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Abstract

Surrogate-modelling techniques including Polynomial Chaos Expansion (PCE) is
commonly used for statistical estimation (aka. Uncertainty Quantification) of quanti-
ties of interests obtained from expensive computational models. PCE is a data-driven
regression-based technique that relies on spectral polynomials as basis-functions. In
this technique, the outputs of few numerical simulations are used to estimate the PCE
coefficients within a regression framework combined with regularization techniques
where the regularization parameters are estimated using standard cross-validation as
applied in supervised machine learning methods.

In the present work, we introduce an efficient method for estimating the PCE
coefficients combining Elastic Net regularization with a data-driven feature ranking
approach. Our goal is to increase the probability of identifying the most significant
PCE components by assigning each of the PCE coefficients a numerical value reflecting
the magnitude of the coefficient and its stability with respect to perturbations in the
input data. In our evaluations, the proposed approach has shown high convergence rate
for high-dimensional problems, where standard feature ranking might be challenging
due to the curse of dimensionality.

The presented method is implemented within a standard machine learning library
(scikit-learn [1]) allowing for easy experimentation with various solvers and regulariza-
tion techniques (e.g. Tikhonov, LASSO, LARS, Elastic Net) and enabling automatic
cross-validation techniques using a widely used and well tested implementation. We
present a set of numerical tests on standard analytical functions, a two-phase subsur-
face flow model and a simulation dataset for CO2 sequestration in a saline aquifer.
For all test cases, the proposed approach resulted in a significant increase in PCE
convergence rates.

1 Introduction

Uncertainty Quantification (UQ) and Uncertainty Propagation (UP) in the subsurface
flow related problems have been the subject of intensive research activities over the last
decades [2, 3, 4, 5, 6]. For instance, UQ of oil production forecasts from a given reservoir
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has far-reaching economical consequences [7]. Also, the accurate risk assessment of CO2
trapping in an underground reservoir [8] is of high importance from ecological and social
perspectives [9].

The main challenge for UQ in subsurface flow related tasks is the complexity of the
modeled physical systems [10] and the lack of information about the rock properties that
determine underground flow [11]. Therefore, UQ for a Quantity of Interest (QoI) is usually
performed numerically through multiple evaluations of expensive reservoir simulations [12].
This corresponds to significant computational resources especially when dealing with a
high number of uncertain parameters [13] and for the cases where model high resolution
is requirement [14]. Several lines of research have been pursued to address this challenge.
For instance, models of multiple continuum media [15, 16, 17], dual mesh approaches [18,
19, 20], upscaling [21, 22, 23, 24] and model reduction [25, 26, 27, 28] techniques have
been developed to decrease the run-time of a single simulation. Also, various surrogate
modeling techniques [29, 30, 31] emerged in order to reduce the cost of evaluating a large
number of expensive numerical simulations.

In the current manuscript, we focus on surrogate modeling approaches using PCE-
based response surfaces. There are several advantages of using PCE as a proxy model.
First of all, surrogate models based on sparse PCE do not require significant computational
resources to compute a value at any given point within the interpolation domain as it is
simply a direct polynomial function evaluation. Secondly, important statistical properties
such as moments and sensitivities can be computed directly from the PCE coefficients
without the need for a Monte-Carlo simulations [32]. This is attributed to a special design
properties of PCE that links the probability distribution of random variables with the
orthogonality of polynomial basis functions [32].

Generally, two techniques could be utilized to estimate the PCE coefficients:
collocation-based and regression-based methods. For collocation approaches, the QoI val-
ues are evaluated at pre-specified set of points called collocation nodes [33]. These specific
points are designed in such a way that the PCE coefficients can be expressed as linear
combination of the QoI values, allowing for direct computation of the PCE coefficients.
The optimal choice of the collocation points especially for high-dimensional problems is
a subject of extensive research activities [34, 35, 36]. In regression-based approaches, the
PCE coefficients correspond to the solution of an error-minimization problem [37]. It is
simple to show that the mean-square error minimization can be reduced to a linear re-
gression problem to estimate the PCE expansion coefficients. Designing fast and accurate
solution techniques to this minimization problem including various preconditioning meth-
ods is also a subject of intensive research activities [38, 39, 40]. Hampton and Doostan
[41] developed a hybrid collocation and regression technique, where the training points for
the surrogate model are generated with collocation techniques while the PCE coefficients
are estimated by solving an error-minimization problem. One of the advantages of this
approach is the better conditioning of the regression problem when compared to training
using random samples [41].

In generic cases, sparse collocation techniques and hybrid approaches provide accurate
response surfaces using reasonable computational resources [42, 43, 44]. However, these
methods rely on evaluating the QoI at specific set of points. This strategy can be success-
fully adopted for UQ of oil production and CO2 storage capacity [45, 46, 47]. However,
computation of QoI values in the case of subsurface flow problems can be challenging if
the collocation points correspond to extreme values of parameters that significantly af-
fect convergence properties of the numerical scheme. Therefore, such collocation nodes
can either increase computational costs of the response surface construction or reduce the
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overall accuracy of the surrogate model if significant numerical error is introduced to the
QoI values at collocation nodes. Additionally, for many practical problems sampling of
data points can not be controlled. For instance, samples could be generated randomly
(e.g. Latin hypercube sampling), or in accordance with a prescribed probability distribu-
tion [48], or based on another meta-modeling technique used in combination with PCE
for model stacking [49]. Under these conditions, collocation techniques cannot be directly
applied. For this reason, regression based PCE (utilized in this manuscript) have wider
applicability for any set of training samples where optimal response surfaces could be built.

