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Abstract

This paper presents a topology optimization method in rarefied gas flow problems to obtain the optimal
structure of a flow channel as a configuration of gas and solid domains. In this paper, the kinetic equation,
the governing equation of rarefied gas flows, is extended over the entire design domain including solid
domains assuming the solid as an imaginary gas for implicitly handling the gas-solid interfaces in the
optimization process. Based on the extended equation, a 2D flow channel design problem is formulated, and
the design sensitivity is obtained based on the Lagrange multiplier method and adjoint variable method.
Both the rarefied gas flow and the adjoint flow are computed by a deterministic method based on a finite
discretization of the molecular velocity space, rather than the DSMC method. The validity and effectiveness
of our proposed method are confirmed through several numerical examples.

Keywords: Topology Optimization, Rarefied Gas Flow, Boltzmann Equation, BGK Equation, Sensitivity
Analysis

1. Introduction

A rarefied gas is a gas whose mean free path is not negligible compared to the scale of the flow like a low-
pressure gas or gas in small systems. The behavior of rarefied gas flows cannot be correctly described by the
Navier-Stokes (NS) equation. It should be described by the Boltzmann equation, based on the molecular gas
dynamics. Rarefied gas flows have a unique property that steady flows can be induced by thermal gradients5

even without external forces. There are several devices utilizing this property, including the Knudsen pump
proposed by Knudsen in 1910. The Knudsen pump needs no moving parts since its driving force is thermal
gradients. From this advantage and the recent improvement of microfabrication techniques, the pump is
expected to be applied as a micro-pump [1, 2]. It is also indicated that the Knudsen pump can be used as
a gas separator [3] because of the difference of the transport rate of each gas species in rarefied gas regime.10

Besides, the force produced by a thermal gradient in a rarefied gas can be used in sensors [4] and actuators
[5].

However, the structures of these devices using rarefied gas flows are limited to relatively simple structures
and do not necessarily provide their maximum performance. One possible approach to tackle this problem
is the introduction of structural optimization methods. Structural optimization enables us to design devices15

based on mathematical and physical principles, which ensures the improvement of the target performance
and leads to the reduction of the design period.

Structural optimization methods are usually categorized into three types: sizing [6, 7], shape [8, 9] and
topology optimization [10, 11]. Among them, topology optimization is known to have the highest degree
of design freedom because it allows structures to change not only the shape of their boundaries but also20
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the number of inner holes. In topology optimization, a structural optimization problem is replaced with a
material distribution problem, where a structure is expressed as a distribution of the presence or absence of
the material in a design domain. Bendsøe and Kikuchi first presented the homogenization design method in
order to solve this material distribution problem in topology optimization [10]. Density methods [12, 13] are
another widely used topology optimization method, where a normalized density is considered as a design25

variable. In addition, level set-based approaches [14, 15, 16] have also attracted attention.
Topology optimization developed mainly for structural mechanics problems in its beginning, for example,

stiffness maximization problems [10, 12, 13, 14, 15], eigenfrequency problems [17, 18] and compliant mech-
anism problems [16, 19, 20]. It has since been applied to other physics problems, such as thermal problems
[21, 22], electromagnetic wave problems [23] and fluid dynamics problems.30

In the fluid dynamics field, Borrvall and Peterssom pioneered topology optimization for Stokes flows
based on the density method [24]. They succeeded in obtaining optimal channel structures for minimization
problems of energy dissipation. In particular, the whole design domain is considered to be composed of a
porous medium, and fluid and solid domains are represented as the parts with high and low permeability,
respectively. This method makes it possible that no-slip boundary conditions are implicitly satisfied on the35

fluid-solid interfaces. Their work was then extended for steady-state incompressible NS flows [25, 26] and
unsteady incompressible NS flows [27]. In addition, topology optimization has been applied to developments
of fluidic devices [25, 28, 29, 30]. Furthermore, topology optimization methods for multiphysics problems,
such as fluid-structure [31], fluid-electric [32], fluid-thermal [33] and electric-fluid-thermal-structure problems
[34], have been also proposed. As is the case of density methods, level set-based approaches have been applied40

to topology optimization in fluid dynamics problems [35, 36, 37, 38].
While the above studies used the finite element method (FEM) for the analysis of flow fields, there

are also studies using other analysis methods, such as the finite volume method (FVM) [39] and the lattice
Boltzmann method (LBM). LBM is an analysis method to obtain the solution of the NS equations by solving
a partial difference equation similar to the Boltzmann equation. It is getting more popular because of its45

suitability for parallel computing and no need of analyzing the Poisson equation for pressure [40, 41, 42].
In topology optimization methods using LBM, several approaches have been proposed to approximate the
no-slip boundary condition on the fluid-solid interfaces. The popular approach is the introduction of the
porosity model, implemented by the replacement of the flow velocity with the one depending on the design
variable [43, 44, 45, 46] or the addition of the fictitious force [47].  Laniewski-Wo l lk and Rokicki presented the50

method compatible with the multiple GPU computation, based on this approach [48]. As another approach,
Nørgaard et al. used the partial bounce-back model [49]. However, all of the above studies, even ones using
LBM, target only fluid whose mean free path is negligibly small as compared to the system length.

Therefore, a topology optimization method in rarefied gas flow problems is proposed and applied to design
problems of a 2-D flow channel. In this method, the gas-solid interfaces, namely the wall of the channel,55

are implicitly handled through the extension of the kinetic equation in analogy with topology optimization
using LBM based on the porosity model. The derivation of the design sensitivity based on the extended
equation have also been presented in those previous studies. To follow the procedures of computing the
design sensitivity in those, a deterministic numerical method based on the discretized molecular velocity
space in rarefied gas flow analyses is adopted, rather than the Direct Simulation Monte Carlo (DSMC)60

method [50], a well-known stochastic method.
In the following sections, the Boltzmann equation and its model equation are briefly described at first.

Then, the topology optimization method we use in this study is outlined. Next, the optimization problem
is formulated and the numerical implementation is described. Finally, through several numerical examples,
the validity and usefulness of our proposed method are confirmed.65

2. Boltzmann equation

The Boltzmann equation describes the behavior of velocity distribution function f̂(t̂, x̂, ζ̂) as below:

∂f̂

∂t̂
+ ζ̂ · ∇̂f̂ = C(f̂), (1)
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where t̂ ∈ R+ is the time, x̂ ∈ R3 is position vector, ζ̂ ∈ R3 is molecular velocity vector and C(f̂) denotes
the collision term. Since the collision term incurs a severe computational cost, several kinetic equations that
simplify the collision term have been proposed. Among them, the following Bhatnagar-Gross-Krook (BGK)
equation [51] is widely used:

∂f̂

∂t̂
+ ζ̂ · ∇̂f̂ = −1

τ̂

(
f̂ − f̂ eq(ρ̂, û, T̂ )

)
, (2)

f̂ eq(ρ̂, û, T̂ ) =
ρ̂

(2πRT̂ )3/2
exp

(
−∥ζ̂ − û∥2

2RT̂

)
, (3)

where τ̂ is the mean free time, R is the gas constant and f̂ eq is the local equilibrium distribution function.
The macroscopic physical quantities such as density ρ̂, flow velocity û and temperature T̂ are calculated as
moments of the velocity distribution function:

ρ̂ =

∫
R3

f̂ dζ̂, û =
1

ρ̂

∫
R3

ζ̂f̂ dζ̂, T̂ =
1

3Rρ̂

∫
R3

∥ζ̂ − û∥2f̂ dζ̂. (4)

In this study, the BGK equation is made dimensionless as follows:

Sh
∂f

∂t
+ ζ · ∇f = − 2√

π

ρ

Kn
(f − f eq(ρ,u, T )) , (5)

f eq(ρ,u, T ) =
ρ

(πT )3/2
exp

(
−∥ζ − u∥2

T

)
, (6)

ρ =

∫
R3

f dζ, u =
1

ρ

∫
R3

ζf dζ, T =
2

3ρ

∫
R3

∥ζ − u∥2f dζ, (7)

where each quantity is made dimensionless as follows using the reference time t0, length L, density ρ0,
temperature T0 and the most probable velocity of gas molecules, c =

√
2RT0 :

t =
t̂

t0
, x =

x̂

L
, ζ =

ζ̂

c
, f =

f̂

ρ0/c3
, f eq =

f̂ eq

ρ0/c3
, ρ =

ρ̂

ρ0
, u =

û

c
, T =

T̂

T0
. (8)

In Eq. (5), there are two dimensionless parameters: the Strouhal number, Sh, and the Knudsen number, Kn.
The Strouhal number is the ratio of time scale between gas molecules and the system, that is, Sh = (L/c)/t0.
The Knudsen number is the ratio of mean free path and system length, and defined as Kn = (2/

√
π)cτ0/L,

where τ0 is the mean free time when ρ̂ = ρ0. For the following optimization problem, k is set as (
√
π/2)Kn.70

3. Optimization problem

3.1. Topology optimization

The key idea of topology optimization is the replacement of a structural optimization problem with
a material distribution problem, by introducing a fixed design domain, D, and a characteristic function,
χ ∈ L∞(D ; {0, 1}). In flow channel design problems, the fluid (gas) domain Ω and the solid domain D \ Ω
are usually expressed as shown in Fig. 1, where the characteristic function χ is defined as follows:

χ =

{
1 if x ∈ Ω

0 if x ∈ D \ Ω.
(9)

The numerical treatment of this characteristic function is difficult because it can take 0 and 1 in infinitesimal
regions repeatably. Various methods to overcome this difficulty have been proposed. Density methods, one
type of these methods, are based on the convexification of the optimization problem.75
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Figure 1: Conceptual schematic of topology optimization. A channel structure Ω is represented by the distribution of charac-
teristic function χ in the design domain D, which contains the whole channel.

