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Abstract

Reduced-order models based on level-set methods are widely used tools to qualitatively cap-

ture and track the nonlinear dynamics of an interface. The aim of this paper is to develop a

physics-informed, data-driven, statistically rigorous learning algorithm for state and parameter

estimation with level-set methods. A Bayesian approach based on data assimilation is intro-

duced. Data assimilation is enabled by the ensemble Kalman filter and smoother, which are used

in their probabilistic formulations. The level-set data assimilation framework is verified in one-

dimensional and two-dimensional test cases, where state estimation, parameter estimation and

uncertainty quantification are performed. The statistical performance of the proposed ensemble

Kalman filter and smoother is quantified by twin experiments. In the twin experiments, the

combined state and parameter estimation fully recovers the reference solution, which validates

the proposed algorithm. The level-set data assimilation framework is then applied to the predic-

tion of the nonlinear dynamics of a forced premixed flame, which exhibits the formation of sharp

cusps and intricate topological changes, such as pinch-off events. The proposed physics-informed

statistical learning algorithm opens up new possibilities for making reduced-order models of

interfaces quantitatively predictive, any time that reference data is available.

Keywords: Data assimilation, Ensemble Kalman filter, Level-set method, Parameter

estimation, Uncertainty quantification

1. Introduction

A number of problems in computational physics involve the motion of interfaces, e.g. semi-

conductor manufacturing, multi-phase flows, crystal growth, groundwater flow, computer vision,
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grid generation and seismology [1]. In general, there are two approaches to calculating the mo-

tion of an interface [2]: In front-tracking methods, the interface is parameterized and discretized

so that one follows the motion of the whole interface by tracking a sufficient number of points on

the interface. In front-capturing methods, the interface is embedded into a function defined over

the whole domain. One example of front-capturing methods are the so-called level-set methods,

where the interface is embedded into a strictly monotonic function [3]. Both front-tracking and

front-capturing methods have well-understood advantages, and hybrid methods exist to mitigate

their respective disadvantages [4]. Nevertheless, it is worth mentioning that level-set methods

provide a natural formulation for calculating the motion of an interface [1]: Level-set methods

deal well with non-smooth features such as corners and cusps as well as topological merging

and break-up. Furthermore, level-set methods are easily extended from two to three and higher

dimensions. For more information on level-set methods, the reader is referred to many excellent

expositions in the literature [5, 6, 1, 4, 2].

Despite the elegance of explaining physical phenomena by the motion of interfaces and cal-

culating the motion of the interfaces by level-set methods, one has to remain aware that the

assumption that manifolds are infinitely thin is often an asymptotic assumption. This is par-

ticularly true in fluid mechanics, which is governed by conservation laws [7]. One example is

the kinematics of premixed flames [8]: Depending on the combustion regime, it may be assumed

that a thin reactive-diffusive layer separates the burnt and unburnt gases. While the laminar

flame speed, at which the premixed flame propagates from the burnt into the unburnt region, is a

well-defined thermo-chemical property of the fuel-air mixture in a one-dimensional flow, it more

generally depends on the balance between heat conduction and mass diffusion, whose effects vary

with flame stretch and curvature. Moreover, the turbulent flame speed scales differently depend-

ing on the interactions between turbulence and combustion length scales. Despite the potential

quantitative shortcomings in describing the kinematics of a premixed flame as the motion of

an interface, it has been shown that this model successfully explains the linear and nonlinear

dynamics observed in thermoacoustic instabilities of ducted premixed flames, which are relevant

to the design of combustion chambers in jet and rocket engines [9, 10, 11, 12]. The discrepancies

which arise when comparing to more faithful simulations or experiments are usually attributed

to the unpredictable nature of turbulent flow or to uncertainties in the model and its parameters.

Thus, it is relevant to assess the ability of a qualitative, physics-informed model to make quanti-

tative, time-accurate predictions. The aim of this study is to develop a data-driven, statistically

rigorous framework for state and parameter estimation in models using level-set methods, which
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has not been done before, and to apply it to an oscillating flame.

