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Abstract

The present paper develops two new techniques, namely additive correction
multicloud (ACMC) and smoothed restriction multicloud (SRMC), for the ef-
ficient solution of systems of equations arising from Radial Basis Function-
generated Finite Difference (RBF-FD) meshless discretizations of partial dif-
ferential equations (PDEs). RBF-FD meshless methods employ arbitrary dis-
tributed nodes, without the need to generate a mesh, for the numerical solution
of PDEs. The proposed techniques are specifically designed for the RBF-FD
data structure and employ simple restriction and interpolation strategies in or-
der to obtain a hierarchy of coarse-level node distributions and the corresponding
correction equations.

Both techniques are kept as simple as possible in terms of code implemen-
tation, which is an important feature of meshless methods. The techniques
are verified on 2D and 3D Poisson equations, defined on non-trivial domains
, showing very high benefits in terms of both time consumption and work to
convergence when comparing the present techniques to the most common solver
approaches. These benefits make the RBF-FD approach competitive with
standard grid-based approaches when the number of nodes is very high, allow-
ing large size problems to be tackled by the RBF-FD method.
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1. Introduction

Complex geometries characterize most problems of engineering relevance,
whose numerical solution with classical methods requires domain meshing, i.e.,
a spatial discretization of the domain with proper elements [1]. The global effort
needed to generate such geometrical mesh can often be much greater than the5

one required by the remaining parts of the simulation chain, in particular when
high quality grids are required: this fact led to the birth and growth of the
so-called meshless methods covering a wide range of problems [2].

This work is focused on a particular class of meshless methods which uses
local Radial Basis Function (RBF) trial functions and local collocation tech-10

nique for the numerical solution of PDEs [3]: the required space derivatives
are approximated on a local set of nodes (local support) by deriving the RBF
expansion. This approach is known as RBF-generated Finite Differences (RBF-
FD) [4–9] since it resembles the standard Finite Differences on irregular node
arrangements [10]. Such approach is also known as Local Radial Basis Func-15

tion Collocation Method (LRBFCM) [11]. When such RBF-FD approach is
employed to precisely discretize an elliptic steady-state problem, i.e., no time
dependency, or a parabolic time dependent problem with at least one implicit
term in time, a large and sparse system of algebraic equations has to be solved.

The iterative solution of systems of equations in mesh reduction methods20

has already been investigated [12]. In the linear case, a typical choice [6] for an
iterative solver is BiCGSTAB [13] since the resulting matrix is nonsymmetric,
with an incomplete LU factorization (ILU) as preconditioner [14]. This choice
can be prohibitive in terms of both time and memory consumption when the
size of the problem, i.e., the number of meshless nodes, becomes very large and25

therefore more efficient solvers have to be used. In order to achieve such desired
convergence acceleration, the basic concepts of multigrid (MG) methods [15] are
in this paper extended to the linear systems arising from RBF-FD discretization
of two-dimensional (2D) and three-dimensional (3D) Poisson equations. We use
the name multicloud (MC) for the developed techniques since the multilevel30

approach is coupled to the meshless discretization and data structure. The
multicloud denomination is also used by Katz and Jameson [16] to define mesh-
less coarse-level operators within a similar multilevel approach. Algebraic MG
(AMG) [17, 18] can be employed with meshless discretizations since it operates
at equation level without any additional geometrical information. However, it35

is useful to develop simple MC approaches which are specifically designed and
tuned for the RBF-FD discretizations. This is of utmost importance for the use
of the RBF-FD approach in large scale problems [19].

The working principle of the MG approach, formally defined in the paper
of Brandt [20], is to optimally reduce the various frequency components of the40

error on a hierarchy of coarser grids by means of proper interpolation, restric-
tion and smoothing operators. The key idea behind this working principle was
somehow previously discovered by some authors that implicitly introduced a
two-level correction which is the foundation of the recursive definition of the
MG algorithm. Southwell [21] proposed block/group relaxations for mechanical45
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frameworks and stated that such techniques are “almost essential to practical
success”. Stiefel [22] proposed an analogous block relaxation for a FD dis-
cretization of a Poisson problem and observed that the steepest descent for the
quadratic function of residuals is equivalent to impose zero-mean residuals on
the block, i.e., the summation of block equations; it is then suggested to use50

smaller blocks within the starting block, i.e., a MG approach. Fedorenko [23, 24]
formalized the first correction scheme with a two-level FD discretization of a
2D Poisson problem and bilinear interpolation. De la Vallee Poussin and Tim-
lake [25] obtained an additive block correction strategy from the case of a FD
discretized heat conduction problem with internal “slots” with infinite thermal55

conductivity and reported convergence acceleration also for the case of constant
thermal conductivity, while Settari and Aziz [26] formalized a general additive
correction strategy showing its feasibility to practical problems.

Even after the formalization of the MG approach, many additive correction
MG approaches have been proposed and employed to solve practical problems60

[27–30] due to ease of implementation, since the involved interpolation/restriction
operators are given by piecewise constant functions. Another slightly more com-
plex, but still simple choice, for interpolation/restriction operators is given by
smoothing the piecewise constant operators using the problem equations them-
selves [31–34]. These two types of AMG are particularly attractive for mesh-65

less applications because of their straightforward implementation, independence
upon geometric discretization and because they require only a single fine-grid
discretization.

The application of MG principles to meshless methods has been previously
investigated only in a limited number of works: Leem, Oliveira and Stewart [35]70

studied the application of AMG with smoothed transfer operators to a Poisson
problem discretized with the Reproducing Kernel Particle Method (RKPM).
Seibold [36] studied the same problem with AMG but using a Generalized Finite
Difference Method (GFDM). More recently, Katz and Jameson [16] developed a
multigrid technique with meshless transfer operators at coarse levels, and called75

it multicloud (MC).
The work presented in this paper represents the first attempt to extend the

multigrid solution approach to RBF-FD meshless methods in the case of straight
additive correction and smoothed transfer operators strategies. Such strate-
gies are employed in the present paper to develop two simple MC techniques:80

additive correction multicloud (ACMC) and smoothed restriction multicloud
(SRMC) which differ for the type of restriction strategy only. In ACMC the
restriction operator is piecewise constant over the restriction support while in
SRMC it is smoothed from constant by applying one Jacobi iteration using the
problem equations themselves, resulting in an increased support size. The im-85

plementation of such procedures is quite simple and straightforward within the
RBF-FD meshless data structure. Both techniques can be used as standalone
solvers and as preconditioners for iterative solvers such as BiCGSTAB, allowing
the convergence acceleration in the case of RBF-FD discretizations of 2D and
3D Poisson equations.90

A particular attention is given to the study of the factors influencing the
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convergence properties of the proposed MC approaches. Tests are carried out
with different domains and different boundary conditions for 2D and 3D Poisson
equations in order to assess the characteristics of the developed techniques from
a practical point of view. Excellent results have been obtained as compared95

to a standard BiCGSTAB solver with ILU preconditioning (BiCGSTAB/ILU).
High benefits in terms of savings in computing time (up to 20 times in 2D) and
amount of work to convergence (up to 10 times in 2D) have been achieved when
a large number of nodes is employed (≈ 106). ACMC shows slightly worse per-
formance than SRMC but it is less sensitive to the choice of MC parameters and100

its implementation is easier and extremely straightforward, while the coupling
with a classical iterative solver such as BiCGSTAB allows additional gains in
performance and in the reduction of sensitivity to MC parameters in 2D cases.

Benefits in terms of savings in computing time have also been obtained in
the 3D case (up to 2-2.7 times) for large size problems, i.e., N > 106 nodes,105

while the convergence work for MC strategies is shown to grow slower than the
BiCGSTAB/ILU convergence work when the size of the problem N is increased,
in the range for N employed in this work.

2. Meshless discretization

2.1. Problem definition110

The model problem is a Poisson equation in the unknown field u, defined on
a domain Ω ⊂ RD in D dimensions and subjected to mixed boundary conditions
(BCs), i.e., Dirichlet BCs on ΓD and Neumann BCs on ΓN

−∇2u = q in Ω

u = ū on ΓD

∂u

∂n
= f̄ on ΓN

(1)

where ΓD ∪ ΓN = ∂Ω is the domain boundary, n is the exterior normal to the115

boundary, q, ū and ūn are known functions. A negative Laplacian is considered
in order to deal with positive-definite matrices in the following. The numerical
solution of Problem (1) is of primary importance in many physics/engineering
problems such as fluid mechanics, solid mechanics and electromagnetics.

