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Abstract

We present an improved high-order weighted compact high resolution (WCHR) scheme
that extends the idea of weighted compact nonlinear schemes (WCNS’s) using nonlinear
interpolations in conjunction with compact finite difference schemes for shock-capturing
in compressible turbulent flows. The proposed scheme has better resolution property
than previous WCNS’s. This is achieved by using a compact (or spatially implicit) form
instead of the traditional fully explicit form for the nonlinear interpolation. Since com-
pact interpolation schemes tend to have lower dispersion errors compared to explicit
interpolation schemes, the proposed scheme has the ability to resolve more fine-scale
features while still having the ability to provide sufficiently localized dissipation to cap-
ture shocks and discontinuities robustly. Approximate dispersion relation characteristics
of this scheme are analyzed to show the superior resolution properties of the scheme
compared to other WCNS’s of similar orders of accuracy. Conservative and high-order
accurate boundary schemes are also proposed for non-periodic problems. Further, a new
conservative flux-difference form for compact finite difference schemes is derived and al-
lows for the use of positivity-preserving limiters for improved robustness. Different test
cases demonstrate the ability of this scheme to capture discontinuities in a robust and
stable manner while also localizing the required numerical dissipation only to regions con-
taining discontinuities and very high wavenumber features and hence preserving smooth
flow features better in comparison to WCNS’s.

Keywords: weighted compact nonlinear scheme (WCNS), weighted essentially
non-oscillatory (WENO) interpolation, high-order, high-resolution, shock-capturing,
boundary closure, compressible turbulence, localized dissipation, positivity-preserving

1. Introduction

Simulations of compressible flows that involve shock waves, contact discontinuities,
and turbulence have conflicting requirements. While capturing discontinuities like shock
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waves, contact surfaces or vortex sheets require numerical dissipation for stabilization, the
fine scales of turbulence are severely affected by numerical dissipation. Hence, a method
that can adaptively switch between a low dissipation formulation in regions of smooth
flow to a formulation that adds sufficient dissipation at discontinuities is of paramount im-
portance. In the past, weighted essentially non-oscillatory (WENO) [23, 17, 30, 3, 19, 18]
schemes, their variants weighted compact nonlinear schemes (WCNS’s) [9, 36, 48, 29, 45]
and targeted essentially non-oscillatory (TENO) [11] scheme have been proposed as meth-
ods to provide this adaptation. These schemes capture shocks well and improvements like
the WENO6-CU-M2 [18] and WCNS6-LD [45] schemes localize the numerical dissipation
to regions around discontinuities. However, their resolution properties are limited by the
underlying explicit reconstruction and interpolation schemes. One way to improve the
resolution of the adaptive scheme is to increase the stencil width of the scheme while
optimizing the dispersion and dissipation properties under the constraint of same order
of accuracy like the TENO scheme with tailored resolution by Fu et al. [12]. Another way
for improved resolution is the use of compact or spatially implicit finite difference scheme.
Lele [28] developed compact finite difference and interpolation schemes that are high or-
der accurate and have spectral-like resolution properties. Although these schemes are
well-suited for problems involving turbulence, they cannot be directly used for problems
that contain sharp gradient features like shocks unless certain numerical regularization is
used. One kind of numerical regularization for compact finite difference schemes is to add
numerical dissipation explicitly [7, 8, 6, 2, 25, 40, 13, 44] in solutions to capture shocks
and material interfaces using the localized artificial diffusivity (LAD) first proposed by
Cook and Cabot [8]. These regularization methods preserve the resolution properties
of compact schemes, but are still prone to some mild spurious oscillations near shocks
or discontinuities. They also, in some cases, introduce additional time step limitations
due to the extra artificial dissipation terms. In addition to adding dissipation terms,
solutions typically need to be filtered at every time step for de-aliasing.

As an alternative to adding artificial dissipation explicitly, Deng and Zhang [9] used
a compact finite difference scheme with WENO interpolation in the context of WCNS.
The process in obtaining flux at midpoints using nonlinear interpolations can be inter-
preted as a nonlinear filtering process to prevent spurious oscillations near discontinuities.
However, the fact that WENO interpolation is explicit limits the effective resolution of
the overall scheme even though compact finite difference scheme is used. Ghosh and
Baeder [14] developed an upwind-biased compact reconstruction WENO scheme called
CRWENO. This method is purely compact, but the scheme is upwind-biased and exces-
sively damps the fine scales of turbulence.

In this paper, we present a newly designed scheme that is based on the WCNS for-
malism to use a compact finite difference derivative but is also improved with the use
of a high-resolution compact nonlinear interpolation scheme. The localized dissipation
(LD) nonlinear weights of Wong and Lele [45] are used to provide localized dissipation
through adaptive switching between explicit and compact interpolations. Boundary in-
terpolation and derivative schemes are also provided for non-periodic problems. The
boundary schemes are conservative, have the same formal order of accuracy as in the
interior schemes and are optimized by matching their truncation errors to the interior
schemes. The overall improved scheme is shown to have better resolution properties than
WCNS’s using only explicit interpolations and is also stable and accurate for problems
involving inflow-outflow boundaries with significant disturbances when proper boundary
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treatments are applied.

2. Numerical methods

In this section, a scalar conservation law of the following form is considered in a
one-dimensional (1D) domain of size x ∈ [xa, xb] for simplicity:

∂u

∂t
+
∂F (u)

∂x
= 0, (1)

where u(x, t) is a conserved scalar quantity that depends on space x and time t and F (u)
is a flux function of u. The equation above is discretized on a uniform grid with N cells
and the solution u on the cell node at position xj = xa + (j + 1/2)∆x is denoted by uj ,
∀j ∈ {0, 1, . . . , N −1}, where ∆x = (xb−xa)/N . The cell midpoints are indexed by half
integer values xj+ 1

2
, ∀j ∈ {−1, 0, 1, . . . , N − 1}. The numerical method described in

this section can be easily extended to two-dimensional (2D) and three-dimensional (3D)
problems using the method of lines. The extension of the scalar conservation equation
to a hyperbolic system of coupled equations such as the Euler equations is discussed in
section 2.6.

2.1. Compact and explicit finite difference schemes

Over the years, various forms of finite difference schemes have been used in WCNS’s
to obtain the flux derivative in equation (1). Deng and Zhang [9] first used the sixth
order compact midpoint-to-node finite difference (CMD) scheme by Lele [28] in following
form:

9

80
F̂ ′j−1 +

31

40
F̂ ′j +

9

80
F̂ ′j+1 =

1

∆x

[
63

80

(
F̃j+ 1

2
− F̃j− 1

2

)
+

17

240

(
F̃j+ 3

2
− F̃j− 3

2

)]
, (2)

where F̂ ′j are numerically approximated first derivatives of flux at cell nodes and F̃j+ 1
2

are interpolated fluxes at cell midpoints. Since the resolution properties of WCNS’s are
mainly dominated by the nonlinear interpolations, Nonomura and Fujii [34] suggested
using a more efficient explicit sixth order midpoint-to-node finite difference (MD) scheme:

F̂ ′j =
1

∆x

[
75

64

(
F̃j+ 1

2
− F̃j− 1

2

)
− 25

384

(
F̃j+ 3

2
− F̃j− 3

2

)
+

3

640

(
F̃j+ 5

2
− F̃j− 5

2

)]
. (3)

Nonomura and Fujii [35] later also proposed a robust explicit sixth order midpoint-
and-node-to-node finite difference (MND) scheme:

F̂ ′j =
1

∆x

[
3

2

(
F̃j+ 1

2
− F̃j− 1

2

)
− 3

10
(Fj+1 − Fj−1)− 25

384

(
F̃j+ 3

2
− F̃j− 3

2

)]
, (4)

where Fj are fluxes at cell nodes2.

2Equation (4) uses Fj−1 and Fj+1 instead of F̃j−1 and F̃j+1 since the fluxes at nodes can be directly
evaluated from the conservative variables at nodes and require no interpolation.
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2.2. Weighted compact nonlinear schemes (WCNS’s)

In WCNS’s, the fluxes at the cell midpoints are obtained with aid of explicit nonlinear
interpolations, which can also be interpreted as a nonlinear filtering processes to avoid
spurious oscillations near shocks and other discontinuities. For the scalar conservation
equation (1), the algorithm to obtain the flux derivative with WCNS’s is given below:

1. Compute a left-biased and a right-biased interpolated solution value ũL and ũR at
each cell midpoint using explicit nonlinear interpolations.

2. Compute the flux at the cell midpoints using a flux difference splitting method
F̃j+ 1

2
= Fsplit(ũL, ũR) (typically a Riemann solver).

3. Compute the flux at the cell nodes Fj = F (uj) if the node values of flux are needed
in the finite difference scheme e.g. MND scheme in equation (4).

4. Use the flux(es) F̃j+ 1
2

(and Fj) to compute the flux derivative F ′j with a compact
or explicit central finite difference scheme.

In this work, only the interpolations of left-biased cell midpoint values are presented.
The interpolations of right-biased cell midpoint values are similar due to symmetry and
can be obtained by flipping the stencils and corresponding coefficients. It should also be
noted that flux vector splitting methods such as Lax–Friedrichs flux splitting can also
be used in WCNS’s where the flux values are interpolated instead of the solution values,
but that is not the procedure followed in this paper.

j j + 1 j + 2 j + 3j − 1j − 2

j − 1
2

j − 3
2

j + 3
2

j + 5
2

j +
1

2

S0

S1

S2

S3

Supwind

Scentral

Figure 1: Sub-stencils of WCNS’s. The solid circles represent points used in the right hand side of the
interpolation stencils, while empty circles represent points used in the left hand side of the interpolation
stencils.

Despite the robustness of interpolations using upwind-biased nonlinear weights in
capturing shocks like those by Jiang and Shu [23] (JS) and that by Borges et al. [3] (Z),
they are excessively dissipative in smooth regions. To remedy this, Mart́ın et al. [30], Hu
et al. [19] proposed a nonlinear interpolation that minimizes dissipation in smooth regions
by including the downwind stencil, S3 in figure 1. Wong and Lele [45] further optimized
the nonlinear weighting procedure by proposing a localized dissipative (LD) interpolation.
The LD interpolation approximates the midpoint values by computing third order linear
interpolated values from four different sub-stencils, S0 - S3 (shown in figure 1) and then
taking a nonlinear combination of these four values. The interpolated values at the

4



midpoints ũj+ 1
2

from the four different explicit interpolations3 (EIk) are given by:

EI0 : ũ
(0)

j+ 1
2

=
1

8
(3uj−2 − 10uj−1 + 15uj) , (5)

EI1 : ũ
(1)

j+ 1
2

=
1

8
(−uj−1 + 6uj + 3uj+1) , (6)

EI2 : ũ
(2)

j+ 1
2

=
1

8
(3uj + 6uj+1 − uj+2) , (7)

EI3 : ũ
(3)

j+ 1
2

=
1

8
(15uj+1 − 10uj+2 + 3uj+3) . (8)

The fifth order linear upwind-biased interpolation EIupwind and sixth order linear
central interpolation EIcentral from Supwind and Scentral in figure 1 respectively can be
obtained from linear combinations of the third order interpolations:

EIupwind =

2∑

k=0

dupwind
k EIk, (9)

EIcentral =

3∑

k=0

dcentral
k EIk, (10)

where the linear weights are given by:

dupwind
0 =

1

16
, dupwind

1 =
10

16
, dupwind

2 =
5

16
, (11)

dcentral
0 =

1

32
, dcentral

1 =
15

32
, dcentral

2 =
15

32
, dcentral

3 =
1

32
. (12)

The expanded form of the linear interpolations from Supwind and Scentral are given
by:

EIupwind : ũupwind

j+ 1
2

=
1

128
(3uj−2 − 20uj−1 + 90uj + 60uj+1 − 5uj+2) , (13)

EIcentral : ũcentral
j+ 1

2
=

1

256
(3uj−2 − 25uj−1 + 150uj + 150uj+1 − 25uj+2 + 3uj+3) .

(14)

The nonlinear LD interpolation is formulated by replacing the linear weights dcentral
k

in equation (10) with nonlinear weights ωk as:

ũj+ 1
2

=

3∑

k=0

ωkũ
(k)

j+ 1
2

. (15)

In smooth regions, the interpolated value given by LD interpolation should converge to
the value given by the sixth order linear central interpolation in equation (14). The forms

3Technically, EI0 and EI3 are extrapolations and not interpolations, but we call them interpolations
anyway in order to simplify the terminology.
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of nonlinear weights of the LD interpolation, as well as those of JS and Z interpolations
are given in Appendix A.

The CMD scheme (equation (2)) in conjunction with JS, Z, and LD interpolations are
called WCNS5-JS, WCNS5-Z, and WCNS6-LD, respectively. The MND scheme (equa-
tion (4)) in conjunction with the three different interpolations are called MND-WCNS5-
JS, MND-WCNS5-Z, and MND-WCNS6-LD. The numbers in the names indicate the
formal orders of accuracy of the schemes. The difference between the three nonlinear
interpolation methods is discussed in Wong and Lele [45].

2.3. Weighted compact high resolution (WCHR) scheme

2.3.1. Explicit-compact interpolation (ECI)

WCNS’s use explicit interpolations, which typically have larger errors in the real
part of the transfer function compared to compact interpolations of the same order of
accuracy. In the context of a linear advection equation, this error in the real part of the
transfer function manifests itself as a dispersion error. In this sub-section, we propose
a new nonlinear explicit-compact interpolation that minimizes the dispersion error by
adaptively switching to linear compact interpolations in smooth regions.

j j + 1 j + 2 j + 3j − 1j − 2

j − 1
2

j − 3
2

j + 3
2

j + 5
2

j +
1

2

S0

S1

S2

S3

Supwind

Scentral

Figure 2: Sub-stencils of the WCHR6 scheme. The solid circles represent points used in the right hand
side of the interpolation stencils, while empty circles represent points used in the left hand side of the
interpolation stencils.

Instead of using only explicit interpolations in sub-stencils, the interpolation methods
in the central two sub-stencils in figure 1 are replaced with compact interpolations. In
smooth regions where all the four stencils are used, the interpolation becomes compact
and has better resolution properties while near discontinuities where the most left or
right biased stencil is used, the interpolation reverts to being explicit for robustness.
The interpolation methods (ECIk) in the sub-stencils S0 - S3 of figure 2 are given by:
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ECI0 : ũ
(0)

j+ 1
2

=
3

8
uj−2 −

5

4
uj−1 +

15

8
uj , (16)

ECI1 : − (ξ − 1) ũ
(1)

j− 1
2

+ ξũ
(1)

j+ 1
2

= −4ξ − 3

8
uj−1 +

3

4
uj +

4ξ − 1

8
uj+1, (17)

ECI2 : ξũ
(2)

j+ 1
2

− (ξ − 1) ũ
(2)

j+ 3
2

=
4ξ − 1

8
uj +

3

4
uj+1 −

4ξ − 3

8
uj+2, (18)

ECI3 : ũ
(3)

j+ 1
2

=
15

8
uj+1 −

5

4
uj+2 +

3

8
uj+3, (19)

where ξ is a free parameter that can be used to control the dispersion and dissipation
characteristics of the scheme. When ξ = 1, the explicit-compact interpolations reduce
to fully explicit interpolations. In general, S1 and S2 in equations (17) - (18) are third
order accurate except for ξ = 5/8 when they both become fourth order accurate.