Inference over interfaces based on level-set methods has been performed, e.g. in the context of

shape optimization, either by directly taking the functional derivative of the objective functional

with respect to the level-set function [13, 14], or, equivalently, by embedding the level-set method

into shape calculus [15, 16, 17]. As an alternative to these variational approaches, the frame-

work for state and parameter estimation in this study is based on data assimilation [18]. Data

assimilation finds the statistically optimal combination of model predictions and observations. It

combines concepts from control theory, probability theory and dynamic programming [19, 20, 21].

The data assimilation technique used in this study is the ensemble Kalman filter [22, 23]. In

the ensemble Kalman filter, a Monte-Carlo approach is used to represent the necessary statistics

at every timestep [24], which makes it a computationally efficient technique in terms of storage

requirements. Compared to other data assimilation techniques based on the Kalman filter, e.g.

the extended Kalman filter [25, 26], the ensemble Kalman filter is found to be particularly robust

with respect to larger nonlinearities [18]. This is relevant for level-set methods, due to strongly

nonlinear events such as cusp formation, topological merging and break-up. A practical advan-

tage of the ensemble Kalman filter is its non-intrusive implementation with little effort required

for its parallelization. The ensemble Kalman filter has been successfully applied to a number

of problems in fluid mechanics: turbulent near-wall flow [27]; transonic flows around airfoils

and wings [28]; viscous flow around a cylinder [29]; model uncertainties in Reynolds-averaged

Navier-Stokes (RANS) equations [30]; vortex models of separated flow [31]; and extinction and

reignition dynamics in turbulent non-premixed combustion [32].

In this study, the ensemble Kalman filter is combined with a narrow-band level-set method

and a fast marching method to form a computationally efficient level-set data assimilation frame-

work [40, 41]. In analogy to the distinction between front-tracking and front-capturing meth-

ods in describing the motion of an interface, data can also be assimilated according to various

paradigms, e.g. as demonstrated by [42], [43] and [44]. For the various paradigms, it is not a priori

clear which will yield superior results. For this reason, the theory and the derivations behind our

level-set data assimilation framework are worked out in detail. The paper is structured as follows:

In Section 2, the ensemble Kalman filter and the ensemble Kalman smoother are derived within

the context of Bayesian inference. The estimation problems in data assimilation and parameter

estimation are then formulated in terms of probability distributions. In Section 3, various formu-

lations for the laws of motion are discussed, including the Hamilton-Jacobi equation. It is shown

that the solutions to the Hamilton-Jacobi equation, the so-called generating functions, form a
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natural state space for data assimilation. The level-set data assimilation framework based on

the Hamilton-Jacobi equation is verified in one-dimensional and two-dimensional examples. In

Section 4, statistical inference using the level-set data assimilation framework is demonstrated

on the nonlinear dynamics of a ducted premixed flame. The results and insights of this study

are summarized in the conclusions (Section 5).

2. Data assimilation and parameter estimation

Data assimilation and parameter estimation are here treated as problems in statistical in-

ference. Statistical inference quantifies the degree of belief (or confidence) in a physical model,

the parameters that it receives and the states that it predicts. Statistical inference follows a

probabilistic formulation, which provides precise definitions for the different tasks addressed in

inference, which include filtering, smoothing and prediction. Probabilistic formulations for sta-

tistical inference include frequentist inference and Bayesian inference. In frequentist inference, an

error functional is defined to measure the statistical distance between a candidate solution and

the available data. Inference becomes an optimization problem to minimize this error functional.

In Bayesian inference, existing knowledge is quantified in the form of a probability distribution

over candidate solutions. When data becomes available, the probability distribution is updated,

effectively combining the existing knowledge with the data. For normal distributions under lin-

ear dynamics, both formulations of statistical inference give equivalent results [18]. Under these

circumstances, frequentist inference may be considered more accessible because it allows the ap-

plication of familiar tools from convex optimization [45]. Nevertheless, Cox’s axioms demonstrate

that probability theory, as used in Bayesian inference, gives a natural formulation for inference in

the general case [46]. All definitions and derivations in this section are given in terms of Bayesian

inference (Appendix A). For more details, the reader may refer to [18] or [47].

