
Free-stream preserving linear-upwind and WENO

schemes on curvilinear grids

Yujie Zhu, Xiangyu Hu∗

Department of Mechanical Engineering, Technical University of Munich
85748 Graching, Germany

Abstract

Applying high-order finite-difference schemes, like the extensively used linear-

upwind or WENO schemes, to curvilinear grids can be problematic. The

geometrically induced error from grid Jacobian and metrics evaluation can

pollute the flow field, and degrade the accuracy or cause the simulation fail-

ure even when uniform flow imposed, i.e. free-stream preserving problem. In

order to address this issue, a method for general linear-upwind and WENO

schemes preserving free-stream on stationary curvilinear grids is proposed.

Following Lax-Friedrichs splitting, this method rewrites the numerical flux

into a central term, which achieves free-stream preserving by using symmetri-

cal conservative metric method, and a numerical dissipative term with a local

difference form of conservative variables for neighboring grid-point pairs. In

order to achieve free-stream preservation for the latter term, the local differ-

ence are modified to share the same Jacobian and metric terms evaluated by

high order schemes. In addition, a simple hybrid scheme switching between

linear-upwind and WENO schemes is proposed of improving computational
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efficiency and reducing numerical dissipation. A number of testing cases in-

cluding free-stream, isentropic vortex convection, double Mach reflection and

flow past a cylinder are computed to verify the effectiveness of this method.

Keywords: geometric conservation law, free-stream preserving, linear

upwind scheme, WENO scheme, hybrid scheme

1. Introduction

In computational fluid dynamics (CFD), it is well known that finite-

difference schemes are more computational efficient and easier to achieve

high-order accuracy compared with finite-volume schemes [1]. Therefore,

many linear, nonlinear and hybrid high-order finite-different schemes have

been developed. However, despite the above-mentioned advantages, these

high-order schemes are problematic when they are applied to curvilinear grids

due to the lack of geometric conservation law (GCL) [2, 3]. The grid Jaco-

bian and metrics calculated in curvilinear coordinates can introduce large

errors, degrade accuracy or cause numerical instability even when the flow

is uniform, i.e. free-stream preserving problem. Since body-fitted curvilin-

ear grids are widely used for computing flow problems involving practical

geometries, GCL is of great importance. GCL comprises two components,

i.e. the volume conservation law (VCL) relevant to moving grid and the

surface conservation law (SCL) to stationary curvilinear grid. While violat-

ing VCL causes non-physical extra source or sinks, violating SCL leads to a

misrepresentation of the convective velocities, which can be explained as in-

consistence of vectorized computational cell surfaces in a finite-volume point

of view [4, 3, 5]. Here, we only consider SCL of stationary grid on which
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VCL is automatically satisfied.

For low-order schemes, SCL can be achieved by simple averaging method [6],

conservative form of metrics [2] or finite-volume-like technique [3]. It has also

been shown that SCL can be satisfied for high-order central schemes which

are characterized by non-dissipation property. In a study of central compact

scheme [7] on curvilinear grid, Visbal and Gaitonde [8] found that the SCL

error can be largely decreased by a two-step procedure: (a) utilizing the con-

servative form of metrics [2], (b) discretizing the metric terms with the same

compact scheme which is used for calculating the convective-flux derivatives.

In a further analysis, Deng et al. [9] identified the outer- and inner-level dif-

ferential operators for the metrics, and obtained a sufficient SCL condition

for general high-order central schemes [5, 10]. However, as also pointed in

Refs. [11, 5], this condition is difficult to be satisfied for dissipative, i.e. up-

wind schemes due to the inconsistent outer-level differential operators used

for flux splitting.

Since numerical dissipation is essential for stabilizing the solution, espe-

cially for compressible flow with shock, such difficulty is usually circumvented

by the combination of finite-difference and finite-volume schemes. One typ-

ical formulation is first obtaining, usually nonlinear, dissipative convective-

fluxes by finite-volume approach and then computing their derivatives by

applying non-dissipative central schemes [11, 5, 12]. Note that this formu-

lation is in agreement with that of the original weighted compact nonlinear

scheme (WCNS) developed by Deng and Zhang [13], in which the convective-

fluxes is computed with the finite-volume version of a weighted essentially

non-oscillatory (WENO) scheme [14]. Another formulation is first split the
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upwind scheme into a non-dissipative central part and a dissipative part, and

then implementing them, respectively, with high-order finite-difference and

finite-volume-like schemes by freezing Jacobian and metric terms for the en-

tire stencil [15] or by replacing the transformed conservative variables with

the original ones [16, 17]. Recently, a finite-difference based free-stream pre-

serving technique was proposed by Zhu et al. [18] for WENO scheme. In

this technique, the consistency of outer-level difference operators is imposed

by introducing offsetting terms with the same WENO nonlinear weights for

computing the corresponding inviscid fluxes. While this technique is gener-

ally effective, it may lead to large errors due to the resulting non-conservative

formulation.

In this work, we propose a simple technique to impose SCL for linear-

upwind and WENO schemes and their hybridization to achieve free-stream

preserving property. To our knowledge, this is the first report on hybrid

WENO scheme on curvilinear grids with free-stream preserving property.

The method follows a Lax-Friedrichs splitting to rewrite the numerical flux

of a upwind scheme into a central term of the flux functions and a dissipative

term. Since the latter term is transformed into a formulation of local differ-

ences for neighboring grid-point pairs, the Jacobian and metric terms can be

evaluated with high-order schemes and applied for each of these pairs. The

reminder of the paper is organized as follows. Section 2 describes the clas-

sic formulation of central schemes satisfying SCL, linear-upwind and WENO

scheme on curvilinear grids based on Lax-Friedrichs splitting and their diffi-

cult on free-stream preserving. In Section 3, the local-difference formulations

of the dissipative term for linear-upwind and WENO schemes are introduced
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with a further application of hybrid WENO scheme following Hu et al. [19].