In density methods, the characteristic function χ ∈ L∞(D ; {0, 1}) is replaced with the normalized density,
γ ∈ L∞(D ; [0, 1]), which makes the design space of topology optimization convex. The convexification allows
the existence of the grayscale regions, namely the intermediate state between the fluid and solid. Thus, a
grayscale region usually implies that a porous medium can effectively work there, while it is often difficult
for optimal structures including grayscale regions to be applied to actual product designs. To decrease80

grayscale area in the obtained optimal structures, various density-based topology optimization methods
have been developed.

Among them, the density method based on a Heaviside projection with a PDE-based filter [52] is used
in this work. According to this method, a scalar function, ϕ ∈ L∞(D ; [−1, 1]), is introduced as a design
variable at first. Then, the design variable ϕ is regularized to decrease numerical instabilities, using the
following Helmholtz PDE:

−ω2∆φ+ φ = ϕ, (10)

where ω is a parameter adjusting the filter radius and φ is the filtered variable. The normalized density γ
is finally defined as a smoothed Heaviside variable with the filtered variable φ as follows:

γ(φ) =


0 if − 1 ≤ φ < −w
1
2 + 15

16 (φ
w ) − 5

8 (φ
w )3 + 15

16 (φ
w )5 if − w ≤ φ ≤ w

1 if w < φ ≤ 1

, (11)

where w is the transition width from 0 to 1.

3.2. Extension of BGK equation

In topology optimization for NS flow problems, a fixed design domain is often considered to be composed85

of a porous medium so that fluid and solid domains can both be represented as the difference of their
permeabilities, as proposed by Borravall and Petersson [24]. Based on Darcy’s law, the fixed design domain
is subjected to a fictitious force, −α(γ)u, where α(γ) is the inverse permeability. The fluid domains are
represented as the domain with infinite permeability, so that α(1) = 0, while solid domains are represented
as the domain with zero permeability, so that α(0) → ∞. When solving the NS equation with this force90

term included, a no-slip boundary condition is implicitly imposed on the fluid-solid interfaces. This method
is efficient since it does not require cumbersome procedures of extracting the interfaces to impose boundary
conditions at each optimization step.

However, the diffuse-reflection boundary condition to the velocity distribution function f , not the no-slip
boundary condition to the flow velocity u, is required on the gas-solid interfaces for the target problems
in this work. To approximate the flow state with the diffuse-reflection boundary condition imposed on the
interfaces, a similar formulation to those in several previous studies proposing topology optimization using
LBM [43, 46], where the flow field is extended to solid domains, is constructed. Only the flow velocity in
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the solid domains is replaced with 0 based on the porosity model in those studies, while, in the proposed
method, the temperature and Knudsen number in solid domains are additionally replaced as follows:

Sh
∂f

∂t
+ ζ · ∇f = − ρ

kγ
(f − f eq (ρ,uγ , Tγ)) , (12)

with

1

kγ
= γ(

1

k
− 1

ks
) +

1

ks
,

uγ(u, γ) =
γ(1 + q)

γ + q
u ,

Tγ(T, γ) =
γ(1 + q)

γ + q
(T − Ts) + Ts ,

where q is a parameter for controlling the curvature of uγ and Tγ with respect to γ, ks is a small value and
Ts is the temperature of the solid. The Knudsen number in the solid domains can be determined through95

some preliminary numerical confirmation before the optimization calculation. This formulation implies that
solid is treated as an imaginary gas at temperature Ts that immediately evolves to a static equilibrium state
due to the small Knudsen number. Suitability of the above extension will be assessed numerically in Sec. 5.1.

Multiplying Eq. (12) by [1, ζ, ∥ζ∥2], respectively, then integrating each of them over entire velocity space
R3, the following three equations are obtained:

Sh
∂ρ

∂t
+ ∇ · (ρu) = 0 , (13)

Sh
∂(ρu)

∂t
+ ∇ ·

(
1

2
p + ρu⊗ u

)
= ρF , (14)

Sh
∂

∂t

(
ρ

(
3

2
T + ∥u∥2

))
+ ∇ ·

(
ρu

(
3

2
T + ∥u∥2

)
+ pu + q

)
= ρQ , (15)

with

F = − ρ

kγ

(
1 − γ(1 + q)

γ + q

)
u , (16)

Q = − ρ

kγ

(
3

2

(
1 − γ(1 + q)

γ + q

)
(T − Ts) +

(
1 −

(
γ(1 + q)

γ + q

)2
)
∥u∥2

)
, (17)

where p is the dimensionless stress tensor and q is the dimensionless heat-flow vector, defined by

p = 2

∫
R3

(ζ − u) ⊗ (ζ − u)fdζ, q =

∫
R3

(ζ − u)∥ζ − u∥2fdζ .

Eq. (13) is the continuity equation, which implies that there is no mass flux on the gas-solid interfaces in the
design domain. To explain this in detail, let us introduce a design domain D including a gas-solid interface
Γgs, as shown in Fig. 2. The design domain D can be divided into finite domains ωi (i = 1, ..., I) such that
D = ∪I

i=1ωi. The continuity equation holds everywhere in the design domain, so that the integration of the
left-hand side of the continuity equation over the domain ωl which includes a part of Γgs also becomes 0, as
follows:

0 =

∫
ωl

∇ · (ρu) dD =

∫
ωgas

∇ · (ρgug) dD +

∫
ωsolid

∇ · (ρsus) dD

= −
∫
∂ωgas

ρgug · ngdΓ −
∫
∂ωsolid

ρsus · nsdΓ

= −
∫
Γl

ρgug · ngdΓ −
∫
∂ωgas\Γl

ρgug · ngdΓ −
∫
∂ωsolid

ρsus · nsdΓ ,
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Figure 2: Schematic of a fixed design domain D divided into finite domains ωi (i = 1, ..., I).

where ωl = ωgas ∪ ωsolid, ωgas and ωsolid are the gas and solid domains, respectively, and Γl = Γgs ∩ ωl. The
quantities in ωgas are denoted with the superscript g, and those in ωsolid are denoted with the superscript
s. In the last line, the second term is canceled because the boundary integral on ∂ωgas \Γl with the normal
vector pointing the opposite direction appears in the integration of the neighboring domains which share
the boundary. The last term disappears since the flow velocity us approaches 0. In the result, only the first
term remains. Since ωl can be sufficiently small, the following relation holds:

ρgug · ng = 0 almost everywhere on Γgs ,

which is the zero mass flux condition that the flows on the gas-solid interfaces should satisfy. In addition, in
the solid domain, the velocity distribution function f(t,x, ζ) approaches the static equilibrium distribution100

function with temperature Ts, owing to the small Knudsen number. If (ζ · ng) > 0, the profile is advected
to the gas domain, so that f(t,x, ζ)|(ζ·ng)>0 at the nearest nodes to the interfaces in the gas domain results
in having a similar profile to the static equilibrium distribution function.

On the other hand, Eqs. (14) and (15) are equations for conservation of momentum and energy if
γ = 1. Otherwise, Eq. (14) implies that a fictitious force is imposed on solid domains in macroscopic view105

as existing methods for NS flow problems, and ρ
kγ

(
1 − γ(1+q)

γ+q

)
is equivalent to α(γ) in those methods.