The fifth order linear upwind-biased and sixth order linear central interpolations from
Supwind and Scentral in figure 2 respectively can be obtained from linear combinations of
the third order interpolations:

ECIupwind =

2∑

k=0

dupwind
k ECIk, (20)

ECIcentral =

3∑

k=0

dcentral
k ECIk, (21)

where the linear weights are given by:

dupwind
0 =

8ξ − 5

8 (ξ + 5)
, dupwind

1 =
5 (13ξ − 7)

8 (ξ + 5) (2ξ − 1)
, dupwind

2 =
5 (5ξ − 2)

8 (ξ + 5) (2ξ − 1)
, (22)

dcentral
0 =

8ξ − 5

16 (ξ + 5)
, dcentral

1 =
45

16 (ξ + 5)
, dcentral

2 =
45

16 (ξ + 5)
, dcentral

3 =
8ξ − 5

16 (ξ + 5)
.

(23)
Note that the linear weights for explicit-compact interpolations are in general different

from those for explicit interpolations except when ξ = 1. The expanded form of the linear
interpolations from Supwind and Scentral are given by:

ECIupwind : αupwindũupwind

j− 1
2

+ βupwindũupwind

j+ 1
2

+ γupwindũupwind

j+ 3
2

=

aupwinduj−2 + bupwinduj−1 + cupwinduj + dupwinduj+1 + eupwinduj+2,
(24)

ECIcentral : αcentralũcentral
j− 1

2
+ βcentralũcentral

j+ 1
2

+ γcentralũcentral
j+ 3

2
=

acentraluj−2 + bcentraluj−1 + ccentraluj + dcentraluj+1 + ecentraluj+2 + f centraluj+3.
(25)
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The coefficients in equations (24) and (25) are given in Appendix B.1.
Figure 3 shows the relations between the linear weights of the most upwind stencil S0

in ECIupwind and ECIcentral and ξ. For both linear weights to be positive, ξ has to be
larger than 5/8. For increasing ξ > 5/8, the linear weights for the most upwind stencil
increase linearly.

0.6 0.7 0.8 0.9 1.0

ξ

0.00

0.02

0.04

0.06

d
0

Figure 3: Linear weights of sub-stencil S0 of ECIupwind and ECIcentral against ξ. Red dashed line:
ECIupwind; blue solid line: ECIcentral. The black dotted vertical line indicates ξ = 2/3 which is chosen
for both ECI’s in this work.

Even when used with a perfect derivative scheme, the interpolation transfer function
creates dispersion and dissipation errors in a linear advection problem. Figures 4 and
5 show the modified wavenumber of ECIupwind and ECIcentral respectively when used
with an analytical derivative scheme. When ξ is decreased from 1 to 5/8, the resolution
increases in both ECI’s and the dissipation of ECIupwind decreases. It should be noted
that the dissipation error of ECIcentral is always zero independent of value of ξ and the
dispersion errors of both ECIupwind and ECIcentral are the same when ξ = 5/8 as both
of them become identical. We use a value of ξ = 2/3 in this paper. This value of ξ is
chosen based on the dispersion relations of the linear schemes as a balance between high
resolution and robustness. More rigorous optimization procedures may be used to choose
an optimal value of ξ but that is left to future work.

2.3.2. Weighted compact high resolution (WCHR) scheme

The finite difference schemes described in section 2.1 may generate spurious oscilla-
tions due to Gibbs phenomenon or even be unstable near shocks or discontinuities with
either ECIupwind or ECIcentral. Hence, we use a nonlinear combination of the sub-stencil
interpolations with the LD nonlinear weights in equation (A.9) at any midpoint:

ECInonlinear =

3∑

k=0

ωkECIk. (26)

The CMD scheme in equation (2) with the nonlinear explicit-compact interpolation
(ECInonlinear) is sixth order accurate in smooth regions and is called weighted compact
high resolution scheme, WCHR6, in this paper due to its high resolution property com-
pared to other WCNS’s.
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0 π/4 π/2 3π/4 π

φ

0

π/4

π/2

3π/4

π

<
( Φ

)

(a) Dispersion error

0 π/4 π/2 3π/4 π

φ

−0.4

−0.3

−0.2

−0.1

0.0

=
( Φ

)

(b) Dissipative error

Figure 4: Modified reduced wavenumber, Φ, against reduced wavenumber, φ, of ECIupwind. Black solid
line: exact; green dotted line: ξ = 1; magenta dashed-dotted-dotted line: ξ = 3/4; blue dashed-dotted
line: ξ = 2/3; red dashed line: ξ = 5/8.

0 π/4 π/2 3π/4 π

φ

0

π/4

π/2

3π/4

π

<
( Φ

)

Figure 5: Real part of modified reduced wavenumber, Φ, against reduced wavenumber, φ, of ECIcentral
representing dispersion error. Black solid line: exact; green dotted line: ξ = 1; magenta dashed-dotted-
dotted line: ξ = 3/4; blue dash-dotted line: ξ = 2/3; red dashed line: ξ = 5/8.

The parameters for computing the nonlinear weights in WCNS’s and WCHR6 scheme
are discussed in Appendix A. The parameter values of each scheme in this work are given
in table 1. For a discussion on the choice of parameters in LD nonlinear weights, see [45].
The parameters used here for WCHR6 provide stable results while preserving the high
resolution property of the underlying compact interpolation scheme. They are also chosen
so that numerical dissipation is only locally added to regions containing discontinuities
and have minimal effect on regions where the solution is smooth.

2.4. Approximate dispersion relation

For linear schemes, the dissipation and dispersion characteristics can be determined
using a dispersion relation analysis discussed by Lele [28]. However, this analysis can-
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Numerical Parameter values
schemes p q C ατRL ξ

WCNS5-JS 2 − − − −
WCNS5-Z 2 − − − −

WCNS6-LD 2 4 1.0e9 35.0 −
WCHR6 2 4 1.0e10 55.0 2/3

Table 1: Parameters for different numerical schemes.

not be used for nonlinear schemes. Pirozzoli [37] developed an approximate dispersion
relation (ADR) technique to characterize the dispersion and dissipation characteristics
of general nonlinear schemes. Results from ADR analysis are shown in figure 6 for the
WCHR6 scheme and WCNS’s using compact (CMD) and explicit (MND) derivatives. In
figure 6(a) where the dispersion characteristics are shown, we can see that the WCHR6
scheme outperforms other schemes in dispersion error. Explicit nonlinear interpolations
with CMD in general have higher resolution than those with MND. Figure 7 shows the
dispersion errors for WCHR6 and the WCNS’s with explicit interpolations and compact
derivative (CMD) on a semi-log plot. Given a threshold εres for the maximum tolerable
dispersion error, a resolving efficiency of the different schemes can be computed. The
resolving efficiency is defined as the fraction of Nyquist wavenumber that the scheme
can resolve within the given dispersion error tolerance εres. In figure 7, the horizontal
black dashed line represents εres = 0.01 and the vertical colored dashed lines represent
the maximum wavenumber that each scheme can resolve given this threshold. Table 2
shows the resolving efficiency for the four different schemes. From the plot, it can be seen
that the WCHR6 has much higher resolution ability compared to other schemes of sim-
ilar orders of accuracy (∼ 45.8% more than the WCNS5-JS). All schemes considered in
figure 7 use CMD as the flux derivative. This clearly shows the benefit of using compact
interpolation to achieve better resolution characteristics. Figure 6(b) shows the dissipa-
tion characteristics of the schemes. In the plot, we see that WCNS5-JS and WCNS5-Z
have dissipation over a wide range of wavenumbers while WCNS6-LD has much more
localized dissipation only in high wavenumber range. Due to the high resolution charac-
teristic of WCHR6, we choose the parameters in the LD weights such that it has more
localized dissipation than WCNS6-LD in the wavenumber space. The high resolution
and localized dissipation characteristics of WCHR6 are especially important for prob-
lems involving turbulence transition where low resolution and excessive dissipation can
curtail the range of scales in the problem.

2.5. Boundary closures

Boundary schemes are essential for interpolation and numerical derivative at the
domain boundaries. In this section, we present boundary schemes for both interpolation
and conservative derivative that preserve the order of accuracy and have truncation
errors matched to those of the interior schemes. The boundary schemes presented here
use ghost points at domain boundaries. Specific algorithms to evaluate function values
for the ghost points are described in section 3.
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0 π/4 π/2 3π/4 π

φ

0

π/4

π/2

3π/4

<
( Φ

)

(a) Dispersion characteristics

0 π/4 π/2 3π/4 π

φ

−3π/4

−π/2

−π/4

0

=
( Φ

)

(b) Dissipation characteristics

Figure 6: ADR’s of different numerical schemes. Black solid line: spectral; dashed line with cyan circles:
MND-WCNS5-JS; solid line with cyan circles: WCNS5-JS; dashed line with red squares: MND-WCNS5-
Z; solid line with red squares: WCNS5-Z; dashed line with green diamonds: MND-WCNS6-LD; solid
line with green diamonds: WCNS6-LD; solid line with blue triangles: WCHR6.

0 π/4 π/2 3π/4

φ

10−5

10−4

10−3

10−2

10−1

100

|<
( Φ

)
−
φ
|

Figure 7: Approximate dispersion errors (derivation of real part of modified reduced wavenumber from
that of reduced wavenumber) of different numerical schemes. Cyan circles: WCNS5-JS; red squares:
WCNS5-Z; green diamonds: WCNS6-LD; blue triangles: WCHR6.

Numerical schemes Resolving efficiency Improvement over WCNS5-JS

WCNS5-JS 0.294 −
WCNS5-Z 0.364 23.7%

WCNS6-LD 0.364 23.7%

WCHR6 0.429 45.8%

Table 2: Resolving efficiency of different schemes for εres = 0.01.
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2.5.1. Interpolations

Only left-biased interpolations at the left boundary (LB) and right boundary (RB)
are discussed in this section. The right-biased interpolations at the left and right bound-
aries are simply the mirror images of the left-biased interpolations at the right and left
boundaries respectively. The sub-stencils of the left-biased interpolation scheme at LB
is shown in figure 8.

j j + 1 j + 2 j + 3j − 1j − 2

j + 3

2
j + 5

2
j +

1

2

SLB
0

SLB
1

SLB
2

SLB
3

SLB
5

SLB
6

j + 4

j + 7

2

Figure 8: Sub-stencils of the left-biased interpolation scheme at the left boundary (LB). The solid and
gray circles represent points used in the right hand side of the compact interpolation stencils, while
empty circles represent points used in the left hand side of the interpolation stencils. The solid and gray
circles represent the interior points and ghost points respectively.

The four third order interpolations from SLB
0 -SLB

3 in figure 8 are given by:

ECILB
0 : ũ

(0)

j+ 1
2

=
3

8
uj−2 −

5

4
uj−1 +

15

8
uj , (27)

ECILB
1 : ũ

(1)

j+ 1
2

= −1

8
uj−1 +

3

4
uj +

3

8
uj+1, (28)

ECILB
2 : aLBũ

(2)

j+ 1
2

+ bLBũ
(2)

j+ 3
2

= cLBuj + dLBuj+1 + eLBuj+2, (29)

ECILB
3 : ũ

(3)

j+ 1
2

= fLBuj+1 + gLBuj+2 + hLBuj+3 + iLBuj+4. (30)

The fifth order and sixth order linear interpolations from SLB
5 and SLB

6 in figure 8
respectively can be obtained from linear combinations of the third order interpolations:

ECILB
5 =

2∑

k=0

d
(5),LB
k ECILB

k , (31)

ECILB
6 =

3∑

k=0

d
(6),LB
k ECILB

k . (32)

The sub-stencils of the left-biased interpolation scheme at RB is shown in figure 9.
The four third order interpolations from SRB

0 -SRB
3 in figure 9 are given by:

12
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1

2
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3
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j − 5

2

SRB
0

SRB
5

SRB
6

Figure 9: Sub-stencils of the left-biased interpolation scheme at the right boundary (RB). The solid
and gray circles represent points used in the right hand side of the compact interpolation stencils, while
empty circles represent points used in the left hand side of the interpolation stencils The solid and gray
circles represent the interior points and ghost points respectively.

ECIRB
0 : ũ

(0)

j+ 1
2

= aRBuj−3 + bRBuj−2 + cRBuj−1 + dRBuj , (33)

ECIRB
1 : eRBũ

(1)

j− 1
2

+ fRBũ
(1)

j+ 1
2

= gRBuj−1 + hRBuj + iRBuj+1, (34)

ECIRB
2 : ũ

(2)

j+ 1
2

=
3

8
uj +

3

4
uj+1 −

1

8
uj+2, (35)

ECIRB
3 : ũ

(3)

j+ 1
2

=
15

8
uj+1 −

5

4
uj+2 +

3

8
uj+3. (36)

The fifth order and sixth order linear interpolations from SRB
5 and SRB

6 in figure 9
respectively can be obtained from linear combinations of the third order interpolations:

ECIRB
5 =

2∑

k=0

d
(5),RB
k ECIRB

k , (37)

ECIRB
6 =

3∑

k=0

d
(6),RB
k ECIRB

k . (38)

The coefficients in the sub-stencils and the linear weights of the interpolation schemes
at the LB and RB are given in Appendix B.2. There are two free parameters for
each of the boundary interpolation scheme. The free parameters are set such that the
first nonzero truncation errors of ECILB

5 /ECIRB
5 and ECILB

6 /ECIRB
6 match those of

ECIupwind and ECIcentral of equations (24) and (25) respectively. To capture discon-
tinuities, the linear weights are replaced with the LD nonlinear weights in Appendix
A.3.

