for the strategy ml−1 = dml/2e. The underlying reason remains to be further studied. However,
we can observe that the growth rate of the total number of iterations for the multi-level NMLM
solver with respect to even M is greater than the corresponding growth rate with respect to odd
M , but still be almost not greater than the growth rate of the single level solver. As a result,
the NMLM solver becomes more efficient for the moment model of odd M than that of even M .

4.2 The force driven Poiseuille flow

The second example is the force driven Poiseuille flow which has been investigated in the
literature, see e.g. [8,34,35]. The gas lies between two infinite parallel plates which are stationary
and have the same temperature of θW = 1. It is driven by an external constant force and has
a steady state as time goes. In our simulation, the distance of the two plates is assumed to be
LD = 1, and the acceleration due to the external force is set to be F = (0, 0.2555, 0)T . The
collision frequency for the variable hard sphere model, that is,

ν =

√
2

π

(5− 2w)(7− 2w) Pr

15Kn
ρθ1−w, (28)
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M = 4 M = 5

ml−1 = ml − 1 ml−1 = ml − 2 ml−1 = ml − 1 ml−1 = ml − 2

L+ 1 1 2 2 1 2 3 2

N
=

1
0
0 K 9484 1052 834 9595 1021 668 919

T 74.711 51.155 33.326 124.430 78.879 62.440 60.092
Ks/K 1.000 9.015 11.372 1.000 9.398 14.364 10.441
Ts/T 1.000 1.460 2.242 1.000 1.577 1.993 2.071

N
=

2
0
0 K 18971 2104 1664 19191 2041 1335 1838

T 317.736 204.048 132.755 504.057 315.070 248.836 238.401
Ks/K 1.000 9.017 11.401 1.000 9.403 14.375 10.441
Ts/T 1.000 1.557 2.393 1.000 1.600 2.026 2.114

N
=

4
0
0 K 37944 4208 3345 38382 4082 2668 3675

T 1278.954 807.967 538.051 2028.431 1260.130 982.810 955.244
Ks/K 1.000 9.017 11.343 1.000 9.403 14.386 10.444
Ts/T 1.000 1.583 2.377 1.000 1.610 2.064 2.123

Table 1: Performance of the NMLM solver for the Couette flow with Kn = 0.1199 and M = 4, 5.

ml−1 = ml − 1

L+ 1 2 3 4 5 6 7 8

N
=

1
0
0 K 1784 1258 976 799 675 581 506

T 883.677 781.440 704.394 623.006 553.480 492.187 442.410
Ks/K 8.796 12.474 16.078 19.640 23.247 27.009 31.012
Ts/T 1.336 1.511 1.676 1.895 2.133 2.399 2.669

N
=

2
0
0 K 3567 2514 1951 1595 1348 1159 1010

T 3546.025 3164.404 2791.258 2521.665 2248.097 1988.022 1734.307
Ks/K 8.798 12.483 16.085 19.675 23.280 27.077 31.071
Ts/T 1.349 1.511 1.713 1.897 2.127 2.406 2.758

N
=

4
0
0 K 7133 5027 3900 3189 2693 2316 2017

T 13688.115 12610.887 11097.524 10001.285 8973.447 7835.308 7006.392
Ks/K 8.799 12.485 16.093 19.680 23.305 27.099 31.116
Ts/T 1.332 1.446 1.643 1.824 2.032 2.328 2.603

Table 2: Performance of the NMLM solver for the Couette flow with Kn = 0.1199 and M = 10
(part I).

ml−1 = ml − 2 ml−1 = dml/2e
L+ 1 2 3 4 5 2 3 1

N
=

1
0
0 K 1712 1144 818 560 1430 864 15692

T 739.831 571.578 421.999 294.624 478.640 297.862 1180.762
Ks/K 9.166 13.717 19.183 28.021 10.973 18.162 1.000
Ts/T 1.596 2.066 2.798 4.008 2.467 3.964 1.000