2.1. Probabilistic state space model

The state of a system at a timestep k is uniquely defined by the state vector xk. The

evolution of the state is governed by a physical model f and its parameters θ. Thus, our belief in

the state xk depends exclusively on our belief in (i) the previous state xk−1 as well as our choice

of (ii) the physical model f and (iii) its parameters θ. At the same time, the state vector xk is

compared to noisy observations yk through a measurement operator M . Formulated in terms of

a probabilistic state space model, we obtain

xk = xk−1 +

∫ tk

tk−1

f(x(t), θ) dt = G(xk−1, θ) ∼ p(xk | xk−1, θ, f) , (1)
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yk = M(xk) ∼ p(yk | xk) . (2)

In brief, the transition from one state to the next is governed by the operator G. The operator G

is derived from the physical model f , and depends on the parameters θ. The states xk and the

observations yk are considered realizations inside their respective probabilistic state spaces. The

degrees of belief in each are subject to the conditional probability distributions p(xk | xk−1, θ, f)

and p(yk | xk) respectively. The degree of belief in the state xk is conditional on the previous

state xk−1 and the choices in the physical model f and its parameters θ. The degree of belief in

the observation yk is conditional on the true state xk.

The rules of the probabilistic state space model may be formalized as follows [47]. Firstly,

we assume that the physical model may be described by a Markov chain [24]. This means that

the belief in a state depends only on the belief in the previous state:

1. The future is independent of the past given the present:

p(xk | x0:k−1, y1:k−1, θ, f) = p(xk | xk−1, θ, f) , (3)

where x0:k−1 denotes the states at all timesteps from 0 to k − 1, and y1:k−1 denotes the

observations at all timesteps from 1 to k − 1.

2. The past is independent of the future given the present:

p(xk | xk+1:N , yk+1:N , θ, f) = p(xk | xk+1, θ, f) , (4)

where xk+1:N and yk+1:N respectively denote the states and observations at all timesteps

from k + 1 to the final timestep N .

Secondly, observations are assumed to be conditionally independent in time. The probability of

an observation depends only on the current state:

p(yk | x0:N , y1:k−1, yk+1:N , θ, f) = p(yk | xk) . (5)

In Fig. 1, the relationship between states and observations is shown as well as the roles of models,

parameters and measurement.

The goal of data assimilation is to find the joint probability distribution p(x0:N , y1:N , θ, f).

The probabilistic state space spans all states xk from timestep 0 to N and all observations yk

from timestep 1 to N , as well as the physical model f and its parameters θ. This joint probability

distribution gives a complete statistical description. In principle, all probability distributions of
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xk+1xk−1 xk G, θ

yk+1yk−1 yk

G, θ

Figure 1: Probabilistic state space model as a Markov chain. The operator G and its parameters θ govern the

transition from one state to the next. The state vector xk is related to the observations yk through a measurement

operator M .

Table 1: Conditional probability distributions in data assimilation.

Task PDF Description

State estimation p(x0:N | y1:N , θ, f) Given a physical model and its parameters,

what is our belief in a series of states?

Parameter estima-

tion

p(θ | y1:N , f) Given a physical model, what is our belief

in a set of parameters?

Model comparison p(f | y1:N ) Between two physical models, in which one

do we believe more?

interest may be derived from this joint probability distribution (Table 1). In practice, it is difficult

to compute this probability distribution because of the high dimensionality of its probabilistic

state space spanning multiple timesteps [48]. Therefore, state estimation focuses on the more

direct computation of conditional probability distributions over a single timestep (Table 2).