2.2. Node distributions120

The isotropic node distributions required by the RBF-FD meshless dis-
cretizations have been obtained through the modified quadtree algorithm fol-
lowed by repel refinement recently proposed by Zamolo and Nobile [37] for 2D
cases, while 3D distributions are obtained through an analogous octree-based
algorithm [38]. The algorithms are briefly summarized as follows.125

Given a prescribed spacing function s(x), which defines the local linear spac-
ing between the nodes, an initial node distribution is obtained through the
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Figure 1: Example of a local support for the RBF expansion around x. The nodes xj inside
the circle are the 7 nearest nodes from x.

quadtree/octree algorithms modified with a dithering correction in order to re-
duce the “nodal quantization error”, i.e., the difference between the integer
number of the nodes that can be contained in any subset ω ⊆ Ω and the pre-130

scribed (non-integer) number
∫
ω
s(x)−D dω. The resulting node distribution is

then improved by the application of a few refinement iterations based on radial
repel forces between the nodes.

2.3. RBF-FD discretization

The basis for RBF-FD method [11], used for the spatial discretization of135

problem expressed by Eq. (1), are shortly presented as follows.

2.3.1. RBF interpolation

Given a distribution of N distinct nodes xi ∈ Ω, the unknown field u around
x ∈ Ω is approximated through the following local expansion v

v(x) =
∑

j∈Jn(x)

ajϕ(‖x− xj‖) + bT (x− x̄) + c (2)

140

where Jn(x) represents the set of indices j of the n nodes xj closest to x (local
support), x̄ is the mean position of these local nodes xj and aj are the RBF
expansion coefficients. b and c are the coefficients for the linear polynomial part
and b is a D-component column vector . A 2D example of local support in the
case of n = 7 is depicted in Figure 1. v(x) is therefore a linear combination of145

n radial functions ϕ centered at n local nodes xj plus a linear polynomial in x.
Hardy’s Multiquadric (MQ) [39–41] are chosen as RBFs [11, 42, 43]

ϕ(r) =
√

1 + (εr)2 (3)

where the shape factor ε is rescaled as ε = sM ε̄/dn(x̄); ε̄ is the rescaled shape
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factor, sM is the maximum prescribed spacing function on Ω and dn(x̄) is the150

local support size

dn(x̄) =

√√√√ 1

n

∑
j∈Jn(x̄)

‖xj − x̄‖2 (4)

The coefficients aj , b and c in Eq. (2) can be obtained by writing the same
Eq. (2) for the m ≤ n local nodes xi which do not lie on Neumann boundary
ΓN ∑

j∈Jn(x)

ajϕ(‖xi − xj‖) + bT (xi − x̄) + c = vi (5)

155

where vi is the unknown value for v in xi. A natural constraint is to require
exactness of Eq. (2) for any linear function v: Eq. (5) with vi = bTxi + c
gives the unique obvious solution aj = 0 since MQ-RBF interpolation matrix
is always invertible [44]. Therefore any homogeneous linear system in aj with
rank D + 1 could be employed. It is then convenient to impose the following160

homogeneous conditions in order to get a symmetric interpolation matrix∑
j∈Jn(x)

aj(xj − x̄) = 0 ,
∑

j∈Jn(x)

aj = 0 (6)

where xj and x̄ are D-component colums vectors. If any of the xj local nodes
lie on Neumann boundary ΓN , for each of these nN =n −m Neumann nodes
x̂l∈ ΓN the corresponding boundary condition has to be satisfied165

∂v

∂n

∣∣∣
x=x̂l

=
∑

j∈Jn(x)

ajΨj(x̂l) + bTnl = f̄l (7)

where f̄l is the value of Neumann BC term f̄ at the Neumann node x̂l, nl is the
exterior normal to the boundary at the node x̂l and Ψj(x) = ∂

∂n

[
ϕ(‖x− xj‖)

]
.

The local interpolation system obtained from Eqs. (5)-(7) is



ϕ(‖x1 − x1‖) · · · ϕ(‖x1 − xn‖) xT
1 − x̄T 1

...
. . .

...
...

...
ϕ(‖xm − x1‖) · · · ϕ(‖xm − xn‖) xT

m − x̄T 1

x1 − x̄ · · · xn − x̄
0 · · · 0
...

. . .
...

1 · · · 1 0 · · · 0
Ψ1(x̂1) · · · Ψn(x̂1) nT

1 0
...

. . .
...

...
...

Ψ1(x̂nN
) · · · Ψn(x̂nN

) nT
nN

0





a1

...
an
b1
...
bD
c


=



v1

...
vm
0
...
0
f̄1

...
f̄nN



(8)
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By collecting n local coefficients aj , m unknown values vi and nN Neumann170

boundary contributions f̄l in local column vectors a, v and f̄ , respectively, the
local interpolation system (8) becomes

Gx

a
b
c


x

=

v
0
f̄


x

(9)

where the zero vector is a D-component column vector (6). Gx is a square (n+
D+1)×(n+D+1) matrix whose first (m+D+1) rows represent the contribution175

of MQ-RBF interpolation with an appended linear polynomial as expressed by
Eq. (2), while the remaining (n−m) rows represent the contribution of Neumann
BCs if any local node lies on the Neumann boundary. Ifm = n, i.e., no Neumann
local nodes, an LDLT factorization is performed on Gx since it is symmetric
but not positive definite, otherwise a Schur complement [45] is first performed180

for the Neumann contributions, followed again by an LDLT factorization on
the remaining symmetric part of Gx.

2.3.2. Collocation

Poisson Eq. (1) with the local RBF expansion of Eq. (2) becomes

−∇2v(x) = −
∑

j∈Jn(x)

aj∇2ϕ(‖x− xj‖) = q(x) (10)

185

The compact form of the previous equation for a generic node xk is

−LT(xk) a = q(xk) (11)

where L(xk) is the column vector of the Laplacian of RBF ϕ, evaluated in xk

for each of the n neighbors xj . Solving Eq. (9) for a gives

−LT(xk)
[
G−1

xk

]
a

v
0
f̄


xk

= q(xk) (12)

190

where [G−1
xk

]a is the top n× (n+D+ 1) submatrix of G−1
xk

. The stencil for node

xk is therefore defined by the first m components of row vector −LT(xk)
[
G−1

xk

]
a

(stencil coefficients) and by the index set Jn(xk) of the corresponding nodes,
excluding possible Neumann nodes. The first component of stencil coefficients
refers to the “central” node xk.195

By writing Eq. (12) for each of the M nodes xk which do not lie on the
boundary Γ (internal nodes) gives the following linear system

Av + Af̄ = q (13)

where v is the column vector of all internal and Dirichlet nodal values for v,
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f̄ is the column vector carrying all the local Neumann contributions f̄ (if any),200

A and A are the corresponding coefficient matrices and q is the column vector
of all the right hand side nodal contributions q(xk). By rearranging Eq. (13),
using a partition of Internal and Dirichlet nodes for v, gives

AIvI = q−Af̄ −ADvD (14)

Eq. (14) represents the final linear system that has to be solved for vI . The205

coefficient matrix AI , whose size is M ×M , is sparse and unsymmetric. The
sparsity is due to the local nature of the RBF trial function in Eq. (2), while the
asymmetry is due to the fact that the local RBF formulation does not ensure
the same contribution for any couple of the neighboring nodes.

3. Domains, node distributions, BCs and analytical solutions210

Two 2D and one 3D complex shaped domains are employed in this work
in order to demonstrate the application of the proposed techniques to practical
problems which are characterized by complex geometries and non-trivial node
arrangements.

3.1. Case 1215

Geometry. The geometry of the 2D domain Ω is a circle with Ng = 8 periodical
angular grooves, as depicted in Figure 2a together with the coordinate system.
The ratio Ri/Re between the internal and the external radii of the grooves has
been chosen to be 0.8.