Validation tests and further numerical examples are presented in Section 4,

and brief concluding remarks are given in the last Section 5.

2. Preliminaries

In Cartesian coordinates (t, x, y, z), the three-dimensional Euler equation

is given as follows:

∂U

∂t
+
∂F

∂x
+
∂G

∂y
+
∂H

∂z
= 0, (1)

where

U =
(
ρ ρu ρv ρw E

)T
,

F =
(
ρu ρu2 + p ρuv ρuw u (E + p)

)T
,

G =
(
ρv ρuv ρv2 + p ρvw v (E + p)

)T
,

H =
(
ρw ρuw ρvw ρw2 + p w (E + p)

)T
,

(2)

are conservative variables and convective fluxes, respectively. Here, ρ is

density; p is pressure; u, v, w denote the velocity components in x−,y−and

z−directions, respectively; and E is total energy per unit volume. In this

study, the ideal gas is used and E can be expressed as

E =
p

γ − 1
+

1

2
ρ
(
u2 + v2 + w2

)
. (3)

2.1. Governing equations in curvilinear coordinates

When a curvilinear grid is used for numerical discretization, the governing

equation Eq. (1) is first transformed into curvilinear coordinates (τ, ξ, η, ζ)
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with the following relationships

τ = t, ξ = ξ (x, y, z) , η = η (x, y, z) , ζ = ζ (x, y, z) . (4)

The transformed equation can be written as

∂Ũ

∂τ
+
∂F̃

∂ξ
+
∂G̃

∂η
+
∂H̃

∂ζ
= 0, (5)

where

Ũ =
U

J
,

F̃ =
ξx
J
F +

ξy
J
G +

ξz
J
H ,

G̃ =
ηx
J
F +

ηy
J
G +

ηz
J
H ,

H̃ =
ζy
J
F +

ζy
J
G +

ζz
J
H .

(6)

Here, the transformation Jacobian J and metrics are

1

J
= xξyηzζ − xηyξzζ + xζyξzη − xξyζzη + xηyζzξ − xζyηzξ,

ξx
J

= yηzζ − yζzη,
ξy
J

= xζzη − xηzζ ,
ξz
J

= xηyζ − xζyη,
ηx
J

= yζzξ − yξzζ ,
ηy
J

= xξzζ − xζzξ,
ηz
J

= xζyξ − xξyζ ,

ζy
J

= yξzη − yηzξ,
ζy
J

= xηzξ − xξzη,
ζz
J

= xξyη − xηyξ,

(7)

and the equation Jacobian matrix, say A = ∂F̃ /∂Ũ , is

A =



0 ξx ξy ξz 0

ξxφ− uθ θ − (γ − 2)uξx uξy − (γ − 1) vξx uξz − (γ − 1)wξx (γ − 1) ξx

ξyφ− vθ vξx − (γ − 1)uξy θ − (γ − 2) vξy vξz − (γ − 1)wξy (γ − 1) ξy

ξzφ− wθ wξx − (γ − 1)uξz wξy − (γ − 1) vξz θ − (γ − 2)wξz (γ − 1) ξz

(φ− h) θ Hξx − (γ − 1)uθ Hξy − (γ − 1) vθ Hξz − (γ − 1)wθ γθ


,

(8)
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where

θ =
γ − 1

2

(
u2 + v2 + w2

)
,

θ = ξxu+ ξyv + ξzw,

H =
γp

(γ − 1) ρ
+

1

2

(
u2 + v2 + w2

)
.

(9)

The eigenvalues of A are

λ1 = uξx + vξy + wξz − a
√
ξ2x + ξ2y + ξ2z ,

λ2 = λ3 = λ4 = uξx + vξy + wξz,

λ5 = uξx + vξy + wξz + a
√
ξ2x + ξ2y + ξ2z ,

(10)

where a =
√
γp/ρ is the speed of sound.

2.2. SCL and free-stream preserving problem

When a uniform flow is imposed, Eq. (5) can be simplified as

Ũτ = − (IxF + IyG + IzH) = 0, (11)

where

Ix =

(
ξx
J

)
ξ

+
(ηx
J

)
η

+

(
ζx
J

)
ζ

= 0,

Iy =

(
ξy
J

)
ξ

+
(ηy
J

)
η

+

(
ζy
J

)
ζ

= 0,

Iz =

(
ξz
J

)
ξ

+
(ηz
J

)
η

+

(
ζz
J

)
ζ

= 0.

(12)

Note that, Eq. (12) may not be strictly satisfied when Ix, Iy and Iz are

represented by numerical discretization. In this case, artificial numerical

disturbances may be introduced into the uniform flow and lead to the free-

stream preserving problem. As Eq. (12) can be explained as the consistence
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of vectorized computational cell surfaces in finite-volume method [3], Zhang

et al. [4] proposed the surface conservation law (SCL), by which Eq. (12) is

still satisfied by the numerical approximation of Jacobian, metrics and their

derivative operators. It is obvious that a numerical scheme satisfying SCL

has the free-stream preserving property.