Similarly, Eq. (15) implies that a fictitious heat generation or absorption occurs in solid domains.
The approximation of other boundary conditions, e.g. specular boundary condition and Cercignani-

Lampis-Lord boundary condition, should also be considered, yet it is not discussed in this work and requires
further research.110

3.3. Introduction of marginal distribution functions

In this work, 2-D design problems for flow channels are considered. It implies that a cross-section
of a channel with infinite depth along the x3 axis is designed. Therefore it is assumed that all physical
quantities are constant along the x3 axis and the flow velocity u3 maintains a null value. Moreover, based
on Chu’s method [52], ζ3 can be removed from the BGK equation (12) by introducing the following marginal
distribution functions, f1 and f2:

f1(t, x1, x2, ζ1, ζ2) =

∫ ∞

−∞
f(t, x1, x2, ζ1, ζ2, ζ3)dζ3, (18)

f2(t, x1, x2, ζ1, ζ2) =

∫ ∞

−∞
ζ23f(t, x1, x2, ζ1, ζ2, ζ3)dζ3. (19)

Specifically, multiplying the BGK equation by 1 and ζ23 and integrating the results over the space of ζ3
(−∞,∞), respectively, two similar equations, namely the governing equations of the marginal distribution
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functions, are obtained as follows:

Sh
∂f

∂t
+ (ζ · ∇)f = − ρ

kγ
(f − f eq (ρ,uγ , Tγ)) , (20)

f eq (ρ,uγ , Tγ) =

[
1

Tγ/2

]
ρ

πTγ
exp

(
−∥ζ − uγ∥2

Tγ

)
, (21)

ρ =

∫
R2

a1 · fdζ, u =
1

ρ

∫
R2

ζ(a1 · f)dζ, T =
2

3ρ

∫
R2

(∥ζ − u∥2a1 + a2) · fdζ, (22)

with

f =

[
f1
f2

]
, a1 =

[
1
0

]
, a2 =

[
0
1

]
. (23)

It is noted that all physical vector quantities, such as x, ζ and u, belong to R2.

3.4. Optimization problem formulation

An optimization problem for a flow channel design with a volume constraint is formulated. The per-
formance of the flow channel is evaluated in the evaluation domain Ωe, on the inlet Γin and on the outlet
Γout as shown in Fig. 3, during the period Θ = [ti, tf ], using macroscopic quantities ρ, u and T . The
evaluation domain is defined as the non-design domain where the design variable does not vary. Therefore,

Inlet

Outlet

Wall

Rarefied gas

Solid

Figure 3: Domain settings and boundary conditions.

the optimization problem is described as

inf
ϕ

J =

∫
Θ

∫
Ωe

je(ρ,u, T )dDdt+

∫
Θ

∫
Γin

jin(ρ,u, T )dΓdt+

∫
Θ

∫
Γout

jout(ρ,u, T )dΓdt, (24)

subject to V − Vmax ≤ 0 , (25)

where J is the objective functional, V is the area of rarefied gas domains and Vmax is the upper limit of
the area. To make the description general, the functions je, jin and jout are used as the integrands of the
objective functional. The rarefied gas flow is described by the following initial-boundary value problem:

Sh
∂f

∂t
+ (ζ · ∇)f = − ρ

kγ
(f − f eq (ρ,uγ , Tγ)) in Θ ×D × R2, (26)

f(ti,x, ζ) = f0 in D × R2, (27)

f = f eq (σw,0, Tw) in Θ × Γw × R2
+ , (28)

f = f eq (σin,0, Tin) in Θ × Γin × R2
+ , (29)

f = f eq (σout,0, Tout) in Θ × Γout × R2
+ , (30)
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where

σw = −2

√
π

Tw

∫
R2

−

(ζ · n)(a1 · f)dζ , (31)

σin =
2

ū · n−
√
Tin/π

∫
R2

−

(ζ − ū) · n (a1 · f) dζ , (32)

σout = 2

(
ρ̄−

∫
R2

−

a1 · fdζ

)
. (33)

Eq. (27) represents the initial condition. In Eqs. (28)–(30), which define the boundary conditions, the
velocity space R2

± = {ζ ∈ R2|ζ · n ≷ 0} and n indicates the normal unit vector directed inward on the115

boundaries. Eq. (28) is the diffuse-reflection condition representing static walls at temperature Tw. Eqs. (29)
and (30) express the inlet boundary condition prescribing the flow velocity as ū and the outlet boundary
condition prescribing the density as ρ̄, where the gas outside the fixed design domain is assumed to be in a
static equilibrium state at temperature Tin and Tout, respectively.

4. Numerical implementation120

Here, the optimization algorithm is firstly explained. Then, the outline of the sensitivity analysis, which
is written in detail in Appendix A, is described. Finally, the details of the flow field analysis in this study
are explained.

4.1. Optimization algorithm

The optimization algorithm of the proposed method is as below:125

Step 1. The design variable ϕ is initialized.

Step 2. The normalized density γ is calculated through Eqs. (10) and (11).

Step 3. The initial boundary value problem (26)–(30) is solved based on a finite difference method until the
steady state is achieved. The details of this analysis are described in Sec. 4.3.

Step 4. If the objective functional J is converged, the optimization is finished. Otherwise, the adjoint initial130

boundary value problem described later is solved.

Step 5. The design sensitivity is calculated.

Step 6. The design variable is updated using the method of moving asymptotes (MMA) [53]. After that,
the procedure is returned to Step 2.

The convergence of the objective functional is judged by satisfying the following condition twice in a
row:

|J (nopt) − J (nopt−1)|
|J (nopt)|

< εopt , (34)

where the superscript nopt is the iteration number of the optimization loop and εopt represents the judgment135

criterion.

4.2. Sensitivity analysis

In this section, the sensitivity analysis based on the Lagrange multiplier method and the adjoint vari-
able method is described. At first, the governing equation, initial condition and boundary conditions are
considered as the equality constraints of the optimization problem, and the problem is replaced with an
unconstrained problem using the Lagrange multiplier method as follows:

inf
γ

L = J +G+ I +Bw +Bin +Bout +MD +MB + µ(V − Vmax),

8



where

J =

∫
Θ

∫
Ωe

je(ρ̃, ũ, T̃ )dDdt+

∫
Θ

∫
Γin

jin(ρ̃, ũ, T̃ )dΓdt+

∫
Θ

∫
Γout

jout(ρ̃, ũ, T̃ )dΓdt, (35)

G =

∫
Θ

∫
D

∫
R2

g̃ ·

(
Sh
∂f̃

∂t
+ (ζ · ∇)f̃ +

ρ̃

kγ
(f̃ − f eq(ρ̃, ũγ , T̃γ))

)
dζdDdt, (36)

I =

∫
D

∫
R2

g̃0 ·
(
f̃(ti,x, ζ) − f0

)
dζdD, (37)

Bw =

∫
Θ

∫
Γw

∫
R2

+

g̃w ·
(
f̃ − f eq (σ̃w,0, Tw)

)
dζdΓdt

+

∫
Θ

∫
Γw

s̃w

(
σ̃w + 2

√
π

Tw

∫
R2

−

(ζ · n)(a1 · f̃)dζ

)
dΓdt, (38)

Bin =

∫
Θ

∫
Γin

∫
R2

+

g̃in ·
(
f̃ − f eq (σ̃in,0, Tin)

)
dζdΓdt

+

∫
Θ

∫
Γin

s̃in

σ̃in − 2

ū · n−
√

Tin

π

∫
R2

−

(ζ − ū) · n(a1 · f̃)dζ

 dΓdt, (39)

Bout =

∫
Θ

∫
Γout

∫
R2

+

g̃out ·
(
f̃ − f eq (σ̃out,0, Tout)

)
dζdΓdt

+

∫
Θ

∫
Γout

s̃out

(
σ̃out − 2

(
ρ̄−

∫
R2

−

a1 · f̃dζ
))

dΓdt, (40)

MD =

∫
Θ

∫
D

r̃D

(
ρ̃−

∫
R2

a1 · f̃dζ
)
dDdt+

∫
Θ

∫
D

ṽD ·
(
ũ− 1

ρ̃

∫
R2

ζ(a1 · f̃)dζ

)
dDdt

+

∫
Θ

∫
D

θ̃D

(
T̃ − 2

3ρ̃

∫
R2

(∥ζ − ũ∥2a1 + a2) · f̃dζ
)
dDdt, (41)

MB =

∫
Θ

∫
∂D

r̃B

(
ρ̃−

∫
R2

a1 · f̃dζ
)
dDdt+

∫
Θ

∫
∂D

ṽB ·
(
ũ− 1

ρ̃

∫
R2

ζ(a1 · f̃)dζ

)
dDdt

+

∫
Θ

∫
∂D

θ̃B

(
T̃ − 2

3ρ̃

∫
R2

(∥ζ − ũ∥2a1 + a2) · f̃dζ
)
dDdt, (42)

V =

∫
D

γ dD, (43)

where Ψ̃st = {f̃ , ρ̃, ũ, T̃ , σ̃w, σ̃in, σ̃out} are variables used in the Lagrangian and Ψ̃ad = {g̃, g̃0, g̃w, s̃w, g̃in, s̃in, g̃out, s̃out, r̃D, ṽD, θ̃D, r̃B , ṽB , θ̃B}
are the Lagrange multipliers. Besides, the notations ũγ = uγ(ũ, γ) and T̃γ = Tγ(T̃ , γ) are introduced for
the simple description.140