Node distributions. The following spacing function s(x) is employed for the220

generation of node distributions over this domain:

sM
s(x)

= 1 + r̄2 2− cos(2Ngϑ)

3

[
1 + kE exp

(
− kS(r̄ − r̄S)2

)]2
(15)

where sM is the maximum spacing function over the domain, r̄ = r/Ri is the
dimensionless radius, kE = 0.75, kS = 50 and r̄S = 1 − (1 + kE)/(2kEkS);
the ratio between the maximum and the minimum nodal spacing is therefore225

sM/sm ≈ 4. An example of node distribution with N = 104 nodes obtained
with 50 refinement iterations [37] is displayed in Figure 2c. A snapshot of the
particular part P of the node arrangement in the neighborhood of a corner is
displayed in Figure 2d.

Boundary conditions. Dirichlet BCs on the whole boundary Γ are considered.230
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Figure 2: Case 1: geometry (a), analytical solution (b), example of node distribution with
N = 104 nodes (c) and a snapshot of the particular part P of the domain (d).

Analytical solution. The following analytical solution is used for BCs and for
the definition of the error norms:

u(x) = r̄3
[
2− cos(2Ngϑ)

][
1 + kE exp

(
− kS(r̄ − r̄S)2

)]3
(16)

A graphical representation of this analytical solution is reported in Figure 2b,
after scaling it to the interval [0, 1], i.e., uG(x) = u(x)/uM , where uG is the235

scaled analytical solution and uM is the maximum value for u on Ω.
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Figure 3: Case 2: geometry (a), analytical solution (b), example of node distribution with
N = 15000 nodes (c) and a snapshot of the particular part P of the domain (d).

3.2. Case 2

Geometry. The 2D domain Ω is implicitly defined as the set {x ∈ R2 : G(x) ≥
0} where G is defined as

G(x) =
2

3

[
cos(6πx) cos(6πy)− 2(x4 + y4)2 +

1

2

]
(17)

240

The geometry of such complex shaped domain with multiple holes is depicted
in Figure 3a together with the coordinate system. The boundary Γ is simply
given by the level set G(x) = 0.
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Node distributions. The spacing function s(x) employed for the generation of
node distributions over this domain is245

s(x) = sm

[
1 + kGG

2(x)
]

(18)

where sm is the minimum spacing function over the domain and kG = 3.
The ratio between the maximum and the minimum nodal spacing is therefore
sM/sm = 1 + kG = 4. An example of node distribution with N = 15000 nodes
obtained with 50 refinement iterations [37] is displayed in Figure 3c. A snapshot250

of the particular part P of the domain is displayed in Figure 3d, showing the
node arrangement in the neighborhood of a double boundary.

Boundary conditions. Two types of BCs have been considered for this domain:

• Case 2Dir: Dirichlet BCs on the whole boundary;

• Case 2Mix: Mixed BCs: Dirichlet BCs on the “external” boundary, Neu-255

mann BCs on the boundary of the 40 “internal” holes.

Analytical solution. The analytical solution that has been used for BCs and
error norms is simply defined as u(x) = G(x). A graphical representation of
this analytical solution is shown in Figure 3b, after scaling it to the interval
[0, 1], i.e., uG(x) = u(x)/uM , where uG is the scaled analytical solution and uM260

is the maximum value for u on Ω.

3.3. Case 3

Geometry. The 3D domain Ω is obtained by extruding the 2D geometry of Case
2, Figure 3, along the z direction from z = 0 to z = Hz = 1. The geometry of
such complex-shaped domain is depicted in Figure 4a.265

Node distributions. The spacing function s(x) employed for the generation of
node distributions over this 3D domain is the same defined by Eq. (18), for
which there is no dependence upon the z coordinate. An example of node
distribution with N = 4 · 105 nodes obtained with 50 refinement iterations [38]
is displayed in Figure 4b and 4c.270

Boundary conditions. Dirichlet BCs on the whole boundary are considered.
Since the geometry is obtained by extruding the 2D profile of Case 2, which
is characterized by an external curve and 40 internal holes, the boundary Γ is
then composed by two planar surfaces at z = 0 and z = Hz, an external curved
surface and 40 cylindrical holes.275

Analytical solution. The analytical solution used for BCs is the same as em-
ployed for Case 2: u(x) = G(x), where G is defined by Eq. (17), i.e., there is
no dependence upon the z coordinate.

11



(a)

(b) (c)

Figure 4: Case 3: geometry (a), enlarged views of the node distribution over a portion of the
domain using N = 4 · 105 nodes (b,c).

4. Multicloud techniques

In this section the basic concepts of MG methods are introduced and ex-280

tended to the RBF-FD meshless discretization defined in Section 2. Analyses
of MG methods are elaborated in [15, 17, 20].

4.1. Multigrid

4.1.1. Mathematical formulation

Let us consider the following sparse linear system arising from local dis-285

cretization of the Poisson Eq. (1) (which is the case of the linear system (14))

Mu = b (19)

The solution of system (19) using classical iterative methods, e.g., Jacobi,
Gauss-Seidel, successive over-relaxation (SOR), leads to an efficient reduction
of the high-frequency error components in space, while the low-frequency error290
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components are slowly reduced [24]. This property can be seen by consid-
ering the continuous-space approximation of the Jacobi iteration defined by
uk+1 = uk +α(q+∇2uk), where α = O(h2) > 0 and h is the local reference size
of the discretization.

Then, by considering a Fourier component of the error ek = u−uk = Eke
iωωω·x

295

with ωωω denoting the vector of spatial frequencies, the convergence factor µ(ωωω)
is

µ(ωωω) =
∣∣∣Ek+1

Ek

∣∣∣ = 1−O(‖ωωω‖22h2) (20)

where O(1) = ωm ≤ ‖ωωω‖2 ≤ ωM = O(h−1). Therefore, rapidly fluctuating
errors, i.e., ‖ωωω‖2 ≈ ωM , have favorable convergence factors µ � 1, while low-300

frequency components, i.e., ‖ωωω‖2 ≈ ωm, are very slowly decaying because µ ≈ 1.
Jacobi iteration acts as an error smoother and thus cannot be used as a practical
single-grid solver for discretizations with a large number of unknowns.

Nevertheless, this smoothing property can be somehow exploited to improve
this iterative method: the application of p smoothing iterations leaves only305

a smooth error ep = u − up. Then, the linear system (19) in terms of error
becomes

Mep = b−Mup =: rp (21)

which states that the error ep can alternatively be computed from the residual
rp. Since ep is smooth, it can therefore be well approximated using a smaller310

number of meaningful unknowns ẽp through a suitable interpolation operator

IhH

ep = IhH ẽp (22)

The application of a restriction operator IHh to Eq. (21) with the smooth ap-
proximation (22) gives the coarse grid correction equation315 (

IHh MIhH
)︸ ︷︷ ︸

M̃

ẽp = IHh rp︸ ︷︷ ︸
r̃p

(23)

where M̃ and r̃p are the coarse correction matrix and the coarse residual, re-
spectively.

Eq. (23), solved for ẽp, allows the final coarse grid correction

u′p = up + IhH ẽp (24)

320

This correction is then followed by further p′ smoothing iterations needed to
smooth the high-frequency error components due to interpolation in the final
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correction step. If linear system (23) is still too large to be solved directly or
by simple iterative methods, this two-level approach can then be recursively
applied to the solution of the coarse grid correction system (23) itself, giving325

rise to a hierarchy of coefficient matrices Ml where l is the MG level. This
iterative approach yields the classical V-cycle MG algorithm [20].

4.1.2. Transfer operators

The performances of MG methods depends upon the choice for transfer
operators between MG levels, i.e., interpolation IhH and restriction IHh , and330

their interaction with the smoothing operator. A recommended choice is

IHh = (IhH)T (25)

which states that the restriction is obtained from interpolation in order to fulfill
variational principles [17]. This condition is not always respected in the present
work in favor of simpler numerical implementation.335

For second order PDEs, such as the Poisson Eq. (1), the following condition
has to be satisfied [20] in order to get the real MG convergence, i.e., convergence
rate independent from the size of the problem

rR + rI > 2 (26)

where rR and rI are the order of restriction and interpolation operators, respec-340

tively. For this reason piecewise linear interpolation (rI = 2), with its transpose
piecewise linear restriction (rR = 2), is very common in geometric MG [15].