Following Deng et al. [5], the metric terms in Eq. (7) is rewritten as a

symmetrical conservative form:

ξx
J

=
1

2

[
(yηz)ζ − (yζz)η + (yzζ)η − (yzη)ζ

]
,

ξy
J

=
1

2

[
(xzη)ζ − (xzζ)η + (xζz)η − (xηz)ζ

]
,

ξz
J

=
1

2

[
(xηy)ζ − (xζy)η + (xyζ)η − (xyη)ζ

]
,

ηx
J

=
1

2

[
(yζz)ξ − (yξz)ζ + (yzξ)ζ − (yzζ)ξ

]
,

ηy
J

=
1

2

[
(xzζ)ξ − (xzξ)ζ + (xξz)ζ − (xζz)ξ

]
,

ηz
J

=
1

2

[
(xζy)ξ − (xξy)ζ + (xyξ)ζ − (xyζ)ξ

]
,

ζx
J

=
1

2

[
(yξz)η − (yηz)ξ + (yzη)ξ − (yzξ)η

]
,

ζy
J

=
1

2

[
(xzξ)η − (xzη)ξ + (xηz)ξ − (xξz)η

]
,

ζz
J

=
1

2

[
(xξy)η − (xηy)ξ + (xyη)ξ − (xyξ)η

]

(13)

and

1

J
=

1

3

[(
x
ξx
J

+ y
ξy
J

+ z
ξz
J

)
ξ

+
(
x
ηx
J

+ y
ηy
J

+ z
ηz
J

)
η

+

(
x
ζx
J

+ y
ζy
J

+ z
ζz
J

)
ζ

]
.

(14)

As shown in Refs. [8, 11, 9], when the derivative operators within the above

conservative form are kept the same with that of fluxes, Eq. (12) is satisfied
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and uniform flow can be preserved. Taking Ix as an example,

Ix =
1

2

[
δ1
ξδ2

ζ (zδ3
ηy)− δ1ξδ2η

(
zδ3

ζy
)

+ δ1
ξδ2

η
(
yδ3

ζz
)
− δ1ξδ2ζ (yδ3

ηz)

+δ1
ηδ2

ξ
(
zδ3

ζy
)
− δ1ηδ2ζ

(
zδ3

ξy
)

+ δ1
ηδ2

ζ
(
yδ3

ξz
)
− δ1ηδ2ξ

(
yδ3

ζz
)

+δ1
ζδ2

η
(
zδ3

ξy
)
− δ1ζδ2ξ (zδ3

ηy) + δ1
ζδ2

ξ (yδ3
ηz)− δ1ζδ2η

(
yδ3

ξz
)]
.

(15)

Here, δ1, δ2 are outer derivative operators and δ3 is inner derivative operator

for calculating the corresponding level of the metric terms. The superscript

ξ, η and ζ denote the operators in ξ−, η− and ζ− directions, respectively. It

is straightforward to see that Ix equals to zero when δ2
ξ = δ1

ξ, δ2
η = δ1

η and

δ2
ζ = δ1

ζ . This technique is called symmetrical conservative metric method

(SCMM) in Ref. [5] and is effective for central schemes. However, as will be

shown in the following subsection, this method is difficult to be applied for

upwind schemes.

2.3. Linear-upwind scheme

Without loss of generality, we explain the explicit 5th-order linear upwind

scheme with local Lax-Friedrichs splitting.

The semi-discrete approximation of the governing equation Eq. (5) at a

grid point indexed as (i, j, k) is as follows:(
∂Ũ

∂τ

)
i,j,k

= −
(
δξ1F̃i,j,k + δη1G̃i,j,k + δζ1H̃i,j,k

)
, (16)

where δξ1, δ
η
1 and δζ1 are flux derivative operators in ξ−, η− and ζ− directions,

respectively. A conservative formulation of the operators, say δξ1F̃i,j,k, is

δξ1F̃i,j,k =
1

δξ

(
F̃i+ 1

2
,j,k − F̃i− 1

2
,j,k

)
, (17)
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where F̃i± 1
2
,j,k are the numerical fluxes at half points. Here, δξ is the equidis-

tant space step and is selected as follows in this work,

δξ =
Lξ
Nξ

, (18)

where Lξ and Nξ are the characteristic length scale and the grid number

in ξ− direction, respectively. The detailed calculating procedure, say for

F̃i+ 1
2
, includes the following steps. Here, since a one-dimensional stencil is

used, as shown in Fig. 1, the subscript j and k are omitted in this section

for simplicity. First, transform the fluxes and conservative variables at all

grid-points within the stencil into characteristic space and carry out a local

ξi−2 ξi−1 ξi ξi+1 ξi+2 ξi+3ξi+1/2

S5

S0

S1

S2

Figure 1: Full stencil and candidate stencils for constructing the positive charac-

teristic fluxes at the half point ξi+1/2. Here, the stencil S5 is used for the 5th-order

linear-upwind scheme and the stencils S0, S1, S2 for WENO scheme.

Lax-Friedrichs splitting:

f s,±m =
1

2
Ls
i+ 1

2
·
(
F̃m ± λsŨm

)
m = i− 2, i+ 3, (19)

where f s,±m denotes the s−th positive and negative characteristic fluxes, Ls
i+ 1

2

is the s−th left eigenvector vector of the linearized Roe-average Jacobian

10



matrix Ai+1/2 =
(
∂F̃ /∂Ũ

)
i+1/2

[20] and λs = max (|λsm|) denotes the largest

s−th eigenvalue of the Jacobian A across the stencil. Then, construct the

characteristic fluxes at the half-point as follows:

f s,+
i+ 1

2

=
1

60

(
2f s,+i−2 − 13f s,+i−1 + 47f s,+i + 27f s,+i+1 − 3f s,+i+2

)
,

f s,−
i+ 1

2

=
1

60

(
−3f s,−i−1 + 27f s,−i + 47f s,−i+1 − 13f s,−i+2 + 2f s,−i+3

)
.