2.5.2. Derivatives

A derivative boundary closure for an interior scheme given in equation (2) is only
required at the last boundary point. The boundary derivative schemes at the bound-
ary points are derived by using flux difference formulations of compact finite difference

13



schemes and enforcing discrete conservation. It is proved in Appendix D that any com-
pact or explicit central finite difference scheme can be rewritten in the flux difference
form given by:

∂̂F

∂x

∣∣∣∣∣
x=xj

= F̂ ′j =
1

∆x

(
F̂j+ 1

2
− F̂j− 1

2

)
, (39)

where F̂j+ 1
2

are the reconstructed fluxes at midpoints. F̂j+ 1
2

of the sixth order CMD

(equation (2)) are given by:

9

80
F̂j− 1

2
+

31

40
F̂j+ 1

2
+

9

80
F̂j+ 3

2
=

17

240
Fj− 1

2
+

103

120
Fj+ 1

2
+

17

240
Fj+ 3

2
. (40)

In deriving the boundary closure for the CMD derivative scheme, we seek for a closure for
the flux reconstruction equation such that the truncation error of the boundary derivative
scheme is matched to that of the interior derivative scheme up to seventh order. This
gives the following boundary scheme at the left boundary with j = 0:

31

40
F̂ ′j +

9

80
F̂ ′j+1 =

1

∆x

[
1633

5376000
Fj−2 +

9007

192000
Fj−1 −

29567

48000
F̃j− 1

2
− 65699

76800
Fj

+
44033

24000
F̃j+ 1

2
− 26353

38400
Fj+1 +

104579

336000
F̃j+ 3

2
− 27233

768000
Fj+2

]
. (41)

The derivative scheme for the right boundary at j = N − 1 can be obtained by
mirroring the above derivative scheme:

9

80
F̂ ′j−1 +

31

40
F̂ ′j =

1

∆x

[
27233

768000
Fj−2 −

104579

336000
F̃j− 3

2
+

26353

38400
Fj−1 −

44033

24000
F̃j− 1

2

+
65699

76800
Fj +

29567

48000
F̃j+ 1

2
− 9007

192000
Fj+1 −

1633

5376000
Fj+2

]
. (42)

The relation between finite difference schemes and their flux difference forms, and the
details on how to derive the boundary schemes with the flux difference form are further
discussed in Appendix D.

2.6. Extension to Euler equations

The inviscid 1D Euler equations are given by:

∂Q

∂t
+
∂F (Q)

∂x
= 0, (43)

where

Q =



ρ
ρu
E


 and F (Q) =




ρu
ρu2 + p

(E + p)u


 , (44)

where ρ is the density, u is the velocity, E is the total energy, and p = (γ−1)
(
E − ρu2/2

)

is the pressure.
The WCNS’s or WCHR6 scheme can be applied to the Euler equations in a similar

fashion as the scalar conservation law. Equations (2)), (3), and (4) can be used to get
14



the flux derivatives based on the fluxes at the nodes Fj and the fluxes at the midpoints

F̃j+ 1
2

= FRiemann(Q̃L, Q̃R) where Q̃L and Q̃R are the left and right interpolated solu-
tion vectors at the midpoints and FRiemann are the fluxes from a Riemann solver. In this
work, the HLLC Riemann solver is used (see Appendix E for details on the Riemann
solver) for 1D problems. Although the interpolated solution vectors at the midpoints
can be computed by directly interpolating the conserved variables or the primitive vari-
ables (ρ, u, p) using the weighted interpolations, it was found that projecting variables
to the local characteristic fields before reconstruction and interpolation can improve the
numerical stability at discontinuities. By exploiting the fact that the equations are de-
coupled in the characteristic space, numerical dissipation is added much more precisely
at shocks. The characteristic decomposition and interpolation with the WCHR6 scheme
is described in the section below.

2.6.1. Characteristic decomposition

For the 1D Euler equation system in primitive form, the three characteristic variables,
ξ0, ξ1, and ξ2, at midpoint are given by:



ξ0

ξ1

ξ2


 = R−1



ρ
u
p


 , (45)

where R−1 is the matrix of the left eigenvectors (inverse of the matrix of the right
eigenvectors R) of the linearized Euler system given by:

R−1 =




0 −ρc2 1
2

1 0 − 1
c2

0 ρc
2

1
2


 , (46)

where c =
√
γp/ρ is the speed of sound in the medium. The expressions for R−1 in 3D

problems are given in section 7.1 of Wong and Lele [45].
At a midpoint j + 1/2, the characteristic variables for all points in the stencil are

computed using the same left eigenvector matrix R−1
j+ 1

2

to maintain consistency between

the transforms to and back from the characteristic space. R−1
j+ 1

2

is computed using ρ

and c values given by the Roe average or arithmetic average of nodes j and j + 1. The
interpolation scheme for characteristic variables is given by:

αlj+ 1
2
ξ̃lj− 1

2
+ βlj+ 1

2
ξ̃lj+ 1

2
+ γlj+ 1

2
ξ̃lj+ 3

2
= alj+ 1

2
ξlj−2 + blj+ 1

2
ξlj−1 + clj+ 1

2
ξlj

+dlj+ 1
2
ξlj+1 + elj+ 1

2
ξlj+2 + f lj+ 1

2
ξlj+3, l = 0, 1, 2, (47)

where αl
j+ 1

2

, βl
j+ 1

2

, γl
j+ 1

2

, al
j+ 1

2

, bl
j+ 1

2

, cl
j+ 1

2

, dl
j+ 1

2

, el
j+ 1

2

, and f l
j+ 1

2

are the coefficients

obtained from the nonlinear explicit-compact interpolation method described in equa-
tion (26). However, the above equation cannot be solved in the form presented above as
the interpolated characteristic variables are coupled across grid points due to the com-
pact nature of the interpolation. Solving it in this form would introduce a consistency
error since each edge interpolation equation uses a different characteristic matrix for the
decomposition. A solution to this is to recast the above equation of scalars to an equation
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of vectors of the primitive variables at the cell nodes V = (ρ, u, p)T and the unknown
midpoint interpolated primitive variables Ṽ = (ρ̃, ũ, p̃)T :

(
αj+ 1

2
R−1
j+ 1

2

)
Ṽj− 1

2
+
(
βj+ 1

2
R−1
j+ 1

2

)
Ṽj+ 1

2
+
(
γj+ 1

2
R−1
j+ 1

2

)
Ṽj+ 3

2
=

(
aj+ 1

2
R−1
j+ 1

2

)
Vj−2 +

(
bj+ 1

2
R−1
j+ 1

2

)
Vj−1 +

(
cj+ 1

2
R−1
j+ 1

2

)
Vj

+
(
dj+ 1

2
R−1
j+ 1

2

)
Vj+1 +

(
ej+ 1

2
R−1
j+ 1

2

)
Vj+2 +

(
fj+ 1

2
R−1
j+ 1

2

)
Vj+3,

(48)

where αj+ 1
2
, βj+ 1

2
, γj+ 1

2
, aj+ 1

2
, bj+ 1

2
, cj+ 1

2
, dj+ 1

2
, ej+ 1

2
, and fj+ 1

2
are diagonal ma-

trices with the diagonal entries representing the coefficents obtained using the nonlinear
weighting procedure for the corresponding characteristic variable. With the characteris-
tic decomposition, the interpolation reduces to one block tri-diagonal system of equations
instead of three tri-diagonal systems of equations if only the primitive variables are in-
terpolated. Note that we only use arithmetic average of node values for the matrix
R−1
j+ 1

2

in this work. Section Appendix C details an efficient algorithm to solve the

block-tridiagonal system resulting from this characteristic interpolation.
Figure 10 shows the matrix structure for the left biased characteristic based weighted

compact interpolation for the initial conditions of the Shu–Osher problem (section 3.5)
with 80 points in the domain. Since the matrix is a block tri-diagonal system, the
size of the matrix is 240 × 240 and the full matrix structure is shown in figure 10(a).
Figure 10(b) shows the first 50×50 portion of the interpolation matrix. Here, we see that
across the shock at index ∼ 24, the matrix decouples. This means that the interpolation
stencil never crosses the shock. Additionally, the point closest to the shock has just one
block in it’s row indicating that the nonlinear weighting procedure picked solely the most
upwind stencil at the shock which is purely explicit. Figure 11 shows the left and right
interpolated density, velocity, and pressure. Since the interpolation stencil never crosses
the shock, the interpolation is virtually perfect and no spurious oscillations are observed.

The method can be easily extended from 1D to multi-dimensional problems by ap-
plying the algorithm along each spatial dimension to get the flux derivatives in that
direction.

For the 3D Euler equations:

∂Q

∂t
+
∂F (Q)

∂x
+
∂G(Q)

∂y
+
∂H(Q)

∂z
= 0, (49)

the flux derivatives ∂F (Q)/∂x are obtained using the algorithm outlined above in the x
direction and similarly for the flux derivatives ∂G(Q)/∂y and ∂H(Q)/∂z in the y and
z directions using grid spacings ∆y and ∆z respectively.

2.7. Cost estimate

The cost estimates for a single left-biased interpolation for the 3D Euler equations
using different interpolation schemes are shown in table 3. These are based on the
operation count of each sub-algorithm per grid point. The LD nonlinear weights are used
for all schemes in this comparison. Although the matrix solve portion of the interpolation
algorithm for ECI on characteristic variables is approximately 20 times more expensive
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Figure 10: Block tri-diagonal matrix structure for the characteristic decomposition in left-biased inter-
polation for initial condition of the Shu–Osher problem with 80 points. The top portion of the matrix
shows that the interpolation is decoupled across the shock. Red indicates positive values, blue indicates
negative values, and white indicates zero values.

than the corresponding EI, this difference is dwarfed by the large operation count of
computing the smoothness indicators and nonlinear weights. In total, performing ECI
on characteristic variables is ≈ 23% more expensive than performing EI on characteristic
variables in terms of the operation count.

Operation Interpolation methods
counts (a) (b) (c) (d)

Matrix solve 0 11 45 195
R.H.S. interpolation 55 55 55 55

Characteristic decomposition 0 66 0 66
Smoothness indicators 440 440 440 440

Nonlinear weights 630 630 720 720

Total 1125 1202 1260 1476

Table 3: Operation counts per grid point for different interpolation methods with the LD nonlinear
weights. (a) EI on primitive variables; (b) EI on characteristic variables; (c) ECI on primitive variables;
(d) ECI on characteristic variables.
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Figure 11: Interpolated values of primitive variables from initial conditions of the Shu–Osher problem
with 80 points. Black circles: node values; blue upper triangles: left interpolated midpoint values; red
lower triangles: right interpolated midpoint values

2.8. Hybridization of Riemann solvers for multi-dimensional Euler equations

The 3D Euler equations are given by:

∂ρ

∂t
+∇ · (ρu) = 0, (50)

∂ρu

∂t
+∇ · (ρuu+ pδ) = 0, (51)

∂E

∂t
+∇ · [(E + p)u] = 0, (52)

where u = (u, v, w)
T

= (u1, u2, u3)
T

is the velocity vector.
In this work, we use the hybrid HLLC-HLL Riemann solver proposed by Huang et al.

[21] (see Appendix E for details on the Riemann solver) when the Ducros-like shock
sensor [26] value, s, is greater than 0.65. s is defined as:

s =
−θ

|θ|+ |ω|+ ε
, (53)
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where θ = ∇ · u is the rate of dilatation and ω = ∇ × u is the vorticity. ε = 1.0e−15
is a small constant to prevent division by zero. If s ≤ 0.65, the HLLC Riemann solver
is used instead. The HLLC-HLL Riemann solver is a cure to the HLLC Riemann solver
on the potential numerical instabilities near shocks for multi-dimensional problems when
the shock normal direction does not align well with the grid normal surface direction.

2.9. Positivity-preserving for Euler equations

Negative density and pressure may arise during the nonlinear interpolation or the
numerical time stepping processes to cause numerical failures for WCHR and WCNS’s.
While first order interpolation can be used instead to ensure that density and pressure
are positive when it is detected that the nonlinearly interpolated density or pressure
has become negative, a different positivity-preserving approach has to be considered
regarding the positivity failures due to time stepping with the finite difference scheme.
The positivity-preserving limiter designed by Hu et al. [20] can be a cure for the positivity
failures during the time stepping process for Euler problems but requires the use of
reconstructed vector flux, F̂j+ 1

2
, from the flux difference form given by equation (39) in

the vector form. During time stepping, the positivity-preserving method replaces F̂j+ 1
2

at any midpoint with a limited flux, F̂ ∗∗
j+ 1

2

, which is given by:

F̂ ∗∗j+ 1
2

=
(

1− θρ,j+ 1
2
θp,j+ 1

2

)
F̂LFj+ 1

2
+ θρ,j+ 1

2
θp,j+ 1

2
F̂j+ 1

2
, (54)

where θρ,j+ 1
2

and θp,j+ 1
2

are blending functions between 0 and 1 to hybridize F̂j+ 1
2

with

the Lax-Friederichs flux, F̂LF
j+ 1

2

. F̂LF
j+ 1

2

for 1D Euler equations is given by:

F̂LFj+ 1
2

=
1

2
[Fj + Fj+1 + (|u|+ c)max (Qj −Qj+1)] (55)

The procedures to compute θρ,j+ 1
2

and θp,j+ 1
2

are given by Hu et al. [20]. The convex
combination of the reconstructed flux and the positivity-preserving Lax-Friederichs flux
ensures the density and pressure to remain positive for any time stepping method that
is a convex combination of Euler-forward time steps under the condition that Courant–
Friedrichs–Lewy number, CFL, is smaller than 0.5. In this work, we suggest to use the
five-stage fourth order strong stability preserving Runge–Kutta (SSP-RK54) scheme [43]
which is a convex combination of Euler-forward steps.

The positivity-preserving flux limiters can be implemented in a dimension-by-dimension
fashion for multi-dimensional Euler problems such as 3D problems if the time step size,
∆t, is given by the following conditions:

∆t =
CFL

τx + τy + τz
, (56)

where

τx =
(|u|+ c)max

∆x
, τy =

(|v|+ c)max

∆y
, τz =

(|w|+ c)max

∆z
. (57)
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2.10. Discretization of viscous and diffusive fluxes for Navier–Stokes equations

The 3D compressible Navier–Stokes equations are given by:

∂ρ

∂t
+∇ · (ρu) = 0, (58)

∂ρu

∂t
+∇ · (ρuu+ pδ)−∇ · τ = 0, (59)

∂E

∂t
+∇ · [(E + p)u]−∇ · (τ · u− qc) = 0. (60)

τ and qc are viscous stress tensor and conductive heat flux respectively. δ is the identity
tensor.

