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The fluid dynamics inside the left ventricle of the human heart is considered a potential
indicator of long term cardiovascular outcome. In this respect, numerical simulations can
play an important role for integrating existing technology to reproduce flow details and
even conditions associated to virtual therapeutic solutions. Nevertheless, numerical models
encounter serious practical difficulties in describing the interaction between flow and
surrounding tissues due to the limited information inherently available in real clinical
applications.
This study presents a computational method for the fluid dynamics inside the left ventricle
designed to be efficiently integrated in clinical scenarios. It includes an original model of
the mitral valve dynamics, which describes an asymptotic behavior for tissues with no
elastic stiffness other than the constrain of the geometry obtained from medical imaging;
in particular, the model provides an asymptotic description without requiring details of
tissue properties that may not be measurable in vivo.
The advantages of this model with respect to a valveless orifice and its limitations with
respect to a complete tissue modeling are verified. Its performances are then analyzed in
details to ensure a correct interpretation of results. It represents a potential option when
information about tissue mechanical properties is insufficient for the implementations of a
full fluid-structure interaction approach.

1. Introduction

Fluid dynamics is gaining increasing attention in cardiology for the influence it may have on the long-term outcome of 
several cardiac dysfunctions [25,29]. Numerous studies in literature reported how stresses due to the interaction between 
flow and tissue play a primary role in the development of embryonic hearts [1,6,14], and flow-mediated forces participate in 
the progression or regression of cardiac pathologies in adult hearts [11,30]. Given its potential importance, it is foreseeable 
that measurements of intra-cardiac fluid dynamics will soon become an integral part of the clinical evaluation process.

Recent advances in cardiovascular imaging permit, to some extent, measurement of cardiac fluid dynamics in vivo 
[24,36]; especially in the left ventricle (LV), which represents the most energetic and clinically relevant cardiac chamber. 
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However, the imaging technologies able to quantify blood flow, like Magnetic Resonance Imaging (MRI) and Echocardiog-
raphy, present limitations in this respect and applications to clinical practice are still limited. Direct numerical simulation 
(DNS) of intraventricular fluid dynamics represents another possible approach to analyze cardiac flow in individual patients. 
DNS can be performed in LV geometries extracted from clinical images, as Computed Tomography (CT), MRI or Echocardio-
graphy, to reproduce the flow under realistic conditions.

Recent advances in DNS of cardiac fluid dynamics were mostly based on the immersed boundary method (IBM). That 
method was originally introduced from the 1970s [31,33,32], and underwent numerous developments and improvements 
since then [8,22,38]. In the IBM, the flow equations are resolved in a regular Cartesian grid with a distribution of fictitious 
forces concentrated at the immersed solid boundaries whose intensity is matched to ensure fulfillment of the boundary 
conditions. IBM is particularly well suited for integration with medical imaging because the extracted moving geometries 
are simply immersed inside the fluid domain without the need for specific mesh-generation procedures. It also allows a 
relatively straightforward management of closure and opening of the valves avoiding problems associated with extreme grid 
deformation or collapse. Recent reviews outlined the reliability of computational approaches to analyze LV fluid dynamics 
[23,28].

An open challenge in LV flow simulations is represented by modeling the dynamics of the mitral valve (MV) that sepa-
rates the left atrium from the LV and whose dynamics influences the flow inside the LV. The MV is a bi-leaflet valve with 
a longer leaflet on the anterior side (on the aortic side, separating inflow and outflow tracts) and a shorter one next to 
the posterior LV wall. The opening and closure motion of the asymmetric MV leaflets is mainly driven by the flow with 
a minimal elastic resistance from the loose tissue (under normal conditions) other than the support of chordae tendineae 
that avoid backward displacement of the leaflets and ensure unidirectional flow. At the same time, the dynamics of the MV 
leaflets influences vortex formation and the flow that develops inside the LV during filling (diastole), which indirectly affects 
several measures that are used for medical diagnosis. In general, the knowledge of the relationship between MV dynamics 
and LV flow is very limited because the motion of the valvular leaflets is relatively rapid and the time resolution of current 
medical imaging technology does not allow a direct evaluation during examinations.

The complexity and lack of reliable in vivo measurement also make simulations of MV dynamics difficult; indeed, most 
numerical studies of LV fluid dynamics are performed using orifice-like valves, with a fully-open/fully-closed behavior, and 
did not include the dynamics of valvular leaflets. Other models of MV dynamics, after the pioneering numerical studies in 
the 80’s [33,32], avoided dealing with the complexity of a real general fluid-structure interaction (FSI) and considered a 
prescribed motion for the leaflets with the main objective of verifying the differences with valveless orifices [2,37]. Realistic 
FSI model are challenging and are becoming progressively feasible since recently; here valve motion obeys the equation for 
the finite deformation of the elastic material under the action of a distribution of flow-driven pressure difference between 
the two sides of the leaflets [13,21,15,16,12,40,3]. Such a rigorous approach is best suited for prosthetic valves whose 
mechanical properties are known in details; differently, its application in a clinical context may fall short of the knowledge 
of the (visco-)elastic properties for the valvular tissues that are not easily quantifiable in vivo. Indeed, the mitral leaflets 
present an inhomogeneous structure, with variable thickness made of a non-isotropic fibrous texture near the annulus that 
becomes looser and thinner closer to the trailing edge [34,5,17].

In subject-specific clinical applications, elastic properties are not directly measurable and imaging tools allow extracting 
the geometry of the mitral valve with moderate accuracy and limited to few instances (typically fully-closed and fully-
open configurations, that last some longer). This limited availability of information is commonly overcome by using average 
geometric models and parameters that are representative of a population, an approach that can be appropriate when inves-
tigating properties common to pathological classes. On the other hand, in individual clinical applications and in the presence 
of subject-specific pathological conditions, it is necessary to develop relatively simple models that can best integrate the few 
available data for providing information that can be included in the clinical process.