(20)

Finally, transform the characteristic fluxes back into physical space by

F̃i+ 1
2

=
∑
s

Rs
i+ 1

2

(
f s,+
i+ 1

2

+ f s,−
i+ 1

2

)
, (21)

where Rs
i+ 1

2

is the s-th right eigenvector vector of Ai+1/2. Substituting

Eqs. (19) and (20) into Eq. (21), the numerical flux can be expressed as

F̃i+ 1
2

=
1

60

(
F̃i−2 − 8F̃i−1 + 37F̃i + 37F̃i+1 − 8F̃i+2 + F̃i+3

)
+

1

60

∑
s

Rs
i+ 1

2
λsLs

i+ 1
2
·
(
Ũi−2 − 5Ũi−1 + 10Ũi − 10Ũi+1 + 5Ũi+2 − Ũi+3

)
.

(22)

Note that, the numerical flux contains both the fluxes and the conservative

variables Ũ term. Due to the extra term of conservative variables Ũ , the

derivatives of operator δ1 in Eq. (15) is an inconsistent operator and making

operator δ2 equal to δ1 is difficult or impossible. Therefore, the symmetri-

cal conservative metric method is not valid for linear-upwind scheme and a

uniform flow is not preserved.

2.4. WENO scheme

In the typical 5th-order WENO scheme [14] with local Lax-Friedrichs

flux splitting as given in Eq. (19), the positive WENO characteristic flux
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can be expressed as

f s,+
i+ 1

2

=
2∑

k=0

ω+
k q

+
k , (23)

where

q+0 =
1

3
f s,+i−2 −

7

6
f s,+i−1 +

11

6
f s,+i ,

q+1 = −1

6
f s,+i−1 +

5

6
f s,+i +

1

3
f s,+i+1,

q+2 =
1

3
f s,+i +

5

6
f s,+i+1 −

1

6
f s,+i+2,

(24)

are 3rd-order approximations using the stencils as shown in Fig. 1. ω+
k in

Eq. (23) are the corresponding nonlinear weights determined by

ω+
k =

C+
k(

ε+ β+
k

)2
/

2∑
r=0

C+
r

(ε+ β+
r )2

, (25)

where

C+
0 =

1

10
, C+

1 =
3

5
, C+

2 =
3

10
,

β+
0 =

1

4

(
f s,+i−2 − 4f s,+i−1 + 3f s,+i

)2
+

13

12

(
f s,+i−2 − 2f s,+i−1 + f s,+i

)2
,

β+
1 =

1

4

(
−f s,+i−1 + f s,+i+1

)2
+

13

12

(
f s,+i−1 − 2f s,+i + f s,+i+1

)2
,

β+
2 =

1

4

(
−3f s,+i + 4f s,+i+1 − f

s,+
i+2

)2
+

13

12

(
f s,+i − 2f s,+i+1 + f s,+i+2

)2
,

(26)

are the optimal weights for a background linear-upwind scheme and smooth-

ness indicators of the corresponding stencil, respectively. ε = 10−6 is a small

positive parameter to prevent division by zero. Note that, the negative fluxes

f s,−
i+ 1

2

can be obtained in a similar way by flipping the stencils respect to ξi+1/2.

Then, the numerical fluxes at the half point in physical space are constructed

by

F̃i+ 1
2

=
∑
s

Rs
i+ 1

2

(
f s,+
i+ 1

2

+ f s,−
i+ 1

2

)
. (27)
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In Refs. [21, 15], the WENO fluxes are divided into a central part and a

dissipation part as follows:

F̃i+ 1
2

= F̃+
i+ 1

2

+ F̃−
i+ 1

2

=
∑
s

Rs
i+ 1

2
f s,+
i+ 1

2

+
∑
s

Rs
i+ 1

2
f s,−
i+ 1

2

=
1

60

(
F̃i−2 − 8F̃i−1 + 37F̃i + 37F̃i+1 − 8F̃i+2 + F̃i+3

)
− 1

60

∑
s

Rs
i+ 1

2

{(
20ω+

1 − 1
)
f̂ s,+i,1 −

(
10
(
ω+
1 + ω+

2

)
− 5
)
f̂ s,+i,2 + f̂ s,+i,3

}
+

1

60

∑
s

Rs
i+ 1

2

{(
20ω−1 − 1

)
f̂ s,−i,1 −

(
10
(
ω−1 + ω−2

)
− 5
)
f̂ s,−i,2 + f̂ s,−i,3

}
,

(28)

where

f̂ s,+i,r+1 = f s,+i+r+1 − 3f s,+r + 3f s,+i+r−1 − f
s,+
i+r−2, r = 0, 1, 2,

f̂ s,−i,r+1 = f s,−i−r+3 − 3f s,−i−r+2 + 3f s,−i−r+1 − f
s,−
i−r , r = 0, 1, 2.

(29)

Similar to the linear-upwind scheme, the operator δ1 in WENO scheme is also

an inconsistent operator because of the fluxes splitting. Since the nonlinear

weighted numerical flux depends on the smoothness of each stencil, it leads

to extra inconsistency between δ2 and δ1. Therefore, it is difficult to use

the symmetrical conservative metric method to achieve free-stream preserv-

ing property for WENO scheme. Another issue is that the approximation

of Jacobian and metrics also introduces disturbances into the smoothness

indicators of Eq. (26), so that the optimal background linear scheme is not

recovered for a uniform flow.

3. Free-stream preserving upwind schemes

From Eqs. (22) and (28), we can observe that, for the two terms in the

numerical flux, since the central flux term can be applied with the symmet-
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rical conservative metric method, free-stream preserving can be achieved by

canceling the dissipative term when the flow is uniform. In previous work,

this is done either by replacing the transformed conservative variables in the

difference operator of the dissipative term with the original ones and simply

neglecting the effect of grid Jacobian [16, 17], or freeing the metric terms at

the point i+ 1/2 to construct the upwind flux [15]. In this work, we split the

difference operator into several local differences involving only two succes-

sive grid points. Since there is a local grid Jacobian shared by each of these

differences, its effect to the overall difference operator is largely preserved.