In the probabilistic formulation, data assimilation is easily extended to account for parame-

ters. In combined state and parameter estimation, the state is augmented by the parameters so

that they become subject to the same inference (Eq. (1)):

x̃k =

xk
θk

 , f̃(x̃(t)) =

f(x(t), θk)

0

 , x̃k = x̃k−1 +

∫ tk

tk−1

f̃(x̃(t)) dt . (6)

The tasks in combined state and parameter estimation are given in Table 3. The filtered and

smoothed distributions in the parameters θk, p(θk | y1:k, f) and p(θk | y1:N , f) respectively, are

retrieved by marginalizing the states xk (Appendix A). Note that the parameters θk are now

time-dependent as the system traverses different regimes in state space. This turns the strongly
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Table 2: Conditional probability distributions in state estimation.

Task PDF Description

Filtering p(xk | y1:k, θ, f) Given all observations from the past and

now, what is our belief in the current state?

Smoothing p(xk | y1:N , θ, f) Given all observations from the past, the

future and now, what is our belief in the

current state?

Prediction p(xN+1 | y1:N , θ, f) Given all observations from the past and

now, what is our belief in a future state?

Table 3: Conditional probability distributions in combined state and parameter estimation.

Task PDF Description

Filtering p(xk, θk | y1:k, f) Given all observations from the past and

now, what is our belief in the current state

and set of parameters?

Smoothing p(xk, θk | y1:N , f) Given all observations from the past, the

future and now, what is our belief in the

current state and set of parameters?

constrained parameter estimation into a weakly constrained combined state and parameter esti-

mation [18]. Thus, the results of marginalizing the probability distributions in combined state

and parameter estimation (Table 3) are not strictly equivalent to the solutions of parameter

estimation (Table 1).

2.2. Bayesian filtering and smoothing

For the filtering problem, Bayes’ rule gives

p(xk | y1:k, θ, f) =
p(yk | xk, y1:k−1, θ, f)p(xk | y1:k−1, θ, f)

p(yk | y1:k−1, θ, f)
(7)

=
p(yk | xk)p(xk | y1:k−1, θ, f)

p(yk | y1:k−1, θ, f)
. (8)

7



The prediction p(xk | y1:k−1, θ, f) is given by the Chapman-Kolmogorov equation:

p(xk | y1:k−1, θ, f) =

∫
p(xk, xk−1 | y1:k−1, θ, f) dxk−1 (9)

=

∫
p(xk | xk−1, y1:k−1, θ, f)p(xk−1 | y1:k−1, θ, f) dxk−1 (10)

=

∫
p(xk | xk−1, θ, f)p(xk−1 | y1:k−1, θ, f) dxk−1 . (11)

The Chapman-Kolmogorov equation requires the inverse from the previous timestep k − 1. In

general, it is solved either numerically [49], analytically (Theorem 3) or by a Monte-Carlo simu-

lation (Theorem 4). The steps in the Bayesian filter may be summarized as follows:

Theorem 1 (Bayesian filter).

1. Prediction step:

p(xk | y1:k−1, θ, f) =

∫
p(xk | xk−1, θ, f)p(xk−1 | y1:k−1, θ, f) dxk−1 . (12)

2. Update step:

p(xk | y1:k, θ, f) =
p(yk | xk)p(xk | y1:k−1, θ, f)

p(yk | y1:k−1, θ, f)
. (13)

At the timestep k = N , the filtered and smoothed distributions are identical (Tab. 2). If the

smoothed distribution at a timestep k + 1 is known, the smoothed distribution at the previous

timestep k is also known due to the Markov chain properties of the probabilistic state space

model (Eq. (3), (4)). This may be formalized as follows:

p(xk | y1:N , θ, f) =

∫
p(xk, xk+1 | y1:N , θ, f) dxk+1 (14)

=

∫
p(xk | xk+1, y1:N , θ, f)p(xk+1 | y1:N , θ, f) dxk+1 (15)

=

∫
p(xk | xk+1, y1:k, θ, f)p(xk+1 | y1:N , θ, f) dxk+1 . (16)

p(xk+1 | y1:N , θ, f) is the smoothed distribution from the subsequent timestep k + 1. p(xk |
xk+1, y1:k, θ, f) is computed via Bayes’ rule:

p(xk | xk+1, y1:k, θ, f) =
p(xk+1 | xk, y1:k, θ, f)p(xk | y1:k, θ, f)

p(xk+1 | y1:k, θ, f)
(17)

=
p(xk+1 | xk, θ, f)p(xk | y1:k, θ, f)

p(xk+1 | y1:k, θ, f)
. (18)

Note that it involves the filtered distribution from the current timestep k. The steps in the

Bayesian smoother may be summarized as follows:
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Theorem 2 (Bayesian smoother).