In regression methods, PCE coefficients are computed through the minimization of
mean-square error over the training data. Therefore, for low-dimensional problems, a
direct approach could be adopted. In generic setting, the number of PCE coefficients for
a problem with n variables can be expressed as follows:

D = D(n, d) =

(
n+ d

n

)
(1)

where D is the number of PCE coefficients and d is the degree of polynomials used. It
is simple to observe the fast growth of D with both d and n. This exponential growth
of PCE coefficients imposes significant constraints on building PCE-based response sur-
faces. First of all, solving the error-minimization regression problem in high dimensions
is a challenging task, because of the high number of numerical operations needed till con-
vergence. Secondly, the number of QoI values (i.e. training samples) needed for accurate
estimation of the PCE coefficients increases with D, which corresponds to additional runs
of an expensive numerical simulator. In other words, the curse of dimensionality makes it
impractical to solve for PCE coefficients directly. However, for a large class of problems
it was observed that PCE coefficients are sparse [50, 51]. Therefore, various techniques
for sparse regression can be adopted. For example, `1 regularization techniques [52] can
be considered as a first step towards enforcing sparsity on the PCE regression coefficients.
This approach is widely adopted and will be referred to as standard PCE [53] in the rest
of this manuscript. Further dimension reduction could be achieved through fitting both
the data and the QoI derivatives at the training points [54]. The additional information
from the gradients increases the quality of PCE response surface [55]. Unfortunately, for
many problems it is not possible to obtain the gradient information at the training points.
Another line of research focuses on reducing the problem dimension by using advanced
methods for solving nonlinear regression problems. For instance, sparse PCE coefficients
can be computed efficiently through the application of support vector regression [56] or
preconditioned conjugate gradient [57] techniques. Another direction of development relies
on coupling the iterative solvers with algorithms for ranking the importance of the basis
polynomials (e.g. orthogonal matching pursuit [37]) or ranking based on the impact on
the residual [58]. Further reduction of dimension could also be achieved by adaptive trun-
cation of the spectrum of the expansion. For instance, it has been observed empirically
for a broad class of problems, that higher order interactions between the polynomial basis
from different dimension have less impact on the quality of the response surface when
compared to the one dimensional low order polynomials. This empirical observation is
the foundation for hyperbolic truncation techniques [59]. Moreover, the performance of
all regression-based approaches could be improved by transformation of the input vari-
ables (e.g. scaling, normalization). For example, variable rotations [60] or generic linear
transformations [61] could significantly reduce the complexity of the error minimization
problem corresponding to finding the PCE coefficients.

In the current paper, we focus on further improvement of dimension reduction tech-
niques for regression based PCE. We present a novel iterative approach for solving the
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error minimization problem. We introduce a new data-driven ranking procedure for se-
quential identification of the most significant PCE basis functions with the closest relation
to the interpolated QoI values. The ranking procedure is based on the correlation between
the basis functions and the QoI values penalized by factors that measure the sensitivity
of the corresponding coefficient to the noise in the input data. The aim of the introduc-
tion of correction/penalty factors is to avoid overestimation of the significance of a given
polynomial basis function due to occasional location of data-points. The introduced rank-
ing approach enables us to determine the most significant PCE terms and subsequently
solving a reduced regression problem at each iteration. The new method could be easily
combined with various regularization techniques.

The proposed approach has been integrated in scikit-learn [1], a widely used machine
learning library. This integration enables uniform testing of a huge variety of techniques
such as Lasso, Lars and Elastic Net [62] in order to formulate and solve the regularized
regression problem. We implement PCE as an input feature transformation using machine
learning terminology. Therefore, PCE can be naturally included in any machine-learning
pipeline allowing one to combine different methods for variable transformation with ad-
vanced cross-validation techniques. Moreover, this implementation allows for an easy
comparisons to alternative machine-learning techniques (e.g. Random Forests, Support
Vector Machines). In the numerical evaluation section, we compare the proposed approach
to classical methods for sparse PCE namely, the Orthogonal Matching Pursuit (OMP) and
Least Angular Regression (LARS). We consider four data-sets for evaluation. The first
two data-sets are generated using analytical functions and the last two data-sets are based
on subsurface simulations of fluid flow in porous media. In all the test cases, extensive
comparisons are performed in terms of Mean-Square Error (MSE) using a hold-out (aka.
validation) set of points following the best practices in the machine learning literature.

The rest of this manuscript is organized as follows: In the following section, a general
introduction to PC is presented followed by the proposed ranking procedure. In section 3
we present a set of numerical examples. Finally, the conclusion of our work is presented
in section 4.

2 Methodology

Polynomial chaos expansion PCE is a meta-modeling technique that relies on orthogonal
polynomials. One of the main advantages of PCE when compared to alternative surrogate
modeling techniques is the ability to estimate the QoI sensitivity to given combination of
variables through simple analytical formulae. This is only possible due to the close relation
between the orthogonality of basis polynomials and the probability distribution of the
input variables. This relation is explained in subsection 2.1, along with an overview of basic
ideas of PCE. The proposed reordering of PCE basis is then introduced in subsection 2.2.

2.1 Basics of Polynomial Chaos

The essence of PCE is the relation between the statistics of input data and orthogonality of
the utilized basis polynomials. The relation concerned gives a powerful tool for calculating
the PCE coefficients and for further statistical analysis of the data. We first explain this
relation for the single-variate case and then extend this formulation to multi-variate cases.
Additionally, examples of applying this concept to study the statistical properties of PCE
are presented.
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For single-variate function f(x), a PCE is defined as series of orthogonal polynomials:

f(x) =
∑
α

cαpα(x) (2)

where pα(x) is an orthogonal single-variate polynomial with the index α and cα is the
corresponding PCE coefficient. The specific type of utilized orthogonal polynomials is not
of a principal importance in the definition introduced in Eq. (2). Therefore, PCE can be
naturally formulated for all well-known families of orthogonal polynomials. For example
Hermite, Legendre and Chebyshev polynomials [63].