The Lagrangian should satisfy the following necessary conditions at the optimal result:

dL(ψ̃ad; δψ̃ad) = 0 for ψ̃ad ∈ Ψ̃ad , (44)

dL(ψ̃st; δψ̃st) = 0 for ψ̃st ∈ Ψ̃st . (45)

The optimal conditions for Lagrange multipliers (44) coincide with the initial-boundary value problem (26)–
(30). On the other hand, the optimal conditions for the variables (45) result in the following adjoint
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initial-boundary value problem:

− Sh
∂g

∂t
− (ζ · ∇)g = − ρ

kγ
(g − geq (ρad,uad, Tad)) in Θ ×D × R2, (46)

g(tf ,x, ζ) = 0 in D × R2, (47)

g = 2sw

√
π

Tw
a1 in Θ × Γw × R2

− , (48)

(ζ · n)g = − 2sin (ζ − ū) · n
ū · n−

√
Tin/π

a1 − geq(rB ,vB , θB) in Θ × Γin × R2
− , (49)

(ζ · n)g = 2souta1 − geq(rB ,vB , θB) in Θ × Γout × R2
− , (50)

where

geq(r,v, θ) = ra1 +
1

ρ
(ζ · v)a1 +

2θ

3ρ
(∥ζ − u∥2a1 + a2),

ρad =
kγ
ρ
rD =

{
− 1

ρ

∫
R2 g ·

(
f − 2f eq

γ

)
dζ − 1

ρ (uad · u) − 1
ρTadT in Θ ×D \ Ωe

− 1
ρ

∫
R2 g ·

(
f − 2f eq

γ

)
dζ − 1

ρ (uad · u) − 1
ρTadT − kγ

ρ
∂je
∂ρ in Θ × Ωe

,

uad =
kγ
ρ
vD =

{
2
Tγ

γ(1+q)
γ+q

∫
R2(g · f eq

γ )(ζ − u)dζ in Θ ×D \ Ωe

2
Tγ

γ(1+q)
γ+q

∫
R2(g · f eq

γ )(ζ − u)dζ − kγ

ρ
∂je
∂u in Θ × Ωe

,

Tad =
kγ
ρ
θD =


1
Tγ

γ(1+q)
γ+q

∫
R2 g ·

(
f eq
γ

∥ζ−ũγ∥2

Tγ
− (a1 ⊗ a1)f eq

γ

)
dζ in Θ ×D \ Ωe

1
Tγ

γ(1+q)
γ+q

∫
R2 g ·

(
f eq
γ

∥ζ−ũγ∥2

Tγ
− (a1 ⊗ a1)f eq

γ

)
dζ − kγ

ρ
∂je
∂T in Θ × Ωe

,

rB =

{
−∂jin

∂ρ − 1
ρ (vB · u) − 1

ρθBT in Θ × Γin

−∂jout

∂ρ − 1
ρ (vB · u) − 1

ρθBT in Θ × Γout

,

vB =

{
−∂jin

∂u in Θ × Γin

−∂jout

∂u in Θ × Γout

,

θB =

{
−∂jin

∂T in Θ × Γin

−∂jout

∂T in Θ × Γout

,

sw =
1

σw

∫
R2

+

(ζ · n)
(
g · f eq (σw,0, Tw)

)
dζ in Θ × Γw ,

sin =
1

σin

∫
R2

+

(
(ζ · n)g + geq(rB ,vB , θB)

)
· f eq (σin,0, Tin) dζ in Θ × Γin ,

sout =
1

σout

∫
R2

+

(
(ζ · n)g + geq(rB ,vB , θB)

)
· f eq(σout,0, Tout)dζ in Θ × Γout ,

with the notation f eq
γ = f eq(ρ,uγ , Tγ). In this adjoint field, the time retrogrades from the final time tf to

the initial time ti. The details for the derivation of the adjoint equation are described in Appendix A.
Substituting these optimal points, that is, substituting ψ̃st = ψst for all ψ̃st ∈ Ψ̃st and ψ̃ad = ψad for

all ψ̃ad ∈ Ψ̃ad in the Lagrangian, the gradient with respect to the normalized density, L′
γ , is obtained as
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Gâteaux derivative of the Lagrangian at γ as below:

⟨L′
γ , δγ⟩ ≡ dL(γ; δγ)

=

∫
D

(∫
Θ

∫
R2

(
ρ

(
1

k
− 1

ks

)
g · (f − f eq

γ )

− q(1 + q)

(γ + q)2
ρ

kγ

2(ζ − uγ) · u
Tγ

g · f eq
γ

− q(1 + q)

(γ + q)2
ρ

kγ

T − Ts
Tγ

g ·
(
∥ζ − uγ∥2

Tγ
f eq
γ − (a1 ⊗ a1)f eq

γ

))
dζdt+ µ

)
δγdD . (51)

In time-dependent problems, the values of both state and adjoint variables should generally be stored at
every time to calculate this gradient, which causes high computational costs. If a sufficiently long period
from initial time ti to final time tf is set, the values of state and adjoint variables stay unchanged at almost
all time and the integrand of gradient can be considered as constant with regard to time. Therefore, the
gradient can be approximated by using the values of both state and adjoint variables at their steady states
as below:

L′
γ ≈ (tf − ti)

∫
R2

(
ρ

(
1

k
− 1

ks

)
g · (f − f eq

γ ) − q(1 + q)

(γ + q)2
ρ

kγ

2(ζ − uγ) · u
Tγ

g · f eq
γ

− q(1 + q)

(γ + q)2
ρ

kγ

T − Ts
Tγ

g ·
(
∥ζ − uγ∥2

Tγ
f eq
γ − (a1 ⊗ a1)f eq

γ

))
dζ + µ. (52)

In this study, the above approximated gradient (52) is adopted in the optimization process instead of the
original gradient (51). This also means that the objective functional is evaluated only in the steady state.
According to the Heaviside projection method [52], the design sensitivity, L′

ϕ, which is the gradient with
respect to the design variable ϕ, can be obtained by filtering the gradient L′

γ as follows:

−ω2∆L′
ϕ + L′

ϕ =
dγ

dφ
L′
γ (53)

4.3. Details of flow field analysis

In the analysis of state and adjoint flow fields, the fixed design domain D is discretized on a grid. The
space step, ∆x, is common in both x1 and x2 directions and is determined so that it is smaller than the
mean free path of gas. The velocity space is also discretized on a grid after the space which is originally
infinite is replaced to the finite space Dζ = {ζ ∈ R2| −Z ≤ ζ1, ζ2 ≤ Z}, where Z is the threshold. Based on
the time splitting method [54], the computation of the governing and adjoint equation is divided into two
steps: the advection step and collision step. At first, the Lax-Wendroff scheme, an explicit finite difference
scheme, with a flux-limiter function is used to compute the advection step. Due to the explicit scheme, the
time step ∆t has to be determined so that it satisfies the CFL condition, and it is defined by

∆t =
1

2

Sh∆x

2Z
,

which is a quarter of the time step allowed by CFL condition. Then, the collision step is computed by solving
the following ordinary differential equation with regard to time on the grid of real and velocity spaces:

df(t)

dt
= −ρ

∗

k
(f(t) − f eq(ρ∗,u∗, T ∗)) ,

f(0) = f∗,

where the superscript ∗ denotes the post-advection value.
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For convergence judgment in the state flow field, moments of velocity distribution function, namely,
density ρ, momentum M and total energy E are used. The momentum and total energy are defined by

M =

∫
R2

ζ(a1 · f)dζ = ρu,

E =

∫
R2

1

2

(
∥ζ∥2a1 + a2

)
· fdζ =

1

2

(
3

2
ρT + ρ∥u∥2

)
.

It is considered that the stationary state has been achieved either when the iteration number of the time
step reaches 106 or when the above moments simultaneously satisfy the following conditions:

∥ρ(n) − ρ(n−1)∥L2(D)

∥ρ(n)∥L2(D)

< ερ, (54)

∥M (n) −M (n−1)∥L2(D)

∥M (n)∥L2(D)

< εM , (55)

∥E(n) − E(n−1)∥L2(D)

∥E(n)∥L2(D)

< εE , (56)

where the superscript n is the iteration number of the time step in the flow analysis and ερ, εM , εE are
judgment criteria. On the other hand, the convergence of the adjoint flow field is judged by using three
macroscopic quantities ρad, uad and Tad, which appear in the collision term of adjoint equation, as follows:

∥ρ(n)ad − ρ
(n−1)
ad ∥L2(D)

∥ρ(n)ad ∥L2(D)

< εad, (57)

∥u(n)
ad − u

(n−1)
ad ∥L2(D)

∥u(n)
ad ∥L2(D)

< εad, (58)

∥T (n)
ad − T

(n−1)
ad ∥L2(D)

∥T (n)
ad ∥L2(D)

< εad, (59)

where εad is the judgment criterion. As the state flow field, it is considered that the stationary state of the145

adjoint flow field has been achieved when the iteration number of the time step reaches 106 or when these
conditions are simultaneously satisfied.