An asymptotic model for MV dynamics was previously introduced to reproduce the flow-driven motion of valvular leaflets 
in absence of elastic resistance [9]. That model was intrinsically limited to a dynamics described by one-degree-of-freedom 
only and was evaluated in an idealized valvular geometry. The present study, inspired from that model, introduces an orig-
inal mathematical framework that permits to analyze the MV dynamics described by an arbitrary number of degrees of 
freedom. This approach may find application, in principle, to other fields where the motion of structural elements is driven 
by fluid flows in the asymptotic limit of negligible elastic or inertial effects. The internal forces are replaced by an intrinsic 
stiffness associated with the description in terms of a limited number of degrees of freedom. In the present application, 
this approach is integrated with imaging technology for the numerical solution of MV leaflets motion with geometry effec-
tively obtained from individual recordings. The computational model is then subjected to an extensive verification to get 
confidence of its capabilities and of its limitations.

2. Computational model

2.1. Geometric descriptions

The LV is a closed cavity bounded by the lateral LV wall and by the basal surface that contains the mitral and aortic 
orifices representing the flow inlet and outlet, respectively. The geometry of the lateral LV wall can be obtained from 
several imaging technologies like CT, MRI or Echocardiography. Different modalities differ for the time and spatial resolution, 
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Fig. 1. Normal mitral valve surface: (a) closed systolic configuration, (b) fully open diastolic configuration; the color (red=anterior leaflet, blue=posterior
leaflet) indicates the local influence of individual opening angles in a model with two degrees of freedom. (For interpretation of the colors in the figure(s),
the reader is referred to the web version of this article.)

for providing multi-slice or full 3D acquisitions, and for the availability in the clinical environment. Different software 
solutions are usually available in the different modalities that help to identify the LV internal surface by user-assisted 
interactive procedures. Whatever the technology, the typical results is a dynamic cast of the moving LV cavity that we 
eventually described by the positions vector X(ϑ, s, t), where the structured parametric coordinates, (ϑ, s), run along the 
circumference and from base to apex, respectively, t is time. The usage of structured coordinates here was preferred for 
easier manipulation; however, unstructured (e.g. triangular) descriptions could be equally used. The position vector marks 
LV material points and their velocity is obtained by time differentiation.

The MV geometry can also be extracted from the same imaging technologies relying on dedicated software tools for 
valvular delineation. Commonly, the time resolution does not allow to reliably visualize and extract the MV geometry other 
than in the fully-open (peak diastole) and fully-closed (during early systole) configurations. The geometry of a normal MV, 
in closed and open configurations, is shown in Fig. 1 as extracted from CT [39]. Whatever the imaging technology adopted, 
the 3D mesh of the leaflets’ surface in the two configurations was reorganized in terms of an analogous set of structured 
parametric coordinates, (ϑ, s), along the circumference and extending from the annulus to the trailing edge. Additional 
reference measurement must then be obtained for placing the extracted MV geometry in the proper position relative to LV. 
This step is simplified when both LV and MV geometries are extracted from the same image set such that they are described 
with a common system of coordinates ensuring their automatic relative positioning. The most feasible imaging solution to 
this aim is given by Trans-Esophageal 3D Echocardiography (3D TEE), that is commonly used for visualization of valvular 
diseases, although image quality is not always optimal. However, imaging technology is rapidly evolving and segmentation 
options -that are out of the scope of this work- are continuously growing and improving the feasibility of reliable geometric 
reconstructions.

When the valve shape is recorded at two instants corresponding to the closed and the open configurations, say at 
ϕ = 0 and ϕ = π/2, respectively, where ϕ is the generic degree of local opening, the valve geometry at intermediate 
positions must be reconstructed. This is performed here as follows, at an intermediate degree of opening, ϕ , the position 
of the annulus (s = 0) is evaluated by linear interpolation between the closed and open configurations; then, starting from 
the annulus, the local metrics and the local normal is estimated from linear interpolation and integrated along the radial 
direction s. This simple approach can be improved when the valve geometry or other information is available at additional 
intermediate stages.

The MV geometry is eventually described as Xv(ϑ, s, ϕ), where ϕ is a time-varying function that corresponds to the 
degree of opening. It is important to remark that at this stage there is not limitation on the number of degrees of freedom 
allowed for valvular movement because, theoretically, the degree of opening can be a function ϕ(ϑ, s, t). In the application 
presented in §4, we first described the valve with one degree of freedom assuming ϕ(t) to be a constant over the valvular 
surface, then we considered the two leaflets moving independently with two degrees of freedom by modulating the function 
as

ϕ(ϑ, s, t) = ϕ2(t) + (ϕ1(t) − ϕ2(t))
(1 + cosϑ)

2
, (1)

where ϕ1(t) is the opening angle of the long (anterior) leaflet and ϕ2(t) the short (posterior) leaflet. The function (1) is 
displayed in Fig. 1 to show the relative influence of the two leaflets in the valvular geometry.

The aortic valve at the outlet is modeled by a simple open/close behavior with no leaflets. The annulus of the MV and 
that of the aortic valve are then connected to the annulus of the LV valve by an automatic linear connection procedure to 
close the basal surface of the LV around the valves. The overall geometry of the normal LV is shown in Fig. 2.
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Fig. 2. Complete geometry of ventricle, mitral valve (with open leaflets) and basal surface including the open aortic orifice. Color is modulated with the
vertical coordinate.