3.1. Free-stream preserving linear-upwind scheme

The dissipation term F̃D
i+ 1

2

of the linear-upwind numerical flux in Eq. (22)

can be rewritten into a local difference form as follows:

F̃D
i+ 1

2
=

1

60

∑
s

Rs
i+ 1

2
λsLs

i+ 1
2
·
[(

Ũi−2 − Ũi−1

)
− 4

(
Ũi−1 − Ũi

)
+6
(
Ũi − Ũi+1

)
− 4

(
Ũi+1 − Ũi+2

)
+
(
Ũi+2 − Ũi+3

)]
.

(30)

Then, we can modify Eq. (30) into a free-stream preserving formulation

F̃D
i+ 1

2
=

1

60

∑
s

Rs
i+ 1

2
λsLs

i+ 1
2
·

[
(Ui−2 −Ui−1)

(
1

J

)
i− 3

2

− 4 (Ui−1 −Ui)

(
1

J

)
i− 1

2

+6 (Ui −Ui+1)

(
1

J

)
i+ 1

2

− 4 (Ui+1 −Ui+2)

(
1

J

)
i+ 3

2

+ (Ui+2 −Ui+3)

(
1

J

)
i+ 5

2

]
,

(31)

by introducing local averaged grid Jacobian
(
1
J

)
i− 3

2

,
(
1
J

)
i− 1

2

,
(
1
J

)
i+ 1

2

,
(
1
J

)
i+ 3

2

and
(
1
J

)
i+ 5

2

, which are evaluated by the 6th-order central scheme. Taking
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(
1
J

)
i+ 1

2

as an example,(
1

J

)
i+ 1

2

=
1

60

[(
1

J

)
i−2
− 8

(
1

J

)
i−1

+ 37

(
1

J

)
i

+ 37

(
1

J

)
i+1

− 8

(
1

J

)
i+2

+

(
1

J

)
i+3

]
.

(32)

In order to increase the numerical accuracy as far as possible, the symmetrical

conservative form of the metric terms and Jacobian in Eqs. (13) and (14) are

employed here. Note that, this technique can be applied to general explicit

linear-upwind schemes. Taking a linear-upwind scheme with 6 points stencil

as an example,

F̃i+ 1
2

=
3∑

k=1

ak

(
F̃i+k + F̃i−k+1

)
+
∑
s

Rs
i+ 1

2
λsLs

i+ 1
2
·

3∑
k=1

bk

(
Ũi+k − Ũi−k+1

)
,

(33)

where ak, bk are the linear coefficients and 2 (a1 + a2 + a3) = 1. The dissipa-

tive part can be rewritten as

F̃D
i+ 1

2
= −

∑
s

Rs
i+ 1

2
λsLs

i+ 1
2
·
[
b3

(
Ũi−2 − Ũi−1

)
+ (b2 + b3)

(
Ũi−1 − Ũi

)
+ (b1 + b2 + b3)

(
Ũi − Ũi+1

)
+ (b2 + b3)

(
Ũi+1 − Ũi+2

)
+ b3

(
Ũi+2 − Ũi+3

)]
,

(34)

which gives a local difference form. Then, the same treatment as Eq. (31)

can be applied.
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3.2. Free-stream preserving WENO scheme

Unlike the treatment of the dissipative term as in Ref. [15], we rewrite

Eq. (29), say f̂ s,+i,1 , into a local difference form

f̂ s,+i,1 = f s,+i+1 − 3f s,+i + 3f s,+i−1 − f
s,+
i−2,

=
1

2
Ls
i+ 1

2
·
[(

F̃i+1 − F̃i

)
− 2

(
F̃i − F̃i−1

)
+
(
F̃i−1 − F̃i−2

)]
+

1

2
λsLs

i+ 1
2
·
[(

Ũi+1 − Ũi

)
− 2

(
Ũi − Ũi−1

)
+
(
Ũi−1 − Ũi−2

)]
.

(35)

Then, Eq. (35) can be modified for free-stream preserving, similar to Eq. (31),

as

f̂p,+i,1 =
Ls
i+ 1

2

2
·

[
(Fi+1 − Fi)

(
ξx
J

)
i+ 1

2

− 2 (Fi − Fi−1)

(
ξx
J

)
i− 1

2

+ (Fi−1 − Fi−2)

(
ξx
J

)
i− 3

2

]

+
Ls
i+ 1

2

2
·

[
(Gi+1 −Gi)

(
ξy
J

)
i+ 1

2

− 2 (Gi −Gi−1)

(
ξy
J

)
i− 1

2

+ (Gi−1 −Gi−2)

(
ξy
J

)
i− 3

2

]

+
Ls
i+ 1

2

2
·

[
(Hi+1 −Hi)

(
ξz
J

)
i+ 1

2

− 2 (Hi −Hi−1)

(
ξz
J

)
i− 1

2

+ (Hi−1 −Hi−2)

(
ξz
J

)
i− 3

2

]

+
λs

2
Ls
i+ 1

2
·

[
(Ui+1 −Ui)

(
1

J

)
i+ 1

2

− 2 (Ui −Ui−1)

(
1

J

)
i− 1

2

+ (Ui−1 −Ui−2)

(
1

J

)
i− 3

2

]
,

(36)

where the half-point metrics and Jacobians, say
(
ξx
J

)
i+ 1

2

,
(
ξy
J

)
i+ 1

2

,
(
ξz
J

)
i+ 1

2

and
(
1
J

)
i+ 1

2

are all evaluated with a 6th-order central scheme as in Eq. (32).

Furthermore, in order to achieve free-stream preserving for the smooth

indicators as in Eq. (26), they are rewritten into a local difference formulation

too, say β+
0 as

β+
0 =

1

4

[(
f s,+i−2 − f

s,+
i−1
)
− 3

(
f s,+i−1 − f

s,+
i

)]2
+

13

12

[(
f s,+i−2 − f

s,+
i−1
)
−
(
f s,+i−1 − f

s,+
i

)]2
.