The viscous stress tensor τ for a Newtonian fluid is given by:

τ = 2µS +

(
µv −

2

3
µ

)
δ (∇ · u) , (61)

where µ and µv are the shear viscosity and bulk viscosity respectively. S is the strain-rate
tensor given by:

S =
1

2

[
∇u+ (∇u)

T
]
. (62)

The conductive flux qc is given by:

qc = −κ∇T, (63)

where κ is the thermal conductivity. T is the temperature given by the equation of state
for ideal gas:

T =
p

ρR
, (64)

where R is the gas constant.
All the viscous and diffusive terms are discretized in their non-conservative forms by

isolating the Laplacian operator as in Nagarajan et al. [32], Pirozzoli [38]. The viscous
term in the momentum equation is split as:

∇ · τ = µ
(
∇2u+∇θ

)
+ 2S∇µ+ λδ · ∇θ + θδ · ∇λ, (65)

where λ = µv − 2µ/3 and θ = ∇ ·u is the dilatation. The second derivative terms in the
gradient of θ are also isolated as:

∂θ

∂xi
=
∂2ui
∂x2

i

+
∑

k 6=i

∂2uk
∂xi∂xk

. (66)

Summation is not implied by repeating indices in the above equation.
The heat conduction term is split as:

∇ · qc = −κ∇2T −∇T · ∇κ, (67)

and the viscous power term is also split in a non-conservative form as:

∇ · (τ · u) = u · (∇ · τ ) + τ : ∇u, (68)
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where equation (65) is used for ∇ · τ .
In equations (65)-(68), the Laplacian and second derivative terms are discretized di-

rectly using a sixth order accurate second derivative compact finite difference scheme [28]
given by:

2

15
f̂ ′′j−1 +

11

15
f̂ ′′j +

2

15
f̂ ′′j+1 =

1

∆x2

[
4

5
(fj+1 − 2fj + fj−1) +

1

20
(fj+2 − 2fj + fj−2)

]
,

(69)

where f̂ ′′j are numerically approximated second derivatives of any variables f at cell nodes
and fj are f at cell nodes.

The other terms are discretized using successive applications of a sixth order accurate
first derivative compact node-to-node finite difference scheme (CND) [28] given by:

1

5
f̂ ′j−1 +

3

5
f̂ ′j +

1

5
f̂ ′j+1 =

1

∆x

[
7

15
(fj+1 − fj−1) +

1

60
(fj+2 − fj−2)

]
, (70)

where f̂ ′j are numerically approximated first derivatives of any variables f at cell nodes.

3. Numerical results

In this section, we present results using WCNS5-JS, WCNS5-Z, WCNS6-LD, and
WCHR6 schemes in different test problems. All tests are inviscid except the compressible
homogeneous isotropic turbulence case where the compressible Navier–Stokes equations
are used. In all problems, the equations are integrated in time using the five-stage fourth
order SSP-RK54 scheme [43]. Positivity-preserving limiter [20] is only used in the 1D
planar Sedov blast wave problem and the 2D double Mach reflection problem to overcome
the negative density and pressure issues encountered4.

3.1. Convergence tests

The formal order of accuracy of each scheme is verified and compared through 1D
and 2D problems involving advection of an entropy wave. The initial conditions in a 1D
periodic domain [−1, 1) and a 2D periodic domain [−1, 1)× [−1, 1) are respectively given
by:

(ρ, u, p) = (1 + 0.5 sin (πx) , 1, 1) , (71)

(ρ, u, v, p) = (1 + 0.5 sin [π (x+ y)] , 1, 1, 1) . (72)

Since the velocity and pressure are constant and only entropic disturbances are present,
the problems reduce to linear advection of the entropy wave. Therefore, the exact solu-
tions are given by:

(ρexact, uexact, pexact) = (1 + 0.5 sin [π (x− t)] , 1, 1) , (73)

(ρexact, uexact, vexact, pexact) = (1 + 0.5 sin [π (x+ y − 2t)] , 1, 1, 1) . (74)

4The positivity-preserving limiter has no effect on problems that do not have occurrence of negative
density and pressure.
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The ratio of specific heats γ is 1.4. The simulations using different schemes are conducted
up to t = 2 with mesh refinements from N = 8 to N = 128 points in each direction. All
simulations are run with very small constant time steps in order to isolate the spatial
error and observe the order of accuracy of different numerical schemes. ∆t/∆x = 0.02 is
chosen for both 1D and 2D simulations. The L2 errors for the 1D and 2D problems are
computed as:

L2 error (1D) =

√√√√
N−1∑

j=0

∆x (ρj − ρexact (xj))
2
/

N−1∑

j=0

∆x, (75)

L2 error (2D) =

√√√√
N−1∑

i=0

N−1∑

j=0

∆x∆y (ρi,j − ρexact (xi, yj))
2
/

N−1∑

i=0

N−1∑

j=0

∆x∆y. (76)

From tables 4 and 5 together with figure 12, we can see that all schemes can achieve
their formal orders of accuracy when the number of points is large enough. Although both
WCNS6-LD and WCHR6 are sixth order accurate, the latter scheme is more accurate
than the former with errors that are ≈ 4 − 5 times smaller. This is consistent with the
ratio of their respective interpolation truncation errors which is 34/7 ≈ 4.86 since the
major difference between the two schemes is the interpolation method.

Number WCNS5-JS WCNS5-Z WCNS6-LD WCHR6
of points error order error order error order error order

8 2.993e-02 8.328e-03 2.410e-03 6.339e-04
16 1.954e-03 3.94 2.453e-04 5.09 4.028e-05 5.90 9.663e-06 6.04
32 6.321e-05 4.95 7.579e-06 5.02 6.399e-07 5.98 1.500e-07 6.01
64 1.905e-06 5.05 2.372e-07 5.00 1.004e-08 5.99 2.339e-09 6.00
128 5.817e-08 5.03 7.416e-09 5.00 1.570e-10 6.00 3.697e-11 5.98

Table 4: L2 errors and orders of convergence of density for the 1D problem from different schemes at
t = 2.

Number WCNS5-JS WCNS5-Z WCNS6-LD WCHR6
of points error order error order error order error order

82 5.712e-02 1.647e-02 4.807e-03 1.265e-03
162 3.519e-03 4.02 4.915e-04 5.07 8.046e-05 5.90 1.930e-05 6.03
322 1.235e-04 4.83 1.526e-05 5.01 1.279e-06 5.98 2.999e-07 6.01
642 3.793e-06 5.02 4.778e-07 5.00 2.008e-08 5.99 4.683e-09 6.00
1282 1.165e-07 5.03 1.494e-08 5.00 3.140e-10 6.00 7.332e-11 6.00

Table 5: L2 errors and orders of convergence of density for the 2D problem from different schemes at
t = 2.

3.2. Advection of broadband disturbances

This problem is similar to the earlier one but with the density field of a uniform flow
being disturbed by a broadband signal instead of a single mode. The initial conditions
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Figure 12: L2 errors against numbers of points, N , of different schemes for the 1D and 2D convergence
tests. Cyan circles: WCNS5-JS; red squares: WCNS5-Z; green diamonds: WCNS6-LD; blue triangles:
WCHR6; dashed-dotted line: fifth-order; dashed line: sixth-order

are given by:


ρ
u
p


 =




1 + δ
∑N/2
k=1 (Eρ(k))

1/2
sin (2πk (x+ ψk))

1
1


 , (77)

where ψk is a random number between 0 and 1 with uniform distribution, δ = 1.0e−2,
and the ratio of specific heats γ is 1.4. The density spectrum Eρ(k) is given by:

Eρ(k) =

(
k

k0

)4

exp

(
−2

(
k

k0

)2
)
. (78)

We have chosen k0 = 12. The computational domain is periodic on domain x ∈ [0, 1).
The simulations are run with N = 128 and ∆t = 0.002 until t = 1.

The density solutions from various schemes after one period are shown in figure 13(a).
Since this problem reduces to linear advection, we should expect the initial density spec-
trum to be preserved without any corruption. However, the schemes themselves are
nonlinear and would introduce some coupling between different modes. Figure 13(b)
compares the spectra of the density disturbance from different schemes. We see that
both WCNS5-JS and WCNS5-Z are too dissipative to preserve the initial spectrum due
to their upwind nature. WCNS6-LD preserves the initial spectrum better, but still has
some deviations from the prescribed spectrum. WCHR6 preserves the initial spectrum
virtually perfectly. Unlike the WCNS’s almost no errors due to the nonlinear nature of
the scheme are seen. This is attributed to its higher resolution characteristics.

3.3. Entropy wave leaving domain

In this 1D inviscid problem, the advection of a Gaussian entropy wave leaving a
domain x ∈ [0, 1] is simulated with the WCHR scheme and boundary closures. The
initial conditions are given by:

(ρ, u, p) =
(

1 + 0.1 exp
(
−400 (x− 0.5)

2
)
, 0.5, 1

)
. (79)
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Figure 13: Advection of broadband disturbances problem at t = 1.0 using different schemes. Black
solid line: exact; cyan circles: WCNS5-JS; red squares: WCNS5-Z; green diamonds: WCNS6-LD; blue
triangles: WCHR6.

The ratio of specific heats γ is 1.4. As the Gaussian pulse is being advected, it
eventually reaches the right boundary and leaves the domain. Two boundary treatment
methods to fill ghost cells at the boundaries are compared: (1) constant extrapolation
from interior solutions and (2) sub-sonic inflow and outflow boundary conditions at the
left and right boundaries respectively following the non-reflective characteristic ghost cell
method in Motheau et al. [31].

Primitive variables are used for the constant extrapolation method. For the non-
reflective subsonic outflow method, σ = 0.005, lx = 0.1, and pt = 1 are used. As
for the non-reflective subsonic inflow method, η2 = η3 = 0.005, lx = 0.1, ut = 0.5,
and (p/ρ)t = RTt = 1 are set. The details of the implementation of the non-reflective
characteristic method as well as interpretation of the parameters detailed above are
explained in [31]. Simulations are performed with constant time steps ∆t = 0.002 on a
uniform grid composed of N = 128 grid points.

From figures 14 and 15, it can be seen that both boundary methods allow the entropy
wave to leave the domain when they are used with the boundary schemes in section 2.5.
Figure 16 shows that the L∞ errors of pressure are very small for both methods. This
indicates that acoustic components of any unphysical reflections at the outflow boundary
are insignificant for both methods. However, the non-reflective characteristic method
outperforms the extrapolation method in accuracy of the solution of density field at
different times which shows the necessity of non-reflective characteristic method in the
boundary treatment to properly treat the outgoing entropic wave.

3.4. Sod shock tube problem

This is a 1D shock tube problem introduced by Sod [42]. The problem consists of the
propagation of a shock wave, a contact discontinuity, and an expansion fan. The initial
conditions are given by:

(ρ, u, p) =

{
(1, 0, 1) , x < 0,

(0.125, 0, 0.1) , x ≥ 0.
(80)
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Figure 14: Global density profiles for the entropy wave leaving domain problem at different times.
Black solid line: exact; red squares: extrapolation; blue triangles: non-reflective characteristic boundary
conditions.
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Figure 15: Local density profiles for the entropy wave leaving domain problem at different times. Black
solid line: exact; red squares: extrapolation; blue triangles: non-reflective characteristic boundary con-
ditions.
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Figure 16: L∞ errors of pressure against time for the entropy wave leaving domain problem. Red dashed
line: extrapolation; blue solid line: non-reflective characteristic boundary conditions.
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The ratio of specific heats γ is 1.4. The computational domain has size x ∈ [−0.5, 0.5].
Simulations are performed with constant time steps ∆t = 0.002 on a uniform grid com-
posed of 100 grid points where ∆x = 0.01.

Comparison between the exact solution and the numerical solution for the density at
t = 0.2 is shown in figure 17. It can be seen that all of the schemes can capture the
shock well. WCHR6 and WCNS6-LD have sharper profiles at the shock in comparison
to WCNS5-JS and WCNS5-Z.
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Figure 17: Sod shock tube problem at t = 0.2 using different schemes. Black solid line: exact; cyan
circles: WCNS5-JS; red squares: WCNS5-Z; green diamonds: WCNS6-LD; blue triangles: WCHR6.

3.5. Shu–Osher problem

This 1D problem first proposed by Shu and Osher [41] involves the interaction of a
Mach 3 shock wave with an entropy wave. The interaction creates a high wavenumber
entropy wave and a nonlinear acoustic wave that steepens and forms a shock train. This
problem can hence assess the ability of a scheme to capture discontinuities well, while
also retaining the smooth features of the solution. The initial conditions are given by:

(ρ, u, p) =

{(
27/7, 4

√
35/9, 31/3

)
, x < −4,

(1 + 0.2 sin (5x), 0, 1) , x ≥ −4.
(81)

The ratio of specific heats γ is 1.4. The spatial domain of the problem is x ∈ [−5, 5].
Simulations are conducted with constant time steps ∆t = 0.005 on a uniform grid with
150 grid points and also with constant time steps ∆t = 0.004 on a uniform grid with 200
grid points. A reference solution is computed using the WCNS6-LD scheme with 2000
points and time step of ∆t = 0.0002. All results shown here are at time t = 1.8.

Figures 18 and 19 show the density profile at t = 1.8 obtained using various schemes
compared to the reference solution with the two different grid resolutions. Both WCNS5-
JS and WCNS5-Z dissipate the high wavenumber entropy wave significantly which is not
seen in the results from the WCNS6-LD and WCHR6 schemes. Figure 18(b) shows that
WCHR6 has less dispersion error around the region where the entropy wave and weak
shock interacts from the results with 150 points due to the higher resolution character-
istics of WCHR6.
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Figure 18: Shu–Osher problem at t = 0.2 using different schemes with ∆x = 1/15. Black solid line:
reference; cyan circles: WCNS5-JS; red squares: WCNS5-Z; green diamonds: WCNS6-LD; blue triangles:
WCHR6.
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Figure 19: Shu–Osher problem at t = 0.2 using different schemes with ∆x = 0.05. Black solid line:
reference; cyan circles: WCNS5-JS; red squares: WCNS5-Z; green diamonds: WCNS6-LD; blue triangles:
WCHR6.

3.6. One-dimensional planar Sedov blast wave problem

This 1D planar Sedov blast wave problem [39, 49, 20] is a near vacuum problem with
the propagation of blast waves. The initial conditions are given by:

(ρ, u, p) =

{
(1, 0, 4.0e−13) , x < 2− 0.5∆x, x > 2 + 0.5∆x,(
1, 0, 1.28e6

∆x

)
, 2− 0.5∆x ≤ x ≤ 2 + 0.5∆x.

(82)

The ratio of specific heats γ is 1.4. The spatial domain of the problem is x ∈ [0, 4].
Simulations are conducted with constant time steps ∆t = 1.0e−6 on a uniform grid with
201 grid points.

Figures 20(a) and 20(b) show the density and pressure profiles respectively at t =
1.0e−3 obtained using various schemes with the positivity limiter. It can be seen that
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all of the schemes can capture the blast waves. However, the pressure profiles computed
with WCHR6 and WCNS6-LD have small overshoots at the peaks of the blast waves
while density and pressure peaks obtained with WCNS5-JS and WCNS5-Z are damped.
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Figure 20: 1D planar Sedov blast wave problem at t = 1.0e−3 using different schemes. Black solid line:
exact; cyan circles: WCNS5-JS; red squares: WCNS5-Z; green diamonds: WCNS6-LD; blue triangles:
WCHR6.