We briefly present two AMG approaches which are particularly attractive
for meshless applications because of their simple implementation, independence
upon geometric discretization, low memory requirements and their need of the345

fine grid discretization only, i.e., no coarse-level discretizations are needed.
Therefore boundary conditions are needed only at the finest level and do not
need any additional treatment at the coarse levels.

Aggregation-type MG. The simplest AMG approach, also known as aggregation-
type MG or additive correction MG, is given by piecewise constant transfer350

operators and it can be implemented very easily. Nonetheless, a straight additive
correction implementation does not produce a true MG convergence for diffusion
problems because of an incomplete reduction of the smooth error components
[17, 27]. This lack of MG convergence is also confirmed by Eq. (26) which is
not satisfied since rR = rI = 1 for piecewise constant transfer operators.355

A partial solution to this problem is overcorrection [27], which amplifies the
coarse grid correction (24) with an overcorrection factor t > 1 as follows

u′p = up + tIhH ẽp (27)

where IhH is piecewise constant. For a Poisson equation the optimal value of
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t depends upon the size of the aggregates and therefore it depends upon the360

specific geometric discretization.

MG with smoothed transfer operators. It is possible to overcome the problem
of the incomplete reduction of the smooth error components encountered with
the aggregation-type MG by smoothing transfer operators [31–34]. An under-
relaxed homogeneous Jacobi iteration, i.e., with a relaxation smoothing factor365

[24] ωS < 1, is applied to the piecewise constant interpolation using the coeffi-
cient matrix Ml at each MG level l [18], while the restriction operator is given
by Eq. (25).

4.2. Multicloud

4.2.1. C/F-splitting370

A coarsening strategy is required to define a set of coarse-level variables
required by interpolation, Eq. (22), resulting in a Coarse/F ine-splitting (C/F -
splitting). In the RBF-FD meshless context, variables and equations are as-
sociated to nodes, therefore a C/F -splitting is given by a set of coarse nodes
obtained from a set of fine nodes by using a nodal coarsening strategy. We375

assume that the coarse-level node set is a subset of the fine-level node set.
In this work we employ the nodal coarsening strategy proposed by Katz and

Jameson [16] which is similar to the one proposed by Chan et al [46]: starting
from a fine-level set where each node has a null flag F = 0, i.e. it is a free
node, each free node is visited sequentially, its flag is set to F = 2 and its nC380

nearest neighboring nodes with F = 0 are set to have a flag F = 1 (nC = 6 in 2D,
nC = 13 in 3D). Then the coarse-level set is given by the nodes with F = 2. This
choice leads to coarse sets whose number of nodes is approximately 2D times
less than the number of fine-level nodes . Such isotropic coarsening strategy is
compatible with the isotropic node generation algorithm [38] employed in this385

work. The total number of nodes at MC level l ≥ 0 is Ml ≈M/2lD and M0 = M
is the total number of internal nodes at the finest level l = 0.

4.2.2. Additive correction multicloud technique (ACMC)

The first MC technique proposed in this work is additive correction mul-
ticloud (ACMC), which is based on aggregation-type MG with overcorrection,390

described in Subsection 4.1.2, where both transfer operators are piecewise con-
stant over their support. Given a C/F -splitting, the interpolation support is
defined by choosing which coarse-level variables/nodes are employed to interpo-
late a fine-level variable, Eq. (22). Similarly, the restriction support is defined
by choosing which fine-level equations are employed to obtain a coarse-level395

correction equation by restriction, Eq. (23).
One nearest neighboring coarse-level node is used as the support for the

constant interpolation. Therefore the interpolation operator IhH is a Ml ×Ml+1

matrix whose entries aij are non-zero only if coarse-level node j (at level l+ 1)
is the nearest coarse-level node to the fine-level node i (at level l), and the400

corresponding entry is aij = 1. The restriction is then given by Eq. (25), i.e.,
the constant restriction support is given by the fine-level nodes employing the

15



• fine-level nodes −→ interpolation/restriction

◦ coarse-level nodes −− equation links

•+ fine-level support nodes for re-
striction to central coarse-level
node

99K modified interpolation sup-
port

f1
C1

C2

C3

(a)

G

G

G G

G

BG

B

f1 f2

C1 C2

(b)

Figure 5: 2D interpolation and restriction support nodes for ACMC (a) and SRMC (b).

same coarse-level node as interpolation support. This strategy is depicted in
Figure 5a for a 2D case where the arrows indicate interpolation (coarse to fine
nodes) or restriction (fine to coarse nodes) with uniform and isotropic coarse/fine405

node distributions. For the sake of graphic clarity, the coarse-level nodes have
been moved in order not to coincide with the fine/coarse-level nodes. The
coincidence of some fine/coarse-level nodes is actually assumed in the nodal
coarsening strategy described in Subsection 4.2.1 since the coarse-level node set
is a subset of the fine-level node set.410

By considering a stencil with n = 7 neighboring nodes in 2D and n = 14
neighboring nodes in 3D for the RBF-FD approach (these particular choices
are explained in Subsection 4.3.1), the corresponding MC strategy maintains a
constant stencil size, on average, at each level. In the 2D case, this property
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can be deduced from Figure 5a by considering the central coarse-level node C1415

and its related equation: its stencil is given by the coarse-level nodes employed
to interpolate all the fine-level nodes (marked with symbol •+ in Figure 5a)
which are involved in restriction to C1. For example, the equation for fine-level
node f1, which is one of the nodes used for the restriction to C1, depends upon
its 6 fine-level neighbors whose interpolation support employs only coarse-level420

nodes C1, C2 and C3. Finally, it is possible to observe that the coarse correction
equation for C1 depends upon 6 coarse-level neighbors, and therefore the stencil
size n = 7 is maintained at all coarse levels on the average.

4.2.3. Smoothed restriction multicloud technique (SRMC)

The second MC technique proposed in this work is smoothed restriction425

multicloud (SRMC), which is obtained from ACMC by smoothing the piecewise
constant restriction operator as described in Subsection 4.1.2. More precisely,
the rows ri of the SRMC restriction matrix IHh are obtained by applying one
under-relaxed homogeneous Jacobi iteration to the rows r̄i of the ACMC re-
striction matrix defined in Subsection 4.2.2, using the coefficient matrix Ml.430

Let us consider the homogeneous linear system

Mlz = 0 (28)

to be solved for z by Jacobi iteration where the initial solution is set to be z(0) =
r̄Ti , i.e., the transpose of the i-th row of the piecewise constant ACMC restriction
matrix. Then the corresponding i-th row of the SRMS restriction matrix is435

obtained after the first under-relaxed Jacobi iteration as rTi = z(1). The effect
of the Jacobi iteration is an increased radius for the restriction support.

The interpolation is still maintained piecewise constant as in ACMC using
1 nearest neighboring coarse-level node for support, therefore Eq. (25) does not
hold anymore.440

This strategy is depicted in Figure 5b in the 2D case where the solid line
arrows indicate interpolation (coarse to fine nodes) or restriction (fine to coarse
nodes) with uniform and isotropic coarse/fine node distributions. Again, for the
sake of graphic clarity, the coarse-level nodes have been moved in order not to
have coincident fine/coarse-level nodes.445

By considering the central coarse-level node of Figure 5b and an RBF-FD
stencil with n = 7 neighboring nodes, we observe that the radius of the re-
striction support is increased from 4 fine-level nodes of ACMC approach to 14
fine-level nodes (marked with symbol •+ in Figure 5b) because of the smoothing
operation on the piecewise constant operator. This “extended” restriction sup-450

port is given by the fine-level nodes whose stencils include any of the “original”
4 fine-level nodes defining the piecewise constant restriction support.

