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Granular beads in a vibrating, quasi two-dimensional cell:

The true shape of the effective pair potential
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Steady-state pair correlations between inelastic granular beads in a vertically shaken, quasi two-
dimensional cell can be mapped onto the particle correlations in a truly two-dimensional reference
fluid in thermodynamic equilibrium. Using Granular Dynamics simulations and Iterative Ornstein–
Zernike Inversion, we demonstrate that this mapping applies in a wide range of particle packing
fractions and restitution coefficients, and that the conservative reference particle interactions are
simpler than it has been reported earlier. The effective potential appears to be a smooth, concave
function of the particle distance r. At low packing fraction, the shape of the effective potential is
compatible with a one-parametric fit function proportional to r−2.

I. INTRODUCTION

Agitated granular materials tend to exhibit intricate
phenomena such as pattern formation [1], collapse [2] or
segregation [3, 4]. In quasi two-dimensional systems it is
not uncommon to observe two coexisting phases such as
condensed clusters of particles surrounded by a gas-like
phase [5–8]. For freely cooling systems of inelastic parti-
cles studied in silico, it has been reported that particles
tend to form clusters inside which the rate of energy dissi-
pation exceeds that in the rest of the system, in a process
known as clustering instability [9].

Even though granular materials are systems far from
equilibrium, several authors have proposed the introduc-
tion of effective interactions among particles to describe
the observed phase separation and segregation [10, 11].
Effective potentials have been calculated for experimen-
tally observed quasi two-dimensional systems of granular
spheres under mechanical agitation [11] or under the ef-
fects of external, oscillating magnetic fields [12, 13], by
measuring the radial distribution function and inverting
it by means of the Percus–Yevick (PY) integral equa-
tion [14]. Following the same approach, Velázquez-Pérez
and co-workers have studied the effect of the interparti-
cle coefficient of restitution on the shape of the effective
potential, reporting an increment of the effective parti-
cle attraction with decreasing values of the coefficient
of restitution [15]. In their paper, they present a com-
plicated shape of the attractive effective potential as a
function of the particle separation distance.

In the present work we show that a simple inversion of
the PY integral equation is insufficient for obtaining the
correct form of the effective potential in most granular
systems. Instead, we propose the use of the novel It-
erative Ornstein–Zernike Inversion (IO–ZI) method [16]
which is shown here to yield more reliable and simpler
forms of the effective potential.
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Figure 1. (Color online) A snapshot of our Granular
Dynamics simulation for φ = 0.4, ǫ = 0.7. The Cartesian
box dimensions are L×L× 3σ with L/σ =

√

πN/4φ ≈ 31.7.

This paper is organized as follows: In Sec. II, we de-
scribe our Granular Dynamics simulations. The IO–ZI
method for calculating the effective pair potential of a
two-dimensional reference fluid is explained in Sec. III,
including a subsection IIIA in which the method is val-
idated by test cases. Our results for the effective pair
potential are reported in Sec. IV, which is followed by
the conclusions.

II. GRANULAR DYNAMICS SIMULATIONS

Figure 1 features a representative snapshot from one
of our Granular Dynamics simulations. All simulations
are for monodisperse systems of N = 512 spherical par-
ticles with diameter σ, confined between two horizontal
plates at z = δz(x, y) and z = 3σ + δz(x, y). Includ-
ing the gentle sinusoidal surface roughness δz(x, y) =
10−3 × σ × [sin(ψx) + sin(ψy)] with ψσ = 210 on the
plates helps to avoid a suppression of the x- and y-
components of the spheres’ velocities due to friction be-
tween the particles and the plates [17]. Our choice of the
parameter ψ corresponds to a surface roughness wave-
length that is much shorter than σ, resulting in quasi-
random lateral velocity kicks.
Periodic boundary conditions are applied in the Carte-