The analysis of the PCE relies on the orthogonality of the basis polynomials, which is
introduced through the notion of an inner product defined as following:

〈g1, g2〉 =

∫ +∞

−∞
K(x)g1(x)g2(x)dx (3)

where g1(x) and g2(x) are certain square-integrable functions and K(x) is a non-negative
function referred to as the kernel function or simply the kernel. Classical families of
orthogonal polynomials are related to a specific form of the kernel function. For instance,
Hermite polynomials correspond to a kernel function identical to Gaussian distribution
function with zero mean and unit variance [64]:

K(x) =
1√
2π
e−x

2/2 (4)

For a generic case, the PCE basis functions are constructed by applying Gram-Schmidt
orthogonalization to the set of monomial functions (e.g. 1, x, x2, . . . ) [65]. Therefore,
PCE techniques could be naturally extended to any arbitrary kernel functions K(x).

A central idea of PCE is the statistical interpretation of K(x) as probability density
function for a given random variable [66]. This interpretation allows one to reformulate
the inner product defined in Eq. (3) in terms of expectations:

〈g1, g2〉 =

∫ +∞

−∞
K(x)g1(x)g2(x)dx = E[g1, g2] (5)

In the setting, the orthogonality of polynomials pα(x) with respect to the inner product
can be reformulated as:

〈pα, pβ〉 = E[pα, pβ] = ‖pα‖2δαβ (6)

where δαβ is a Kronecker symbol. In the present work, we consider orthonormal polynomi-
als with ‖pα‖2 = 1 in order to simplify the numerical analysis of PCE. Therefore, Eq.(7)
can be transformed as follows:

〈pα, pβ〉 = E[pα, pβ] = δαβ (7)

Moreover, the basis polynomials orthogonality can be used to estimate the PCE coeffi-
cients:

cα = 〈f, pα〉 = E[f, pα] (8)

For multi-variate functions, similar analysis could be performed through the introduc-
tion of the tensor-product concept where the set of multivariate basis functions is formed
as products of single-variate polynomials:

pA(x) = p(1)
α1

(x1)p(2)
α2

(x2) . . . p(n)
αn

(xn) (9)
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where αk is the degree of single-variate polynomial, p
(k)
αk (xk) is a uni-variate polynomial

that depends only on the k-th coordinate of the vector x. The degree of polynomial pA(x)
is defined as:

deg(pA(x)) =
∑
k

deg(p(k)
αk

(xk)) =
∑
k

αk (10)

Similar to Eq. (2), the PCE of multivariate function f(x) is defined as:

f(x) = f(x1, . . . , xn) =
∑
A

cApA(x) (11)

where cA is the PCE coefficient corresponding to polynomial basis function with multi-
index A. The inner product in multi-dimensional case is defined as:

〈g1, g2〉 =

∫
K(x)g1(x)g2(x)dx (12)

where K(x) is a multi-variate kernel function and g1(x), g2(x) are certain square-integrable
functions. It is important to note that the polynomial basis functions obtained by tensor
multiplications inherit the orthogonality and orthonormality from single-variate PCE if the
multi-variate kernel function K(x) equals the product of single-variate kernel functions:

K(x) = K1(x1) · · · Kn(xn) (13)

where K1(x1), · · · ,Kn(xn) are single-variate kernel functions. From a probabilistic point
of view, this is equivalent to the mutual independence of the coordinates of the vector x.

The inner product defined in Eq. (12) can be utilized to derive an expression for the
PCE coefficients similar to Eq. (8):

cA = 〈f, pA〉 = E[pA, f ] (14)

The relation between the input data statistics and the polynomial basis orthogonality can
be used to derive analytical expressions for the mean, variance and Sobol’ indices of the
function f(x). For example, the mean can be estimated by:

E[f ] = 〈1, f〉 =
∑
A

cA〈1, pA〉 = c0,...,0 = c0 (15)

Where c0,...,0 is the constant polynomial coefficient. In the present work, we simplify the
notations and use c0 instead of c0,...,0. The mean-square deviation can be calculated in the
similar fashion:

σ2 = E[(f − c0), (f − c0)] =
∑

A1,A2 6=0

cA1cA2δA1A2 =
∑
A>0

c2
A (16)

Calculation of other quantities for sensitivity analysis and UQ such as partial variances
and Sobol’ indices could be performed naturally with PCE. A partial standard deviation
represents the sensitivity to a given combination of variables. It is defined as the standard
deviation of the function f(x) averaged with respect to certain collection of variables [36]:

σ2
r1,...,rk

(f) = σ2(Et1,...,tn−k
[f ]) (17)

where σr1,...,rk is the standard deviations with respect to the components of the vector
x with indices r1, · · · , rk and Et1,...,tn−k

[f ] is the average with respect to components of
the vector x with indices t1, · · · , tn−k that form a complement to r1, · · · , rk [32], n is
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the dimension of x and k is a certain integer number from 1 to n. Sobol’ indices are
commonly used as a measure for sensitivity and are defined as the normalized partial
standard deviations:

Sr1,...,rk(f) =
σ2
r1,...,rk

(f)

σ2(f)
(18)

For the response function f with a PCE representation, the partial standard deviations
can be calculated in a similar fashion as the normal standard deviation defined in Eq. (16)
following [36]:

σ2
r1,...,rk

(f) =
∑

αrl
>0,αtj =0

c2
A (19)

The relation between orthogonality of polynomial basis functions and the probability
distribution of input data has an important consequence on the numerical calculation of the
PCE coefficients. In practice, for regression based response surfaces, the PCE coefficients
for a given function f(x) can be computed for given input data through the minimization
of the mean-square error (MSE) functional:

F(c) =
∑
i

(yi −
∑

A cApA(xi))
2

N
(20)

where xi is the ith vector of input variables, N is the number of data points and yi is
the value of the function f at the point xi. In the present work the spectrum of PCE
is truncated to a certain polynomial degree d. Therefore, the dimension of c is given by
Eq. (1).