3.7. Two-dimensional vortex leaving domain

This is a 2D test problem of the advection of an isothermal vortex out of a compu-
tation domain in a Mach number M∞ = 0.283 uniform flow following case C in Granet
et al. [15] except that inviscid conditions are used here. The initial conditions of the
vortex5 are given by:




ρ
p
δu
δv


 =




ρ∞ exp

[
−γ2

(
Γv
cRv

)2

exp

(
−
(
r
Rv

)2
)]

p∞ exp

[
−γ2

(
Γv
cRv

)2

exp

(
−
(
r
Rv

)2
)]

− Γv
R2
v

exp

[
− 1

2

(
r
Rv

)2
]
(y − yv)

Γv
R2
v

exp

[
− 1

2

(
r
Rv

)2
]
(x− xv)




, (83)

where Γv = 0.024, Rv = 0.1. The background flow has ρ∞ = 1, p∞ = 1/γ, u∞ = M∞c∞,
v∞ = 0, and c∞ = 1. δu and δv are the deviations of the u and v velocities from u∞
and v∞ respectively. The ratio of specific heats γ = 1.4 is used. The problem domain is
chosen to be [−D/2, D/2] × [−D/2, D/2), where D = 1 and the problem is periodic in
the y direction. The vortex is located at (xv, yv) = (0, 0) initially. Figure 21 shows the
initial configuration and computation domain.

5This is actually a swirling flow with zero net circulation in the far field.
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Figure 21: Schematic diagram of initial flow field and computational domain of the vortex leaving domain
problem.

Similar to the 1D entropy wave leaving domain problem, the boundary schemes with
two different ghost cell filling methods: (1) constant extrapolation of primitive vari-
ables from interior solutions and (2) sub-sonic inflow and outflow non-reflective bound-
ary conditions at the left and right boundaries following Motheau et al. [31] are tested
in this problem. When the non-reflective methods are used, σ = 0.005, lx = Rv,
β = M∞, and pt = p∞ are used for the non-reflective subsonic outflow method and
η2 = η3 = η4 = 0.005, lx = Rv, β = M∞, ut = u∞, and (p/ρ)t = RTt = p∞/ρ∞ are
set for the non-reflective subsonic inflow method. All simulations in this section are run
with CFL = 0.5 and a grid with 64× 64 points is used.

Simulations computed with the boundary schemes and both ghost cell methods give
stable results. Figure 22 shows the streamwise velocity contours and the normalized
pressure field at different normalized times computed with the two different boundary
treatments. The pressure field and time are normalized as:

p∗ = (p∞ − p)
2R2

v

ρ∞Γ2
v

, (84)

t∗ =
2u∞t
D

. (85)

From the figures, it can be seen that the non-reflective boundary condition methods
give accurate results, without any spurious waves reflected at the boundaries. However,
in the solutions computed with the extrapolation method, spurious pressure waves are
introduced at the right outflow boundary and the vortex is highly distorted as it crosses
the domain boundary. These findings are similar to those observed in Motheau et al.
[31].
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(a) t∗ = 0 (b) t∗ = 0.6 (c) t∗ = 1.2 (d) t∗ = 1.6

(e) t∗ = 0 (f) t∗ = 0.6 (g) t∗ = 1.2 (h) t∗ = 1.6

Figure 22: 10 equally spaced streamwise velocity contours from 0.137 to 0.429 and normalized pressure
fields, p∗, for the vortex leaving domain problem at different normalized times computed with the
extrapolation boundary treatment (top row) and the non-reflecting boundary treatment (bottom row).

3.8. Two-dimensional shock-vortex interaction

This 2D shock-vortex interaction problem was studied previously in several papers [22,
47, 5]. The inviscid version of this problem is studied here which consists of a stationary
Mach 1.2 shock and a strong isentropic vortex6 characterized by the vortex Mach number
Mv initially in the pre-shock region. The initial configuration and computation domain
are shown in figure 23. The shock is at x = 0 and the vortex is located upstream of the
shock at (xv, yv) = (D/10, 0) initially. The initial conditions of the vortex are given by:




ρ
p
δu
δv


 =




ρ∞
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1− 1

2 (γ − 1)M2
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Rv

)2
)] 1

γ−1
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Rv

)2
)] γ

γ−1

−Mvc∞
Rv

exp

[
1
2

(
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(
r
Rv

)2
)]

(y − yv)

Mvc∞
Rv

exp

[
1
2

(
1−

(
r
Rv

)2
)]

(x− xv)




. (86)

where ρ∞ = 1.0, p∞ = 1/γ, u∞ = M∞c∞, v∞ = 0, c∞ = 1, Mv = 1.0, and vortex radius
Rv = 1.0 are chosen in this paper. δu and δv are the deviations of the u and v velocities

6Like in the previous problem, this is also actually a swirling flow with zero net circulation in the far
field.
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from u∞ and v∞ respectively. The ratio of specific heats γ = 1.4 is used. The problem
domain is chosen to be [−3D/4, D/4]× [−D/2, D/2), where D = 40 and the problem is
periodic in the y direction. The shock is initialized at x = 0. Dirichlet post-shock and
pre-shock boundary conditions are used to fill ghost cells for the boundary schemes at
the left and right boundaries. A 2D grid with 512×512 points is used for all the schemes.
All cases in this section are run with CFL = 0.5.
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Figure 23: Schematic diagram of initial flow field and computational domain of the shock-vortex inter-
action problem.

Figure 24 shows the pressure fields at t = 6 for the four different schemes. At this
time instant, the vortex has passed through the nominal shock line, but its interaction
with the shock leads to several curved and highly deformed shock structures. WCNS5-
JS and WCNS5-Z are dissipative but yield non-oscillatory solutions. WCNS6-LD and
WCHR6 are less dissipative and have crispier features. However, they both have some
mild oscillations at the radial shock front.

Figure 25 shows the sound pressure fields defined as (p− p∞) /
(
ρ∞c2∞

)
at t = 16

for the four different schemes. Here, the (·)∞ quantities are all taken to be the post-
shock values. The vortex, having passed through the shock gets deformed and as a result
we see a quadrupole sound signature. However, since the vortex strength is very high,
many weak shock waves are generated and propagate radially outward. Again, from
figure 25, we see that WCNS5-JS and WCNS5-Z are more dissipative and damp the
fine-scale structures of the sound field. WCNS6-LD and WCHR6 are less dissipative and
have more fine-scale features. Figure 26 shows the sound pressure on a radial line from
the center of the vortex with an angle of φ = −45◦ (see figure 23) for the four schemes
considered here and a reference solution obtained using the WCNS5-Z on a grid with eight
times the number of points in each direction. Figure 26(a) plots a global view of the
radial sound pressure profile and all schemes seem to overlap with the reference solution
at this scale. Figure 26(b) shows a local view of the outgoing shock front at r ≈ 14.5.
Here we see that WCHR6 and WCNS6-LD overshoot the peak sound pressure while the
WCNS5-JS and WCNS5-Z under-predict the peak sound pressure level. Figure 26(c)
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shows a local view of the radial sound pressure profile around r = 7.5. Here, the local
peak of the sound pressure profile in the reference solution is not captured by any of
the WCNS’s while the WCHR6 scheme is able to capture the peak owing to its higher
resolution property.

3.9. Double Mach reflection

This is a 2D problem with the domain size of [0, 4]× [0, 1] by Woodward and Colella
[46]. The initial conditions are given by:

(ρ, u, v, p) =

{(
8, 8.25 cos

(
π
6

)
,−8.25 sin

(
π
6

)
, 116.5

)
, x < 1

6 + y√
3
,

(1.4, 0, 0, 1) , x ≥ 1
6 + y√

3
.

A Mach 10 strong shock initially makes a 60◦ angle with the horizontal wall at location
x = 1/6 of the bottom boundary. As the shock moves and reflects on the wall, a complex
shock structure with two triple points appears. The ratio of specific heats is γ = 1.4.
The boundary conditions following those by Woodward and Colella [46] are used. At the
bottom boundary, the conditions in the region x ∈ [0, 1/6] are fixed at Dirichlet boundary
conditions with the post-shock flow conditions and reflecting boundary conditions are
used for x ≥ 1/6. Dirichlet boundary conditions with the post-shock flow conditions
are set at the left boundary. Constant extrapolations of primitive variables are used to
fill ghost cells at the right boundary to allow zero-gradient boundary conditions. Time-
dependent conditions are applied on the top boundary to match the movement of the
shock wave. The simulations are conducted with constant CFL = 0.5 until t = 0.2. All
schemes can only provide stable results with the positivity limiter. The density fields for
different schemes at t = 0.2 are shown in figure 28.

At the shock triple point, a slip line is generated that is Kelvin–Helmholtz unstable.
Since the inviscid Euler equations are solved, there is no physical dissipation in this
test problem. The instability of the vortex sheet along the slip line is only damped
by numerical dissipation. From figure 28, we see that with the same mesh resolution of
960×240, both WCNS5-JS and WCNS5-Z are numerically too dissipative and completely
inhibit the growth of Kelvin–Helmholtz vortices along the slip lines. On the other hand,
both WCNS6-LD and WCHR6 can capture much more small-scale vortical structures
along the slip lines as more localized dissipation is applied at the discontinuities. Since
WCHR6 is the least dissipative, it exhibits the highest level of instability growth.

3.10. Taylor–Green vortex

The 3D inviscid Taylor–Green vortex problem is a popular test case used to compare
the numerical dissipation of different schemes and has been used widely in previous
literature [24, 18]. The initial conditions of the problem are given by:




ρ
u
v
w
p




=




1
sinx cos y cos z
− cosx sin y cos z

0

100 + (cos (2z)+2)(cos (2x)+cos (2y))−2
16



. (87)
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The ratio of specific heats of the gas is γ = 5/3. The domain is periodic with size [0, 2π)
3
.

The problem is solved with the four schemes considered here on a 643 grid. Simulations
are conducted until t = 10 with a constant CFL = 0.6.

As the mean pressure is chosen to be very large compared to the dynamic pressure,
the flow problem is essentially incompressible. Thus, the kinetic energy of the flow is
conserved in the inviscid limit and the problem can be used as a test to examine the
dissipative property of different schemes. As time evolves, the initial flow gets stretched
and energy is transferred from larger to finer scales.

Figure 29 plots the kinetic energy (〈ρuiui〉 /2) and enstrophy (〈ωiωi〉) normalized by
their respective initial values. The 〈·〉 operator indicates averaging in space. Here, we
see that WCHR6 is the least dissipative and retains the largest amount of the kinetic
energy at t = 10. Both upwind biased schemes (WCNS5-JS and WCNS5-Z) are more
dissipative than the hybrid central-upwind schemes (WCHR6 and WCNS6-LD). Similar
trends can also been seen in the enstrophy plot. WCHR6 captures significantly larger
amount of enstrophy compared to WCNS6-LD while the upwind biased schemes are very
dissipative and deviate from the semi-analytical solution of Brachet et al. [4] much earlier
than the hybrid central-upwind schemes.

Figures 30 and 31 compare the velocity and vorticity spectra of various schemes at
t = 5 and t = 7 respectively. These spectra are also compared to a higher resolution
simulation with 2563 grid points performed using a tenth order compact finite difference
scheme [28] with localized artificial dissipation. The velocity spectra are much more
revealing than the kinetic energy plot. WCHR6 is the least dissipative since it is able
to preserve more high wavenumber features while the other schemes dissipate the high
wavenumber content more aggressively. WCHR6 agrees well with the higher resolution
case until the Nyquist limit (k = 32) at t = 5 while WCNS6-LD agrees well till k ≈ 17
after which it starts becoming more dissipative. WCNS5-JS and WCNS5-Z start adding
dissipation from k ≈ 5. The vorticity spectrum highlights the high wavenumber content
more. From the vorticity spectrum, we again see that WCHR6 has much more energy
in the high wavenumber region compared to the WCNS’s. At t = 7, the flow has much
more fine scale features. At this time, all the schemes deviate from the high resolution
case. The WCHR6 scheme has the highest energy content among all the other schemes
and is closest to the high resolution case at all wavenumbers.

3.11. Compressible homogeneous isotropic turbulence

A more realistic and pertinent test case for shock-capturing schemes than the Taylor–
Green vortex problem is the decay of compressible homogeneous isotropic turbulence [27,
24]. This is a viscous test case with the initial RMS velocity fluctuations being large
enough to create eddy shocklets [27] and serves as a good problem to test the ability of
numerical methods to capture shocks while also examine their dissipation characteristics
for turbulence.

The initial velocity profile is a random solenoidal field that has an energy spectrum
given by:

E(k) ∝ k4 exp

(
−2

(
k

k0

)2
)
, (88)

where k is the wavenumber and k0 is the most energetic wavenumber. This gives an
initial Taylor microscale, λ = λ0 = 2/k0. The RMS velocity fluctuation is given by
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urms =
√
〈uiui〉 /3 =

√
(2/3)

∫∞
0
E(k)dk. Details in obtaining the initial velocity profiles

can be found in Johnsen et al. [24]
The two important parameters in this problem are the turbulent Mach number,

Mt =
√

3urms/ 〈c〉, and the Taylor scale Reynolds number, Reλ = 〈ρ〉urmsλ/ 〈µ〉. In
this section, we consider the case with Mt = Mt,0 = 0.6, Reλ = Reλ,0 = 100, and k0 = 4
initially. Ratio of specific heats, γ = 1.4, and the gas constant, R = 1, are used. The
density and pressure fields are taken to be constant at ρ = 1 and p = 1/γ initially.

The shear viscosity is assumed to follow a power law temperature dependence given
by:

µ

µref
=

(
T

Tref

) 3
4

, (89)

where Tref = 1/γ and µref = urms,0λ0/Reλ,0. urms,0 is the initial urms. The bulk viscosity,
µv, is assumed to be zero. A constant Prandtl number, Pr = 0.7, is used. The Prandtl
number is defined as:

Pr =
cpµ

κ
, cp =

γR

γ − 1
(90)

The domain is periodic with size [0, 2π)
3
. The problem is solved on a 643 grid with the

four schemes considered in this work. Reference solutions obtained from a direct numer-
ical simulation (DNS) dataset spectrally filtered to a 643 grid are used for comparison.
The DNS dataset is obtained using a 5123 grid and a tenth order compact finite difference
scheme. See section Appendix F for details on how the spectrally filtered DNS solutions
are obtained. Simulations are run with a constant CFL = 0.5 until t/τ = 4 where τ
is the eddy turnover time given by τ = λ0/urms,0. The simulations are also performed
without the use of a subgrid-scale model in order to test the dissipation characteristics of
the numerical scheme alone. Addition of subgrid-scale models in conjunction with this
shock capturing scheme in a suitable and consistent way is left for future work.