To save the computation time, the initial values of state variables in an optimization iteration are set
as their converged values in the previous iteration since the stationary states of flows in two sequential
optimization iterations can be expected to be similar, and the same is true of adjoint variables.150

5. Numerical examples

The validity and usefulness of the proposed method are shown through several numerical examples.
In the following examples, the Strouhal number Sh is set as 1. Moreover, the transition width w of the
normalized density is set as 1. The initial value of ϕ has to be in the transition width, otherwise the design
sensitivity L′

ϕ stays at 0. The parameter q for controlling the curvatures of uγ and Tγ is set as 0.1.155

5.1. Validation of the extended BGK equation

To show the validity of the extended BGK equation, the result of the analysis using the extended
BGK equation is compared with that of the analysis explicitly using the boundary conditions on the gas-
solid interfaces. For the comparison, a Couette flow, that is, a gas flow between two infinite plane walls is
considered. One wall at x2 = 0 is at rest and keeps the temperature at Tw = 1 and the other at x2 = 1 moves160

at a constant velocity uw = [0.01, 0]T and also keeps the temperature at Tw. From the physical point of
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view, it is found that the solution is constant along the x1 axis, so that a finite domain Ω = {0 ≤ x1, x2 ≤ 1}
is taken as the analysis domain of the rarefied gas and the periodic boundary condition is imposed on the
left and right boundaries of the domain. Whereas the lower wall is modeled as a solid domain D \ Ω with
temperature set as Tw in the analysis using the proposed method, the diffuse-reflection boundary condition165

is imposed on the lower wall in the other analysis as shown in Fig. 4. The upper wall is modeled using
the diffuse-reflection boundary condition in both analyses. The gas domain Ω and solid domain D \ Ω are

1.
0

1.0

Periodic
boundary
condition

(a)

1.
0

1.0

Periodic
boundary
condition

0.
2

(b)

Figure 4: The analysis model (a) using the diffuse-reflection boundary condition explicitly and (b) using the proposed method.

divided into a grid of 100 × 100 squares and 100 × 20 squares, respectively. On the other hand, the finite
velocity space Dζ with the threshold Z = 4.5 is discretized on a 38×38 grid. In solid domains, the Knudsen
number is set as 1 × 10−3.170

Fig. 5 shows the distributions of flow velocity u1 at x1 = 0.5 in both analyses for three different Knudsen
numbers: Kn = 0.01, 0.1 and 1. It illustrates that the result of the analysis using the extended BGK
equation coincides well with that of the analysis explicitly using the diffuse-reflection boundary condition on
the lower wall. Thus, the flow state with the diffuse-reflection boundary condition imposed on the gas-solid
interfaces can be approximated by using the extended BGK equation.175

5.2. Validation of sensitivity

The validity of the derived design sensitivity L′
ϕ is confirmed through the comparison with the sensitivity

computed by the finite difference method. A pressure loss minimization problem is considered here, and the
objective functional is defined as

J =

∫
Θ

∫
Γin

ρT dΓdt−
∫
Θ

∫
Γout

ρT dΓdt, (60)

where the product of density and temperature is pressure. The fixed design domain D is composed of the
circular domain with ϕ = −0.8 and the remaining domain with ϕ = 0.8 as shown in Fig. 6. Since the analysis
model is symmetric in the vertical direction, only the upper half of the model is computed. The computed
model is divided into a grid of 100 × 50 squares. The finite velocity space Dζ with the threshold Z = 4.5 is180

discretized on a 38 × 38 grid. The inlet flow velocity ū is given the parabolic distribution so that its mean
speed is 5.0×10−3. The density is prescribed as ρ̄ = 1 on the outlet, and the temperature on the boundaries
is set as Tw = Tin = Tout = 1. The initial condition of the state variable f is set as f0 = f eq(ρ̄,0, Tw). The
temperature of the solid is set as Ts = 1 and the Knudsen number in solid domains is defined as 1 × 10−3.

The sensitivity computed by the finite difference method is defined by

J ′
FD(x′) =

J [ϕ+ I(x− x′)∆ϕ] − J [ϕ− I(x− x′)∆ϕ]

2∆ϕ
, (61)

13



0

0.002

0.004

0.006

0.008

0.01

-0.2 0 0.2 0.4 0.6 0.8 1

u 1

x2

Proposed method
Explicit boundary coditioncondition

(a)

0

0.002

0.004

0.006

0.008

0.01

-0.2 0 0.2 0.4 0.6 0.8 1

u 1

x2

Proposed method
Explicit boundary coditioncondition

(b)

0

0.002

0.004

0.006

0.008

0.01

-0.2 0 0.2 0.4 0.6 0.8 1

u 1

x2

Proposed method
Explicit boundary co       ditioncondition

(c)

Figure 5: Comparison of the distribution of the flow velocity u1 on x1 = 0.5 for (a) Kn = 0.01, (b) Kn = 0.1 and (c) Kn = 1.
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Figure 6: Analysis model for validation of sensitivity.
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where

I(x) =

{
1 if x = 0

0 if x ̸= 0 .
(62)

Both sensitivities L′
ϕ and J ′

FD with ∆ϕ = 1 × 10−4 are compared on the line segment AA′ in Fig. 6.185

Fig. 7 shows the comparison results for two different Knudsen numbers of gas: Kn = 0.01 and 1. It is
noted that each sensitivity is normalized with its mean value. From these results, it can be confirmed that
the derived sensitivity coincides with the sensitivity computed by the finite difference method.
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Figure 7: Comparison of the sensitivities on the line segment AA′ for (a) Kn = 0.01 and (b) Kn = 1.

5.3. Bend pipe design problem

The proposed method is applied to a bend pipe design problem as shown in Fig. 8. The objective190

functional is a pressure loss defined as Eq. (60), and the volume constraint is set as Vmax = 0.25. The

0.
1

0.
2

0.7 0.10.2

0.
7

Figure 8: Domain and boundary settings of the bend pipe design problem.

fixed design domain is divided into a grid of 100 × 100 squares and the finite velocity space Dζ with the
threshold Z = 4.5 is divided into a grid of 38×38 squares. The initial value of design variable ϕ is set so that
ϕ = 0.9 elsewhere in the fixed design domain. As same as the problem in Sec. 5.2, the velocity distribution
is prescribed to be parabolic with the mean speed set as 5.0 × 10−3 on the inlet, the density is prescribed195

as ρ̄ = 1 on the outlet, and the temperature on the boundaries is set as Tw = Tin = Tout = 1. The initial
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condition of the state variable is set as f0 = f eq(ρ̄,0, Tw). The temperature of the solid is set as Ts = 1 and
the Knudsen number in solid domains is defined as 1 × 10−3. The convergence criterion for the objective
functional is set as εopt = 1 × 10−5. With regard to the convergence of the state flow field, the criterion is
set as ερ = εE = 5.0× 10−7 and εM = 5.0× 10−6. On the other hand, the criterion for the adjoint flow field200

is set as εad = 5.0 × 10−6.

(a) (b) (c)

Figure 9: Optimal configurations for (a) Kn = 0.01, (b) Kn = 0.1 and (c) Kn = 1. White domains represent rarefied gas
domains, while black domains represent solid domains.

Fig. 9 shows the optimal configurations obtained through our proposed method for three different Knud-
sen numbers: Kn = 0.01, 0.1 and 1. It illustrates that the curvature of the optimal structure is smaller
as the Knudsen number is larger. The time required for these optimization calculations on a PC with 80
Intel Xeon processors at 2.20 GHz are reported in Table 1. To confirm the validity of the obtained optimal

Kn 0.01 0.1 1
time(h) 40.5 56.9 37.9

Table 1: Time required for the optimization calculations.

205

configurations, rarefied gas flows with the different Knudsen numbers at each optimal configuration were
analyzed, and the values of the objective functional were compared. It is noted that each flow was recalcu-
lated after the initial value of state variables was reset to f0 to equalize the analysis condition. The result
is shown in Table 2.

Kn for optimization
Kn of gas 0.01 0.1 1

0.01 2.37 2.46 2.39
0.1 2.90 2.41 2.40
1 2.74 2.29 2.23

Table 2: Comparison of the values of objective functional (×10−3). The minimum value in each row is shown in bold.