N
=

2
0
0 K 3423 2287 1634 1118 2859 1728 31382

T 2940.028 2250.739 1694.924 1165.652 1923.646 1155.322 4782.708
Ks/K 9.168 13.722 19.206 28.070 10.977 18.161 1.000
Ts/T 1.627 2.125 2.822 4.103 2.486 4.140 1.000

N
=

4
0
0 K 6845 4572 3265 2234 5716 3454 62761

T 11978.715 8947.557 6792.666 4643.324 7329.159 4726.841 18238.107
Ks/K 9.169 13.727 19.222 28.094 10.980 18.171 1.000
Ts/T 1.523 2.038 2.685 3.928 2.488 3.858 1.000

Table 3: Performance of the NMLM solver for the Couette flow with Kn = 0.1199 and M = 10
(part II).
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ml−1 = ml − 2 ml−1 = dml/2e
L+ 1 4 5 6 7 8 2 3 4

N
=

1
0
0 K 2580 2194 2033 1910 1802 4198 4111 3737

T 21771.636 20636.803 20038.953 18945.630 18761.918 16608.830 16448.863 14880.760
Ks/K 15.820 18.603 20.076 21.369 22.650 9.722 9.928 10.922
Ts/T 1.776 1.874 1.929 2.041 2.061 2.328 2.351 2.598

N
=

2
0
0 K 5188 4427 4096 3853 3644 8665 8195 7465

T 88518.030 82354.633 80539.022 77774.608 74883.559 68274.318 65399.218 59797.985
Ks/K 15.733 18.437 19.927 21.184 22.399 9.420 9.960 10.934
Ts/T 1.746 1.877 1.919 1.987 2.064 2.264 2.363 2.584

N
=

4
0
0 K 10396 8875 8203 7715 7298 17519 16362 14896

T 351768.755 332364.873 323203.956 313285.091 300010.067 274114.156 258269.847 236863.512
Ks/K 15.702 18.393 19.900 21.159 22.368 9.318 9.977 10.959
Ts/T 1.743 1.845 1.897 1.957 2.044 2.237 2.374 2.588

Table 4: Performance of the NMLM solver for the Couette flow with Kn = 1.199 and M = 23.

ml−1 = ml − 2 ml−1 = dml/2e
L+ 1 4 5 6 7 8 2 3 4 5

N
=

1
0
0 K 3882 3567 3372 3239 3143 6368 5594 5234 5042

T 48452.216 49497.714 49879.413 50491.512 50094.156 36028.855 31647.628 29804.057 28720.545
Ks/K 11.784 12.825 13.566 14.123 14.555 7.184 8.178 8.740 9.073
Ts/T 1.267 1.240 1.231 1.216 1.225 1.704 1.940 2.060 2.137

N
=

2
0
0 K 7768 7143 6753 6488 6295 12731 11183 10457 10064

T 193489.560 199169.100 199861.340 202753.586 199230.828 142907.221 126167.456 118536.002 114107.992
Ks/K 11.736 12.763 13.500 14.051 14.482 7.161 8.152 8.718 9.058
Ts/T 1.268 1.232 1.227 1.210 1.231 1.717 1.944 2.069 2.150

N
=

4
0
0 K 15538 14293 13516 12987 12600 25447 22360 20902 20107

T 772099.850 792816.382 801340.202 805215.081 797777.655 573505.900 506611.853 473278.177 458730.507
Ks/K 11.735 12.757 13.491 14.040 14.472 7.166 8.155 8.724 9.069
Ts/T 1.296 1.262 1.248 1.242 1.254 1.744 1.975 2.114 2.181

Table 5: Performance of the NMLM solver for the Couette flow with Kn = 1.199 and M = 26.
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Figure 3: Convergence history of the NMLM solver for the Couette flow with Kn = 0.1199 and
M = 4 on the uniform grid of N = 200.

with the viscosity index w = 0.5 and the Knudsen number Kn = 0.1 is adopted.
With these settings, the steady-state solutions for density ρ, temperature θ, normal stress

σ11 and heat flux q2, obtained by the NMLM solver on the uniform grid with N = 200, are
shown in Figure 9, which coincide well with the steady-state solutions presented in [21], where
the first-order spatial discretization with N = 2048 is employed.