We also observe that this MC strategy does not maintain a constant stencil
size, on average, across the levels. This property can be deduced in the 2D case
from Figure 5b by considering again the central coarse-level node and its related455

equation: its stencil is given by the coarse-level nodes employed to interpolate
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all the fine-level nodes involved in the restriction to the central coarse-level
node. It is then possible to observe that the coarse correction equation for the
central coarse-level node depends upon 9 coarse-level neighbors, and therefore
the stencil size n = 7 is not maintained across levels on average, but will grow at460

coarse levels. To avoid a growing stencil size that would imply larger memory
and computational requirements, we propose a modified restriction strategy
which ensures a constant stencil size. In the 2D case, consider Figure 5b, where
a coarse-level node is marked G (“good”) if it is involved in the interpolation of
any of the 14 fine-level nodes defining the central coarse-level node restriction465

support, otherwise it is marked B (“bad”). Then, the restriction contribution of
B coarse-level nodes is replaced by G coarse-level nodes only. For example, when
the fine-level equation for node f1 is considered by restriction, the contribution
of interpolation of the fine-level node f2, which is included in f1 stencil, is now
given by the coarse-level node C1 and not by C2 anymore, because C1 is the G470

coarse-level node employed for the interpolation of f1. The same approach can
be employed in 3D cases as well. Numerical tests confirmed that this strategy
ensures a constant stencil size at all coarse levels, on average.

4.3. Multicloud convergence

As outlined before, the RBF-FD discretization employed in this work leads475

to an unsymmetric coefficient matrix, Eq. (14). Therefore, the classic positive
definiteness requirement for symmetric matrices cannot be used to guarantee
the convergence of the proposed MC techniques. An analogous requirement for
the convergence of MG methods in the unsymmetric case is that the matrix be
an M -matrix [47]. The sufficient conditions leading to a M -matrix structure in480

the context of the present meshless approach are presented in Appendix A.

4.3.1. Positive stencils

In Appendix A the RBF-FD coefficient matrix of Eq. (14) is proved to be
an M -matrix under the hypothesis of positive stencils for every internal node.
The validity of such hypothesis depends upon the number of support nodes n485

for the MQ-RBF interpolation of Eq. (2), their geometrical arrangement and
upon the MQ shape factor ε of Eq. (3). In what follows is the investigation of
these factors on stencil positivity.

First of all, we investigate the effect of the number of support nodes n and
MQ shape factor ε on stencil positivity for a 2D local node arrangement given by490

a central node surrounded by n−2 nodes which are distributed over a circle with
angular intervals ∆α = 2π/(n− 1), while the position y of the remaining node
is free. The positions of such a free node allowing a positive stencil are depicted
as hatched areas in the diagrams of Figure 6 for n = 7, 8, 9 and ε = 0.1, 1, 10,
while the areas delimited by red-dashed curves represent “safe” areas where the495

stencil coefficients g1(y), . . . , gn(y) satisfy the condition G(y) > GM/2, where
G(y) = min{g1(y),−g2(y), . . . ,−gn(y)} and GM is the maximum value for G
over the whole plane. The larger these areas, the more likely it is to get a
positive stencil from general node arrangements with n support nodes. To the
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Figure 6: 2D stencil positivity plots for n = 7 (top row), n = 8 (middle row) and n = 9
(bottom row): grey hatched areas represent positive stencil areas, while red dashed curves
delimit “safe” areas for stencil positivity (see Subsection 4.3.1).

best of author’s knowledge, this is the first time that such analysis is performed500

in the context of multiquadric RBF-FD.
From Figure 6 it is possible to deduce that increasing n from 7 to 9 nodes will

decrease the positive stencil area, also due to obvious geometric reasons, while
the effect of shape factor ε is non-monotonic: the positive stencil area decreases
and then increases considering an increasing shape factor from ε = 0.1 to ε =505

10. This is unwanted because “small” ε will produce numerical instabilities
when solving interpolation Eq. (9), while “big” ε will produce bad interpolants
[43, 44]. Nonetheless, ε has to be chosen on the basis of discretization properties
for a specific problem, and therefore it is not a tunable parameter [48].

Lastly, we investigate the effect of the node distribution on stencils positivity510

for 2D node distributions with N = 105 nodes for Case 1 and Case 2Mix. The
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Figure 7: Effect of refinement iterations on stencils positivity for Case 1 (a) and Case 2Mix
(b), N = 105 nodes and ε̄ = 1.

fraction of nodes with non-positive stencils is reported in Figure 7 as a function
of the number of refinement iterations in the node generation algorithm [37], for
n = 7, 8, 9 and two strategies for the choice of RBF neighboring support nodes:

• Neighbor strategy A: n nearest neighboring nodes are always chosen;515

• Neighbor strategy B: all the nodes within a circle of radius proportional
to s(x)

√
n are chosen.

The difference between the two previous strategies is that the number of
support nodes remains n with Neighbor strategy A, while with Neighbor strat-
egy B the number of support nodes is n only on average and a small deviation520

from n (1 or 2 nodes) can occur depending upon the local node arrangement.
The curves reported in Figure 7 reveal that the refinement iterations have a

positive effect in the reduction of the fraction of non-positive stencils for n = 7
only, while for n = 8, 9 this effect is limited and non-monotonic. Neighbor
strategy B is also more effective than Neighbor strategy A in the reduction of525

the fraction of non-positive stencils, especially with n = 8, 9. Nonetheless this
strategy is found to produce unacceptable discretization errors and therefore
only Neighbor strategy A (n nearest neighbors) is employed.

To conclude, n = 7 is found to be the most appropriate choice in 2D cases,
for which 50 refinement iterations are a reasonable balance between computa-530

tional effort and an adequate reduction of non-positive stencils. For this choice
the fraction of non-positive stencils drops significantly below 1% for both cases
1 and 2, and therefore the presence of these few non-positive stencils destroys
the M -matrix property. However, this is not a necessary condition [36] for the
convergence of the proposed MC techniques. The choice n = 7 for the 2D case535

has also a geometrical interpretation since each node is surrounded by 6 nearest
neighbours in an isotropic 2D node distribution, i.e., with hexagonal arrange-
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Table 1: MC parameters.

Parameter Symbol ACMC SRMC Range

- MC pre/post smoothing SOR
iterations

p = p′ 1** 1** N+

- SOR relaxation factor ω 1.2∗ 1.2∗ [1, 1.5]
- ACMC overcorrection factor t variable − [1, 3]
- SRMC under-relaxation
smoothing factor

ωS − variable [0, 1]

- SOR iteration multiplier at
coarse levels

rI 1∗ 1∗ [1, 2]

* unless otherwise specified.
** at finest level.

ments. This interpretation allows an extension to 3D isotropic node arrange-
ments where each node is surrounded by 12 nearest neighbours, corresponding
to the choice n = 13 [49], which is employed in the 3D case.540

4.4. Preconditioning

Similarly to the traditional MG methods, both the proposed MC techniques
can be used as standalone solvers and as preconditioners for traditional iterative
solvers. As suggested by Stüben [18], the coupling of MG methods as precondi-
tioners with reliable and robust iterative methods is more effective than trying545

to fine-tune a standalone MG solver, especially in cases where the exact conver-
gence proofs cannot be stated. This is our situation because of the presence of
non-positive stencils.

When the proposed MC techniques are used as preconditioners, then the
BiCGSTAB method [13] is used as an iterative solver. Such iterative solver550

is one of the most common choices for the solution of nonsymmetric linear
systems. The resulting approaches are denoted by BiCGSTAB/ACMC and
BiCGSTAB/SRMC.

4.5. Multicloud parameters

The working parameters that completely define the proposed MC approaches555

are briefly summarized in Table 1, where rI is the SOR iteration multiplier at
coarse levels, which defines an amplification factor for the number of MC pre-
smoothing SOR iterations from a MC level l to the successive coarse level l+ 1:
pl+1 = rIpl. Therefore rI defines the amount of smoothing work at coarse levels.

The coarsest level is assumed to be reached when the number of equations560

at this level is less than 4000, and the corresponding linear system is solved by
direct LU solution.
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4.6. Work count and residual norm

The comparison of the amount of work, i.e., the number of floating point op-565

erations in different algorithms is measured in terms of work units (WU), which
is defined as the amount of work needed for one residual evaluation at the finest
level. For the MC techniques, the amount of work is automatically evaluated
by considering the pre/post smoothing SOR iterations, residual evaluation, re-
striction and interpolation phases. For BiCGSTAB solver, each full iteration570

is composed by two semi-iterations, each of which has a cost of 1 WU+10M
operations [13], where M is the number of internal nodes (number of fine-level
equations).