From Table 2, it can be seen that the values of the objective functional become minimum when Knudsen210

number of gas coincides with that for optimization, except the gas whose Kn = 0.1. However, in the case
of gas whose Kn = 0.1, there is little difference between the value of the objective functional at the optimal
channel for Kn = 0.1 and that at the optimal channel for Kn = 1, so that the difference is considered to be
caused by numerical errors. Therefore, it can be confirmed that the appropriate optimal configuration for
each gas flow is obtained by the proposed method.215

5.4. Optimum design problem of a thermally driven pump

Next, the proposed method is applied to a thermally driven pump design problem. This structural
optimization problem is replaced with the problem to find the optimal distribution of rarefied gas domains
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and solid domains with high and low temperature, with the volume limit set as Vmax = 0.8. The temperature
gradients in the rarefied gas domains, which are the driving force of the pump, are caused by the solids with
different temperature. As shown in Fig. 10, it is assumed that the pump has a periodic structure. To
design a unit of the periodic structure, the specular-reflection condition is imposed on the top and bottom
boundaries of the analysis domain to model symmetry boundaries, and the periodic boundary condition is
imposed on the right and left boundaries. At the center of the analysis domain, the non-design domain,
that is, the domain occupied only with rarefied gas, is set along the x1 axis. Using this domain as a divider
for preventing solid domains with different temperatures from attaching to each other, the solid domains
with high temperature are placed above this non-design domain, while that with low temperature are placed
below the non-design domain. Further, the evaluation domain is set on the right side of the analysis domain.
From the engineering view point, the ratio between the mass flow rates of thermally driven and pressure
driven flows is practical as the objective functional in the design of a pump. However, it makes the numerical
analysis of the flow complicated. To avoid this complexity, the mass flow rate in the desired direction,

J = −
∫
Θ

∫
Ωe

u · e1 dDdt, (63)

is chosen as the simplified objective functional, where e1 means the unit vector along the x1 axis. The

0.
1

0.9 0.1

0.
2

0.
2 Non-design 

domain

Figure 10: Domain settings.

analysis domain is divided into a grid of 100 × 50 squares. The finite velocity space Dζ with the threshold
Z = 6 is discretized on a 62 × 62 grid. The initial value of design variable ϕ is set so that ϕ = −0.9 in
two small circular domains and ϕ = 0.9 in the remaining domain except for the evaluation domain and220

non-design domain, as illustrated in Fig. 11. The temperature in the solid domains is set as Th = 1.5 and

Figure 11: Initial configuration.

Tc = 0.5. The initial condition of the state variable is set as f0 = f eq(1,0, (Th + Tc)/2). The Knudsen
number in gas and solid domains are set as 0.5 and 1 × 10−4, respectively. The convergence criterion for
the objective functional is set as εopt = 1 × 10−5. With regard to the convergence of the state flow field,
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Optimal configuration Binarized optimal configuration Reference model
J −15.8 −3.20 −2.34

Table 3: Comparison of the values of objective functional (×10−4).

the criterion is set as ερ = εE = 1.0 × 10−7 and εM = 1.0 × 10−6. On the other hand, the criterion for the225

adjoint flow field is set as εad = 1.0 × 10−6.
In advance of the optimization, the validity of the discretization of the finite velocity space was confirmed

since thermally driven flow problems are more complex than iso-thermal flow problems. The values of the
design sensitivity on the initial configuration were compared, based on the velocity discretization by different
grids: uniform 62 × 62, 80 × 80, 100 × 100 grids, and non-uniform 62 × 62 grid. The non-uniform grid was
constructed according to the literature [55], that is, the discretized velocity ζk (k = 1, ..., Nζ) was defined as

ζk =
Z

(Nζ − 1)ι
(2k −Nζ − 1)ι

with the parameter ι = 3, where Nζ is the number of grid points. Fig. 12 shows the distributions of the
sensitivity values L′

ϕ on x2 = 0.1 and x2 = 0.4. From Fig. 12, it can be found that the uniform 62× 62 grid
is enough for this problem since each grid provides a similar distribution of the design sensitivity.

Fig. 13 shows the optimal configuration and its velocity distribution with isothermal lines. The time230

required for this optimization calculation on a PC with 80 Intel Xeon processors at 2.20 GHz was 230 hours.
It should be noted that the obtained configuration has the possibility of being a local optimum due to
the gradient-based optimization method and the periodicity of the design model. Nevertheless, the optimal
configuration is similar to the design of the pump proposed by Sugimoto and Sone [56]. It illustrates that the
positive thermal gradient with respect to the x1 axis appears in the pure white regions, that is, rarefied gas235

domains, while the negative thermal gradient is steep in faintly grayish regions, namely grayscale regions.
In spite of such steep negative thermal gradients with respect to the x1 axis which enables the inducement
of the strong flow in the −e1 direction, the gas flows in the e1 direction in the grayscale regions of the
optimal configuration. For this reason, it can be deduced that the intermediate value of γ in grayscale
regions prevents the rarefied gas from flowing in the −e1 direction due to the decrease of Knudsen number240

and, at the same time, does not affect the flow velocity uγ so much. In the optimal configuration, such
behavior of the rarefied gas flow in grayscale regions is utilized not to decelerate the flow by the inevitable
negative thermal gradient which is produced because of the periodicity of the structure. Although it implies
that the better performance of the pump can be achieved if the flow is realized in those regions in practice,
we here do not assume the use of any other materials than the rarefied gas and solid. Although it implies245

that the better performance of the pump can be achieved if the flow is realized in those regions in practice,
the use of any other materials than the rarefied gas and solid is not assumed in this work.

Therefore, to show the usefulness of the obtained configuration, the performance of the binarized optimal
configuration with the threshold of the normalized density γ = 0.5 was examined. Fig. 14 shows the velocity
distribution with iso-thermal lines in the binarized optimal configuration. As shown in Fig. 14, the negative250

thermal gradient against the x1 axis becomes gentler than positive ones, which generates the flow in the
direction e1 on the whole.

For the comparison of the performance, a reference model with the same volume as the binarized optimal
model was arranged, as shown in Fig. 15. The value of objective functional J in each pump design is summed
up as Table 3. The value of J in the binarized optimal configuration becomes worse than that in the original255

optimal configuration since the preferable behavior of the flow in grayscale regions can no longer be used.
Nevertheless, the value of J in the binarized optimal configuration is superior to that in the reference model,
so that the proposed method works well for designs of thermally driven devices, although the room of
improvement about how to handle grayscale regions is still left.
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Figure 12: The sensitivity values on (a) x2 = 0.1 and (b) x2 = 0.4.
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Figure 13: (a) The optimal configuration and (b) its velocity distribution with iso-thermal lines. White domains represent
rarefied gas domains, while black domains represent solid domains. In the grayscale regions surrounded by black dash lines,
the thermal gradient in −e1 direction becomes steep.
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Figure 14: The velocity distribution with iso-thermal lines in the binarized optimal configuration.
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Figure 15: The velocity distribution with iso-thermal lines in the reference model.

6. Conclusions260

This paper presented a topology optimization method in rarefied gas flow problems. The detailed achieve-
ments we obtained are the following:

1. Topology optimization problems for the design of 2-D rarefied gas flow channels were formulated. To
incorporate the shape representation of topology optimization to the rarefied gas flow problems, the
physical field was extended to the entire design domain including the solid domains, assuming that the265

solid domains were occupied by a fictitious gas with the static equilibrium state. The BGK equation,
the governing equation of rarefied gas flows, was also extended based on the extension of the physical
field, which enabled the flow state on the gas-solid interfaces to be approximated.

2. According to the formulation of the optimization problems, the optimization algorithm was con-
structed. In this study, a density method based on the Heaviside projection method with the PDE270

filter was adopted. The design variable, namely the scalar function ϕ, was updated by MMA, based
on the design sensitivity which was derived by the Lagrange multiplier method and adjoint variable
method. As is the case of the governing equation, the adjoint equation obtained from the sensitivity
analysis was computed with an explicit finite difference method after replacing the infinite molecular
velocity space with the finite one.275

3. Through numerical examples, the validity and utility of the proposed method were confirmed. In the
bend pipe problem, the dependency of optimal configurations on the Knudsen number was shown. In
the design problem of a thermally driven pump, the optimal configuration with some grayscale regions
was obtained, yet the binarized configuration displayed superior performance to the reference model
we arranged.280

The proposed method has the potential to be applied to the design of various Micro Electro Mechanical
System (MEMS) devices inside which gas flows exist, including micro-pumps. To improve the applicability
of the method, future work to tackle the grayscale problem seen here would also be performed.
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Appendix A. Derivation of the adjoint equation

The procedure for the derivation of the adjoint initial-boundary value problem is described in detail. At
first, according to Eq. (45), the Gâteaux derivative for variable f̃ is performed, using Gauss’s divergence
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theorem with regard to time and space.