(37)

Then, the same treatment as Eq. (36) can be applied.
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3.3. Free-stream preserving hybrid WENO scheme

Based on the above free-stream preserving linear-upwind and WENO

schemes, it is easy to introduce hybridization following Hu et al. [19] to

achieve less numerical dissipation and higher computational efficiency. Here,

the non-dimensional discontinuity detector in the characteristic space is

σs =

(
∆vi+ 1

2
,s

ρ̃

)2

, (38)

where

∆vi+ 1
2
,s =

1

60
Ls
i+ 1

2
·

[
(Ui−2 −Ui−1)

(
1

J

)
i− 3

2

− 4 (Ui−1 −Ui)

(
1

J

)
i− 1

2

+6 (Ui −Ui+1)

(
1

J

)
i+ 1

2

− 4 (Ui+1 −Ui+2)

(
1

J

)
i+ 3

2

+ (Ui+2 −Ui+3)

(
1

J

)
i+ 5

2

]
,

(39)

and ρ̃ is the Roe-average density of Ai+ 1
2
. The threshold is given as

ε = C

(
∆ξ

Lξ

)α
, (40)

where C is a positive constant, α is a positive integer and the relation between

Lξ and ∆ξ is defined in Eq.(18). Hence, the numerical flux of the hybrid

scheme in characteristic space can be switched between that of the linear-

upwind F̃UPS
i+ 1

2

and WENO F̃WENO
i+ 1

2

schemes as

F̃i+ 1
2

= σi+ 1
2
F̃UPS
i+ 1

2
+
(

1− σi+ 1
2

)
F̃WENO
i+ 1

2
, (41)

where σi+ 1
2

which equals to zero when σs > ε otherwise one.
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4. Numerical tests

To demonstrate the effectiveness of the proposed method, several prob-

lems including free-stream, isentropic vortex convection, double Mach reflec-

tion and flow pass a cylinder are computed on various non-uniform grids.

The local Lax-Friedrichs flux splitting is used for the free-stream and vortex

problems and the global Lax-Friedrichs flux splitting for the double Mach

reflection and flow past cylinder problems. The third order TVD Runge-

Kutta scheme is utilized for time integration. For hybrid WENO scheme,

the parameters are chosen as C = 100 and α = 3. In the following, while

”UPW5” denotes the standard 5th-order linear upwind scheme and ”WENO”

for the classic 5th-order WENO scheme, ”UPW5-UFP”, ”WENO-UFP” and

”WENO-HUFP” denote the linear upwind scheme, the WENO scheme and

the hybrid WENO scheme proposed in this paper, respectively, and ”Exact”

denotes the exact solution.

4.1. Free-stream

The free-stream is tested on a three dimensional wavy grid and a random

grid, i.e. a randomly disturbed Cartesian grid, respectively. The initial

condition of an ideal gas is given as

u = u∞, v = 0, w = 0, ρ = ρ∞, p = p∞. (42)

In this test, we set u∞ = 0.5, ρ∞ = 1 and p∞ = 1/γ, where γ is the specific

heat ratio. The Mach number is 0.5, the same as in Ref. [15]. The states at

boundaries are set to the same as those of the initial condition. The time-step

size is set to 0.1 and the results are examined after 100 time steps.
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(a) Wavy grid (b) Random grid

Figure 2: The three-dimensional wavy and random grids for the free-stream

problem.

First, we test the free-stream preservation property on the wavy grid, as

shown in Fig. 2(a), defined in the domain [−2, 2]× [−2, 2]× [−2, 2] by

xi,j,k = xmin + ∆x0

[
(i− 1) + Axsin

nxyπ (j − 1) ∆y0
Ly

sin
nxzπ (k − 1) ∆z0

Lz

]
,

yi,j,k = ymin + ∆y0

[
(j − 1) + Aysin

nyzπ (k − 1) ∆z0
Lz

sin
nyxπ (i− 1) ∆x0

Lx

]
,

zi,j,k = zmin + ∆z0

[
(k − 1) + Azsin

nzxπ (i− 1) ∆x0
Lx

sin
nzyπ (j − 1) ∆y0

Ly

]
,

(43)

where Lx = Ly = Lz = 4, Ax = Ay = Az = 1, nxy = nxz = nyz = nyx =

nzx = nzy = 4, and xmin = −Lx/2, ymin = −Ly/2, zmin = −Lz/2. The grid

resolution is set to 21×21. The L2 errors of the velocity components v and w

of the flow field are shown in Table 1. One can find that the errors of UPW5-

UFP, WENO-UFP and WENO-HUFP are all less than 10−15, which is close
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Table 1: L2 errors of v and w components in the free-stream problem on the wavy grid

Method v−component w−component

UPW5 1.56× 10−3 2.48× 10−3

WENO 9.25× 10−3 1.03× 10−2

UPW5-UFP 6.91× 10−16 5.70× 10−16

WENO-UFP 6.99× 10−16 6.86× 10−16

WENO-HUFP 6.91× 10−16 5.70× 10−16

to machine zero. However, the results obtained by UPW5 and WENO scheme

exhibit much large errors. This test demonstrates that the present method

is effectively free-stream preserving. Note that, the errors of WENO-HUFP

are the same with that of UPW5-UFP, implying that only the linear-upwind

scheme of the hybrid WENO method is switched on throughout the entire

computation.