It is simple to see that minimizing the functional defined in Eq. (20) is equivalent to
solving a system of linear equations:

MABcB = VA (21)

where the square matrix M and vector V are defined as:

MAB =
∑
i

pA(xi)pB(xi)

N
, VA =

∑
i

yipA(xi)

N
(22)

The relation between the basis orthogonality and the statistical distribution of the input
data imposes several constraints on the value of the matrix M and the vector V. If the
data is sampled in agreement with the probability distribution determined by the kernel
function defined in Eq. (13), then the matrix M should converge to a unit matrix:

MAB =
∑
i

pA(xi)pB(xi)

N
= E[pApB] +O

(
1√
N

)
= δAB +O

(
1√
N

)
(23)

where the term O
(

1√
N

)
represents the convergence in accordance with the law of large

numbers [67]. Similar reasoning could be applied to the vector V showing the close
correlation between the data and the basis functions:

VA =
∑
i

pA(xi)yi
N

= E[y(x)pA(x)] +O
(

1√
N

)
= cA +O

(
1√
N

)
(24)

Eq. (23) and Eq. (24), simply means that the coefficients c minimizing the MSE functional
defined in Eq. (20) is close to the correlation vector V if a sufficient number N of training
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data points is available. Moreover, the difference between V and c can be estimated as
follows:

|VA − cA| ≤
kA√
N

(25)

Where kA is a positive number. In other words, V provides a reasonable approximation for
c if a sufficient number of data-points is available. We utilize this observation to introduce
a novel ranking-based approach to approximate the PCE coefficients as described in the
next subsection.

2.2 Ranking based sparse PCE

In the present work, we estimate the PCE coefficients by minimizing the mean-square
error functional defined in Eq. (20). It is well-known that a straight-forward minimization
of mean square errors could provide an unstable solution or a response surface that is
not quite accurate at points that are not included in the training data-set. Therefore, we
utilize a mixed `1 and `2 regularization technique known as Elastic Net model [68] (i.e.,
combined Tikhonov and Lasso regularization). This results in a regularized functional for
error minimization of the following form:

c = arg min
c
L(c) = arg min

c

(
F(c) + λ1

∑
A

|cA|+ λ2

∑
A

c2
A

)
(26)

where L(c) is a functional for minimization and λ1, λ2 are hyperparameters that could be
tuned in order to maximize the quality of the surrogate model. In the present work, λ1

and λ2 are determined through cross-validation.
We utilize a coordinate descent algorithm [62] in order to find the solution for the

minimization problem defined in Eq. (26). This is an iterative algorithm that sequentially
updates the solution vector c by minimizing the functional L(c) with respect to one of the
coordinates at each step as summarized in Algorithm 1.

Algorithm 1 Coordinate descent

c = 0 . Set vector of parameters to zero
while ∆L > ε do . Iterate while change in L(c) is significant

Select a value k from 1 to dim(c) . Select one of the coordinates
ck = arg min

ck

L(c) . Minimize with respect to single parameter

Update ∆L
return c

One of the essential parts in Algorithm 1 is the selection of the next component for
update. Classical approaches include: random selection or selection based on the cyclic
order on the set of components [62]. In the present work, we introduce a novel scheme for
reordering the polynomial basis functions that increases the algorithm convergence rate
and increases the response surface quality when utilizing small number of training samples.
The aim of the reordering procedure is to identify the polynomial basis functions with the
highest PCE coefficients in order to determine its values first. It should be noted that the
assumption about the agreement between sampling of training data and orthogonality of
basis polynomial functions Eq. (5) is of principal importance for the proposed reordering
procedure. For the cases where this assumption is violated, data transformation techniques
should be applied before using the proposed reordering approach. For instance, the desired
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distribution of input variables can be achieved through quantile transformation [69] or
Rosenblatt transformation [70].

The reordering technique utilizes a ranking of PCE coefficients inspired by Eq. (24),
which states that the vector of moments is close to the actual PCE coefficients given
a sufficient number of training points. However, for certain polynomial basis functions
the difference between cA and VA can be significant leading to an overestimation of the
importance of those components due to the lack of the available data, which can be
considered as a noise. In order to address this issue, we introduce a ranking of polynomial
basis functions in a form of the signal-to-noise ratio which is a correlation coefficient
divided by a correction factor that quantifies the sensitivity of a given PCE coefficient to
the data noise.

Two sources of noise are considered in the current work: noise in the values of QoI and
noise in the deviation of matrix M due to the random sampling of the training data. In
order to quantify both sources of noise, we perform two series of Monte-Carlo simulations.
In the first series of Monte-Carlo simulations, the sensitivity of the correlation vector V
to the QoI values is estimated. For that purpose, we introduce random perturbations θi
to each of the training data-points. In the present study, the noise part is sampled from
a normal distribution with zero mean and unit variance. The correlation of the basis
polynomial pA(x) with perturbed data to the QoI is estimated using:

UA =
∑
i

(yi + θi)pA(xi)

N
(27)

The mean-square deviation σY,A of UA from VA is considered as a measure for stability:

σY,A =
√

Eθ[(UA −VA)2] (28)

where the mean Eθ is taken over several realization of θ.
The second series of Monte-Carlo simulations is performed to quantify the stability

with respect to the location of training points. As long as the location of training data
points x̃ is considered as a random parameter, a set of N points is generated at each
Monte-Carlo simulation. Then the mean-square deviation σX,A of MAA from the unit
matrix can be computed numerically as follows:

σX,A =
√
Ex̃[(MAA − I)2] (29)

where the mean Ex̃ is taken over a number of realizations of x̃. Finally, the ranking
coefficient for the basis polynomial pA(x) is defined as:

rA =
1√

σ2
Y,A + σ2

X,A

|VA|
H

(30)

where parameter H is introduced for normalization purposes. The value of H is given by
the expression:

H =
1

2
min
A
|VA|+

1

2
max
A
|VA| (31)

where minimum and maximum are taken over all values of multi-index A. In this work
we consider high values of rA as an indicator of a high value of the corresponding PCE
coefficient.