sian x- and y-directions, and the particles have three
translational and three rotational degrees of freedom.
Newton’s equation of motion is integrated in time by
means of a Verlet algorithm with a velocity-prediction
step [18]. Forces that act orthogonal to the particle
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surfaces are modeled by a spring-dashpot model [19],
whereas tangential interactions are modeled as Coulomb
friction for the sake of simplicity in calculations. The or-
thogonal forces are characterized by the restitution coef-
ficients ǫ and ǫw in case of particle-particle and particle-
wall collisions, respectively. In all our simulations, the
particle-wall restitution coefficient ǫw = 0.9 is assumed.
For the particle-particle normal restitution coefficient we
have used the three values ǫ = 0.5, 0.7 and 0.9. The tan-
gential forces in particle pairs and between particles and
walls are both characterized by the tangential friction
coefficient µ = 0.4 in all our simulations.

In an initialization step, the particles are placed at
random vertices of a horizontal, two-dimensional trian-
gular lattice with a lattice constant of 1.001σ, at the
center plane z = 3σ/2 between the confining plates. All
spheres are assigned random velocity vectors v0 with
magnitudes in the range 0 < |v0| < 8 × 10−5 σ/δt, and
random angular velocity vectors ω0 with magnitudes in
the range 0 < |ω0| <

√
3 × 10−10 rad/δt, where δt is

the time step of the numerical integration scheme. The
confining plates are then moved sinusoidally in the z-
direction with an amplitude A = 0.012678 σ and a fre-
quency ν = 1.4× 10−4/δt. The particles are affected by
a gravitational acceleration g in the negative z-direction.
Setting the value of g = 981 cm/s2, σ = 0.5 cm and
δt = 2 × 10−6 s, it is possible to express all simula-
tion parameters in cgs units, so that ν = 70 Hz and
A = 0.006339 cm. Such parameters are realistic for
experimental systems [11]. The reduced, dimensionless
peak acceleration of the plates is Γ = A(2πν)2/g = 1.25,
and we define a quasi-two-dimensional particle packing
fraction as φ = (πNσ2)/(4L2), where L is the simulation
box length in the x- and y-directions. We have performed
simulations for packing fractions φ = 0.2, 0.4 and 0.5.

After a short initial transient, the simulations enter a
steady state that appears stationary if short-time aver-
ages are considered. In this steady state, the particles
rebound vertically and acquire horizontal velocity com-
ponents due to the surface undulations of the confining
plates and also via particle-particle collisions. A snapshot
of all particle positions was stored after every 16,667-th
time step, corresponding to an interval of 1/30 s between
subsequent recordings. A total number of 2,000 snap-
shots was recorded for each simulation, with an exception
being the system at φ = 0.2, ǫ = 0.5 (lower right panel
in Fig. 5 and Fig. 8) for which we have recorded 10,000
snapshots. From the snapshots we have calculated the
projected two-dimensional radial distribution function

gT (r) =
1

N

〈

N
∑

i,j=1

i6=j

δ
(

r
‖ − r

‖
i + r

‖
j

)

〉

(1)

in terms of the Dirac δ distribution, and the projected

two-dimensional static (steady state) structure factor

ST (q) =
1

N

〈[

N
∑

i=1

cos(q‖ · r‖i )
]2

+

[

N
∑

i=1

sin(q‖ · r‖
i )

]2〉

(2)
where 〈. . .〉 stands for the average over all snapshots,

r
‖
i = (1 − êzêz) · ri is the projection of the position

vector ri of particle i into the (x, y)-plane, and q
‖ =

(1 − êzêz) ·q is the corresponding projection of the wave
vector q. The arguments r =

∣

∣r
‖
∣

∣ and q =
∣

∣q
‖
∣

∣ of the
correlation functions are the norms of the projected dis-
tance and wave vectors. We have checked that all simu-
lated systems are homogeneous and isotropic on average.
The lower index ’T ’ on both functions gT (r) and ST (q)
stands for ’Target’, as we have used these functions as
the target functions for the Iterative Ornstein–Zernike
Inversion method, described in Sec. III.