For the efficiency and behavior of the proposed NMLM solver, the tests with various levels
and order reduction strategies are performed on three uniform grids with N = 100, 200 and
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Figure 4: Convergence history of the NMLM solver for the Couette flow with Kn = 0.1199 and
M = 5 on the uniform grid of N = 200.
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Figure 5: Convergence history of the NMLM solver for the Couette flow with Kn = 0.1199 and
M = 10 on the uniform grid of N = 200.
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Figure 6: Convergence history of the NMLM solver for the Couette flow with Kn = 1.199 and
M = 23 on the uniform grid of N = 200.

400 for the moment model with the order from M = 4 to 10. As the Couette flow, only partial
numerical results are presented here. Specifically, the total number of iterations and the elapsed
CPU seconds are given in Table 6 for M = 4, 5 and in Table 7-8 for M = 10 respectively. The
corresponding convergence histories of the tests on the uniform grid with N = 200 are displayed
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Figure 7: Convergence history of the NMLM solver for the Couette flow with Kn = 1.199 and
M = 26 on the uniform grid of N = 200.
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Figure 8: Total number of iterations in terms of M of the NMLM solver for the Couette flow on
the uniform grid of N = 200. The total number of iterations of the single level solver is rescaled
by a factor of 6.

in Figure 10-12. The total number of iterations in terms of M is presented in Figure 13(a). All
results show similar features as the tests of the Couette flow in the case of Kn = 0.1199, which
indicates the effectiveness of the NMLM solver in accelerating the steady-state computation.

4.3 The Fourier flow

The last benchmark test is the Fourier flow which also investigates the motion of the gas
between two infinite parallel plates with a distance of LD = 1. In contrast to the previous
examples, both plates are stationary, while their temperatures are different. The gas is driven
by the difference of temperatures between the two plates, and could reach a steady state in the
absence of external force, that is, F ≡ 0. To reproduce the results in [9, 32], the gas of helium
with the viscosity index w = 0.657 and the Knudsen number Kn = 0.1044 for the collision
frequency (28) is considered. The temperature on the left plate and the right plate are set
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Figure 9: Solution of the force driven Poiseuille flow on the uniform grid with N = 200.

to be 0.2894 and 1.0769 respectively. Numerical solutions for density ρ and temperature θ,
obtained by the NMLM solver on the uniform grid with N = 200, are shown in Figure 14. The
solutions obtained by the DSMC (Direct Simulation of Monte Carlo) method [32] are provided
as a reference. It can be observed that the solutions of the moment model converge and match
the DSMC solution well as the order M increases.

As for the performance of the NMLM solver, the tests with various levels and order reduction
strategies are also performed on three uniform grids with N = 100, 200 and 400 for the moment
model with the order from M = 4 to 10. Due to the same reason, only partial numerical results
are presented here. That is, the total number of iterations and the elapsed CPU seconds for
M = 10 are given in Table 9-10. The corresponding convergence histories of the tests on the
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M = 4 M = 5

ml−1 = ml − 1 ml−1 = ml − 2 ml−1 = ml − 1 ml−1 = ml − 2

L+ 1 1 2 2 1 2 3 2

N
=

1
0
0 K 15676 1632 1388 18621 2022 1340 1788

T 157.124 87.112 60.254 268.329 178.323 140.127 130.205
Ks/K 1.000 9.605 11.294 1.000 9.209 13.896 10.414
Ts/T 1.000 1.804 2.608 1.000 1.505 1.915 2.061

N
=

2
0
0 K 31349 3263 2775 37251 4044 2679 3576

T 566.855 345.652 239.170 1068.763 704.765 559.148 517.321
Ks/K 1.000 9.607 11.297 1.000 9.211 13.905 10.417
Ts/T 1.000 1.640 2.370 1.000 1.516 1.911 2.066