Figure 32(a) shows the numerical schlieren visualizing eddy shocklets in the domain.
Figure 32(b) shows contours of high enstrophy and high negative dilatation that visualizes
the eddy shocklets. These distributed eddy shocklets make this test case challenging for
numerical schemes and highlights the ability of schemes to capture turbulence structures
as well as discontinuities. Figure 33 shows the velocity variance, enstrophy, and dilatation
variance as a function of time for the four schemes and the filtered DNS solution. Here,
we see that WCHR6 is the least dissipative and is the closest to the filtered DNS profiles
for all the three statistics plotted. The enstrophy profiles highlight the difference between
the schemes. WCNS5-JS and WCNS5-Z are excessively dissipative and capture very little
amount of the enstrophy. WCHR6 agrees the best with the filtered DNS solution and
shows that it is minimally dissipative even in the presence of eddy shocklets. Similar
trends are seen in the plot of the dilatation variance. WCHR6 agrees very well with the
filtered DNS solution while the other schemes dissipate dilatational motions more.

Figures 34 and 35 show the velocity, vorticity, dilatation, and density spectra for the
four different schemes. At this Reλ,0 of 100, the peak of the vorticity energy spectrum is
at k ≈ 9 which is well below the maximum resolvable wavenumber of 32. The two fifth
order schemes don’t capture this peak well but the two sixth order schemes do. Similar
to the Taylor–Green vortex case, it can be seen that WCHR6 is the best at capturing fine
scale features in both vorticity and dilatation while this advantage is less pronounced in
this lower Reynolds number test case.
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4. Conclusions

In summary, we have developed a new sixth order accurate weighted compact high
resolution (WCHR6) scheme that has higher resolution and more localized dissipation
than previous WCNS’s. The high resolution property primarily comes from incorporating
compact interpolation schemes directly into the WCNS interpolation mechanism. The
scheme is presented for use with conservation equations such as the Euler equations and
compressible Navier–Stokes equations in one, two, and three dimensions. The block tri-
diagonal characteristic decomposition method is shown to be effective at interpolating
primitive variables across shocks. Approximate dispersion relation (ADR) analysis of the
scheme shows the superior resolution ability of the scheme compared to other WCNS’s
of similar orders of accuracy that use only explicit interpolations. Appropriate boundary
schemes are also developed for non-periodic problems. Further, a conservative flux-
difference form of compact finite difference schemes was derived for the first time and
this allowed the use of central compact finite difference schemes with positivity-preserving
limiters. Sixth order of accuracy of the scheme was demonstrated for the advection
of an entropy wave in 1D and multi-dimensional settings. For all the test problems,
the WCHR6 scheme was compared with WCNS’s that utilized the same compact finite
difference scheme but different interpolation methods to highlight the benefit of the
new compact nonlinear interpolation method. Since all WCNS’s in this paper use the
same compact finite difference scheme as WCHR6, the advantage of the WCHR6 scheme
might be expected to be larger when compared to the versions of the WCNS’s which use
explicit finite difference schemes. The advection of a broadband entropy wave showed
that the WCHR6 scheme was better than the WCNS’s at preserving the spectral content
of the solution. The 1D Sod shock tube problem, the Shu–Osher problem, and the Sedov
blast wave problem showed the ability of the method to capture shocks robustly while
localizing the dissipation to regions near shocks. The WCHR6 scheme was shown to have
much better dispersion and dissipation characteristics compared to the other schemes
considered. The boundary schemes were also shown to be stable and accurate with
appropriate boundary treatments for problems having features leaving the computational
domain. The 2D shock interaction with a strong vortex showed the ability of the scheme
to capture shocks with complex structures and large pressure variations. The robustness
of the scheme while still being minimally dissipative was demonstrated in the double Mach
reflection problem where the strong Mach 10 shock is captured robustly while the Kelvin–
Helmholtz instability is minimally dissipated. The 3D Taylor–Green vortex problem
highlighted the minimal dissipation characteristic of the scheme for a 3D problem with
a large range of scales. Finally, the compressible homogeneous isotropic turbulence test
case showed that the WCHR6 scheme was capable of capturing eddy shocklets randomly
distributed in the turbulent field while still being minimally dissipative for both the
solenoidal and dilatational motions.
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Appendix A. Nonlinear weights

Nonlinear weights are essential for nonlinear schemes such as WENO, WCNS, and
WCHR schemes to capture discontinuities without spurious oscillations. Different forms
of linear weights are discussed in this section.

Appendix A.1. Classical upwind-biased (JS) nonlinear weights

For a weighted scheme with four sub-stencils, the classical JS nonlinear weighting
method designed by Jiang and Shu [23] only assigns weights to the three upwind stencils
and are therefore upwind-biased. The JS nonlinear weights ωJS

k are given by:

ωJS
k =

αJS
k

2∑
k=0

αJS
k

, αJS
k =

dupwind
k

(βk + ε)
p , k = 0, 1, 2, (A.1)

ωJS
3 = 0, (A.2)

where p is a positive integer and ε = 1.0e−15 is a very small number to prevent division
by zero. βk are smoothness indicators and are defined as:

βk =

2∑

l=1

∫ x
j+ 1

2

x
j− 1

2

∆x2l−1

(
∂l

∂xl
ũ(k)(x)

)2

dx, k = 0, 1, 2, (A.3)

where ũ(k)(x) is the Lagrange interpolating polynomial from stencil Sk in figure 1 for
WCNS and WCHR schemes. The integrated forms of the smoothness indicators are
given by [48]:

β0 =
1

3

[
uj−2 (4uj−2 − 19uj−1 + 11uj) + uj−1 (25uj−1 − 31uj) + 10u2

j

]
, (A.4)

β1 =
1

3

[
uj−1 (4uj−1 − 13uj + 5uj+1) + 13uj (uj − uj+1) + 4u2

j+1

]
, (A.5)

β2 =
1

3

[
uj (10uj − 31uj+1 + 11uj+2) + uj+1 (25uj+1 − 19uj+2) + 4u2

j+2

]
. (A.6)

Appendix A.2. Improved upwind-biased (Z) nonlinear weights

The upwind-biased Z nonlinear weights designed by Borges et al. [3] improves the
excessive dissipative nature of the JS nonlinear weights. The Z nonlinear weights ωZ

k are
given by:

ωZ
k =

αZ
k

2∑
k=0

αZ
k

, αZ
k = dupwind

k

(
1 +

(
τ5

βk + ε

)p)
, k = 0, 1, 2, (A.7)
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ωZ
3 = 0, (A.8)

where τ5 = |β2 − β0| is a reference smoothness indicator and p is a positive integer.

Appendix A.3. Localized dissipation (LD) nonlinear weigths

The nonlinear LD interpolation designed by Wong and Lele [45] also assigns nonlinear
weight to the downwind stencil besides the upwind ones that helps the nonlinear in-
terpolation recovers the non-dissipative central interpolation in smooth regions of the
solutions. The LD nonlinear weights ωLD

k are given by:

ωLD
k =

{
σωupwind

k + (1− σ)ωcentral
k , if Rτ > ατRL,

ωcentral
k , otherwise ,

k = 0, 1, 2, 3, (A.9)

where ωupwind
k = ωZ

k and ωcentral
k is given by:

ωcentral
k =

αcentral
k

3∑
k=0

αcentral
k

, αcentral
k = dcentral

k

(
C +

(
τ6

βk + ε

)q)
, k = 0, 1, 2, 3, (A.10)

where q is a positive integer, C is a positive constant, and β3 is defined as:

β3 =

5∑

l=1

∫ x
j+ 1

2

x
j− 1

2

∆x2l−1

(
∂l

∂xl
ũ(6)(x)

)2

dx, (A.11)

where ũ(6)(x) is the Lagrange interpolating polynomial from stencil Scentral in figure 1.
The integrated form of β3 is given by [29]:

β3 =
1

232243200
[uj−2 (525910327uj−2 − 4562164630uj−1 + 7799501420uj (A.12)

−6610694540uj+1 + 2794296070uj+2 − 472758974uj+3)

+5uj−1 (2146987907uj−1 − 7722406988uj + 6763559276uj+1 − 2926461814uj+2 + 503766638uj+3)

+20uj (1833221603uj − 3358664662uj+1 + 1495974539uj+2 − 263126407uj+3)

+20uj+1 (1607794163uj+1 − 1486026707uj+2 + 268747951uj+3)

+5uj+2 (1432381427uj+2 − 536951582uj+3) + 263126407u2
j+3

]
.

τ6 is a reference smoothness indicator:

τ6 = |β3 − βavg| , (A.13)

where

βavg =
1

8
(β0 + 6β1 + β2) . (A.14)
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Rτ is a relative sensor to distinguish smooth and non-smooth regions and is defined as:

Rτ =
τ6

βavg + ε
. (A.15)

ατRL is a constant to determine the cut-off for the hybridization between upwind-biased
and central nonlinear weights. 0 ≤ σ ≤ 1 is a blending function that is close to one in
regions near discontinuities and high wavenumber features. In this paper, the following
form of σ is used:

σj+ 1
2

= max (σj , σj+1) , (A.16)

where σj is defined as:

σj =

∣∣∣∆uj+ 1
2
−∆uj− 1

2

∣∣∣
∣∣∣∆uj+ 1

2

∣∣∣+
∣∣∣∆uj− 1

2

∣∣∣+ ε
, (A.17)

∆uj+ 1
2

= uj+1 − uj . (A.18)

Appendix B. Coefficients of explicit-compact interpolations (ECI)

Appendix B.1. Interior scheme

The coefficients of the linear interpolations from Supwind (equation (24)) and Scentral

(equation (25)) are given by:

αupwind = −5 (ξ − 1) (13ξ − 7)

8 (ξ + 5) (2ξ − 1)
, βupwind =

53ξ − 5

8 (ξ + 5)
, γupwind = −5 (ξ − 1) (5ξ − 2)

8 (ξ + 5) (2ξ − 1)
,

aupwind =
3 (8ξ − 5)

64 (ξ + 5)
, bupwind = −5

(
84ξ2 − 103ξ + 31

)

64 (ξ + 5) (2ξ − 1)
, cupwind =

5
(
68ξ2 + 11ξ − 25

)

64 (ξ + 5) (2ξ − 1)
,

dupwind =
5
(
52ξ2 − 11ξ − 5

)

64 (ξ + 5) (2ξ − 1)
, eupwind = −5 (4ξ − 3) (5ξ − 2)

64 (ξ + 5) (2ξ − 1)
, (B.1)

and

αcentral = −45 (ξ − 1)

16 (ξ + 5)
, βcentral =

53ξ − 5

8 (ξ + 5)
, γcentral = −45 (ξ − 1)

16 (ξ + 5)
,

acentral =
3 (8ξ − 5)

128 (ξ + 5)
, bcentral = −5 (52ξ − 37)

128 (ξ + 5)
, ccentral =

75 (2ξ + 1)

64 (ξ + 5)
,

dcentral =
75 (2ξ + 1)

64 (ξ + 5)
, ecentral = −5 (52ξ − 37)

128 (ξ + 5)
, f central =

3 (8ξ − 5)

128 (ξ + 5)
. (B.2)

Appendix B.2. Boundary scheme

The coefficients of the left-biased interpolations (equations (29) and (30)) at the left
boundary (LB) are given by:
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aLB = −8ξ0 − 3

4
, bLB =

8ξ0 + 1

4
, cLB = −4ξ0 − 1

4
,

dLB =
3

4
, eLB = ξ0, fLB = −8ξ1 − 15

8
,

gLB =
12ξ1 − 5

4
, hLB = −3 (8ξ1 − 1)

8
, iLB = ξ1, (B.3)

where ξ0 and ξ1 are two free parameters and the linear weights in equations (31) and
(32) are given by:

d
(5),LB
0 =

56ξ0 − 5

24 (24ξ0 − 5)
, d

(5),LB
1 =

5 (104ξ0 − 11)

24 (24ξ0 − 5)
, d

(5),LB
2 = − 5

2 (24ξ0 − 5)
, (B.4)

and

d
(6),LB
0 =

6560ξ0ξ1 + 552ξ0 − 716ξ1 − 75

24 (3648ξ0ξ1 + 376ξ0 − 1080ξ1 − 145)
,

d
(6),LB
1 =

161984ξ0ξ1 + 15480ξ0 − 20456ξ1 − 2385

48 (3648ξ0ξ1 + 376ξ0 − 1080ξ1 − 145)
,

d
(6),LB
2 = − 624ξ1 + 90

3648ξ0ξ1 + 376ξ0 − 1080ξ1 − 145
,

d
(6),LB
3 =

488ξ0 − 35

16 (3648ξ0ξ1 + 376ξ0 − 1080ξ1 − 145)
. (B.5)

In the case of ξ = 2
3 , if the truncation errors of interpolations from stencils SLB

5 and
SLB

5 are matched with those of Supwind and Scentral respectively, we will get:

ξ0 =
9

152
, ξ1 = − 14445

171608
. (B.6)

Therefore,

aLB =
12

19
, bLB =

7

19
, cLB =

29

152
, dLB =

3

4
,

eLB =
9

152
, fLB =

168105

85804
, gLB = −257845

171608
, hLB =

13461

21451
,

iLB = − 14445

171608
, (B.7)

and

d
(5),LB
0 =

1

51
, d

(5),LB
1 =

115

408
, d

(5),LB
2 =

95

136
, (B.8)

and
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d
(6),LB
0 =

34531

2811392
, d

(6),LB
1 =

324345

1405696
, d

(6),LB
2 =

3465

4624
, d

(6),LB
3 =

1129

147968
. (B.9)

The coefficients of the left-biased interpolations (equations (33) and (34)) at the right
boundary (RB) are given by:

aRB = ξ2, bRB = −3 (8ξ2 − 1)

8
, cRB =

12ξ2 − 5

4
,

dRB = −8ξ2 − 15

8
, eRB =

8ξ3 + 1

4
, fRB = −8ξ3 − 3

4
,

gRB = ξ3, hRB =
3

4
, iRB = −4ξ3 − 1

4
, (B.10)

where ξ2 and ξ3 are two free parameters and the linear weights in equations (37) and
(38) are given by:

d
(5),RB
0 =

56ξ3 − 5

32 (48ξ2ξ3 − 26ξ2 + 8ξ3 − 5)
, d

(5),RB
1 = − 76ξ2 + 15

4 (48ξ2ξ3 − 26ξ2 + 8ξ3 − 5)
,

d
(5),RB
2 =

1536ξ2ξ3 − 224ξ2 + 200ξ3 − 35

32 (48ξ2ξ3 − 26ξ2 + 8ξ3 − 5)
, (B.11)

and

d
(6),RB
0 =

488ξ3 − 35

16 (3648ξ2ξ3 − 1080ξ2 + 376ξ3 − 145)
,

d
(6),RB
1 = − 624ξ2 + 90

3648ξ2ξ3 − 1080ξ2 + 376ξ3 − 145
,

d
(6),RB
2 =

161984ξ2ξ3 − 20456ξ2 + 15480ξ3 − 2385

48 (3648ξ2ξ3 − 1080ξ2 + 376ξ3 − 145)
,

d
(6),RB
3 =

6560ξ2ξ3 − 716ξ2 + 552ξ3 − 75

24 (3648ξ2ξ3 − 1080ξ2 + 376ξ3 − 145)
. (B.12)