III. ITERATIVE ORNSTEIN–ZERNIKE

INVERSION

Iterative Ornstein–Zernike Inversion (IO–ZI) is a re-
cently introduced inverse Monte Carlo method that al-
lows to determine the reduced, dimensionless pair po-
tential βu(r) of particles in thermodynamic equilibrium
from their radial distribution function g(r) and the static
structure factor S(q). Here, β = 1/(kBT ) is the inverse
thermal energy in terms of the Boltzmann constant kB
and the absolute temperature T . The interested reader is
referred to Ref. [16] for a comprehensive description of the
IO–ZI method and its validation for three-dimensional
fluid systems. For brevity’s sake, we explain here only
the essential working principle of IO–ZI, and we mention
the differences between the algorithm in Ref. [16] and the
version for two-dimensional systems that we have used for
the present work:
The IO–ZI method shares its underlying principle with

the well-established, but less accurate Iterative Boltz-
mann Inversion (IBI) method [20]. In an initial step, a
first estimate βu1(r) of the true potential βu(r) is calcu-
lated via approximate, numerical inversion of the target
correlation functions gT (r) and ST (q) at known particle
number density n. The reduced potential βu1(r) is then
used in a strictly two-dimensional (N, V, T ) Metropolis
Monte Carlo (MC) simulation from which the correlation
functions g1(r) and S1(q) are extracted. The differences
between gT (r) and g1(r) and between ST (q) and S1(q) are
the inputs for an iteration update rule by which the func-
tion βu1(r) is transformed into the next estimate βu2(r).
The latter serves as the reduced pair potential in a sec-
ond MC simulation, resulting in g2(r) and S2(q). This
sequence of potential adjustments and MC simulations
is continued until gn(r) and Sn(q) are indistinguishable
from gT (r) and ST (q), within the level of the stochastic
noise floor. At this point, βun(r) constitutes the output
of the IO–ZI (or the IBI) method.
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Both the initial seed βu1(r) and the iteration up-
date rule in IO–ZI rely on an approximation of the un-
known bridge function [21] in the Ornstein–Zernike in-
tegral equation formalism. Different bridge function ap-
proximations, also known as closure relations, constitute
different flavors of IO–ZI such as Iterative Hypernetted
Chain Inversion (IHNCI) which is based on the HNC
closure [22] or Iterative Percus-Yevick Inversion (IPYI),
based on the PY closure [14]. The IHNCI algorithm has
been published in Ref. [16], and the IPYI algorithm is
obtained if Eqs. (8) and (9) from Ref. [16] are replaced
by the equations

βu1(x) = ln [gT (x)− cT (x)]− ln [gT (x)]

and

βµi(x) = βui(x) + ln

[

gT (x) − cT (x)

gi(x) − ci(x)

]

+ ln

[

gi(x)

gT (x)

]

,

respectively. Here, x = rn1/d is the dimensionless par-
ticle center-to-center distance in terms of the mean geo-
metric particle distance n−1/d. The symbols µi(x) and
cT (x) denote the output of a single Picard iteration of the
IPYI algorithm and the target direct correlation func-
tion, respectively. The meaning of both these quantities
is discussed in great detail in Ref. [16] and will not be
repeated here for the sake of brevity.

The IHNCI and IPYI methods are surpassing the IBI
method in terms of accuracy of the converged solution for
the particle pair potential because the initial seed and the
iteration update rule in IBI are both based on the com-
paratively inaccurate approximation of the true pair po-
tential by the potential of mean force [21]. Moreover, the
IO–ZI methods make use of the information contained
in the Fourier-space functions ST (q) and Si(q) as well
as the real space functions gT (r) and gi(r), whereas the
IBI method relies on the real space information from the
radial distribution functions only.