In the present work, the ranking parameter rA is used within the coordinate descent
Algorithm 1 to select the next PCE coefficient for updates. Therefore, we solve iteratively
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for PCE coefficients by performing the following steps sequentially: ranking of basis func-
tions based on the residual η(k) at the step k, select the first NB basis functions and solve
for the corresponding PCE coefficients using coordinate descent method. These steps are
combined in Algorithm 2. In our numerical testing, we set NB = 5 based on some initial
testing. However, a more rigorous approach could utilize cross validation to select the
optimal number of NB.

Algorithm 2 Ranking based sparse PCE solver

1: k=0 . Set iteration counter to zero
2: η(0) = y . Residual equals to initial data
3: c = 0 . Set vector of parameters to zero
4: while ∆L > ε do . Iterate while change in L(c) is significant
5: r = r(η(k)) . Compute ranking
6: Select A1, · · · , ANB

. indices of first NB components with highest rank
7: Solve ∆c = arg

∆c
min(L(∆cA1 , · · · ,∆cANB

)) with respect to selected components .

Use Algorithm 1
8: Update coefficients: c = c + ∆c
9: Update residual: η(k+1) = y −

∑
A cApA(x)

10: k = k + 1

11: return c

3 Numerical Examples

In this section, the proposed ranking based sparse PCE is evaluated on four test cases.
The first test case is the Ishigami function [71], the second test case is a ten-dimensional
Ackley function, the third case is a waterflooding problem with uncertain permeability
field and the forth test case utilizes a data-set from simulations of CO2 injection [72].
In all test cases, the proposed PCE approach is compared to two standard techniques for
sparse regression-based PCE: Least Angular Regression [73] and the Orthogonal Matching
Pursuit (OMP) algorithm [74]. The numerical implementations are all based on scikit-
learn, a machine library including with standard implementation of the LARS, OMP and
coordinate descent algorithm. Moreover, cross-validation tools within this library are used
to select the optimal regularization parameters for the Elastic Net functional defined in
Eq. (26).

Test case 1: Ishigami Function

Ishigami function is one of the standard benchmarks [71]:

y = 1 +
1 + π4/10 + sin(πx1) + 7 sin2(πx2) + 0.1(πx3)4 sin(πx1)

9 + π4/5
(32)

This three dimensional function shows a strong nonlinear behavior and is commonly used
as a test function for evaluating different response surface techniques. Typically, the
evaluation domain is [−π, π]3. In the present work, PCE with Legendre polynomials is
used because of the finite length of the interval concerned. We have rescaled the input
parameters linearly to the interval [−1, 1], given that the Legendre polynomials are defined
over the interval [−1, 1]. For each of the rescaled variables, a uniform distribution over
the interval [−1, 1] is assumed. We consider two training sets of 200 samples and 2000
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samples. Another set of 2000 points uniformly sampled over the cube [−1, 1]3 is utilized
for out-of-sample MSE calculations (aka. test set). We construct a PCE of polynomial
functions up to degree d = 10. The aim of the example is to compare the convergence rates
of the proposed ranking based PCE approach against the standard sparse regularization
techniques (i.e. LARS and OMP), while increasing the number of free coefficients ND

available for fitting by these iterative techniques. In the case of LARS and OMP, the
value of ND is well-defined. For the proposed ranking based approach, ND is defined as:

ND = NINB (33)

where NI is the number of iterations and NB is the number of PCE coefficients that can
be modified by coordinate descent solver after each ranking update in Algorithm 2. It
should be emphasized that PCE coefficients are selected solely based on ranking. In other
words, the overlapping with previously selected PCE coefficients can occur. Therefore,
the value of ND given by Eq. (33) is a conservative upper bound for the total number of
polynomial basis functions involved in the response surface construction (i.e. with non-zero
coefficient).

The numerical level of tolerance has been set to 10−6 in all numerical schemes. Fig. 1a
and Fig. 1b shows the MSE for each method versus the number of free coefficients ND for
200 and 2000 training points, respectively.
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Figure 1: Mean-square error on the test data set versus the number of free coefficients for
the Ishigami function.

The results presented in Fig. 1, shows that response surface built using the ranking
based sparse PCE is of higher quality when compared to those obtained by the standard
LARS or OMP algorithm, especially when the size of training data is limited. However,
all three techniques perform similarly in the case with higher number of training data-
points as shown in Fig. 1b. This is a major advantage when collecting training samples
corresponds to running computationally expensive simulations.

Test case 2: Ackley Function

In this example, we build a response surface for a 10-dimensional Ackley function [75] of
the form:

y = −20 exp

(
− 0.2

(
1

n

n∑
k=1

x2
k

)1/2
)
− exp

(
1

n

n∑
k=1

cos 2πxk

)
+ 20 + exp

(
1
)

(34)
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where n is the dimension of the input vector. This function shows a strong nonlinear
behavior with plenty of local minimums and is frequently used as a benchmark for opti-
mization algorithm. The setup of the current numerical example is similar to the first test
case. However, we assume that each of the input variables is uniformly distributed in the
interval [−5, 5]. Legendre polynomials are utilized as basis function for the PCE. There-
fore, input rescaling is applied to map all input variables to the interval [−1, 1]. In other
words, we consider data to be uniformly distributed in the cube [−1, 1]10. Similar to the
first test case, two training sets sizes are considered (200, 2000 samples) and 2000 samples
points uniformly distributed in the cube [−1, 1]10 are set aside as a test set for calculating
the out-of-sample MSE. We truncate the PCE spectrum to polynomial functions up to
degree d = 8.
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Figure 2: Mean-square error on the test data set versus the number of free coefficients for
a ten dimensional Ackley function.