In the case of ξ = 2
3 , if the truncation errors of interpolations from stencils SRB

5 and
SRB

5 are matched with those of Supwind and Scentral respectively, we will get:

ξ2 = − 3182085

37433632
− 45

√
723535913

37433632
, ξ3 = −9

√
723535913

7659176
+

96676

957397
. (B.13)

Therefore,
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aRB = − 3182085

37433632
− 45

√
723535913

37433632
, bRB =

135
√

723535913

37433632
+

23583867

37433632
,

cRB = −56338295

37433632
− 135

√
723535913

37433632
, dRB =

45
√

723535913

37433632
+

73370145

37433632
,

eRB = −9
√

723535913

3829588
+

1730805

3829588
, fRB =

9
√

723535913

3829588
+

2098783

3829588
,

gRB = −9
√

723535913

7659176
+

96676

957397
, hRB =

3

4
,

iRB =
9
√

723535913

7659176
+

570693

3829588
, (B.14)

and

d
(5),RB
0 = − 135353

41283072
+

35
√

723535913

41283072
, d

(5),RB
1 = −145

√
723535913

82566144
+

74237155

82566144
,

d
(5),RB
2 =

25
√

723535913

27522048
+

2866565

27522048
, (B.15)

and

d
(6),RB
0 = − 2038531

157733888
+

95
√

723535913

157733888
, d

(6),RB
1 = −95

√
723535913

39433472
+

32791565

39433472
,

d
(6),RB
2 =

135
√

723535913

78866944
+

13590345

78866944
, d

(6),RB
3 =

15
√

723535913

157733888
+

1425469

157733888
.

(B.16)

Appendix C. Block-tridiagonal matrix solution algorithm

Appendix C.1. Matrix solution algorithm

Consider a block tridiagonal matrix system Ax = b given by:

A =




β1 γ1

α2 β2 γ2

. . .

αN−1 βN−1 γN−1

αN βN



, (C.1)

x =




x1

x2

...
xN−1

xN



, b =




b1

b2

...
bN−1

bN



, (C.2)
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where αi, βi, and γi are Bs×Bs matrix blocks. xi and bi are Bs× 1 vector elements of
the solution and the RHS vectors respectively.

For the resulting block-tridiagonal system, we use derive a block version of the Thomas
algorithm with a forward elimination step:

∆i = [βi −αi∆i−1γi−1]
−1
, (C.3)

b̂i =− bi −αi∆i−1b̂i−1, (C.4)

and a back substitution step:

xi = −∆i

[
b̂i + γixi+1

]
. (C.5)

For periodic problems resulting in a cyclic block tridiagonal matrix Ap, we use the
Sherman-Morrison low rank correction given by:

A−1
p =

(
A+UV T

)−1
= A−1 −A−1U

(
I + V TA−1U

)−1
V TA−1, (C.6)

where

Ap =




β̃1 γ̃1 α̃1

α̃2 β̃2 γ̃2

. . .

α̃N−1 β̃N−1 γ̃N−1

γ̃N α̃N β̃N



, (C.7)

A =




α̃1 + β̃1 γ̃1

α̃2 β̃2 γ̃2

. . .

α̃N−1 β̃N−1 γ̃N−1

α̃N β̃N + γ̃N



, (C.8)

and U and V are given by:

U =




−α̃1

0
...
0
γ̃N



, V =




I
0
...
0
−I



. (C.9)

The pseudo code for the block-tridiagonal algorithm including the Sherman-Morrison
correction is given in algorithm 1.

Appendix C.2. Application to compact interpolation

The compact interpolations with characteristic decomposition used in this paper re-
sult in block tridiagonal systems as in equation (C.2) for non-periodic problems or equa-
tion (C.7) for periodic problems. In both cases, each block is a 5 × 5 matrix that is a
scaled version of the Jacobian matrix of the fluxes with respect to primitive variables.
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Algorithm 1 Pseudo code for the block-tridiagonal matrix solution algorithm. Internal
variables required are ∆i (memory cost of B2

sN) and b̂i (memory cost of BsN) and

periodic problems require Ûi (memory cost of B2
sN) in addition. Bs is the size of each

block in the system. The solution can be computed in-place by replacing b̂i and xi by
bi.

if periodic then
β1 ← α̃1 + β̃1

γ1 ← γ̃1
for i = 2, 3, . . . , N − 1 do
αi ← α̃i
βi ← β̃i
γi ← γ̃i

end for
αN ← α̃N
βN ← β̃N + γ̃N

end if
∆1 = β−1

1

b̂1 = −b1
if periodic then
Û1 = α̃1

end if
for i = 2, 3, . . . , N do

∆i = [βi −αi∆i−1γi−1]−1

b̂i = −bi −αi∆i−1b̂i−1

if periodic then
Ûi = −αi∆i−1Ûi−1

end if
end for
if periodic then
ÛN ← −γ̃N + ÛN

end if
xN = −∆N b̂N
if periodic then
ÛN ← −∆N ÛN

end if
for i = N − 1, N − 2, . . . , 1 do

xi = −∆i

[
b̂i + γixi+1

]
if periodic then

Ûi ← −∆i

[
Ûi + γiÛi+1

]
end if

end for
if periodic then
M = I + Û1 − ÛN
y = M−1 (x1 − xN )
for i = 1, 2, . . . , N do
xi ← xi − Ûiy

end for
end if
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The Jacobian matrix forming each block in the x direction interpolation of a 3D problem
is given by: 



0 −ρc2 0 0 1
2

1 0 0 0 − 1
c2

0 0 1 0 0
0 0 0 1 0
0 ρc

2 0 0 1
2



, (C.10)

where the rows correspond to the primitive variables (ρ, u, v, w, p).
Given this structure, we can decouple the third and fourth rows (corresponding to

v and w) and split the problem into a 3 × 3 block tridiagonal system corresponding to
(ρ, u, p) and separate independent tridiagonal systems for v and w. In the y direction, the
u and w interpolations are independent and in the z direction, the u and v interpolations
are independent.

The reduced 3 × 3 block tridiagonal system may be solved using the algorithm de-
scribed in section Appendix C.1. The cost of the block tridiagonal algorithm scales
as O

(
B3
sN
)

where Bs is the block size and N is the number of diagonal blocks in the
system. Reducing the block size from 5 to 3 would then reduce the operation count by a
factor of ≈ 4.6. The tridiagonal systems for the two transverse velocity components may
be solved using the Thomas algorithm or a symbolic factorization based algorithm [33].

Appendix D. Relation between compact finite difference schemes and flux
difference form for provable discrete conservation

Appendix D.1. Formulation

Given a scalar hyperbolic equation of conservative variable u(x, t) of the form:

∂u

∂t
+
∂F (u)

∂x
= 0, (D.1)

defined in the domain x ∈ [xa, xb]. We can get a semi-discretized form using the finite
difference formalism as:

∂uj
∂t

+
∂F

∂x

∣∣∣∣
x=xj

= 0, (D.2)

where uj(t) = u(xj , t) and is available at discrete points xj = xa + (1/2 + j)∆x, ∀j ∈
{0, 1, . . . , N − 1}.

Let us define h(x, t; ∆x) implicitly as:

F (u(x, t)) = F (x, t) =
1

∆x

∫ x+ ∆x
2

x−∆x
2

h(ξ, t; ∆x)dξ. (D.3)

Equation (D.2) can then be rewritten as:

duj
dt

+
1

∆x

[
h
(
xj+ 1

2
, t; ∆x

)
− h

(
xj− 1

2
, t; ∆x

)]
= 0, (D.4)

or shortened as:

duj
dt

+
1

∆x

(
hj+ 1

2
− hj− 1

2

)
= 0, (D.5)
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with the definition h
(
xj+ 1

2
, t; ∆x

)
= hj+ 1

2
. We may also define the primitive function

of h(x, t; ∆x):

H(x, t; ∆x) =

∫ x

xa

h(ξ, t; ∆x)dξ. (D.6)

Therefore,

H(xj+ 1
2
, t; ∆x) =

∫ x
j+ 1

2

xa

h(ξ, t; ∆x)dξ

= ∆x

j∑

i=0

F (xi, t)

= ∆x

j∑

i=0

Fi.

(D.7)

Also,

H ′
(
xj+ 1

2
, t; ∆x

)
= h

(
xj+ 1

2
, t; ∆x

)
. (D.8)

Or for simplification, if we define H ′
j+ 1

2

= H ′
(
xj+ 1

2
, t; ∆x

)
, we get:

H ′j+ 1
2

= hj+ 1
2
. (D.9)

Now, let us denote a pth order numerical representation of H ′
j+ 1

2

by F̂j+ 1
2
≈ hj+ 1

2
+

O (∆xp) = H ′
j+ 1

2

+O (∆xp), which is a reconstructed form of the flux. We can get such

an approximation using a pth order compact finite difference scheme for H ′
j+ 1

2

in general

form:

αF̂j− 1
2

+ βF̂j+ 1
2

+ γF̂j+ 3
2

=

1

∆x

(
a− 3

2
Hj− 3

2
+ a−1Hj−1 + a− 1

2
Hj− 1

2
+ a0Hj

+a 1
2
Hj+ 1

2
+ a1Hj+1 + a 3

2
Hj+ 3

2
+ a2Hj+2 + a 5

2
Hj+ 5

2

)
.

(D.10)

Using equation (D.7), we get:

αF̂j− 1
2

+ βF̂j+ 1
2

+ γF̂j+ 3
2

=

1

∆x

[(
a− 3

2
+ a− 1

2
+ a 1

2
+ a 3

2
+ a 5

2

)
Hj− 3

2
+ (a−1 + a0 + a1 + a2)Hj−1

+ a− 1
2
Fj−1 + a0Fj− 1

2
+ a 1

2
(Fj−1 + Fj) + a1

(
Fj− 1

2
+ Fj+ 1

2

)

+a 3
2

(Fj−1 + Fj + Fj+1) + a2

(
Fj− 1

2
+ Fj+ 1

2
+ Fj+ 3

2

)
+ a 5

2
(Fj−1 + Fj + Fj+1 + Fj+2)

]
.

(D.11)
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After re-arranging,

αF̂j− 1
2

+ βF̂j+ 1
2

+ γF̂j+ 3
2

= (a−1 + a0 + a1 + a2)Hj−1 + (a0 + a1 + a2)Fj− 1
2

+ (a1 + a2)Fj+ 1
2

+ a2Fj+ 3
2

+
(
a− 3

2
+ a− 1

2
+ a 1

2
+ a 3

2
+ a 5

2

)
Hj− 3

2
+
(
a− 1

2
+ a 1

2
+ a 3

2
+ a 5

2

)
Fj−1

+
(
a 1

2
+ a 3

2
+ a 5

2

)
Fj +

(
a 3

2
+ a 5

2

)
Fj+1 + a 5

2
Fj+2. (D.12)

If (a−1 + a0 + a1 + a2) = 0 and
(
a− 3

2
+ a− 1

2
+ a 1

2
+ a 3

2
+ a 5

2

)
= 0 which is always true

for a central scheme, we get a compact stencil representation of the reconstructed flux
as:

αF̂j− 1
2

+ βF̂j+ 1
2

+ γF̂j+ 3
2

= (a0 + a1 + a2)Fj− 1
2

+ (a1 + a2)Fj+ 1
2

+ a2Fj+ 3
2

+
(
a− 1

2
+ a 1

2
+ a 3

2
+ a 5

2

)
Fj−1

+
(
a 1

2
+ a 3

2
+ a 5

2

)
Fj +

(
a 3

2
+ a 5

2

)
Fj+1 + a 5

2
Fj+2

= â−1Fj−1 + â− 1
2
Fj− 1

2
+ â0Fj + â 1

2
Fj+ 1

2
+ â1Fj+1 + â 3

2
Fj+ 3

2

+ â2Fj+2, (D.13)

with â−1 =
(
a− 1

2
+ a 1

2
+ a 3

2
+ a 5

2

)
, â0 =

(
a 1

2
+ a 3

2
+ a 5

2

)
, â1 =

(
a 3

2
+ a 5

2

)
, â2 = a 5

2
,

â− 1
2

= (a0 + a1 + a2), â 1
2

= (a1 + a2), and â 3
2

= a2.

With this pth order approximation of hj+ 1
2
, we can solve the original conservation

law in the conservation form as:

∂uj
∂t

+
1

∆x

(
F̂j+ 1

2
− F̂j− 1

2

)
= 0. (D.14)

If we define the flux difference form for the numerical approximation of derivative:

∂̂F

∂x

∣∣∣∣∣
x=xj

= F̂ ′j =
1

∆x

(
F̂j+ 1

2
− F̂j− 1

2

)
. (D.15)

For a central scheme with α = γ, a0 = −a1, a−1 = −a2, a 1
2

= 0, a− 1
2

= −a 3
2
, and

a− 3
2

= −a 5
2
, it can be easily proven that:

αF̂ ′j−1 + βF̂ ′j + αF̂ ′j+1 =

1

∆x

(
−a 5

2
Fj−2 − a2Fj− 3

2
− a 3

2
Fj−1 − a1Fj− 1

2
+ a1Fj+ 1

2
+ a 3

2
Fj+1 + a2Fj+ 3

2
+ a 5

2
Fj+2

)
.

(D.16)

Therefore, F̂ ′j is pth order approximation of F ′j with the same compact finite difference
scheme used in equation (D.10) with the constraint that the scheme is central.