The convergence histories are plotted in terms of normalized RMS residual,
which is defined as ‖r‖2/‖b‖2, where b is the right hand side term in Eq. (14)575

and r the corresponding residual vector; a null vector is employed as a starting
solution vector.

4.7. Implementation details

The implementation of the presented procedures has been done through
MATLAB R© environment using MATLAB linked MEX functions which are com-580

piled from C source code for the computational expensive tasks, on a modern
laptop equipped with an Intel R© i7 2.6GHz processor with 4 cores. Multi-core
parallelism is achieved by using OpenMP R© API for the C source code employed
in node generation, MC setup phase, SOR smoothing iterations, residual evalua-
tion, interpolation and restriction. Some of the remaining MATLAB operations,585

including BiCGSTAB algorithm, are natively parallelized on all available cores
by MATLAB.

4.8. Error norm

The comparison between the computed solution v and the corresponding
analytical solution u in 2D cases is done by computing the normalized RMS590

norm of the error:

Normalized RMS error =

√
1

A(Ω)

∫
Ω

(
u− v

umax − umin

)2
dΩ ≈

≈

√√√√ 1

A(Ω)

N∑
i=1

(
u(xi)− vi
umax − umin

)2
s2(xi)

(29)

where A(Ω) is the area of Ω. The integral has been approximated by numerical
quadrature using the prescribed spacing function s2 as quadrature weight.
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Figure 8: Normalized RMS error as function of rescaled shape factor ε̄, Case 1 (a) and Case
2Dir (c), and as function of number of the nodes N , Case 1 (b) and Case 2 (d).

5. Results595

5.1. Preliminary analyses

First of all, we investigated the effect of the rescaled shape factor ε̄ ∈ [0.1, 10]
on the normalized RMS error as reported in Figures 8a and 8c for both 2D
domains and for N = 105 and N = 106 nodes. As expected, the error reduces
as ε̄ decreases, while below ε̄ = 1 the error reaches an asymptotic behaviour and600

therefore ε̄ = 1 has been chosen for the following results, including the 3D case.
The choice ε̄ < 1 would also imply numerical stability issues for large N in the
local RBF interpolation phase.

Figures 8b and 8d show the convergence curves in the case ε̄ = 1 for both
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Figure 9: Effect of ACMC overcorrection parameter t (a,b) and SRMC smoothing factor ωS

(c,d) on the convergence work, N = 105 nodes, Case 1.

domains, revealing an order of accuracy1 p ≈ 1.8 for Case 1 and p ≈ 1.7 for605

Case 2Dir. When smoother analytical solutions are employed, as reported in
[38], the order of accuracy is always p ≈ 2.0. Convergence curves for Case 2Mix
reveal also that the present RBF-FD approach is sensitive to the imposition of
Neumann BCs.
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5.2. Case 1610

5.2.1. Multicloud parameters

The influence of MC parameters on the convergence work, i.e., the work
needed to reach a normalized RMS residual less than 10−14, is reported in
Figure 9 for ACMC and SRMC both employed as standalone solvers and as
preconditioners for BiCGSTAB in the case N = 105 nodes.615

Figure 9a shows that for the standalone ACMC the convergence work de-
creases with the overcorrection factor t as expected, until a minimum is reached
for an optimal value of t depending upon the choice for SOR iteration multiplier
rI and SOR relaxation factor ω. Beyond this optimal value, which lies in the
range [1.7, 2.0] for the MC parameters considered here, the convergence work620

quickly increases and therefore an accurate choice for t is crucial. The con-
vergence work for ACMC used as preconditioner for BiCGSTAB is reported in
Figure 9b, where the almost flat curves reveal that this strategy is more effective
and robust than the standalone ACMC strategy because its sensitivity to MC
parameters is very low, especially for an overcorrection factor t ∈ [1.5, 3.0].625

Convergence work for standalone SRMC is reported in Figure 9c where it
can be observed that the effect of rI and ω is very limited and therefore there
is a “single” optimal smoothing factor ωS ≈ 0.6, beyond which the growth of
the convergence work is very steep. Once again, the effect of using SRMC as
preconditioner for BiCGSTAB, shown in Figure 9d, is beneficial since the curves630

show a smoothed behaviour near the optimal ωS ≈ 0.6, but the steep growth
beyond this optimal value is present as well.

An initial comparison between the previous strategies reveals that the pre-
conditioned versions are always convenient. BiCGSTAB/ACMC strategy is
less sensitive than BiCGSTAB/SRMC to the choice of MC parameters, while635

BiCGSTAB/SRMC strategy can offer a slightly smaller optimal convergence
work than BiCGSTAB/ACMC.

5.2.2. Multicloud results

Figure 10 shows the convergence histories in the case of N = 105 and
N = 106 nodes for all the MC strategies previously proposed and also for640

BiCGSTAB with incomplete LU factorization (ILU) preconditioning and re-
verse Cuthill-McKee ordering [50]. In the case of N = 105 nodes, Figure 10a,
each MC strategy has shown to be much more effective in the reduction of
the residual than BiCGSTAB with ILU(0) preconditioning, i.e., 0 level of fill
in. Comparable performance between ACMC and BiCGSTAB/ILU can be ob-645

tained employing a small ILU factorization drop tolerance thr = 0.002, which
implies non-negligible memory requirements and time consumptions in the ini-
tial factorization phase. In the case of N = 106 nodes, Figure 10b, shows that
BiCGSTAB/ILU(0) is practically unfeasible (its convergence history is not even
reported since it converged in much more than 1600 WU), the convergence work650

1For 2D cases the order of accuracy p is defined by a normalized RMS error proportional
to N−p/2
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Figure 10: Comparison of convergence histories for N = 105 noded (a) and N = 106 nodes
(b), Case 1.

for BiCGSTAB/ILU with the same drop tolerance thr = 0.002 grows rapidly
over 1600 WU while the convergence work for the MC strategies show a mod-
erate growth which is subsequently analyzed in a greater detail.

The convergence work for each MC strategy and also for two BiCGSTAB/ILU
cases (thr = 0.002 and thr = 0.0005, the latter requiring twice the memory re-655

quired by the former) is reported in Figure 11 for N ranging from 2 · 104 to
8 · 106. The most evident fact is that the growth of convergence work for both
BiCGSTAB/ILU cases is considerably larger than the MC ones, and such strate-
gies become uncompetitive with MC strategies for N > 105 nodes, taking also
account of the fact that drop tolerances below thr = 0.0005 are practically660

unfeasible due to high memory requirements for such large problem sizes. For
N < 105 nodes both BiCGSTAB/ILU cases are comparable or even better than
the proposed MC approaches.

BiCGSTAB/SRMC with ωS = 0.55 turns out to be the most efficient strat-
egy, whose convergence work grows very slowly from 300 WU for N = 2 · 104

665
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Figure 11: Convergence work vs number of nodes N , Case 1.
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Figure 12: Specific time vs number of nodes N , Case 1.

nodes to 400 WU for N = 8 · 106 nodes. BiCGSTAB/ACMC with t = 1.9 per-
forms almost identically. The less efficient strategy, as expected, is standalone
ACMC with t = 1.9, whose convergence work grows from 400 WU for N = 2·104

nodes to 900 WU for N = 8 · 106 nodes.
The comparison between the specific times, i.e., time per node, is reported670

in Figure 12 for each of the previous MC strategies by considering the time
required to reach a normalized RMS residual less than 10−14, and also for two
ILU factorization cases (thr = 0.002 and thr = 0.0005) considering the ini-
tial factorization time. 8 OpenMP threads have been employed for the paral-
lelized C code. Similarly to the behaviour of convergence work, specific times675

for both BiCGSTAB/ILU cases show a larger growth than MC ones and be-
come uncompetitive compared to each MC strategy beyond N = 2 · 105 nodes,
while the specific times for MC strategies turn out to be almost constant for
N > 3 · 105. Again, BiCGSTAB/SRMC with ωS = 0.55 turns out to be the
best (faster) strategy, requiring approximately 3 · 10−6 s/node for N > 3 · 105.680

BiCGSTAB/ACMC with t = 1.9 performs almost identically, while standalone
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ACMC with t = 1.9 is the less performing and shows a very moderate growth
in specific time for high N . The speedup between a traditional approach like
BiCGSTAB/ILU with drop tolerance thr = 0.0005 and BiCGSTAB/SRMC
with ωS = 0.55 ranges from 4 for N = 3 ·105 nodes, to almost 20 for N = 8 ·106

685

nodes.
The specific times for the remaining main tasks are almost constant and

are as follows: 5 · 10−6 s/node for node generation (50 refinement iterations),
3.5 · 10−7 s/node for matrix coefficients calculation (discretization) and 1.5 ·
10−7 s/node for the MC setup phase (coarsening and coarse-level coefficients690

calculation).