The initial seed βu1(r) in IHNCI and IPYI is obtained
via inversion of the HNC and PY integral equations, re-
spectively. We will therefore use the notation HNC Inver-
sion (HNCI) and PY Inversion (PYI) for the numerical
schemes that are obtained when only the initialization
steps of IHNCI or IPYI are executed, and the subse-
quent MC simulations and iterative potential corrections
are omitted. The so-obtained PYI method has already
been used [11, 15] to calculate effective potentials of gran-
ular beads in vibrated quasi-two-dimensional cells, but
we are going to demonstrate in Sec. IV that the results
from PYI and HNCI are not reliable as they contain a
large systematic error. Effective potentials of granular
beads that have so far been published must therefore be
challenged and re-checked in every particular case.

As an additional technical comment, we note that
the necessary inverse Fourier (or Hankel) transform
F
−1 of the isotropic direct correlation function c̃(q)

from wavenumber space into the real-space function c(r)

should preferentially be carried out via the equation

c(x) = g(x)− 1− F
−1

{

[S(y)− 1]
2

S(y)

}

(x)

[16, 23], in which y = qn−1/d is a dimensionless wavenum-

ber, and where the Fourier integrand [S(y)− 1]
2
/S(y)

decays considerably quicker as a function of y than the
integrand c̃(y) in c(x) = F

−1 {c̃(y)} (x). A fast decay of
the Fourier integrand is a desirable feature as the corre-
lation functions are typically only known in very limited
ranges of the variables x and y. The Fourier transform
is most accurately and conveniently carried out in arbi-
trary dimension by virtue of Hamilton’s FFTLog algo-
rithm [24, 25], which is based on Talman’s original pub-
lication [26].
All IHNCI and IPYI runs reported here were carried

out with the generalized accelerated fixed-point iteration
method originally proposed by Ng [16, 27, 28]. The MC
simulations were performed on a graphics processing unit
with ensemble averaging over 256 statistically indepen-
dent systems, each containing 256 particles. While this
may appear to be a dangerously small particle number,
our results confirm that it is large enough to avoid sig-
nificant finite size effects on βu(r), g(r) and S(q). In
the validation and results sections III A and IV we will
observe that the functions g(r) and S(q) from our ’for-
ward direction’ MC simulations for twice the number of
(N = 512) particles are perfectly reproduced in the in-
verse MC runs with N = 256. The physical reason is
that the particle interactions are short ranged. Each one
of the IHNCI and IPYI runs reported in subsection III A
and in Sec. IV took ∼ 2 hours to complete. A HNCI or
PYI run requires less than a second of runtime.

A. Validation of IO–ZI for two-dimensional systems

Comprehensive validation tests of the IO–ZI method
in its IHNCI flavor have been reported in Ref. [16] for
systems with various types of particle pair potentials,
but in three spatial dimensions only. Before applying
IHNCI and IPYI in Sec. IV, we validate both methods
for the case of two-dimensional systems in the present
subsection.
Figure 2 features the results from the HNCI, IHNCI,

PYI and IPYI methods for four test cases in which
the target functions gT (r) and ST (q) are those of non-
overlapping hard disks in two dimensions, at packing
fractions φ = 0.3, 0.4, 0.5 and 0.6. The functions gT (r)
and ST (q) were calculated via Eqs. (1) and (2) in MC sim-
ulations of 512 disks with diameter σ, in two-dimensional
square simulation boxes with periodic boundary condi-
tions in both Cartesian directions. The interaction po-
tential u(r > σ) = 0 is represented by the horizontal red
lines in Fig. 2. Any deviation from these lines quantifies
an inaccuracy of the HNCI, IHNCI, PYI or IPYI method.
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Figure 2. (Color online) The HNCI (open pink circles), IHNCI
(filled pink circles), PYI (open blue diamonds) and IPYI
(filled blue diamonds) methods are tested in their capabilities
to reproduce the pair potential of hard disks in two dimensions
(red horizontal lines), at packing fractions φ = 0.3, 0.4, 0.5 and
0.6 (bottom panel to top panel).