2.2. Fluid dynamics

The fluid dynamics is evaluated by numerical solution of the Navier-Stokes and continuity equations

∂v

∂t
+ v · ∇v = −∇p + ν∇2v, (2)

∇ · v = 0; (3)

where v(t, x) is the velocity vector field, p(t, x) is the kinematic pressure field and ν is the kinematic viscosity (assumed 
0.04 cm2/s). Blood is intentionally assumed as a Newtonian fluid. Indeed, blood is a mixture of elastic corpuscular elements 
in an aqueous solution and either Newtonian or non-Newtonian models are approximate. However, the influence of cor-
puscular or non-Newtonian behavior is very small in the heart chambers [21] and it is negligible when compared with the 
limited accuracy of the clinical data used as input.

The numerical solution is based on an immersed boundary method previously used in numerous studies [10,9,19,20], 
which is briefly recalled here. Equations are solved numerically in a rectangular domain using a staggered, face-centered 
regular Cartesian grid where spatial derivatives are approximated by second-order centered finite differences. Time advance-
ment is achieved using a fractional step method as follows. Velocity is preliminarily advanced in time by the Navier-Stokes 
equation (2) using a low-storage, third-order Runge-Kutta explicit scheme. This preliminary velocity, say v̂ , that does not 
satisfy the incompressibility constraint (3), is corrected by adding a potential field δv = ∇q, such that v = v̂ + δv satisfies 
the continuity and the boundary conditions. The correction potential is found by solution of the Poisson equation

∇2q = −∇ · v̂; (4)

and pressure is updated with q accordingly. Boundary conditions at the edge of the computational box are set periodic in 
the x and y directions, while they are zero pressure and normal velocity on the upper and lower ends along z, respectively. 
The 2D Fourier decomposition permits fast solution of the Poisson equation (4) as a sequence of tridiagonal systems for 
each harmonic.

Boundary conditions are also set on the moving immersed boundaries. These comprise the LV lateral wall, the basal wall 
and the MV leaflets, as defined above in §2.1. In addition, two cylindrical regions are added extending from a region around 
the mitral valve (bounded by the LV edge on the mitral side and the curve separating MV and aortic valve) and from around 
the aortic valve to the upper edge of the computational domain; these additional boundaries represent surrogates of atrium 
and aorta. They are included for numerical convenience to avoid interference between the outflow and the inflow outside 
the LV and to avoid nonphysical sharp corners at the edge of the LV basal plane; the potential influence of these on the 
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intraventricular flow is evaluated in §3.1 dedicated to numerical verifications. Following the IBM approach, the boundary 
conditions are imposed on the intermediate velocity v̂ at the end of the Runge-Kutta time advancement before imposing 
the correction obtained by (4) [8].

Given that the immersed boundaries do not coincide with the computational grid, a local interpolation scheme is com-
monly used to transfer the precise boundary conditions at the surrounding computational points [21,22]. However, in clinical 
applications, the position of the LV boundaries is extracted by semi-visual assessments from images whose resolution is 
lower than the computational grid; therefore, the uncertainty regarding the boundary position is commonly larger than 
the grid-size. Anatomically, the LV endocardium presents small-scale elements that are not resolved in imaging and are 
not reproduced in the extracted geometry. Finally, living geometries present continuous physiological variations and any 
instantaneous measurement must be considered within a range of its natural variability. Thus, in the context of simulations 
based on images and finalized to clinical applications, the time-consuming interpolation scheme can be cut down by simply 
closing all the faces of the cell containing the immersed boundary and setting a velocity equal to the average of the points 
falling in that cell. A computational step that can be performed with extreme efficiency. Additionally, when computing 
the Navier-Stokes equation at the closed cells corresponding to soft tissue, the cell viscosity is artificially increased to its 
maximum stable value

νI B = 1

2�t

(
1

�x2
+ 1

�y2
+ 1

�z2

)−1

. (5)

This simplification avoids unrealistic sharp-edge boundaries, and improves the numerical convergence by preventing from 
the creation of small scales of sub-grid size. Physically, the spatial accuracy is still well above the uncertainties and the 
variability of the boundaries that are somehow “blurred” about the closed cells. It must be underlined that the enhanced 
viscosity (5) is applied only to those computational cells that contain the solid immersed elements and has the only function 
of spreading the influence of them to the entire cell. Its numerical value increases with decreasing computational time-step, 
�t , stating that the influence of the solid is spread to the entire cell instantaneously in theory, which is translated in the 
numerical simulation to using the highest possible diffusion coefficient. The influence of using the approximation (5) for a 
hypothetically smooth boundary is analyzed in §3.2 below.

2.3. Valve dynamics

The LV geometry obtained from imaging expands and contracts during the cardiac cycle and represents the driving force 
for blood motion. Differently, the dynamics of the mitral valve leaflets is driven by the interaction with flow. We consider 
here a simplified model of interaction between flow and MV that does not involve detailed tissue material properties. The 
valve is assumed as a membrane that opens with the flow with few degrees of freedom under the constraint of maintaining 
the shape consistent with that extracted from images as described in §2.1. In general, the valve geometry is described by 
its coordinates Xv(ϑ, s, ϕi) where the parameters ϕi(t), with i = 1, 2 . . . N , represent the N degrees of freedom modulating 
valvular dynamics. The valve geometry is thus known once the value of each parameter is known.

The statement that the valve opens with the flow translates mathematically in the congruence condition that the normal 
component of the valve velocity matches that of the fluid

v · n =
N∑

i=1

(
∂Xv

∂ϕi
· n

)
∂ϕi

∂t
; (6)

where n is the local normal to the valvular surface. Equation (6) applies in general at every point of the continuous valvular 
surface. In [9], equation (6) was transformed in a single global equation by integration over the entire MV surface Av that 
could be satisfied only in the case of a single degree of freedom (N = 1).