Figure 2 shows the MSE convergence for the ranking based sparse PCE versus LARS
and OMP algorithms. Similar to the first test case, the proposed approach produces a
response surface of higher quality than LARS or OMP if the size of training data is limited
as shown in Fig. 2a, while all techniques perform similarly a higher number of training
data-points is used and a high number of polynomial basis functions is utilized as shown
in Fig. 2b.

Test case 3: Waterflooding problem

In the present test case, we evaluate the developed PCE approach on an uncertainty
propagation for a waterflooding problem with uncertain permeability field. Dimension re-
duction using PCA technique is applied to the spatial field as an effective parametrization
techniques [76]. Waterflooding is a commonly used process within the petroleum industry
for achieving higher hydrocarbon recovery rates. The essence of this approach is to inject
water through a number of wells in a given reservoir in order to displace the existing oil
and increase the oil production from another set of wells, which are commonly spatially
scattered to surround the injection wells. The increased productivity is observed until the
injected water starts to appear at the production wells. Thus estimating when water will
appear at the production wells (commonly known as the water breakthrough time [77])
is of significant practical importance. We note, that this time is commonly measured
in terms of volume of water injected relative to the total reservoir pore volume (PVI).
Prediction of the water breakthrough time tb is of high importance for hydrocarbon field
development because of the economical effects associated with it. In addition, tb is highly
sensitive to the spatial distribution of reservoir properties [78] (e.g. porosity, permeability)
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which are highly uncertain because of lack of observations. Moreover, reliable forecast for
hydrocarbon production rate after the water breakthrough is significant for economical
decisions. Therefore, in the present test case we develop a surrogate model for the pro-
duction rate at late stages of the well life. In particular, we focus on the oil production
rate qoil when 60% of PVI has been injected.

The waterflooding system is modeled via mass and momentum conservation laws cou-
pled with Darcy’s law. A simplified model for waterflooding is utilized where flow of two
incompressible fluids (water and oil) is considered. In this setting, we are interested in
predicting the spatial distribution of volumetric fractions sa (saturation) of each of the
fluids. The index a could be replaced by either w or o for water and oil, respectively. The
evolution of saturations is governed by mass and momentum conservation laws expressed
through the following partial differential equation (PDE):

∂φsaρa
∂t

−
3∑

γ=1

∂

∂xγ

(
ρakka
µa

∂P

∂xγ

)
= Qa (35)

where γ = 1, 2, 3 is a spatial index of the coordinate vector x, ρa = ρa(x) and µa =
µa(x) are the density and viscosity of fluid a at the point x respectively, k = k(x) is the
permeability, φ = φ(x) is the porosity at a given point, P (x) is a pressure at point x,
ka(s) is a relative phase permeability of fluid a, s = s(x) saturations of fluids at the point
x, Qa = Qa(x) is a source term for fluid a at the point x. Generally, the permeability
k is a tensor. In the present example, we assume k to be a spherical tensor which can
vary in space. Therefore, it is fully described by a single spatial function k = k(x). In the
present work we neglect capillary pressure effects. Therefore, both fluids are subjected to
the same pressure at any given point. The source terms Qa are considered to be non-zero
only for cells with injection and production wells. Finally, incompressible fluids and rocks
(solid matrix) are considered. Therefore, Eq. (35) could be simplified:

φ
∂sa
∂t
−

3∑
γ=1

∂

∂xγ

(
kka
µa

∂P

∂xγ

)
= qa (36)

where qa = Qa/ρa is the source term for fluid a normalized to the density of corresponding
fluid. For calculation of relative phase permeabilities, Brooks-Corey model [79] is used:

kw(Swn) = k(0)
w Spwwn

kw(Swn) = k(0)
o (1− Swn)po

(37)

where kw and ko are the values of relative phase permeability for water and oil, respectively

and k
(0)
w and k

(0)
o are maximum the values of relative phase permeability for water and oil,

respectively. The values pw and po are dimensionless parameters of the model and Swn is
the normalized water saturation defined as:

Swn =
S − Swir

1− Swir − Sowr
(38)

where Swir and Sowr are irreducible water and oil saturations, respectively.
In this test case, we consider a five-spot injection pattern where an injection well is

located in the center of a square surrounded by four production wells. Given the symmetry
of this pattern, only one quarter of the domain is modeled with one producer and one
injector located at the opposite corners of a square domain. The length of the edge of that
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µo, cP µw po pw k
(0)
o k

(0)
w

10.0 1.0 2.0 2.0 1.0 1.0

Table 1: Fluid properties and parameters of the model for relative-phase permeability.

square is set to L = 640m. The thickness of the reservoir is h = 10m. We do not consider
discretization along the vertical direction and we only consider a two-dimensional flow
problem. For the purposes of simplicity, incompressible immiscible fluids is considered
while neglecting gravity effects. A uniform square grid is used for simulations and the
dimensions of each grid-block is 10m by 10m by 10m. in other words, a 64 by 64 by 1
mesh is used for discretization. The porosity of the reservoir is assumed to be constant
and equal to 0.2. Both injection and production rates are considered to be constant and
equal to 10 m3/day. The fluid properties and parameters of Corey model are presented
in the table 1.