Flux reconstruction equation (D.13) relates any central finite difference scheme (com-
pact or explicit) in form given by equation (D.16) to the flux difference form (equa-
tion (D.15)). For instance, the flux reconstruction equation of the sixth order CMD
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scheme (equation (2)) is given by equation (40) and that of the sixth order CND scheme
(equation (70)) is given by:

1

5
F̂j− 1

2
+

3

5
F̂j+ 1

2
+

1

5
F̂j+ 3

2
=

1

60
Fj−1 +

29

60
Fj +

29

60
Fj+1 +

1

60
Fj+2. (D.17)

To derive boundary closures for the flux reconstruction equation given by equa-
tion (D.13) such as the closure at the right boundary with j = N − 1, we can define
a boundary flux reconstruction equation:

αF̂j− 1
2

+ (β + γ) F̂j+ 1
2

= . . . (D.18)

where the right hand side is constructed based on a choice of cell node and midpoint
flux values (either ghost cells or only interior). Then subtract equation (D.13) from the
above and divide by ∆x to get:

αF̂ ′j−1 + βF̂ ′j = . . . (D.19)

Given a desired truncation error, we can use the above equation and standard Taylor
series expansion to get the coefficients of the right hand side terms in equation (D.18). For

example, the flux reconstruction equation of F̂j+ 1
2

for the right boundary (equation (42)),
where j = N − 1, is given by:

9

80
F̂j− 1

2
+

71

80
F̂j+ 1

2
=

27233

768000
Fj−2 −

80779

336000
Fj− 3

2
+

26353

38400
Fj−1 −

7811

8000
Fj− 1

2
+

65699

76800
Fj

+
10989

16000
Fj+ 1

2
− 9007

192000
Fj+1 −

1633

5376000
Fj+2. (D.20)

Appendix D.2. Conservation

For a continuous problem in a non-periodic 1D domain, we have conservation of u(x, t)
given by:

∂

∂t

∫ xN−1+ ∆x
2

x0−∆x
2

u(x, t)dx = F

(
x0 −

∆x

2
, t

)
− F

(
xN−1 +

∆x

2
, t

)
. (D.21)

Note that x0 −∆x/2 and xN−1 + ∆x/2 are the boundaries of the domain. If we choose
a test function ψ(x) given by:

ψ(x) =

N−1∑

j=0

∆x · δ (x− xj) , (D.22)

where δ(x) is the Dirac delta function, we have:

∂

∂t

∫ xN−1+ ∆x
2

x0−∆x
2

ψ(x)u(x, t)dx = ∆x

N−1∑

j=0

∂uj
∂t

. (D.23)
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With the conservation form given by equation (D.14) after semi-discrete discretization,
we have:

∂

∂t

∫ xN−1+ ∆x
2

x0−∆x
2

ψ(x)u(x, t)dx = F̂
(
x− 1

2
, t
)
− F̂

(
xN− 1

2
, t
)

= F̂

(
x0 −

∆x

2
, t

)
− F̂

(
xN−1 +

∆x

2
, t

)
. (D.24)

Hence, the conservation form given by equation (D.14) guarantees discrete conservation
under the test function ψ(x). This form also proves that central compact or explicit
finite difference schemes are discretely conservative for a periodic domain.

The main benefit of the conservation form and the corresponding flux reconstruction
form of compact finite difference schemes, however, is the ability to derive boundary
closures for compact finite difference schemes so that discrete conservation is guaranteed.
The reconstruction form also has potential to allow the use of compact finite difference
schemes with adaptive mesh refinement in order to get conservation across mesh levels
with appropriately derived boundary schemes.

Appendix E. HLLC, HLL, and HLLC-HLL Riemann solvers

The flux in the x direction from the HLLC Riemann solver, FHLLC, for a 3D problem
is given by:

FHLLC =
1 + sign(s∗)

2
[F (QL) + s− (Q∗L −QL)]+

1− sign(s∗)
2

[F (QR) + s+ (Q∗R −QR)] ,

(E.1)
where L and R are the left and right states respectively, and QL and QR are the corre-
sponding conservative variable vectors. With K = L or R, the star state is defined as:

Q∗K = χ∗K




ρK
ρKs∗
ρKvK
ρKwK

Ek + (s∗ − uK)
(
ρKs∗ + pK

sK−uK

)



, (E.2)

where

χ∗K =
sK − uK
sK − s∗

. (E.3)

We use the waves speeds suggested by Einfeldt et al. [10]:

s− = min (0, sL), s+ = max (0, sR), (E.4)

and
sL = min (ū− c̄, uL − cL), sR = max (ū+ c̄, uR + cR), (E.5)

where ū and c̄ are the averages from the left and right states. Roe averages are used in
this paper. Following Batten et al. [1], the wave speed for the star state is given by:

s∗ =
pR − pL + ρLuL (sL − uL)− ρRuR (sR − uR)

ρL (sL − uL)− ρR (sR − uR)
. (E.6)
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The flux from the HLL Riemann solver proposed by Harten et al. [16], FHLL, is given
by:

FHLL =





F (QL), if sL ≥ 0,
sRF (QL)−sLF (QR)+sRsL(QR−QL)

sR−sL if sL ≤ 0 ≤ sR,
F (QR), if sR ≤ 0.

(E.7)

The hybrid flux in the x direction from the HLLC-HLL Riemann solver proposed by
Huang et al. [21], FHLLC-HLL, for a 3D problem is given by:

FHLLC-HLL = ΘFHLLC + (I −Θ) FHLL, (E.8)

where

Θ =




α̃1 0 0 0 0
0 1 0 0 0
0 0 α̃1 0 0
0 0 0 α̃1 0
0 0 0 0 1



, (E.9)

and I is the identity matrix. The weight, α̃1 ∈ [0, 1], suggested by Huang et al. [21] is
used:

α1 =

{
1, if |uR − uL| < ε,
|uR−uL|
|uR−uL| , otherwise,

(E.10)

α2 =
√

1− α2
1, (E.11)

α̃1 =
1

2
+

1

2

α1

α1 + α2
. (E.12)

ε = 1.0e−15 is the usual small constant close to machine epsilon. α̃1 is designed in the
way such that when the shock normal direction is aligned with the grid surface normal
direction, the hybrid flux is purely the HLLC flux. When the shock normal direction
is perpendicular to the surface normal direction, HLL flux adds dissipation by sharing
the same weight as the HLLC flux. In 1D problems, the HLLC-HLL Riemann solver is
reduced to the regular HLLC Riemann solver since the shock normal direction is always
perpendicular to the grid surface normal.

Appendix F. Effect of postprocessing pipeline for velocity gradient statistics

Statistics of velocity gradient quantities like vorticity or dilatation are important in
the analysis of turbulent flows. Any field with a power law energy spectrum exponent of
< 2 has a gradient power spectrum that grows with the wavenumber, which is the case
for velocity fields in turbulent flows. This amplifies the sensitivity of gradient statistics
to the derivative scheme used to compute velocity gradients from the primitive velocity
fields. In this paper, we use Fourier spectral derivatives which are exact up to the
Nyquist wavenumber assuming that the solution represented on the grid is not aliased.
The results here, as a result, are different from some previously published results. For
the compressible homogeneous isotropic turbulence case presented in section 3.11, we
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present our results for the DNS reference solution using different postprocessing derivative
schemes. We also compare them to previously published results of Johnsen et al. [24].

Figure F.36 shows the velocity statistics postprocessed using different derivative
schemes. All results are obtained by spectrally filtering the velocity fields and then
downsampling from the DNS resolution of 5123 down to 643. The derivative operators
are constructed on the downsampled 643 grid and applied using the periodic bound-
ary conditions of the problem. From figure 36(b), we see that the velocity variance is
the same for all the cases and match the results of Johnsen et al. [24]. Figure 36(b)
shows the enstrophy computed with different derivative schemes. From this, the effect
of the postprocessing pipeline is evident. Using spectral derivatives which is the most
accurate in the high wavenumber region has the highest enstrophy. For the other deriva-
tive schemes, the lower order derivatives capture much lower enstrophy. Also, compact
derivatives are better than their explicit counterparts for the same order or accuracy.
All of these results are in line with the modified wavenumbers of each derivative scheme.
The same is true for the dilatation variance plotted in figure 36(c). The plots also show
the results of Johnsen et al. [24] which are closest to the results using sixth order explicit
finite difference. It was also confirmed by Larsson7 (one of the authors of Johnsen et al.
[24]) that the sixth order explicit finite difference scheme was used for postprocessing.
We see some difference between the sixth order explicit derivatives and the results of
Johnsen et al. [24] in the dilatation variance for t/τ < 1. Since the initial conditions
are solenoidal and generated randomly following a prescribed spectrum, the dilatation
variance is sensitive to the initial conditions during the early acoustic transients and the
disagreement between different initial conditions is to be expected.
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(a) WCNS5-JS (b) WCNS5-Z

(c) WCNS6-LD

(d) WCHR6

Figure 24: Pressure fields for the shock-vortex interaction problem on a 512 × 512 grid at t = 6.
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(a) WCNS5-JS (b) WCNS5-Z

(c) WCNS6-LD

(d) WCHR6

Figure 25: Sound pressure fields defined by (p− p∞) /
(
ρ∞c2∞

)
for the shock-vortex interaction problem

on a 512 × 512 grid at t = 16. The black dashed line in (a) shows the line used to get the radial sound
pressure profile plotted in figure 26.
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Figure 26: Sound pressure defined by (p− p∞) /
(
ρ∞c2∞

)
for the shock vortex interaction problem at

t = 16 on a radial line centered at the vortex core with θ = −45◦ as indicated by the black dashed
line in figure 25(a). Black solid line: reference; cyan circles: WCNS5-JS; red squares: WCNS5-Z; green
diamonds: WCNS6-LD; blue triangles: WCHR6.
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(a) WCNS5-JS

(b) WCNS5-Z

(c) WCNS6-LD

(d) WCHR6

Figure 27: Density fields for the double Mach reflection problem at t = 0.2 using different schemes.
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(a) WCNS5-JS (b) WCNS5-Z

(c) WCNS6-LD (d) WCHR6

Figure 28: 30 equally spaced contours of density from 1.7 to 21 for the double Mach reflection problem
at t = 0.2 using different schemes in the blown-up region around the Mach stem.
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Figure 29: Time evolution of statistical quantities for the Taylor–Green vortex problem on a 643 grid.
Black dashed line: exact for kinetic energy; black asterisks: semi-analytical result for enstrophy of
Brachet et al. [4]; cyan circles: WCNS5-JS; red squares: WCNS5-Z; green diamonds: WCNS6-LD; blue
triangles: WCHR6.
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Figure 30: Spectra at t = 5 for the Taylor–Green vortex problem on a 643 grid. Black asterisks: converged
spectrum on a 2563 grid of tenth order compact scheme with localized artificial dissipation; cyan circles:
WCNS5-JS; red squares: WCNS5-Z; green diamonds: WCNS6-LD; blue triangles: WCHR6.
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Figure 31: Spectra at t = 7 for the Taylor–Green vortex problem on a 643 grid. Black asterisks: converged
spectrum on a 2563 grid of tenth order compact scheme with localized artificial dissipation; cyan circles:
WCNS5-JS; red squares: WCNS5-Z; green diamonds: WCNS6-LD; blue triangles: WCHR6.
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(a) (b)

Figure 32: (a) Numerical schlieren visualized by exp
(
‖∇ρ‖
‖∇ρ‖max

)
on a z = 0 slice for the compressible

homogeneous isotropic turbulence problem on a 643 grid at t/τ = 0.125. (b) Isocontours of enstrophy
at twice the mean (blue) and isocontours of dilatation at 3σ below the mean (red) for the same problem
on the same grid at the same time, where σ is the standard deviation.
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Figure 33: Time evolution of statistical quantities for the compressible homogeneous isotropic turbulence
problem on a 643 grid with Mt = 0.6. Black solid line : spectrally filtered DNS; cyan circles: WCNS5-JS;
red squares: WCNS5-Z; green diamonds: WCNS6-LD; blue triangles: WCHR6.
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Figure 34: Spectra at t/τ = 2 for the compressible homogeneous isotropic turbulence problem on a 643

grid with Mt = 0.6. Black asterisks: spectrally filtered DNS; cyan circles: WCNS5-JS; red squares:
WCNS5-Z; green diamonds: WCNS6-LD; blue triangles: WCHR6.
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Figure 35: Spectra at t/τ = 4 for the compressible homogeneous isotropic turbulence problem on a 643

grid with Mt = 0.6. Black asterisks: spectrally filtered DNS; cyan circles: WCNS5-JS; red squares:
WCNS5-Z; green diamonds: WCNS6-LD; blue triangles: WCHR6.
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Figure F.36: Time evolution of statistical quantities for the compressible homogeneous isotropic turbu-
lence problem presented in section 3.11 using different postprocessing derivative schemes on the DNS
data. Black circles: Johnsen et al. [24]; cyan pentagons: 2nd order central explicit finite difference;
red squares: 6th order central explicit finite difference; green diamonds: 6th order central compact fi-
nite difference; blue triangles: 10th order central compact finite difference; magenta crosses: spectral
derivatives.

63


	1 Introduction
	2 Numerical methods 
	2.1 Compact and explicit finite difference schemes 
	2.2 Weighted compact nonlinear schemes (WCNS's)
	2.3 Weighted compact high resolution (WCHR) scheme 
	2.3.1 Explicit-compact interpolation (ECI)
	2.3.2 Weighted compact high resolution (WCHR) scheme

	2.4 Approximate dispersion relation
	2.5 Boundary closures 
	2.5.1 Interpolations
	2.5.2 Derivatives

	2.6 Extension to Euler equations 
	2.6.1 Characteristic decomposition

	2.7 Cost estimate
	2.8 Hybridization of Riemann solvers for multi-dimensional Euler equations
	2.9 Positivity-preserving for Euler equations
	2.10 Discretization of viscous and diffusive fluxes for Navier–Stokes equations

	3 Numerical results 
	3.1 Convergence tests
	3.2 Advection of broadband disturbances
	3.3 Entropy wave leaving domain
	3.4 Sod shock tube problem
	3.5 Shu–Osher problem
	3.6 One-dimensional planar Sedov blast wave problem
	3.7 Two-dimensional vortex leaving domain
	3.8 Two-dimensional shock-vortex interaction
	3.9 Double Mach reflection
	3.10 Taylor–Green vortex
	3.11 Compressible homogeneous isotropic turbulence 

	4 Conclusions
	Appendix  A Nonlinear weights
	Appendix  A.1 Classical upwind-biased (JS) nonlinear weights
	Appendix  A.2 Improved upwind-biased (Z) nonlinear weights
	Appendix  A.3 Localized dissipation (LD) nonlinear weigths

	Appendix  B Coefficients of explicit-compact interpolations (ECI)
	Appendix  B.1 Interior scheme
	Appendix  B.2 Boundary scheme

	Appendix  C Block-tridiagonal matrix solution algorithm 
	Appendix  C.1 Matrix solution algorithm 
	Appendix  C.2 Application to compact interpolation

	Appendix  D Relation between compact finite difference schemes and flux difference form for provable discrete conservation
	Appendix  D.1 Formulation
	Appendix  D.2 Conservation

	Appendix  E HLLC, HLL, and HLLC-HLL Riemann solvers 
	Appendix  F Effect of postprocessing pipeline for velocity gradient statistics 