In general, the valve contains a finite number N of degrees of freedom and its overall dynamics is described by the 
combination of the individual terms ∂ϕi

∂t . In this case, a solution in weak form of (6) can be obtained by minimization of its 
square root error integrated over the valvular surface

¨

Av

{
v · n −

N∑
i=1

(
∂Xv

∂ϕi
· n

)
∂ϕi

∂t

}2

dA = min. (7)

The least square minimization is recast in the form of a linear system

N∑
j=1

⎡
⎢⎣¨

A

(
∂Xv

∂ϕi
· n

)(
∂Xv

∂ϕ j
· n

)
dA

⎤
⎥⎦ ∂ϕ j

∂t
=
¨

A

(v · n)

(
∂Xv

∂ϕi
· n

)
dA, (8)
v v
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on the N unknowns ∂ϕi
∂t , i = 1, 2 . . . N , that specify the motion of the valve due to the blood flow starting from the initial 

closed configuration ϕi(0) = 0. The matrix of the system (8)

Mij =
¨

Av

(
∂Xv

∂ϕi
· n

)(
∂Xv

∂ϕ j
· n

)
dA, (9)

represents the mutual influence of the different degrees of freedom, it is a diagonally-dominant and symmetric matrix and 
ensures that the system is well conditioned.

The model (8) was introduced here with reference to the specific application for cardiac valves. Nevertheless, the math-
ematical framework is rather general and not bounded to this application. It works with an arbitrary geometry, here called 
Xv , whose possible configurations are described by a finite number of degrees of freedom each one quantified by the cor-
responding parameter, that in this case are the ϕi ’s. These degrees of freedom may represent spatially distinct elements, as 
it is in this case, or they could represent parameters of a spectral representation or even mixed descriptions.

In the limit of N → ∞ this model represents a totally loose surface where all points moves as if they were independent 
particles. When N is small, this approach to valve dynamics represents a modal decomposition where the overall motion is 
simplified in a few modes (degrees of freedom). It must be emphasized that the model (8) represents a drastic simplification 
with respect to a complete FSI approach because the equations governing the deformation of the tissue are not explicitly 
included. Thus this model neglects the forces due to elastic recall and reproduces the asymptotic behavior where the valve 
moves with the flow with no elastic resistance other than the constraint of ensuring that the MV geometry agrees with 
that obtained from the clinical images. The approximation of this model with respect to a FSI is paid back by the advantage 
of allowing simulations solving a simple linear system and without requiring a detailed definition of tissue properties that 
cannot be measured in vivo.

The dynamics described by the system (8) represents the asymptotic limit of the loosest MV within the prescribed set of 
geometric configurations. As such, it also provides a reference ground for the introduction of additional factors accounting 
for elastic resistance based on clinical observables. For example, in a MV model it is natural to consider a description with 
two degrees of freedom corresponding to the motion of the two leaflets. In this case, the leaflets’ stiffness affects the timing 
of opening or closure, which can be measured relatively easily in vivo using ultrasound echo M-mode imaging. The effect 
of elastic stiffness can be added over the asymptotic model, like it was done in [4] in a former model with one degree 
of freedom. In analogy to that approach, for example, the stiffness corresponding to each individual degree of freedom 
can be added to the corresponding equation of the system (8) using a term that depends on the deformation associated 
to that degree of freedom. Each additional term introduces additional coefficients that should then be calibrated with the 
measurements of the corresponding phenomena.

The system (8), that gives ∂ϕi
∂t , is evaluated in parallel to the Navier-Stokes equation (2), that gives ∂v

∂t , during the 
substeps of the Runge-Kutta time advancement of fluid velocity and valve position. At the completion of the time step, the 
fluid boundary conditions are imposed at all immersed boundaries including the valve position based on the instantaneously 
computed valve motion, and the Poisson equation (4) is solved accordingly, this feedback completes the interaction between 
tissue and blood flow.

Finally, the aortic valve, which is downstream of the LV flow field, is modeled as a simple orifice with a flat surface that 
is either open or closed. Aorta is considered open when the mitral valve is closed and the normal velocity, averaged over 
the position of the aortic valve surface, prior to setting the boundary conditions, is directed outwards. This way, it is not 
necessary to prescribe the open or closed state of the aortic valve by global considerations because the exact instants of 
start-end of systole and diastole can be difficult to define accurately in pathological conditions.

3. Verifications

3.1. Numerical verification

The overall numerical implementation was extensively validated in previous studies. However, simulations of coupled 
problems involving both fluid and solid elements are often challenging and results can be dependent on space and time 
resolution even when the convective and diffusive stability criteria are fulfilled. Therefore, we preliminarily performed an 
extensive validation of the numerical method to verify the sensitivity of results to specific numerical choices. To this aim 
we considered a single degree of freedom valve model and a simple LV geometry used in a previous study [9]. We show 
here the results for a same system simulated with a basic grid made of 128 × 128 × 160 points and 2048 time steps in one 
heartbeat, a refined grid 192 × 192 × 240 points and 3072 time steps, and the same eliminating the model for atrium and 
aorta thus allowing inflow/outflow to communicate in the space surrounding the LV. The coarser parameters were previously 
demonstrated to ensure convergence of flow solution with valves modeled as orifices without moving leaflets [10,19,20]. 
We monitored here the MV opening angle, that represents the result of the interaction between flow and solid elements, 
for which minor instantaneous differences can trigger progressively increasing discrepancies.