Similar to the wavy grid, as shown in Fig. 2(b), the random grid has the

same domain and grid resolution, but generated by

xi,j,k = xmin + ∆x0 [(i− 1) + Ax (2ϕx − 1)] ,

yi,j,k = ymin + ∆y0 [(j − 1) + Ay (2ϕy − 1)] ,

zi,j,k = zmin + ∆z0 [(k − 1) + Az (2ϕz − 1)] ,

(44)

where Ax = Ay = Az = 0.2 are magnitudes of the random disturbances

and ϕx, ϕy ,ϕz are random numbers uniformly distributed between 0 and 1.

The L2 errors of velocity components v and w of the flow field are shown in

Table 2. These results also prove that the present method eliminates geomet-

rically induced errors to a large extend and preserves free-stream effectively.
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Table 2: L2 errors of v and w components in the free-stream problem on the random

grid

Method v−component w−component

UPW5 4.91× 10−2 2.94× 10−2

WENO 1.25× 10−1 7.81× 10−2

UPW5-UFP 6.91× 10−16 5.31× 10−16

WENO-UFP 6.86× 10−16 6.70× 10−16

WENO-HUFP 6.91× 10−16 5.31× 10−16

4.2. Isentropic vortex

This two-dimensional case, taken from Ref. [15], is also computed on wavy

and random grids to test the vortex preservation property. An isentropic

vortex centered at (xc, yc) = (0, 0) is superposed to a uniform flow with

Mach 0.5 as the initial condition. The perturbations of the isentropic vortex

are given by

(δu, δv) = ετeα(1−τ
2) (sinθ,−cosθ) ,

δT = −(γ − 1) ε2

4αγ
eα(1−τ

2),

δS = 0,

(45)

where α = 0.204, ε = 0.02, τ = r/rc and r =
[
(x− xc)2 + (y − yc)2

]1/2
. Here,

rc = 1.0 is the vortex core length, T = p/ρ is the temperature and S = p/ργ

is the entropy. The periodic boundary condition is adopted and the flow field

is examined when the vortex moving back to the original location.

The first test is on a wavy grid defined in the domain (x, y) ∈ [−10, 10]×
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[−10, 10] by

xi,j = xmin + ∆x0

[
(i− 1) + Axsin

nxyπ (j − 1) ∆y0
Ly

]
,

yi,j = ymin + ∆y0

[
(j − 1) + Aysin

nyxπ (i− 1) ∆x0
Lx

]
,

(46)

where Lx = Ly = 20, xmin = −Lx/2, ymin = −Ly/2, Ax × ∆x0 = 0.6,

Ay×∆y0 = 0.6 and nxy = nyx = 4. In order to evaluate the grid convergence,

three grids with the resolutions of 21×21, 41×41, 81×81 are used. The time-

step sizes ∆t respect to those grids are select carefully as 0.25, 0.0625 and

0.0015625, respectively, to eliminate the errors induced by time integration.

The flow field computed on the 21×21 grid are shown in Fig. 3. It can be

observed that UPW and WENO are not able to resolve the moving vortex.

The errors generated from the wavy grid pollute the entire flow field. How-

ever, the vortex is resolved well by both UPW5-UFP and WENO-UFP. In

addition, the flow field obtained by UPW5-UFP is closer to the exact solu-

tion than that of WENO-UFP. Again, the essentially same results obtained

by UPW5 and WENO-HUFP imply that, since there is no discontinuity in

the solution, only the linear-upwind scheme of the hybrid WENO method

is switched on throughout the entire computation. The L2 errors of the

v component on wavy grids at three resolutions are shown in Table 3 and

Fig. 4. In Fig. 4, WENO-FP denotes the results obtained with the method

of Nonomura et al. [15]. These results suggest that the present method

works well and the errors produced by the UPW5-UFP, WENO-UFP and

WENO-HUFP all are lower than WENO-FP, and have higher convergence

rate.

Then, the vortex is tested on a random grid at the resolution of 21× 21
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(a) Exact (b) UPW5 (c) WENO

(d) UPW5-UFP (e) WENO-UFP (f) WENO-HUFP

Figure 3: 21 equally spaced vorticity contours from 0.0 to 0.006 of moving vortex

on a two dimensional wavy grid.
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Table 3: L2 errors of v component in the vortex problem on different wavy grids

Method Grid number Error Order of accuracy

UPW5 21× 21 1.20× 10−2 −

41× 41 7.23× 10−4 4.05

81× 81 2.99× 10−5 4.60

WENO 21× 21 3.85× 10−2 −

41× 41 2.86× 10−3 3.75

81× 81 1.39× 10−4 4.36

UPW5-UFP 21× 21 2.01× 10−3 −

41× 41 3.93× 10−4 2.36

81× 81 1.81× 10−5 4.44

WENO-UFP 21× 21 2.70× 10−3 −

41× 41 7.24× 10−4 1.90

81× 81 2.19× 10−5 5.05

WENO-HUFP 21× 21 2.01× 10−3 −

41× 41 3.93× 10−4 2.36

81× 81 1.81× 10−5 4.44

x

E
rr
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10-3

10-2

10-1

UPW5
WENO
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WENO-UFP
WENO-HUFP
WENO-FP

Figure 4: Errors of vortex on grids with different density.
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(a) Exact (b) UPW5 (c) WENO

(d) UPW5-UFP (e) WENO-UFP (f) WENO-HUFP

Figure 5: 21 equally spaced vorticity contours from 0.0 to 0.006 of moving vortex

on a two dimensional random grid.

and with time-step size of ∆t = 0.25. The grid points are randomized in a

random direction with 20% of the original Cartesian grid size. The vorticity

contours and L2 errors of the v component are shown in Fig. 5 and Table 4,

respectively. From these results, it can be observed that the flows computed

by UPW5 and WENO produce much larger errors and the present schemes

preserve the vortex well. it is clear shown that the results obtained by the

UPW5-UFP and WENO-HUFP are better than that of WENO-UFP due to

less numerical dissipation.
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Table 4: L2 errors of v component in the vortex problem on a randomized grid