Note that IHNCI and IPYI are considerably more accu-
rate than HNCI and PYI in all studied cases, with the
exception of the densest system at φ = 0.6, where IHNCI
fails dramatically. For all other systems at packing frac-
tions φ = 0.5 or less, the error of the converged reduced
potentials βu(r) from IHNCI and IPYI stays below, or
well below 0.1 for practically all particle distances r. As
one should expect, the IPYI method is more accurate
than the IHNCI method (and, likewise, PYI is more ac-
curate than HNCI) in the hard disk test cases. This is
due to the well-known fact that the PY closure is more
accurate for hard disks than the HNC closure [21].

For different interaction potentials, it is in general not

1 1.5 2 2.5r / σ

-0.5

0

-0.5

0

HNCI
IHNCI
PYI
IPYI
Test Potential

-0.5

0

0.5

βu
(r

)

φ = 0.4

φ = 0.5

φ = 0.6

0.5
-0.75

-0.75
0.5

-0.75

Figure 3. (Color online) Same as Fig. 2, but for a generic
freehand-curve test potential (red curves), and at the packing
fractions φ = 0.4, 0.5 and 0.6 (bottom panel to top panel).

known a priori which one of the two closures – HNC
or PY – is more accurate. We have therefore conducted
a set of three additional validation tests of IHNCI and
IPYI with two-dimensional systems at packing fractions
φ = 0.4, 0.5 and 0.6, where the potential to be repro-
duced was taken from a digitalized free-hand curve that
features strong repulsion at distances r < σ, an attrac-
tive region of maximum depth −0.5kBT in the region
σ < r < 1.25σ, and a quickly decaying, slightly repulsive
part at r > 1.25σ. The results of these tests are shown in
Fig. 3, where the red solid curves represent the test po-
tential. The target functions gT (r) and ST (q) for HNCI,
IHNCI, PYI and IPYI were extracted from MC simu-
lations of 512 particles in two-dimensional square simu-
lation boxes with periodic boundary conditions in both
Cartesian directions, and with interactions described by
the test potential. As a result, we note that IHNCI and
IPYI are considerably more accurate in reproducing the
test potential than HNCI and PYI, especially at the two
higher packing fractions φ = 0.5 and φ = 0.6.

The level of accuracy at which the target correlation
functions gT (r) and ST (q) are reproduced by the HNCI,
IHNCI, PYI and IPYI methods is demonstrated in Fig. 4,
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Figure 4. (Color online) Radial distribution functions g(r) and static structure factors S(q) of the systems at packing fraction
φ = 0.5, and with reduced potentials plotted in the central panel of Fig. 3. Red solid curves represent the target correlation
functions gT (r) and ST (q).

which features our results for the systems with reduced
potentials plotted in the central panel of Fig. 3: All four
inversion methods result in correlation functions g(r) and
S(q) that are nearly identical to gT (r) and ST (q), to a
level at which the functions are almost indistinguishable
within the stochastic noise floor of the simulation results.
Nevertheless, close observation of the correlation func-
tions (as in panels a, b, e and f of Fig. 4) reveals that
IHNCI is ever so slightly more accurate in reproducing
gT (r), ST (q) than HNCI is, and the same can be said
about IPYI and its relation to PYI. The minuscule dif-
ferences between the correlation functions from IHNCI
and HNCI, or between IPYI and PYI, are crucial, as
they translate into stark differences between the reduced
potentials. This is a manifestation of the low practical
usefulness of Henderson’s theorem [29] as discussed in
Refs. [16, 30]: In equilibrium fluids with pairwise addi-
tive particle interactions a bijective functional mapping
βu(r) ↔ [g(r), S(q)] is guaranteed to exist, but the map-
ping is highly nonli near in general. Large differences
in βu(r) may correspond to tiny differences in g(r) and
S(q) which complicates severely the calculation of βu(r)
from the correlation functions if these are only known
within a statistical error margin. This explains the severe
failure of simple methods such as HNCI or PYI. More
sophisticated methods such as IHNCI, IPYI, or alterna-
tive approaches such as pressure-corrected IBI [20, 30] or
multistate IBI [31] are required instead.
A few important characteristics of IHNCI and IPYI