The results of leaflet dynamics, reported in Fig. 3, are very similar within this range of spatial and temporal resolution 
and are not influenced by the presence of atrium/aorta models, which only reduces phenomena of vortex interaction outside 
the LV. These results demonstrate the robustness of the coupled computational model, possibly because it is based on 
integral balances. The flow fields are essentially identical in the three cases.
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Fig. 3. Time course of the valve opening angle in three cases with different resolution and removing the model of atrium and aorta upstream and down-
stream of the valvular plane, respectively. The continuous line represents basic grid made of 128 × 128 × 160 points; the dashed line represents a refined
grid 192 × 192 × 240 points; and the dashed point line represents the same, only eliminating the model for atrium and aorta. The shaded gray area
represents the volume rate for reference (not to scale).

Fig. 4. Flow fields in a normal LV at peak E-wave computed (a) with regular viscosity, (b) with the enhanced viscosity at the immersed boundary using
identical numerical parameters, and (c) with the enhanced viscosity and half time step. Each picture shows the color-map of the normal vorticity (red to
blue from −200 to 200, units equal to the inverse of the heartbeat period) and the velocity vectors (every 4 grid points) on a longitudinal plane crossing
the center of MV, of aorta and LV apex; the three-dimensional gray surfaces represents iso-surfaces of the λ2 parameter.

3.2. Effect of immersed boundary viscosity

The IBM method for flow simulation presented in §2.2 proposes to use an amplification of the viscosity coefficient, 
equation (5) when the fluid equations are evaluated in correspondence of the immersed solid elements. The appropriateness 
of such a method was suggested when the uncertainty in the boundary position is larger than the grid size because the 
method spreads the boundary condition over the computational cell.

We perform here a comparative analysis between numerical solutions obtained with and without the introduction of 
equation (5) to verify the influence of this assumption with respect to considering a smooth boundary. We also performed 
the same simulation halving the time step to verify the potential influence of time step on equation (5). The comparison 
is carried out in the case of a normal LV (details about this case are described below in §4). Results show that the flow is 
largely unaffected by the introduction of this artificial boundary viscosity, with the only difference limited to the presence 
of very small scales that are sometime smoothed out in presence of the enhanced viscosity. As an example, Fig. 4 shows 
the flow fields at the peak of the E-wave in the three cases.

The comparative analysis provides some support that this approach does not introduce non-physical phenomena other 
than smearing out grid-size fluctuations near the boundaries, a phenomenon that is meaningful when the position of the 
boundary is not known with accuracy.

In particular, it can be useful in presence of sharp boundaries that are a result of segmentation algorithms and whose 
details may not be physically realistic. In such case, the immersed boundary approach can give rise to similarly unrealistic 
small scales in fluid flow. To better describe this point, Fig. 5 shows three insets with the enlargement of the vorticity 
field near sharp boundaries computed with and without artificial viscosity at the solid cells. The zero-thickness boundaries 
sometime produces fluctuations of length equal to the grid size that are a consequence of the jump across the solid cell. 
Such fluctuations are significantly reduced when the viscosity is enhanced at boundary cells.
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Fig. 5. Details of the flow fields in a normal LV at peak E-wave computed (a) with regular viscosity, (b) with the enhanced viscosity at the immersed
boundary using identical numerical parameters. Each picture shows the color-map of the normal vorticity (red to blue from −200 to 200, units equal to
the inverse of the heartbeat period) and the velocity vectors (every 4 grid points) on a longitudinal plane crossing the center of MV, of aorta and LV apex.
The three panels report enlarged views of specific regions next to edges of the immersed boundary.

It must also be reminded that this artificial viscosity is applied only to those computational cells that contain the solid 
elements. Such cells are treated as fluid cells during the IBM solution and the flow equation are solved therein during 
the intermediate time-advancement steps when discontinuities can influence nearby fluid cells. The enhanced viscosity 
essentially reduces this influence and has the main effect of spreading the presence of the solid to the entire cell. At the 
same time, this approach can improve the stability of the numerical solution in presence of sharp boundaries; therefore, it 
may reduce the need of smoothing procedures when preprocessing the borders obtained from image segmentation tools.

Therefore, the usage of equation (5) appears appropriate when the definition of the anatomical boundaries is available 
with a resolution that is comparable to the grid size or when such boundaries are described with unphysical sharp edges.

3.3. Comparison with a FSI solution

The computational model is preliminarily evaluated in an idealized geometry where a FSI solution is available from a 
study in literature for a healthy LV with a simplified natural MV made of two separate leaflets [21]. The LV presents a 
volumetric reduction of 60% with respect to its maximum size. This corresponds to a peak Reynolds number Re = v p Da

ν �
4200, where v p is the maximum velocity averaged across the mitral annulus of diameter Da , and a Strouhal number 
St = Da

v p T � 2.9 × 10−2 and T is the heartbeat duration. It is worthwhile to remark that the peak velocity lasts only for 
a small fraction of the cycle and the average value of the Reynolds number is about 660 and of Strouhal 0.18. The MV 
tissue properties are assumed in the FSI solution as those of an isotropic linearly-elastic membrane of uniform (small) 
thickness, which includes mass and bending stiffness [7,21]. For the present comparison, mimicking the procedure proposed 
for application to clinical data, the LV geometry coming from the FSI numerical solutions and the MV geometry in the open 
and closed configurations are used as input for the present model. The MV geometry is here described by 2 degrees of 
freedom that exactly identify the individual leaflets.