Method Grid number Error

UPW5 21× 21 3.16× 10−2

WENO 21× 21 4.72× 10−2

UPW5-UFP 21× 21 1.34× 10−3

WENO-UFP 21× 21 2.25× 10−3

WENO-HUFP 21× 21 1.34× 10−3

4.3. Double Mach reflection

The double Mach reflection problem [22] containing strong shock waves

is chosen to examine the shock-capturing property of the present method. In

the computational domain (x, y) ∈ [0, 4]× [0, 1], the initial conditions are

(ρ, u, v, p)T =

 (1.4, 0.0, 0.0, 1.0)T x− y tan π
6
≥ 1

6

(8.0, 7.1447,−4.125, 116.5)T else
. (47)

The computation is conducted up to t = 0.2 with the CFL number of 0.6.

Two random grids with 5% randomization at two resolutions of 240×60 and

960×240 are used. In order to preserve high accuracy near the boundary, as

shown in Fig. 6(a), several points near the edges are left unperturbed. Note

that 5% randomization is sufficiently sever and the errors of inappropriate

implementation is significant. In Ref. [15], only 2% randomization is applied

to their test.

Since UPW5 is not able to resolve shock wave, their results are not shown

here. From the density contours of the flow filed obtained on the 240×60 grid,

as shown in Fig. 6, it can be observed that WENO produces large errors in the

region with grid perturbations. WENO-UFP and WENO-HUFP eliminate

these errors and capture the shocks well and maintain the shock-capturing

ability of the original WENO scheme on Cartesian grid. The density contours
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Table 5: Computational time for double Mach reflection problem on 960× 240 grid.

WENO WENO-Like WENO-UFP WENO-HUFP

CPU time (s) 1923 2951 2248 1834

computed on the 960× 240 grid and their enlarged part are shown in Fig. 7

and Fig. 8, respectively. Here, WENO-Like denotes the method of Zhu et

al. [18]. Note that, WENO-HUFP is able to resolve more wave structures, as

shown in Fig. 8, than that of WENO-Like and WENO-UFP, which implies

that WENO-HUFP is less dissipative. Also note that, while WENO-Like

resolves less wave structre than WENO-HUFP, it produces considerable more

fluctutions in the reflection wave region. The computation time for different

schemes are summrized in Table 5, it can be found that WENO-HUFP has

the most computational efficiency and it costs less than two third of WENO-

Like.

4.4. Supersonic flow past a cylinder

A supersonic flow past a cylinder [14] is simulated on a grid randomized

from a body-fitted grid. The Mach 2 supersonic flow with moves toward

the cylinder from left. The reflective boundary condition is applied on the

cylinder surface, the supersonic inflow condition at the left boundary and

the supersonic outflow condition at the other boundaries. The gird with

resolution of 81× 61 is generated by the curvilinear coordinates

x = (Rx − (Rx − 1) η′) cos (θ (2ξ′ − 1))

y = (Ry − (Ry − 1) η′) sin (θ (2ξ′ − 1)) ,
(48)
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(a) Grid

(b) WENO

(c) WENO-UFP

(d) WENO-HUFP

Figure 6: 41 equally spaced density contours from 1.92 to 22.59 of double Mach

reflection problem on the 240× 60 grid.
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(a) WENO

(b) WENO-Like

(c) WENO-UFP

(d) WENO-HUFP

Figure 7: 41 equally spaced density contours from 1.92 to 22.59 of double Mach

reflection problem on the 960× 240 grid.
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(a) WENO (b) WENO-Like

(c) WENO-UFP (d) WENO-HUFP

Figure 8: The enlarge part of double Mach reflection problem on 960× 240 grid.
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Table 6: Computational time for supersonic flow past a cylinder.

WENO WENO-FP WENO-UFP WENO-HUFP

CPU time (s) 78 109 104 62

where

ξ′ =
ξ − 1

imax − 1
, ξ = i+ 0.2 · ϕi

η′ =
η − 1

jmax − 1
, η = j + 0.2 ·

√
1− ϕ2

i .
(49)

Here θ = 5π/12, Rx = 3 ,Ry = 6 and ϕi is a random number uniformly

distributed between [0, 1]. The inflow pressure and density are ρ∞ = 1.0

and p∞ = 1/γ, respectively. Similar to Ref. [22], the time-step size is chosen

as ∆t = 0.005 and the results are examined after 5000 steps. The pressure

contours and computational costs are given in Fig. 9 and Table. 6, respec-

tively. It is found that both WENO-FP and the present method eliminates

the geometrically induced errors and maintain the shock capturing ability.

Note that, WENO-HUFP is the least dissipative and the most computational

efficient of all schemes.

5. Conclusions

In this paper, we propose a free-stream preserving method for linear-

upwind and WENO schemes on curvilinear grids. Following a Lax-Friedrichs

flux splitting, the numerical fluxes of the upwind schemes are rewritten into

a central term and a numerical dissipation term with the form of local dif-

ference using neighboring grid-point pairs. For the central term, the sym-

metric conservative metric method is applied straightforwardly to eliminate

the geometrically induced error. For the numerical dissipation term, each
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neighboring grid-point pairs are modified to share a common Jacobian and

metrics value which are evaluated by high order schemes. Then, a simple

free-stream preserving hybrid method switching between linear-upwind and

WENO schemes is proposed to further improve computational efficiency and

reduce numerical dissipation. A number of numerical examples demonstrate

that the proposed method not only achieves good free-stream and vortex pre-

serving properties but also maintains the shock-capturing ability of original

WENO scheme. In addition, the hybrid method achieves higher resolution

solution than those of WENO-UFP and WENO-Like schemes with consid-

erable lower computing costs.
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