can be observed in both Figs. 2 and 3: Both methods
are very accurate at small packing fractions and they
gradually loose accuracy when the packing fraction is in-
creased. The packing fraction at which any one of the
two methods starts to fail gravely can be estimated by
comparison with the respective other method. In other
words, for cases where IHNCI and IPYI predict similar
results, we have strong empirical evidence for the accu-
racy of both methods. In converse cases where the re-
sults of IHNCI and IPYI differ markedly, neither of the
two methods can be trusted. We make use of the reas-
suring comparison between IHNCI and IPYI throughout
the results section IV, where the effective potentials for

granular particles are calculated by both methods in all
cases.

IV. RESULTS

Figure 5 features the main results of the present pa-
per. The HNCI, IHNCI, PYI and IPYI results for the
reduced potentials βu(r) in nine two-dimensional equi-
librium systems are plotted. The input (or target) func-
tions gT (r) and ST (q) for the four inversion methods are
those that were obtained from our Granular Dynamics
simulations as described in Sec. II, for the restitution co-
efficients ǫ = 0.9, 0.7 and 0.5 and the packing fractions
φ = 0.2, 0.4 and 0.5. We have also conducted Granular
Dynamics simulations at φ = 0.6 but we refrain from
showing the results for the effective potentials here, as
each one of the four inversion methods is clearly failing
at φ = 0.6. Our observations in Fig. 5 are the following:

The HNCI and PYI results are in strong disagreement
with each other and with the IHNCI and IPYI results,
for all but the most dilute systems at φ = 0.2 (panels g, h
and i of Fig. 5). Both HNCI and PYI are thus unreliable
and should never be used in the determination of effective
interaction potentials.

Our PYI results for βu(r) at φ = 0.4 (panels d, e and
f of Fig. 5) resemble those in Fig. 4 of Ref. [15] as far as
the shape of the functions is concerned, but the reduced
potentials in Ref. [15] are more strongly attractive, with
a minimum value around −1 to −1.5, which is approxi-
mately three times deeper than the minima of our results
for βu(r) at φ = 0.4. We presume that the reason for this
quantitative disagreement might be a difference between
the particle-wall restitution coefficients ǫw of our Gran-
ular Dynamics simulations and those that were used in
Ref. [15]. If the value of ǫw was chosen smaller than our
value of ǫw = 0.9, then the effective, kinetic temperature
of the Granular beads in Ref. [15] can be expected to be
lower than in our case, which would be in line with a
larger value of β. Unfortunately we are not in the posi-
tion to test our presumption as the value of ǫw has not
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Figure 5. (Color online) Effective potentials for inelastic granular beads at packing fractions φ = 0.2 (bottom row of panels),
φ = 0.4 (central row of panels) and φ = 0.5 (top row of panels), and for restitution coefficients ǫ = 0.9 (left column of panels),
ǫ = 0.7 (central column of panels) and ǫ = 0.5 (right column of panels). Our results from the HNCI (open pink circles), IHNCI
(filled pink circles), PYI (open blue diamonds) and IPYI (filled blue diamonds) methods are shown. One-parametric functions
of the form α/r2 (black curves) have been fitted to the IHNCI results in the range 1.25 < r/σ < 4. The horizontal axis range
is 1 < r/σ < 4 is every panel, and the vertical axis range is varying by factors of 2 from the bottom row to the center row, and
from the center row to the top row of panels.

been reported in Ref. [15].

Our IHNCI and IPYI results are in close agreement
with each other, in all nine cases shown in Fig. 5, which
serves as a reassurance for the fidelity of both methods.
A non-trivial finding is that both IHNCI and IPYI are
converging in all nine cases, and that the target correla-
tion functions gT (r) and ST (q) of the out-of-equilibrium
granular systems are reproduced by the two methods (as
we have checked in every case). This implies that there is
indeed an equilibrium system with correlation functions

identical to those of the granular system in the entire
parameter range 0.2 ≤ φ ≤ 0.5 and 0.5 ≤ ǫ ≤ 0.9.