It is important to remark that the two systems are not directly comparable. The FSI simulation is obtained with a specific 
set of values for the valvular tissue properties, whereas such properties are not part of the present asymptotic model where 
the leaflets motion is not subjected to elastic resistance. Moreover, the valve in FSI has a small mass while the equation of 
motion (8) in the present model does not include a term accounting for the inertia of the MV. However, this difference is 
minor as the valvular tissues occupy a small volume, their density is comparable to that of surrounding blood whose inertia 
is implicitly accounted in the Navier–Stokes equations. Therefore, this comparative analysis is not aimed to a one-to-one 
comparison given the differences between the physical systems; it rather allows to verify the consistency of the asymptotic 
model considering that the main difference is the absence of bending stiffness.

Computations are performed starting from rest in both models and are limited to the first diastole. Fig. 6a-c shows the 
velocity fields obtained by the FSI solution corresponding to three time instants (peak of the E-wave, stasis between E 
and A waves, and peak of A-wave), and are compared with those obtained at the same instants with the present model 
(Fig. 6d-f ). Both models show similar gross features, with the entering jet displaced towards the lateral wall (on the right 
side) in Fig. 6a,d, a weak downward flow pattern about the valve leaflets in Fig. 6b,e, and a straight jet in Fig. 6c,f. The two 
numerical results differ mainly for the apparent different degree of smoothness. This is partly imputable to the different 
numerical techniques; moreover, in order to create the same graphical representation, the present results were resampled 
from the staggered grid with (2x2 filtering) and the flow field inside was cropped.

Some differences are also a consequence of differences in the valvular dynamics. A first comparison of the motion of 
the anterior leaflet in the two cases is reported in Fig. 7, using the same representation of the original FSI reference [21]; 
the motion of the posterior leaflet, not reported here, shows analogous behavior although with excursions that are about 
20 times smaller. The curves suggest that the present model corresponds to a system with looser leaflets: the leaflet opens 
more rapidly during the E-wave, it presents a slightly larger closure during diastasis, and opens completely during the 
E-wave when the elastic leaflets of the FSI model do not reach complete opening.
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Fig. 6. Snapshots of the velocity field in the central transversal plane, y = 0, for the idealized system introduced in [21]. Results from the FSI numerical
study (a,b,c) and from the present model (d,e,f ). The flow fields corresponds to peak E-wave (a,d), diastasis (b,e), peak A-wave (c,f ); each picture reports
the velocity vectors and the colormap of the vertical velocity. (Due to different graphical representations, the color pattern in (d,e,f ) results smoother and
cropped inside the valve.)

Fig. 7. Time evolution of the mean z-coordinate (a), and of the mean x-coordinate (b) for the anterior leaflet: continuous line for the present asymptotic
model, dashed line for the elastic FSI model.

Another quantitative comparisons is reported in Fig. 8 in terms of metrics more directly related to valvular function like 
the projected opening area A(t), and the average cross-valve velocity v(t) (computed as Q e/A, where Q e is the effective 
volume rate across the valvular opening, as defined later in equation (10)). The comparison between the opening areas in 
Fig. 8(a) confirms that the present model corresponds to a looser valve that responds more rapidly both during opening 
and closure. This difference does not affect significantly the value of fluid velocity, shown in Fig. 8(b); this is also due to 
the specific geometry of the leaflets for this valve, visible in Fig. 6, that are extended in length with a large lateral opening 
and a motion that is mainly transversal. The quicker opening in the asymptotic model gives rise to a lower velocity during 
acceleration and a peak flow that is reduced of about 6%, in this case, but that may become more significant in other 
situations.

In summary, considering the existing difference between the two systems, it was not expected that the asymptotic model 
results match very closely to the FSI results. The comparative analysis shows that the present model corresponds to MV 
dynamics where the leaflets movements are more rapid with respect to having elastic resistance with an overall congruence 
of the coupled MV-LV fluid dynamics. These results provide a further partial support that the model is compatible with the 
assumption of asymptotic behavior.
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Fig. 8. Time evolution of the projected valve opening area (a), and of the mean cross-valve vertical velocity (b): continuous line for the present asymptotic
model, dashed line for the elastic FSI model.

Fig. 9. Flow fields in the normal LV, computed with the two degrees of freedom model, at four instants: (a) peak E-wave, (b) diastasis, (c) A-wave, (d) early
systole; as indicated in the volume curve inset. Each picture shows the color-map of the normal vorticity (red to blue from −200 to 200 units equal to the
inverse of the heartbeat period) and the velocity vectors (every 4 grid points) on a longitudinal plane crossing the center of MV, of aorta and LV apex; the
three-dimensional gray surfaces represents one iso-surface of the λ2 parameter.

4. Application to a normal LV

4.1. Fluid dynamics

The computational model is here applied to a normal healthy LV extracted from images as described in §2.1. The cardiac 
function is characterized by an end-diastolic volume E D V = 113 ml, end-systolic volume E S V = 47 ml, stroke volume 
S V = E D V − E S V = 67 ml, and ejection fraction E F = S V

E D V = 59%. The specific volumetric curve, gives a velocity at peak 
diastole of approximately v p � 46 cm/s averaged across the annulus area (whose diameter is approximately Da � 3.3 cm). 
These figures correspond to a peak Reynolds number Re = v p Da

ν � 3800 and a Strouhal number St = Da
v p T � 7.2 × 10−2. 

However, the effective peak Re reaches about 1.7 times this value because the effective orifice area of the open mitral valve 
is smaller that the annulus; although such high values are found for a very limited period of time and the average Re during 
the entire diastole is about 940.