In the present work, the reservoir permeability k(x) is assumed to be a random field
with a predefined distribution given the correlation between values at different points
within the domain. In reservoir modeling, it is natural to assume that the values of
logarithm of permeability log(k(r)) at different points r1 and r2 are exponentially corre-
lated [76]:

〈log(k(r1)), log(k(r2))〉 = exp

(
− |r1 − r2|

Lc

)
(39)

where Lc is a correlation length. In the present example, the correlation length is set to
Lc = 1/4L = 160m. The utilized distribution of log-permeability allows one to implement
Karhunen-Loeve expansion and express log(k(r)) as a linear combination of mutually
independent random variables:

log(k(r)) =
∑
α

θαλαξα(r) (40)

where λα, ξα(r) are the eigen-values and eigen-functions of the KL expansion, respectively.
The θα are random mutually independent coefficients. In the present example θα are
considered as input random variables for the PCE response surface. The permeability
field is normalized such that a zero value of log(k(r)) corresponds to a permeability of
1 mD.

We truncate the KL expansion spectrum by taking the first 5, 15 or 45 KL components.
Because of the long correlation length with respect to the size of the domain, a significant
part of the energy of the spectrum is captured in all truncation scenarios. In this work,
the fraction of the energy of the spectrum is defined as following:

H(n) =

∑n
α=1 λ

2
α∑∞

α=1 λ
2
α

(41)

where n is the number of components in the truncated KL expansion. In the present ex-
ample, H(5) = 0.9898, H(15) = 0.9948 and H(45) = 0.9972. It is important to notice that
despite the fact that KL expansion captures significant portion of the energy spectrum, it
provides smooth reconstruction of the permeability field as shown in Figure 3.

Three different PCE response surfaces are built corresponding to the 5, 15, 45-KL
terms where 1000 samples (i.e. reconstructed permeability realizations) are evaluated.
Each of these samples has been generated from a normal distribution of the coordinates
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(a) 5 KL terms (b) 15 KL terms (c) 45 KL terms (d) 4096 KL terms

Figure 3: Permeability realizations projected to a different number of KL-terms

θα corresponding to the truncated eigen-vectors of the KL expansion. Water breakthrough
times are estimated through numerical simulations for each of the permeability realization
using a forward simulation run. A training set of 750 samples is used for building the PCE
response surface and the remaining 250 samples are used for testing. Legendre polynomials
with degree d ≤ 5 are considered as basis functions. The tolerance in all numerical schemes
used to estimate the PCE coefficients has been set to 10−6.
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Figure 4: Mean square error (MSE) over the test data for breakthrough time (a, b, c) and
for oil production rate (d, c, e) for different PCE algorithms versus the response surface
free parameters.

15



0.30 0.35 0.40 0.45 0.50
Reference tb(Test), PVI

0.30

0.35

0.40

0.45

0.50
t b

(T
es

t) 
by

 R
an

k 
PC

E,
 P

VI

(a) 5-KL terms

0.30 0.35 0.40 0.45 0.50
Reference tb(Test), PVI

0.30

0.35

0.40

0.45

0.50

t b
(T

es
t) 

by
 R

an
k 

PC
E,

 P
VI

(b) 15-KL terms

0.30 0.35 0.40 0.45 0.50
Reference tb(Test), PVI

0.30

0.35

0.40

0.45

0.50

t b
(T

es
t) 

by
 R

an
k 

PC
E,

 P
VI

(c) 45-KL terms

1.8 1.9 2.0 2.1 2.2
Reference qoil(Test), m3/day

1.8

1.9

2.0

2.1

2.2

q o
il(T

es
t) 

by
 R

an
k 

PC
E,

 m
3 /d

ay

(d) 5-KL terms

1.8 1.9 2.0 2.1 2.2
Reference qoil(Test), m3/day

1.8

1.9

2.0

2.1

2.2
q o

il(T
es

t) 
by

 R
an

k 
PC

E,
 m

3 /d
ay

(e) 15-KL terms

1.8 1.9 2.0 2.1 2.2
Reference qoil(Test), m3/day

1.8

1.9

2.0

2.1

2.2

q o
il(T

es
t) 

by
 R

an
k 

PC
E,

 m
3 /d

ay

(f) 45-KL terms

Figure 5: Cross-plots of breakthrough time and oil production rate in PVI units for Rank
PCE algorithm. Top row (a, b, c) shows the results for test samples for breakthrough
time and the bottom row (d, e, f) shows the results for oil production rate

Figure 4 shows the MSE for various KL truncation levels. The results presented in
this figure, demonstrate that the proposed rank based PCE technique has similar accuracy
when compared to the OMP algorithm for low-dimensional problems. However, the rank
based PCE has clear advantages in higher dimensions. Also, both the Rank-PCE and
OMP methods, perform slightly better than LARS. However, all three techniques do not
perform perfectly, because the MSE is around 5% of the mean-value of the QoI. The
cross-plot shown in Figure 5 demonstrates how the quality of prediction is affected by
the dimension of the problem or truncation scheme for KL expansion. The best accuracy
of the response surface has been achieved for the problem with the lowest dimension
corresponding to 5-KL truncation level (left). The numerical error is the highest for
45-KL truncation level (right). The reason for such behavior is that the training set of
the same cardinality has been used for all truncation schemes. It should be noted that
the accuracy of the permeability representation increases with the increase of parameter
space dimension. However, capabilities of the response surface to reproduce the simulation
results for a fixed number of direct simulations drop with dimension. In other words, more
training data is required to build a high quality response surface for the high-dimensional
case when compared with problems of lower dimensionality.