The effective potentials from IHNCI and IPYI are at-
tractive and follow a simple, monotonically increasing
and concave shape in all cases, with the exception of the
system at φ = 0.2 and ǫ = 0.9 in panel g of Fig. 5, where
a gentle upturn of the reduced potentials is observed at
very close particle proximity. We cannot be sure about
the statistical significance of that upturn and refrain from
over-interpreting it as a physical effect as it may just as



7

0 5 10 15 20 25q × σ
0

0.5

1

1.5

S(
q)

0 1 2 3 4r / σ
0

1

2
g(

r)
HNCI
IHNCI
PYI
IPYI
GD

5.5 6

1.4

1.5

1 1.1
1.75

2

2.25

φ = 0.4

ε = 0.7

Figure 6. (Color online) Radial distribution function (upper
panel) and structure factor (lower panel) for φ = 0.4 and ǫ =
0.7. Solid red curves are our Granular Dynamics (GD) results,
extracted from the simulations via Eqs. (1) and (2). The
corresponding effective potentials are plotted in the central
panel of Fig. 5.

well be a numerical artifact. That the effective inter-
actions are attractive is physically quite intuitive: In a
steady state with vanishing average particle currents, the
normal velocity restitution causes an increase in particle
number density around any tagged particle, as it is also
caused by attractive interactions in the effective equilib-
rium system with the same particle correlation functions.

The correlation functions for the system at φ = 0.4,
ǫ = 0.7 (central panel ‘e’ in Fig. 5, also featured in Fig. 1)
are shown in Fig. 6, where an upturn of S(q) at small
values of q supports our finding of attractive effective
interactions, and g(r < σ) ≪ 1 signals that the granular
system is indeed nearly perfectly two-dimensional.

Figure 7 repeats all the converged IHNCI potentials
from Fig. 5 as black circles filled in gray. Every panel of
Fig. 7 is for one of the three packing fractions φ = 0.2, 0.4
and 0.5, as indicated in the panels a – c. The panels con-
tain the results for three different restitution coefficients
ǫ = 0.5, 0.7 and 0.9 in an overlaid manner, such that the
spread among the symbols of equal type indicates the
difference between the results for equal packing fraction
and for varying coefficient of restitution. While the data
for different ǫ appear to follow the same functional form
(within statistical scatter), the observed vertical spread
among the black/gray circles indicates that different val-
ues of ǫ correspond to different values of the effective
inverse thermal energy β. Keeping in mind that all our
data are for equal intensities of vertical shaking, this ap-
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ε = 0.5, 0.7, 0.9

ε = 0.5, 0.7, 0.9

ε = 0.5, 0.7, 0.9

Figure 7. (Color online) Black circles filled in gray: Converged
IHNCI potentials from Fig. 7. Pink circles: The same data,
rescaled with respect to the effective granular temperature
and the effective inverse thermal energy β∗, as described in
the main text. Every panel is for one packing fraction φ. The
results for different restitution coefficients ǫ, corresponding to
different values of β∗, are overlaid in the panels. The vertical
spread among the data narrows upon effective temperature
rescaling.
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Figure 8. (Color online) Circles: Absolute value of the re-
duced effective IHNCI potential for φ = 0.2, ǫ = 0.5 (as
in panel i of Fig. 5) on a double logarithmic and a linear-
logarithmic scale (inset). Red dashed curve: Two-parametric
fit in which both the prefactor and the exponent were allowed
to vary. Black solid curve: One-parametric fit with fixed ex-
ponent of −2, where only the prefactor was adjusted.

parent spread in effective granular temperature is in line
with the intuitive picture in which different restitution
coefficients ǫ correspond to different amounts of kinetic
energy dissipation in the steady state.