The flow field is shown in Fig. 9 at four instants during the cardiac cycle. The overall intraventricular fluid dynamics is 
qualitatively analogous to that previously described in literature with either orifice-like or different models of the mitral 
valve in various different geometries of normal LVs [28,23,37,12]. During the early-filling an asymmetric vortex jet, whose 
head is a deformed vortex ring, enters the LV. The vortex structure interacts with the boundary layer of the lateral wall 
(right in the pictures) and partly dissipates in diastasis leaving a weak clockwise circulation occupying most of LV, while a 
second vortex ring follows during the atrial filling. It is worth to note that this second ring is more regular because it is 
released by the rapid closure of the MV mouth at the onset of systole, when a weak circulation drives the flow toward the 
outflow tract.

The corresponding time course of the two leaflets opening angle is reported in Fig. 10. The leaflets show a rapid opening 
during the acceleration phase of the E-wave reaching the complete opening before the maximum flow, which is in agree-
ment with clinical observation. A small partial closure occurs during the diastasis period, between the E and A waves. At 
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Fig. 10. Time course of the mitral valve opening angles in a normal LV. Continuous lines are the anterior (black) and posterior (gray) leaflets opening angles
in the 2 degrees of freedom model; the dashed line is the result for a single degree of freedom model. The shaded gray represents the volume rate for
reference (not to scale).

Fig. 11. Flow fields in the normal LV at the peak of E-wave, (a) computed with the two degrees of freedom mitral valve model, (b) with a valveless circular
orifice in mitral position at the annulus, (c) with a valveless circular orifice of the same area of the open mitral valve. Each picture shows the color-map of
the normal vorticity (red to blue from −200 to 200 units equal to the inverse of the heartbeat period) and the velocity vectors (every 4 grid points) on a
longitudinal plane crossing the center of MV, of aorta and LV apex; the three-dimensional gray surfaces represents one iso-surface of the λ2 parameter.

the end of diastole, closure starts at the deceleration phase of the A-wave, due to the adverse pressure gradient, and quickly 
completes during the acceleration of the systolic wave. The shorter, posterior leaflet is quicker in the early opening and 
the final closure while the longer anterior leaflet follows shortly after it. As a further check, the same picture reports the 
opening angle computed by the MV model with one degree of freedom, which presents a comparable valvular movement.

4.2. Comparison with valveless mitral orifice

The intraventricular flow that develops in a normal LV in presence of the MV is here compared with the flow obtained 
when the valve is replaced by a circular orifice without leaflets, which is open in diastole and closed in systole (so-called 
diode model). In the comparison we first consider an orifice at the position of the annulus, whose effective area is larger 
than that of the actual MV, then we consider an orifice with an area that is equal to the MV area in the open configuration.

The flow fields are shown in Fig. 11 at the peak of the E-wave, one instant that is directly influenced by the MV opening 
phase. The vortex ring that develops from the larger orifice (Fig. 11b) is more regular, wider and remains closer to the base 
with respect to that found with the MV model (Fig. 11a). This result was expected because the circular orifice has a regular 
trailing edge and the velocity of the fluid crossing the mitral orifice is smaller.

Interestingly, a similar result with a regular and basal vortex ring is also found when the valveless orifice has the same 
size of the open MV (Fig. 11c). Although the ring is stronger than before, it remains fairly regular being shed from a planar 
circular orifice, moreover it remains closer to the base despite the transvalvular fluid velocity is comparable to that in the 
MV model. This is first imputable to the fact that the boundary layer separation occurs from the LV base instead of the 
MV leaflets trailing edge that lay downstream. Moreover, the ring is stretched and enlarged by the background (initially 
irrotational) flow associated to the fixed orifice that expands rapidly behind a circular sharp edge facing the flow. This 
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behavior is very different in presence of an opening valve that drives the flow in a funnel-like stream with velocities that 
are initially higher and are directed downstream after the trailing edge.

4.3. Interpretation of MV dynamics

Physically, valvular opening is driven by the incoming transmitral flow when the LV pressure falls below the pressure in 
the left atrium and pressure difference is large enough for accelerating the entire fluid volume corresponding to the filling 
flow rate dV

dt . Valvular opening can thus be described with the aid of conservation of mass [27].
Consider a control volume bounded by the surface within the mitral annulus, the instantaneous valvular surface, and the 

orifice area inside the trailing edge, Xe = Xv(ϑ, 1), the expression of mass balance states that the total volume rate crossing 
the annulus is balanced by the volume allowed by the displaced valve surface plus the flow Q e across the trailing edge 
orifice

dV

dt
=
¨

Av

v · ndA + Q e. (10)

When elastic resistance can be neglected, it can be hypothesized that the valve opens with the flow without developing 
significant vortex shedding from the trailing edge [26]. This means that an estimation of the velocity across the orifice does 
not differ significantly from that of the trailing edge ∂Xe

∂t . Within this assumption, the discharge Q e can be estimated by 
integrating along a line, L, separating the anterior and posterior trailing edges, taking the area between the facing edges 
and using the component normal to such area of the mean velocity between them

Q e ∼=
ˆ

L

1

2

(
∂Xepost

∂t
+ ∂Xeant

∂t

)
· n

∣∣Xepost − Xeant

∣∣dL. (11)

Equations (10), with Q e given by 11, provides a relationship between the LV volumetric variation and valvular motion under 
the assumption of negligible vortex shedding.

This relationship can be made more explicit when valve motion is described by a single degree of freedom, ϕ(t). Using 
(6) with N = 1 to rewrite the time derivatives, equation (10) can be rewritten

dV

dt
=

⎡
⎢⎣¨

Av

∂X

∂ϕ
· ndA + Q̂ e

⎤
⎥⎦ ∂ϕ

∂t
; (12)

where

Q̂ e ∼=
ˆ

L

1

2

(
∂Xepost

∂ϕ
+ ∂Xeant

∂ϕ

)
· n

∣∣Xepost − Xeant

∣∣dL. (13)

For a given flow rate dV
dt , equation (12) represents a first order ordinary differential equation for the opening angle ϕ(t). It 

can be integrated with initial condition ϕ(0) = 0, to provide an estimate of the initial phase of valvular opening.
The valvular motion obtained by (12) is shown in Fig. 12 and compared with that obtained from the numerical results. 