dL(f̃ ; δf̃) =

∫
D

∫
R2

[Shg̃ · δf̃ ]
tf
ti dζdD −

∫
Θ

∫
∂D

∫
R2

(ζ · n)(g̃ · δf̃)dζdΓdt

+

∫
Θ

∫
D

∫
R2

(
−Sh

∂g̃

∂t
− (ζ · ∇)g̃ +

ρ̃

kγ
g̃

)
· δf̃dζdDdt

+

∫
D

∫
R2

g̃0 · δf̃(ti,x, ζ)dζdD

+

∫
Θ

∫
Γw

∫
R2

+

g̃w · δf̃dζdΓdt

+

∫
Θ

∫
Γw

∫
R2

−

2s̃w

√
π

Tw
(ζ · n)(a1 · δf̃)dζdΓdt

+

∫
Θ

∫
Γin

∫
R2

+

g̃in · δf̃dζdΓdt

−
∫
Θ

∫
Γin

∫
R2

−

2s̃in

ū · n−
√

Tin

π

(ζ − ū) · n(a1 · δf̃)dζdΓdt

+

∫
Θ

∫
Γout

∫
R2

+

g̃out · δf̃dζdΓdt

+

∫
Θ

∫
Γout

∫
R2

−

2s̃outa1 · δf̃dζdΓdt

−
∫
Θ

∫
D

∫
R2

r̃D(a1 · δf̃)dζdDdt

−
∫
Θ

∫
D

∫
R2

1

ρ̃
(ṽD · ζ)(a1 · δf̃)dζdDdt

−
∫
Θ

∫
D

∫
R2

2θ̃D
3ρ̃

(∥ζ − ũ∥2a1 + a2) · δf̃dζdDdt

−
∫
Θ

∫
∂D

∫
R2

r̃B(a1 · δf̃)dζdDdt

−
∫
Θ

∫
∂D

∫
R2

1

ρ̃
(ṽB · ζ)(a1 · δf̃)dζdDdt

−
∫
Θ

∫
∂D

∫
R2

2θ̃B
3ρ̃

(∥ζ − ũ∥2a1 + a2) · δf̃dζdDdt

=0. (A.1)
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Since δf̃ is an arbitrary function, the following equations are obtained:

− Sh
∂g̃

∂t
− (ζ · ∇)g̃ +

ρ̃

kγ
g̃ − g̃eq(r̃D, ṽD, θ̃D) = 0 in Θ ×D × R2, (A.2)

Shg̃(ti,x, ζ) − g̃0 = 0 in D × R2, (A.3)

g̃(tf ,x, ζ) = 0 in D × R2, (A.4)

(ζ · n)g̃ − g̃w + g̃eq(r̃B , ṽB , θ̃B) = 0 in Θ × Γw × R2
+ , (A.5)

(ζ · n)g̃ − 2s̃w

√
π

Tw
(ζ · n)a1 + g̃eq(r̃B , ṽB , θ̃B) = 0 in Θ × Γw × R2

− , (A.6)

(ζ · n)g̃ − g̃in + g̃eq(r̃B , ṽB , θ̃B) = 0 in Θ × Γin × R2
+ , (A.7)

(ζ · n)g̃ +
2s̃in (ζ − ū) · n

ū · n−
√

Tin

π

a1 + g̃eq(r̃B , ṽB , θ̃B) = 0 in Θ × Γin × R2
− , (A.8)

(ζ · n)g̃ − g̃out + g̃eq(r̃B , ṽB , θ̃B) = 0 in Θ × Γout × R2
+ , (A.9)

(ζ · n)g̃ − 2s̃outa1 + g̃eq(r̃B , ṽB , θ̃B) = 0 in Θ × Γout × R2
− , (A.10)

where

g̃eq(r,v, θ) = ra1 +
1

ρ̃
(ζ · v)a1 +

2θ

3ρ̃
(∥ζ − ũ∥2a1 + a2).

Likewise, Gâteaux derivatives for other variables are implemented. The Gâteaux derivative for ρ̃ is given by

dL(ρ̃; δρ̃) =

∫
Θ

∫
Ωe

∂je
∂ρ̃

δρ̃ dDdt+

∫
Θ

∫
Γin

∂jin
∂ρ̃

δρ̃ dΓdt+

∫
Θ

∫
Γout

∂jout
∂ρ̃

δρ̃ dΓdt

+

∫
Θ

∫
D

∫
R2

g̃ ·
(

1

kγ

(
f̃ − f̃

eq

γ

)
− ρ̃

kγ

1

ρ̃
f̃
eq

γ

)
δρ̃ dζdDdt

+

∫
Θ

∫
D

r̃Dδρ̃ dDdt

+

∫
Θ

∫
D

∫
R2

1

ρ̃2
(ṽD · ζ)(a1 · f̃)δρ̃ dζdDdt

+

∫
Θ

∫
D

∫
R2

2θ̃D
3ρ̃2

(∥ζ − ũ∥2a1 + a2) · f̃δρ̃ dζdDdt

+

∫
Θ

∫
∂D

r̃Bδρ̃ dDdt

+

∫
Θ

∫
∂D

∫
R2

1

ρ̃2
(ṽB · ζ)(a1 · f̃)δρ̃ dζdDdt

+

∫
Θ

∫
∂D

∫
R2

2θ̃B
3ρ̃2

(∥ζ − ũ∥2a1 + a2) · f̃δρ̃ dζdDdt

=0, (A.11)
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with the notation f̃
eq

γ = f eq(ρ̃, ũγ , T̃γ), which results in the following equations:∫
R2

1

kγ
g̃ ·
(
f̃ − 2f̃

eq

γ

)
dζ + r̃D +

1

ρ̃2

∫
R2

(ṽD · ζ)(a1 · f̃)dζ

+
2θ̃D
3ρ̃2

∫
R2

(∥ζ − ũ∥2a1 + a2) · f̃dζ = 0 in Θ ×D \ Ωe , (A.12)

∂je
∂ρ̃

+

∫
R2

1

kγ
g̃ ·
(
f̃ − 2f̃

eq

γ

)
dζ + r̃D +

1

ρ̃2

∫
R2

(ṽD · ζ)(a1 · f̃)dζ

+
2θ̃D
3ρ̃2

∫
R2

(∥ζ − ũ∥2a1 + a2) · f̃dζ = 0 in Θ × Ωe , (A.13)

r̃B +
1

ρ̃2

∫
R2

(ṽB · ζ)(a1 · f̃)dζ +
2θ̃B
3ρ̃2

∫
R2

(∥ζ − ũ∥2a1 + a2) · f̃dζ = 0 in Θ × Γw , (A.14)

∂jin
∂ρ̃

+ r̃B +
1

ρ̃2

∫
R2

(ṽB · ζ)(a1 · f̃)dζ +
2θ̃B
3ρ̃2

∫
R2

(∥ζ − ũ∥2a1 + a2) · f̃dζ = 0 in Θ × Γin , (A.15)

∂jout
∂ρ̃

+ r̃B +
1

ρ̃2

∫
R2

(ṽB · ζ)(a1 · f̃)dζ +
2θ̃B
3ρ̃2

∫
R2

(∥ζ − ũ∥2a1 + a2) · f̃dζ = 0 in Θ × Γout . (A.16)

The Gâteaux derivative for ũ is

dL(ũ; δũ) =

∫
Θ

∫
Ωe

∂je
∂ũ

· δũ dDdt+

∫
Θ

∫
Γin

∂jin
∂ũ

· δũ dΓdt+

∫
Θ

∫
Γout

∂jout
∂ũ

· δũ dΓdt

−
∫
Θ

∫
D

∫
R2

ρ̃

kγ
g̃ · f̃

eq

γ

γ(1 + q)

γ + q

2(ζ − ũ) · δũ
T̃γ

dζdDdt

+

∫
Θ

∫
D

ṽD · δũ dDdt

+

∫
Θ

∫
D

∫
R2

2θ̃D
3ρ̃

(
2(ζ − ũ) · δũ

)
(a1 · f̃)dζdDdt

+

∫
Θ

∫
∂D

ṽB · δũ dDdt

+

∫
Θ

∫
∂D

∫
R2

2θ̃B
3ρ̃

(
2(ζ − ũ) · δũ

)
(a1 · f̃)dζdDdt

=0. (A.17)

The obtained equations are as follows:

− ρ̃

kγ

2

T̃γ

γ(1 + q)

γ + q

∫
R2

(g̃ · f̃
eq

γ )(ζ − ũ)dζ + ṽD +

∫
R2

4θ̃D
3ρ̃

(a1 · f̃)(ζ − ũ)dζ = 0 in Θ ×D \ Ωe ,

(A.18)

∂je
∂ũ

− ρ̃

kγ

2

T̃γ

γ(1 + q)