5.3. Case 2

5.3.1. Multicloud results

The convergence work for each MC strategy and also for two BiCGSTAB/ILU
cases (thr = 0.002 and thr = 0.0005) is reported in Figure 13 for N ranging from695

2·104 to 8·106, for both Case 2Dir and Case 2Mix. Again, as in Case 1, the most
evident fact is that the growth rate of convergence work for BiCGSTAB/ILU
cases is considerably larger than the MC ones for both types of BCs. In Case
2Dir, Figure 13a, MC strategies outperform BiCGSTAB/ILU strategies only
for N > 4 · 105 nodes, while in Case 2Mix, Figure 13b, MC strategies out-700

perform BiCGSTAB/ILU strategies from N > 6 · 104 nodes already. Both
BiCGSTAB/ILU strategies turned out to be unfeasible due to both high time
consumption and large memory requirements for N > 2 · 106 nodes in Case
2Mix.

BiCGSTAB/SRMC with ωS = 0.55 is again the most efficient strategy for705

both BCs and BiCGSTAB/ACMC with t = 1.9 perform almost identically. In
Case 2Dir the convergence work for these strategies is almost constant (≈ 350
WU), while in Case 2Mix the convergence work shows a moderate growth from
300 WU for N = 2 · 104 nodes to 550 WU for N = 8 · 106 nodes. Therefore
the less efficient strategies are again standlone ACMC and SRMC, especially in710

Case 2Dir where their convergence work shows a moderate but constant growth
from N = 3 · 105 nodes.

The comparison between the specific times is reported in Figures 14 and
15 for each of the previous MC strategies (normalized RMS residual less than
10−14), and also for two ILU factorizations (thr = 0.002 and thr = 0.0005)715

for both cases 2Dir and 2Mix. Also in this case 8 OpenMP threads have been
employed for the parallelized C code. Similarly to the behaviour of the conver-
gence work, specific times for BiCGSTAB/ILU cases show a larger growth than
MC ones and become uncompetitive compared to each MC strategy beyond
N = 2 · 105 nodes in Case 2Dir, (Figure 14), while in Case 2Mix, (Figure 15),720

the MC strategies outperforms BiCGSTAB/ILU strategies from N = 7 · 104

nodes already. Specific times for all MC strategies are practically constant for
N > 3 · 105 nodes. The specific times for the remaining main tasks (node gen-
eration, matrix coefficients calculation and MC setup phase) remain the same
as in Case 1.725
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Figure 13: Convergence work vs number of nodes N for Case 2Dir (a) and Case 2Mix (b).
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The speedup between a traditional approach like BiCGSTAB/ILU with drop
tolerance thr = 0.0005 and BiCGSTAB/SRMC with ωS = 0.55 ranges from 4
for N = 106 nodes, to 8 for N = 8 · 106 nodes, in Case 2Dir. In Case 2Mix
such speedup ranges from 2 for N = 105 nodes, to 10 for N = 2 · 106 nodes.
Therefore the use of MC strategies can bring great advantages especially in case730

of Neumann BCs, which is a typical condition encountered in many practical
applications such as Poisson problems in computational fluid dynamics. Fur-
thermore, in these cases the proposed MC strategies are able to deal with very
large problems which can not be easily tackled by traditional BiCGSTAB/ILU
approaches.735
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Figure 16: Effect of ACMC overcorrection parameter t (a) and SRMC smoothing factor ωS

(b) on the convergence work, N = 2 · 106 nodes, Case 3., ω = 1.5.

5.4. Case 3

5.4.1. Multicloud parameters

The influence of MC parameters on the convergence work is reported in Fig-
ure 16 for ACMC and SRMC when both are employed as standalone solvers
and as preconditioners for BiCGSTAB, using N = 2 · 106 nodes and a SOR740

relaxation factor ω = 1.5.
Figure 16a reveals a limited influence of the overcorrection parameter t on
the reduction of the convergence work for both standalone and preconditioned
ACMC. The minimum convergence work for the standalone ACMC is obtained
for t = 1.6− 1.7, while the convergence work for the preconditioned ACMC ap-745

pears to be almost independent from t. Nonetheless, the minimum convergence
work for both standalone and preconditioned ACMC is approximately 300 WU,
which is very similar to the convergence work obtained in the corresponding
Case 2Dir for the same number of nodes N = 2 · 106.
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The effect of the under-relaxation smoothing factor ωS on the convergence work750

is shown in Figure 16b for both standalone and preconditioned SRMC. Similarly
to 2D cases, the increase in ωS allows a reduction of the convergence work whose
minimum is found for ωS = 0.65−0.70 and it is approximately 200 WU for both
strategies, with a more regular behaviour in the standalone case. Therefore the
SRMC technique is less sensitive to the coarsening strategy and more effective755

than ACMC. This result is in perfect accordance with 2D cases.

5.4.2. Multicloud results

The convergence work for each MC strategy and also for a BiCGSTAB/ILU
case (thr = 0.03) is reported in Figure 17 for N ranging from 105 to 8·106 nodes.
By considering the analyses of Subsection 5.4.1, the ACMC overcorrection pa-760

rameter is chosen to be t = 1.6 while the SRMC under-relaxation smoothing
factor is chosen to be ωS = 0.65.
In the 3D case the advantages of MC techniques over the traditional BiCGSTAB/
ILU solver still hold, although they are less evident than the ones obtained in 2D
cases: BiCGSTAB/ILU is more effective than any MC technique for N < 106,765

while beyond this point both SRMC strategies allow a certain advantage, espe-
cially when using the standalone strategy. Conversely, both ACMC techniques
are always less efficient than BiCGSTAB/ ILU in the range of N considered
here. Despite the unfavorable comparison of the convergence work between
ACMC and BiCGSTAB/ILU, both preconditioned ACMC and SRMC show a770

smaller growth rate when increasing N compared to BiCGSTAB/ILU, as well
as for standalone ACMC and SRMC although in a limited extent. This suggests
that when a very large number of nodes is employed, e.g., N > 107, precondi-
tioned ACMC and SRMC could bring greater advantages over the traditional
BiCGSTAB/ILU solver in terms of computational efficiency, although this claim775

has not been investigated in the present work.
The comparison between the specific times is reported in Figure 18 for each

of the previous MC strategies by considering the time required to reach a nor-
malized RMS residual less than 10−14, and also for a ILU factorization with
thr = 0.03 considering the initial factorization time. Also here 8 OpenMP780

threads have been employed for the parallelized C code. Similarly to the be-
haviour of the convergence work, the specific time for the BiCGSTAB/ILU solver
shows an overall growth rate which is slightly larger than the growth rate of MC
strategies, while for N > 3 · 106 nodes the BiCGSTAB/ILU growth rate is simi-
lar to the standalone ACMC and SRMC. However, both standalone techniques785

perform better than BiCGSTAB/ILU for N > 4 · 105 and the corresponding
speedup values for SRMC, which is the fastest, ranges from 2 for N = 4 · 105

nodes to 2.7 for N = 8 ·106 nodes. Similarly to the behaviour of the convergence
work, the preconditioned MC strategies are slower than the corresponding stan-
dalone version, but they exhibit a smaller growth rate, especially for the SRMC790

technique. Therefore greater speedup values are reasonably expected for large
number of nodes beyond N = 107.
The specific times for the remaining main tasks are almost constant and are as
follows: 1.6 ·10−5 s/node for node generation (50 refinement iterations), 4 ·10−6

31



105 106 107

N

102

103

C
on

ve
rg

en
ce

w
or

k
[W

U
]

BiCGS/ACMC,
t = 1:6

BiCGS/SRMC,
!S = 0:65

ACMC, t = 1:6

BiCGS/ILU,
thr = 0:03

SRMC, !S = 0:65

Figure 17: Convergence work vs number of nodes N , Case 3.
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s/node for matrix coefficients calculation (discretization) and 1.0 · 10−6 s/node795

for the MC setup phase (coarsening and coarse-level coefficients calculation).