N
=

4
0
0 K 62694 6524 5590 74509 8088 5358 7152

T 2280.702 1382.533 971.918 4291.040 2818.351 2232.552 2070.655
Ks/K 1.000 9.610 11.215 1.000 9.212 13.906 10.418
Ts/T 1.000 1.650 2.347 1.000 1.523 1.922 2.072

Table 6: Performance of the NMLM solver for the Poiseuille flow with M = 4, 5.

ml−1 = ml − 1

L+ 1 2 3 4 5 6 7 8

N
=

1
0
0 K 3312 2333 1808 1477 1244 1067 921

T 1849.890 1662.403 1491.818 1353.205 1145.176 1043.163 905.261
Ks/K 8.803 12.496 16.125 19.739 23.436 27.323 31.655
Ts/T 1.388 1.545 1.721 1.898 2.243 2.462 2.837

N
=

2
0
0 K 6625 4667 3616 2953 2487 2133 1840

T 7498.892 6641.554 5983.719 5250.433 4644.889 4111.988 3637.646
Ks/K 8.804 12.498 16.131 19.752 23.454 27.346 31.701
Ts/T 1.304 1.472 1.634 1.862 2.105 2.378 2.688

N
=

4
0
0 K 13251 9333 7232 5905 4973 4264 3677

T 29539.018 26645.046 23642.063 21103.438 18830.564 16646.179 14537.716
Ks/K 8.804 12.501 16.132 19.757 23.460 27.361 31.729
Ts/T 1.301 1.443 1.626 1.822 2.042 2.309 2.644

Table 7: Performance of the NMLM solver for the Poiseuille flow with M = 10 (part I).

ml−1 = ml − 2 ml−1 = dml/2e
L+ 1 2 3 4 5 2 3 1

N
=

1
0
0 K 3179 2123 1517 1059 2643 1560 29154

T 1561.039 1201.458 888.561 638.520 989.148 613.051 2568.151
Ks/K 9.171 13.732 19.218 27.530 11.031 18.688 1.000
Ts/T 1.645 2.138 2.890 4.022 2.596 4.189 1.000

N
=

2
0
0 K 6359 4246 3034 2116 5287 3120 58329

T 6339.990 4754.203 3596.238 2505.962 3942.316 2424.629 9778.709
Ks/K 9.173 13.737 19.225 27.566 11.033 18.695 1.000
Ts/T 1.542 2.057 2.719 3.902 2.480 4.033 1.000

N
=

4
0
0 K 12718 8491 6067 4231 10574 6239 116668

T 25255.174 18999.092 14340.679 10061.378 15946.033 9624.905 38442.738
Ks/K 9.173 13.740 19.230 27.575 11.033 18.700 1.000
Ts/T 1.522 2.023 2.681 3.821 2.411 3.994 1.000

Table 8: Performance of the NMLM solver for the Poiseuille flow with M = 10 (part II).

uniform grid with N = 200 are displayed in Figure 15. And the total number of iterations in
terms of M is plotted in Figure 13(b). Again, all results show similar features as the tests of
the Couette flow in the case of Kn = 0.1199 and the tests of the Poiseuille flow. Therefore, the
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Figure 10: Convergence history of the NMLM solver for the Poiseuille flow with M = 4 on the
uniform grid of N = 200.
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Figure 11: Convergence history of the NMLM solver for the Poiseuille flow with M = 5 on the
uniform grid of N = 200.
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Figure 12: Convergence history of the NMLM solver for the Poiseuille flow with M = 10 on the
uniform grid of N = 200.

proposed NMLM solver is indeed able to accelerate the steady-state computation significantly.
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Figure 13: Total number of iterations in terms of M of the NMLM solver on the uniform grid
of N = 200. The total number of iterations of the single level solver is rescaled by a factor of 8.
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Figure 14: Solution of the Fourier flow on the uniform grid with N = 200.