Test case 4: Data from CO2 injection simulations

In this test case, PCE-based response surface is used as a fast emulator for CO2 injection
process. The QoI is the mass of CO2 in a gas phase after given time period from the end
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Variable Notation Type

Porosity x1 Continuous, U [−1; 1]

Permeability x2 Continuous, U [−1; 1]

Relative phase permeability x3 Discrete, 10 different models

Regional hydraulic gradient x4 Discrete, 2 different values

Capillary pressure x5 Discrete, 2 different models

Permeability anisotropy x6 Discrete, 3 different values

Table 2: Summary of variables notations and types.

of CO2 injection [72]. The data is based on the simulations results developed by Manceau
and Rohmer [72]. The key uncertain parameters in this simulations are: average field
porosity, average field permeability, regional hydraulic gradient relative phase permeability,
capillary pressure and the permeability anisotropy kv/kh ratio. More detailed description
of this problem can be found in [72]. The average field porosity φ and permeability k are
considered as independent continuous variables with a uniform probability distribution
via density-function variable transformation [70]:{

φ = fφ(x1)

k = fk(x2)
(42)

where x1 and x2 are independent random variables uniformly distributed in the interval
[−1; 1], fφ and fk are functions for transformation of variables. All other variables are
considered as discrete variables with equal probabilities over all discretized values. Table 2
summarizes the variable names and types used in this test case.

We note that this test case includes categorical variables in the input space. In order to
handle this type of data, we utilize Chebyshev polynomials for categorical data. Addition-
ally, we establish a one-to-one correspondence between the values of a given categorical
variable and Chebyshev nodes:

tm → cos

(
2m− 1

2M
π

)
(43)

where M is the total number of possible values for a given categorical variable. The
mapping given by this equation is illustrated in Figure 6.
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Figure 6: Location of Chebyshev nodes corresponding to roots of the polynomials with
the same degrees as the number of distinct values present in the categorical variable.
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We note that Gauss-quadrature rules for Chebyshev polynomials have the same
weight [65] for each of the nodes. This justifies using Chebyshev polynomials for categor-
ical data and the corresponding mapping to the Chebyshev nodes presented in Eq. (43)
especially when training samples are uniformly distributed over the distinct categories.
Therefore, the polynomials orthogonality and the distribution of categorical variables are
consistent with each other.∫ +1

−1

pα(t)pβ(t)√
1− t2

dt =
∑
m

π

M
pα(tm)pβ(tm) = π E[pαpβ] (44)

In the present work we utilize normalized polynomials pα(t) to qα(t):

E[qαqβ] = δαβ (45)

Using Chebyshev polynomials provides a natural extension of standard PCE to problems
with categorical variables while preserving the fundamental relation between the orthog-
onality of basis functions and probability distribution as defined in Eq. (5).

In the current example, sampling of the data is performed using uniform distributions
over the parameter ranges. A total of 998 data points are generated in accordance with the
proposed probability distributions of variables and we used 250 data-points for training
(i.e. constructing the PCE) and the remaining data points are used for testing. The mass
of CO2 injection is computed via detailed numerical simulations (see [72] for more details).
We normalized the QoI such that following equality holds for the training data:∑

i

y2
i

N
= 1 (46)

We observed empirically that the QoI is highly sensitive to the permeability and relative
phase permeability. Therefore, we constructed two evaluation cases with the same data
set. For the first case which we refer to as the reduced case, we built a two-dimensional
response surface using the permeability and relative phase permeability only as an input.
The second case, which we denote as the full case, we utilize all the six uncertain variables
in the response surface. In both cases, we evaluate the proposed ranking based sparse PCE
against standard sparse regression PCE algorithms (i.e. LARS and OMP methods) for
different numbers of expansion coefficients ND. For both the reduced and full problems,
PCE is performed with polynomials of degree d ≤ 10. The number of terms in PCE varies
from 5 to 50 and the tolerance has been set similar to all other test cases to 10−6. Legendre
polynomials were used for continuous variables x1, x2 and Chebyshev polynomials were
used for the discrete/categorical variables.
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Figure 7: Mean square error (test data) for the different PCE algorithm versus the response
surface free parameters.

Figure 7, shows the mean square error over the test data set for both the reduced
and full cases in Fig. 7a and Fig. 7b, respectively. The introduced ranking based ap-
proach shows better convergence rates for both problems. Moreover, the results in Fig. 7b
demonstrate that advantages of the proposed Rank-PCE are more pronounced for higher
dimensional problems, where the search space inside the iterative solver is large. For
this case, the introduced ranking step allows for an efficient identification of the most
significant components of PCE resulting in a higher quality response surfaces.

4 Concluding remarks

In the current manuscript, we introduced a ranking based sparse PCE technique (Rank-
PCE). The core idea of the proposed approach is to rank the PCE features in accordance
with the magnitude of a given PCE coefficient based on the correlation with data while
estimating for the accuracy of computed correlations. We demonstrated, via a set of
numerical examples, the superior performance of Rank-PCE when compared to standard
sparse regularization techniques. Rank-PCE resulted in an increase in convergence rates
for generative function with sparse spectrum. We also noticed that the improvements in
convergence is more pronounced for high-dimensional problems, enabling the application
of PCE to problems with significant number of independent variables. Moreover, the
advantages of Rank-PCE are also evident for problems with limited number of training
samples as demonstrated in the analytical test cases.

In addition to novel ranking procedure, we presented an extension of PCE response
surfaces to problems with both continuous and categorical data through the utilization
of Chebyshev polynomials to represent the discrete variables. The proposed technique
might be not optimal for general cases, however under the uniform sampling conditions, it
provides a simple approach to handle categorical data in PCE that is consistent with the
statistical properties of PCE for sensitivity analysis and UQ. In other words, the proposed
approach maintains the relation between basis orthogonality and statistics of the input
variables, which is fundamental for UQ with PCE. This technique is also easy to implement
given the availability of Chebyshev polynomials in most scientific computing libraries.
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