The overall agreement is satisfactory for short times, the difference increases as the valve approaches its maximum opening 
when some shedding develops and the formula (11), or (13), becomes increasingly approximated. This result supports the 
interpretation that the asymptotic model in §2.3 corresponds to a valvular opening driven by the fluid crossing the MV 
without resistance, such that the loose trailing edge moves in close accordance to the fluid velocity and vortex shedding is 
initially negligible. In this case, valvular opening is essentially a kinematic effect following mass conservation and it does 
not depend on the geometric properties of the LV other than the flow rate.

Analogous arguments can be applied to the description of the valvular closure at the transition between diastole and 
systole. Physically, MV closure starts for the large adverse pressure gradient associated with the deceleration of the late 
diastolic transmitral flow and continues rapidly during the acceleration of the backward directed systolic wave with no 
significant role played by the vortices in the LV [18,35]. Indeed, the vortex-induced velocities are low (few cm/s) and the 
associated pressure are negligible with respect to the intracardiac pressure differences at the onset of systole. In agreement 
with the normal physiology, result show that MV closure completes during the beginning of systole. This effect is associated 
to the phenomenon of false back flow when the blood contained inside the MV cup returns into the atrium when leaflets 
close. During this phase, a possible elastic recall may facilitate valvular closure although this effect is expected to be small.

Differently, the ventricular vorticity might contribute to the partial valve closure during the diastasis when transvalvular 
flow rate is small or absent [35]. In this phase of the cardiac cycle, the vortex-induced rotational velocity pattern inside 
the LV may create a weak overpressure over the downstream face of the leaflets (especially the longer anterior leaflet) and 
support partial closure. This phenomenon, which is found in the present result, is very variable in clinical observations 
where closure in diastasis ranges from being negligible to complete.
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Fig. 12. Valvular opening at the onset of diastole as computed by the numerical simulation (thin line) and estimated from the approximation for short
times assuming valve with no resistance (thick line). The shaded gray represents the volume rate for reference (not to scale).

5. Discussion of model limitations

The computational model introduced here should not be confused with a FSI model, primarily because it does include the
elastic properties of the tissues that would be required to solve the momentum equation for the solid elements. Therefore, 
it describes an asymptotic behavior only and was designed to provide a relatively straightforward application of LV flow 
simulations in clinical conditions when the mechanical properties of tissue are not available or cannot be extrapolated. To 
reach this objective, the model includes a number of simplifications that correspond to a series of limitations that are briefly 
summarized here.

First of all, the set of possible valve configurations is given a-priori as a function of few evolutionary parameters (degrees 
of freedom). Hence, there is no guarantee that the effective deformation of the tissue elements belongs to such a pre-defined 
set of configurations; the actual reliability depends on the reliability and completeness of the information used to create 
such configurations and to the associated degrees of freedom. Secondly, the fluid-tissue interaction describing MV motion 
represents an asymptotic behavior where the valve moves with the flow with no resistance given by an internal anatomic 
structure other than the constraint of moving inside the set of predefined configurations. Therefore, the model corresponds 
to the loosest tissue dynamics within those geometric configurations. In perspective, however, the system (8) may be in-
tegrated with additional terms representing elastic resistance. These terms will depend on the deformation associated to 
the relative degree of freedom, like in [4], and include coefficients that should be calibrated to additional measurements. 
Finally, the model also neglects the influence of chordae tendineae that ensure unidirectional flow by constraining the valve 
from opening toward the atrium. In this regard, this study did not consider additional effects imputable to the chordae, 
such as their tethering that may influence MV dynamics in dilated LVs. It also neglects the possible impact of leaflets with 
surrounding tissues, that are simply anticipated by limiting the allowed configurations.

As discussed in the introduction, a complete FSI approach is the only methodology for ensuring complete reproduction 
of the dynamics for both fluid and solid phases [13,21,15,16,12,40,3]. On the other hand, the development of FSI in living 
biological systems presents exceptional difficulties in the definition of tissue properties, including constitutive equation and 
elastic parameters which may be space-varying and non-isotropic [34,5,17], that cannot be easily estimated in vivo. In 
general, in the perspective of a clinical application, we are left with a dichotomy between simplified approximated models, 
that may agree with limited measurable information but may not be generally valid, and complete FSI models based on an 
approximation of the effective set of tissue parameters that may not be realistic for the specific case under analysis. Aware 
of these limited options, the present model follows the first route introducing a clinical imaging-based approach, with the 
objective of providing one additional possible approach.

The present model -within the limitations described above- describes an asymptotic behavior that may provide some 
bounds to the many possible results; it also provides a possible reference for improvements able to include further phe-
nomena.

6. Conclusions

This study presented a numerical approach to the LV fluid dynamics that includes the interaction with MV leaflets.
The method is designed for integration with medical imaging in compliance with the accuracy of information effectively 
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available in clinical applications. This model of valvular dynamics corresponds to an asymptotic description of leaflet motion 
when information about tissue properties are not available or cannot be extrapolated.

It represents an improvement with respect to using valveless orifice and provides a more realistic reproduction of the 
flow below the valve. This over-simplified approach to the interaction between flow and solid elements could be extended 
to different applications and integrated with parametric description of global tissue properties.
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