γ + q

∫
R2

(g̃ · f̃
eq

γ )(ζ − ũ)dζ + ṽD +

∫
R2

4θ̃D
3ρ̃

(a1 · f̃)(ζ − ũ)dζ = 0 in Θ × Ωe , (A.19)

ṽB +

∫
R2

4θ̃B
3ρ̃

(a1 · f̃)(ζ − ũ)dζ = 0 in Θ × Γw , (A.20)

∂jin
∂ũ

+ ṽB +

∫
R2

4θ̃B
3ρ̃

(a1 · f̃)(ζ − ũ)dζ = 0 in Θ × Γin , (A.21)

∂jout
∂ũ

+ ṽB +

∫
R2

4θ̃B
3ρ̃

(a1 · f̃)(ζ − ũ)dζ = 0 in Θ × Γout . (A.22)
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The Gâteaux derivative for T̃ is implemented as

dL(T̃ ; δT̃ ) =

∫
Θ

∫
Ωe

∂je

∂T̃
δT̃ dDdt+

∫
Θ

∫
Γin

∂jin

∂T̃
δT̃ dΓdt+

∫
Θ

∫
Γout

∂jout

∂T̃
δT̃ dΓdt

−
∫
Θ

∫
D

∫
R2

g̃ · ρ̃
kγ

γ(1 + q)

γ + q

(
f̃
eq

γ

∥ζ − ũγ∥2

T̃ 2
γ

− (a1 ⊗ a1)f̃
eq

γ

1

T̃γ

)
δT̃ dζdDdt

+

∫
Θ

∫
D

θ̃DδT̃ dDdt

+

∫
Θ

∫
∂D

θ̃BδT̃ dDdt

=0, (A.23)

and the following equations are derived:

− ρ̃

kγ

1

T̃γ

γ(1 + q)

γ + q

∫
R2

g̃ ·

(
f̃
eq

γ

∥ζ − ũγ∥2

T̃γ
− (a1 ⊗ a1)f̃

eq

γ

)
dζ + θ̃D = 0 in Θ ×D \ Ωe , (A.24)

∂je

∂T̃
− ρ̃

kγ

1

T̃γ

γ(1 + q)

γ + q

∫
R2

g̃ ·

(
f̃
eq

γ

∥ζ − ũγ∥2

T̃γ
− (a1 ⊗ a1)f̃

eq

γ

)
dζ + θ̃D = 0 in Θ × Ωe , (A.25)

θ̃B = 0 in Θ × Γw , (A.26)

∂jin

∂T̃
+ θ̃B = 0 in Θ × Γin , (A.27)

∂jout

∂T̃
+ θ̃B = 0 in Θ × Γout . (A.28)

For σ̃w, σ̃in and σ̃out, the following Gâteaux derivative is implemented, respectively:

dL(σ̃w; δσ̃w) = −
∫
Θ

∫
Γw

∫
R2

+

g̃w · 1

σ̃w
f eq (σ̃w,0, Tw) δσ̃w dζdΓdt

+

∫
Θ

∫
Γw

s̃wδσ̃wdΓdt

=0, (A.29)

dL(σ̃in; δσ̃in) = −
∫
Θ

∫
Γin

∫
R2

+

g̃in · 1

σ̃in
f eq (σ̃in,0, Tin) δσ̃in dζdΓdt

+

∫
Θ

∫
Γin

s̃inδσ̃in dΓdt

=0, (A.30)

dL(σ̃out; δσ̃out) = −
∫
Θ

∫
Γout

∫
R2

+

g̃out ·
1

σ̃out
f eq (σ̃out,0, Tout) δσ̃out dζdΓdt

+

∫
Θ

∫
Γout

s̃outδσ̃out dΓdt

=0, (A.31)
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and the following equations are obtained:

− 1

σ̃w

∫
R2

+

g̃w · f eq (σ̃w,0, Tw) dζ + s̃w = 0 in Θ × Γw , (A.32)

− 1

σ̃in

∫
R2

+

g̃in · f eq (σ̃in,0, Tin) dζ + s̃in = 0 in Θ × Γin , (A.33)

− 1

σ̃out

∫
R2

+

g̃out · f
eq (σ̃out,0, Tout) dζ + s̃out = 0 in Θ × Γout . (A.34)

Next, using the above relations, the adjoint initial-boundary value problem is obtained. In the following,
it is supposed that the optimal conditions for Lagrange multipliers (44) have been already satisfied, which
means that ∀ψ̃st ∈ Ψ̃st, ψ̃st = ψst in the Lagrangian L.

The adjoint equation is considered. From Eqs. (A.12), (A.13), (A.18), (A.19), (A.24) and (A.25), r̃D, ũD

and θ̃D are derived as follows:

r̃D =

{
−
∫
R2

1
kγ

g̃ ·
(
f − 2f eq

γ

)
dζ − 1

ρ (ṽD · u) − 1
ρ θ̃DT in Θ ×D \ Ωe

−
∫
R2

1
kγ

g̃ ·
(
f − 2f eq

γ

)
dζ − 1

ρ (ṽD · u) − 1
ρ θ̃DT − ∂je

∂ρ in Θ × Ωe

, (A.35)

ṽD =

{
ρ
kγ

2
Tγ

γ(1+q)
γ+q

∫
R2(g̃ · f eq

γ )(ζ − u)dζ in Θ ×D \ Ωe

ρ
kγ

2
Tγ

γ(1+q)
γ+q

∫
R2(g̃ · f eq

γ )(ζ − u)dζ − ∂je
∂u in Θ × Ωe

, (A.36)

θ̃D =


ρ
kγ

1
Tγ

γ(1+q)
γ+q

∫
R2 g̃ ·

(
f eq
γ

∥ζ−ũγ∥2

Tγ
− (a1 ⊗ a1)f eq

γ

)
dζ in Θ ×D \ Ωe

ρ
kγ

1
Tγ

γ(1+q)
γ+q

∫
R2 g̃ ·

(
f eq
γ

∥ζ−ũγ∥2

Tγ
− (a1 ⊗ a1)f eq

γ

)
dζ − ∂je

∂T in Θ × Ωe

. (A.37)

Putting ρ̃ad = (kγ/ρ) r̃D, ũad = (kγ/ρ) ṽD and T̃ad = (kγ/ρ) θ̃D and then substituting them into Eq. (A.2),
the following adjoint equation is derived:

−Sh
∂g̃

∂t
− (ζ · ∇)g̃ = − ρ

kγ

(
g̃ − geq(ρ̃ad, ũad, T̃ad)

)
in Θ ×D × R2. (A.38)

The initial condition of the adjoint problem is Eq. (A.4) itself.290

With respect to boundary conditions, r̃B , ṽB and θ̃B can be derived from Eqs. (A.14)–(A.16),(A.20)–
(A.22) and (A.26)–(A.28) as follows:

r̃B =


0 in Θ × Γw

−∂jin
∂ρ − 1

ρ (ṽB · u) − 1
ρ θ̃BT in Θ × Γin

−∂jout

∂ρ − 1
ρ (ṽB · u) − 1

ρ θ̃BT in Θ × Γout

, (A.39)

ṽB =


0 in Θ × Γw

−∂jin
∂u in Θ × Γin

−∂jout

∂u in Θ × Γout

, (A.40)

θ̃B =


0 in Θ × Γw

−∂jin
∂T in Θ × Γin

−∂jout

∂T in Θ × Γout

. (A.41)

On the other hand, substituting Eqs.(A.5),(A.7) and (A.9) into Eqs.(A.32)–(A.34), s̃w, s̃in and s̃out are
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obtained as follows:

s̃w =
1

σw

∫
R2

+

(
(ζ · n)g̃ + geq(r̃B , ṽB , θ̃B)

)
· f eq (σw,0, Tw) dζ in Θ × Γw , (A.42)

s̃in =
1

σin

∫
R2

+

(
(ζ · n)g̃ + geq(r̃B , ṽB , θ̃B)

)
· f eq (σin,0, Tin) dζ in Θ × Γin , (A.43)

s̃out =
1

σout

∫
R2

+

(
(ζ · n)g̃ + geq(r̃B , ṽB , θ̃B)

)
· f eq(σout,0, Tout)dζ in Θ × Γout . (A.44)

Finally, using Eqs. (A.39)-(A.44), Eqs. (A.6),(A.8) and (A.10) can be rewritten as follows:

(ζ · n)g̃ = 2s̃w

√
π

Tw
(ζ · n)a1 in Θ × Γw × R2

− , (A.45)

(ζ · n)g̃ = − 2s̃in (ζ − ū) · n
ū · n−

√
Tin/π

a1 − geq(r̃B , ṽB , θ̃B) in Θ × Γin × R2
− , (A.46)

(ζ · n)g̃ = 2s̃outa1 − geq(r̃B , ṽB , θ̃B) in Θ × Γout × R2
− , (A.47)

which result in the boundary conditions in the adjoint problem.
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