5.5. OpenMP speedup

The measured speedup values obtained using 2, 4 and 8 OpenMP threads
for the parallelized C code for the MC algorithms are reported in Table 2 for
Case 1 and cases 2Dir and 2Mix where N = 106 nodes. The speedup values are800

listed for each of the main tasks separately.
From the previous tables it can be observed that the refinement phase for the

node generation and the matrix coefficients calculation are the tasks that exhibit
the largest speedups (4.3 − 4.7 with 8 OpenMP threads), while the achieved
speedup for the MC solvers is lower and does not exceed 2.7. In particular,805

the speedup for BiCGSTAB with MC preconditioning is always lower than the
speedup for the corresponding standalone MC solver because BiCGSTAB is
always parallelized on all available cores in MATLAB by default, as well as
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other vector operations (vector sums) that are carried out in MATLAB in the
present implementation.810

Table 2: Speedup values.

ACMC SRMC

OpenMP
threads

Ref Cff Slv-A Bi/A Cff Slv-S Bi/S

Case 1, N = 106 nodes

2 1.9 1.9 1.9 1.6 1.9 1.6 1.5
4 2.9 3.7 2.5 2.0 2.6 2.2 2.0
8 4.5 4.7 2.7 2.1 4.4 2.4 2.3

Case 2Dir, N = 106 nodes

2 2.0 1.8 1.6 1.5 1.8 1.8 1.5
4 3.0 2.7 2.1 1.9 2.7 2.4 2.0
8 4.7 4.3 2.3 1.9 4.4 2.6 2.0

Case 2Mix, N = 106 nodes

2 2.0 1.8 1.8 1.6 1.9 1.7 1.6
4 3.0 3.1 2.3 2.1 2.8 2.3 2.2
8 4.7 4.3 2.5 2.2 4.3 2.4 2.1

Ref = node refinement phase (50 iterations)
Cff = matrix coefficients phase (meshless discretization)
Slv-A, Slv-S = solution phase with A=ACMC, S=SRMC
Bi-A, Bi-S = BiCGSTAB preconditioned with A=ACMC, S=SRMC

6. Conclusions

In this work several multilevel strategies have been proposed as fast tech-
niques for the solution of linear systems arising from RBF-FD meshless dis-
cretizations of Poisson problems. Two new multicloud techniques, i.e., additive815

correction multicloud (ACMC) and smoothed restriction multicloud (SRMC),
have been developed and employed for the solution of 2D and 3D Poisson prob-
lems over complex-shaped domains with different boundary conditions. Each of
these novel techniques can be used as both standalone solver or as a precondi-
tioner for a typical iterative method such as BiCGSTAB.820

Extensive analyses are carried out in order to highlight the influence of the
various MC parameters on the performance. When a large number of nodes is
employed, e.g., N ≈ 106 nodes, great advantages over traditional approaches
(BiCGSTAB with incomplete LU factorization as preconditioner) have been
obtained for 2D cases in both reduction of convergence work and reduction of825
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required computational time. Such reductions can reach a factor 10 for conver-
gence work and even a factor 20 for computational time in the case of extremely
large problem sizes, e.g., N = 8 · 106 nodes. These advantages over traditional
approaches have proven to be particularly evident in the case of Neumann
boundary conditions, which often characterize many problems of engineering830

relevance. Furthermore, in cases where Neumann boundary conditions are em-
ployed, the proposed MC strategies have proven to be able to deal with very
large size problems where traditional solver approaches can not deal with be-
cause of excessive memory and time requirements. In the 3D case the advantages
over traditional solver approaches are less evident but still present, especially835

when comparing the computational time. Furthermore, greater advantages are
expected when using very large number of nodes in 3D, e.g., N > 107. There-
fore, the proposed MC strategies are extremely attractive for problems where
complex-shaped domains and large number of nodes are employed.

Between the proposed strategies, the use of both ACMC and SRMC as pre-840

conditioners for BiCGSTAB showed the best performance, requiring an almost
constant specific time for the convergence in 2D cases presented here, meaning
that the required computational time grows almost linearly with the size of the
problem N . SRMC allows slightly better performance than ACMC but it is
more sensitive to the choice of MC parameters and its implementation is also845

a little more complex. The use of both MC techniques as preconditioners also
allows a reduction of sensitivity to MC parameters in 2D cases.

Possible extensions of this work might be considered, for example, by study-
ing the application of the presented MC techniques to higher order RBF-FD
discretizations, i.e., larger stencil sizes n > 7 in 2D and n > 13 in 3D, and by850

employing different radial basis functions such as polyharmonic splines [6], as
well as the extension to different PDEs.

Acknowledgments
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Appendix A. M-matrices

We briefly present the sufficient conditions leading to a M -matrix struc-
ture (see Seibold [36] and Hackbusch [47] for further details) in the context of
the present meshless approach, for which the original contribution is given by
Theorem 1.860

Definition 1 (Z-matrices and L-matrices). A square matrix M = (mij) ∈
RM×M is called Z-matrix if mij ≤ 0 ∀i 6= j. A Z-matrix is called L-matrix if
mii > 0 ∀i.

The notation M ≥ 0 indicates that its matrix entries satisfy mij ≥ 0 ∀i, j.
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Definition 2 (M -matrices). A Z-matrix is called M -matrix if it is nonsingular865

and M−1 ≥ 0.

Definition 3 (Essentially diagonally dominance). A square matrix M is called
essentially diagonally dominant if it is weakly diagonally dominant (|mii| ≥∑

j 6=i |mij | ∀i), and every node is connected (directly or indirectly) through
stencil entries to a node k which satisfies the strict diagonal dominance relation870

|mkk| >
∑

j 6=k |mkj |.

Definition 4 (Positive stencil). A stencil is called positive if its coefficients
g1, . . . , gm satisfy g1 > 0 and g2, . . . , gm ≤ 0.

Benefits on the use of positive stencils in the context of generalized-FD
methods can be found in Demkowicz et al [10].875

Theorem 1. Matrix AI of Eq. (14) is essentially diagonally dominant if at
least one Dirichlet node is employed and if positive stencils are employed for
every internal node.

Proof. Consider the interpolation system of Eq. (9) with constant data, i.e.,
vT = (v1, . . . , vm) = (1, . . . , 1) and f̄ = 0, where Neumann/Dirichlet nodes can880

be included. Since such interpolation is exact for constant data, we get a = 0,
b = 0, c = 1 and therefore v(x) = 1 from Eq. (2). Then, Eq. (12) with q(x) =
−∇2v(x) = 0 becomes

∑m
i=1 gi = 0, where g1, . . . , gm are the stencil coefficients.

Since the stencil is positive, the previous relation can be written as |g1| =∑m
i=2 |gi|. If the stencil has no Dirichlet nodes, the last relation implies a weakly885

diagonally dominant row in terms of matrix coefficients, otherwise a strictly
diagonally dominant row is obtained since |g1| =

∑m
i=2 |gi| >

∑
i∈I |gi| where

I is a subset of {2, . . . ,m} identifying the non-Dirichlet stencil contributions,
i.e., the ones corresponding to internal nodes. Finally, in the present RBF-FD
approach every node is always directly or indirectly connected to a Dirichlet890

node through stencil entries because of the employed node distributions and
strategy for the choice of stencil support nodes (nearest neighbors).

Theorem 2. An essentially diagonally dominant L-matrix is an M -matrix.

Proof. See Hackbusch [47], pp. 154-155.

The coefficient matrix AI of Eq. (14), resulting from the present RBF-FD895

discretization, is an M -matrix if the conditions of Theorem 1 hold.
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