As wee have checked, the distributions of the Carte-
sian velocity components parallel to the confining plates
are nearly Maxwellian, with slight deviations from the
Maxwellian form for very slow and very fast velocities.
This is in line with the observations that have been re-
ported in several instances in the literature [32, 33].

An effective granular temperature was determined for
each of the cases displayed in Figs. 5, 7, by fitting the
Cartesian velocity histograms from our Granular Dynam-
ics simulations to Maxwellian (Gaussian) functions, us-
ing the variance σ(φ, ǫ) of the distribution for each given
pair of values (φ, ǫ) as a fit parameter. Assuming that the
so-determined velocity variance is proportional to an ef-
fective granular Temperature, we have rescaled the data
with prefactors β∗(φ, ǫ) = β(φ, ǫ) × σ(φ, ǫ)/σ(φ, ǫ = 0.5).
That is: we have scaled all data for equal φ and different
ǫ to the effective granular temperature that corresponds
to ǫ = 0.5. The results can be observed in Fig. 7 as
the pink symbols, the spread among which is consider-
ably less than the spread among the black/gray symbols,
especially for the two higher packing fractions φ = 0.4
and 0.5 (panels b and a of Fig. 7, respectively). This
confirms that σ(φ, ǫ) is a good measure for an effective
granular temperature. It also supports the conceptual
idea of fitting the out-of-equilibrium, steady state parti-
cle pair correlations with those of equilibrium systems,
as it is done in the IO–ZI methods.

The observed simple shapes of βu(r) in Fig. 5 encour-

age an attempt to determine the functional form of the
potential, at least for the most dilute case φ = 0.2. To
this end, in Fig. 8 we are plotting the absolute value of
βu(r) from IHNCI, for φ = 0.2, ǫ = 0.5 (as in panel i
of Fig. 5) on a double logarithmic scale and on a linear-
logarithmic scale (inset of Fig. 8). An exponential form
of the potential is ruled out by the linear-logarithmic
plot, where the IHNCI results exhibit a significant non-
zero curvature. The double logarithmic plot reveals
that the IHNCI result is compatible with the power law
βu(r) = α r−2, with a single adjustable parameter α. If
the exponent in the power law is allowed to vary in a
non-linear regression-like fit, then an optimal exponent
of −1.97 is obtained, providing strong support for the
hypothesized exponent of −2. In default of an analytical
theory for the shape of the potential, we do not want to
over-interpret the results in Fig. 8 by stating that the
effective potential is truly of the form βu(r) = α r−2.
We merely report that our data is compatible with such
a power law, and that the theoretical justification or fal-
sification of the power law is a rewarding task for future
studies.

V. CONCLUSIONS

Our successful application of IO–ZI in its two flavors
IHNCI and IPYI demonstrates that the particle correla-
tion functions in quasi-two-dimensional vibrated granular
systems can be mapped onto those of an equivalent, truly
equilibrium system in a wide range of granular packing
fractions and restitution coefficients. The resulting effec-
tive interaction potentials exhibit a simple shape that is
in line with intuitive physical arguments. At low pack-
ing fraction, there is strong empirical evidence for the
one-parametric power-law form βu(r) = α r−2 of the ef-
fective potential. Additional analytical-theoretical work
is required to support or falsify the validity of the sug-
gested power-law form of βu(r). The simple HNCI and
PYI methods should not be used in the determination of
(effective) particle interaction potentials as the results of
these methods suffer from great systematic errors unless
the particle packing fraction is very small. Our work in-
cludes the first reported validation of IHNCI and IPYI
for two-dimensional systems. Both methods are awaiting
further applications in two- and three-dimensional gran-
ular, molecular and Brownian systems.
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Molinari, Phys. Rev. E 94, 032903 (2016).

[16] M. Heinen, J. Comput. Chem. (2018), 10.1002/jcc.25225.

[17] J. A. Perera-Burgos, G. Pérez-Ángel, and Y. Nahmad-
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