5 Concluding remarks

A steady-state solver for microflows with high-order moment model was successfully proposed
in this paper, which significantly improved the efficiency of the one in [22] from the following
approaches:

• Linear reconstruction is adopted for high-resolution spatial discretization, so that remark-
able reduction for degrees of freedom in spatial space is obtained without loss of accuracy.

• A relaxation parameter is introduced in the correction step to enhance the stability of the
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ml−1 = ml − 1

L+ 1 2 3 4 5 6 7 8

N
=

1
0
0 K 3965 2794 2167 1771 1493 1282 1109

T 1860.858 1694.069 1523.898 1363.943 1209.693 1075.778 930.812
Ks/K 8.799 12.486 16.099 19.699 23.367 27.213 31.458
Ts/T 1.592 1.749 1.944 2.172 2.449 2.754 3.183

N
=

2
0
0 K 7928 5585 4331 3539 2983 2560 2214

T 7415.489 6720.777 6035.377 5384.300 4840.328 4236.370 3750.768
Ks/K 8.799 12.490 16.106 19.711 23.385 27.248 31.507
Ts/T 1.593 1.758 1.958 2.194 2.441 2.789 3.150

N
=

4
0
0 K 15851 11167 8659 7074 5962 5116 4424

T 29739.900 26760.605 24140.459 21534.845 19151.365 17020.835 14997.699
Ks/K 8.800 12.491 16.109 19.718 23.396 27.265 31.530
Ts/T 1.527 1.697 1.881 2.108 2.371 2.667 3.027

Table 9: Performance of the NMLM solver for the Fourier flow with M = 10 (part I).

ml−1 = ml − 2 ml−1 = dml/2e
L+ 1 2 3 4 5 2 3 1

N
=

1
0
0 K 3803 2540 1814 1252 3159 1870 34887

T 1579.625 1213.639 907.115 631.572 975.638 603.752 2962.720
Ks/K 9.174 13.735 19.232 27.865 11.044 18.656 1.000
Ts/T 1.876 2.441 3.266 4.691 3.037 4.907 1.000

N
=

2
0
0 K 7603 5076 3624 2502 6314 3735 69756

T 6361.864 4843.804 3627.384 2553.007 3926.485 2419.668 11815.652
Ks/K 9.175 13.742 19.248 27.880 11.048 18.676 1.000
Ts/T 1.857 2.439 3.257 4.628 3.009 4.883 1.000

N
=

4
0
0 K 15203 10149 7244 5001 12622 7465 139487

T 25136.041 19347.345 14581.706 10236.093 15873.863 9702.212 45400.647
Ks/K 9.175 13.744 19.256 27.892 11.051 18.685 1.000
Ts/T 1.806 2.347 3.114 4.435 2.860 4.679 1.000

Table 10: Performance of the NMLM solver for the Fourier flow with M = 10 (part II).
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Figure 15: Convergence history of the NMLM solver for the Fourier flow with M = 10 on the
uniform grid of N = 200.

solver such that more levels can be applied in the solver.

• The computation of the correction step is also simplified a lot in comparison to the way
used in [22].
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• Heun’s method is taken as the smoother in each level to further improve the robustness of
the NMLM solver in the situation when many levels are involved.

The performance of the new NMLM solver is numerically investigated by three benchmark
problems in microflows. Various order reduction strategies for the choice of the order sequence
of the NMLM solver have been tested. For each order reduction strategy, the convergence rate
of the resulting NMLM solver is improved as the total levels increases. Among these order
reduction strategies, it is shown that the most efficient strategy is ml−1 = dml/2e, and the
second strategy is ml−1 = ml − 2. In summary, it is demonstrated that the new NMLM solver
can further improve the efficiency of steady-state computations even for the moment model with
a relatively small order, such as M = 4 and 5. As a result, the idea of using the lower-order
moment model correction is very promising to accelerate the steady-state simulation, and may
also be valuable for problems described by other hierarchical models.

Additionally, the NMLM solver behaves similarly to the single level solver, as the order M or
the spatial grid number N increases. Research works on combination of the lower-order moment
model correction with the spatial coarse grid correction are ongoing.
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