1. Forward sweep: Bayesian filter (Theorem 1).

2. Backward step:

p(xk | y1:N , θ, f) = p(xk | y1:k, θ, f)

∫
p(xk+1 | xk, θ, f)p(xk+1 | y1:N , θ, f)

p(xk+1 | y1:k, θ, f)
dxk+1 . (19)

Note that both the Bayesian filter and smoother are sequential in nature. In the Bayesian

filter, the predicted distribution p(xk | y1:k−1, θ, f) at a timestep k (Eq. (12)) mainly depends on

the filtered distribution p(xk−1 | y1:k−1, θ, f) from the previous timestep k− 1 (Eq. (13)). In the

Bayesian smoother, the smoothed distribution p(xk | y1:N , θ, f) at a timestep k mainly depends

on the smoothed distribution p(xk+1 | y1:N , θ, f) from the subsequent timestep k+ 1 (Eq. (19)).

The existence of sequential algorithms for the computation of filtered and smoothed distributions

significantly reduces the complexity of data assimilation [48].

2.3. The Kalman filter and the Rauch-Tung-Striebel smoother

Two additional assumptions are introduced to make the computation of filtered and smoothed

distributions feasible. Firstly, the prior and the likelihood in the update step of the Bayesian

filter are assumed to be normal (Eq. (13)):

p(xk | y1:k−1, θ, f) = N
(
xk | ψf , Cfψψ

)
, (20)

p(yk | xk) = N (yk |Mxk, Cεε) , (21)

where N denotes a normal distribution with respective mean and covariance matrix. The mean

of the prior is denoted by ψf , its covariance matrix by Cfψψ, and the covariance matrix of the

likelihood, also known as the observation error, by Cεε. From Eq. (20) and (21), it follows that

the filtered distribution p(xk | y1:k, θ, f) is normal (Eq. (13)). Secondly, the operator G (Eq. (1))

in the prediction step (Eq. (12)) is assumed to be linear in x. The result is the well-known

Kalman filter [50, 51]:

Theorem 3 (Kalman filter).

p(xk | y1:k, θ, f) = N
(
xk | ψa, Caψψ

)
, (22)

ψa = ψf +
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1 (

yk −Mψf
)

, (23)
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Caψψ = Cfψψ −
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1 (

MCfψψ

)
, (24)

where the superscript f denotes ’forecast’ (everything pertaining to the prediction), and the

superscript a denotes ’analysis’ (everything pertaining to the update). If the physical model is

nonlinear, the prediction of the covariance matrix Cfψψ for the Kalman filter may be generalized

in several ways. In the extended Kalman filter, the predicted covariance matrix Cfψψ is computed

by linearizing f [20]. In strongly nonlinear dynamical systems, the predictions are found to be

poor [18]. Higher-order extended Kalman filters are available [25]. Nevertheless, drawbacks

include their significant storage requirements, which increase exponentially with the order of

approximation. An alternative is the ensemble Kalman filter [22, 23]. Instead of a mean ψ

and a covariance matrix Cψψ, a distribution is represented by a sample
(
ψj
)
j=1...n

. During the

prediction step, the ensemble members ψj evolve in time independently. Before the update step,

the statistics may be recovered from the sample as follows:

ψ ≈ 1

n

n∑
j=1

ψj , Ψ =
(
ψ1 − ψ , ψ2 − ψ , · · · , ψn − ψ

)
, Cψψ ≈

1

n− 1
ΨΨT .

(25)

The sample covariance matrix Cψψ involves division by n − 1 instead of n in order to avoid a

sample bias.

Various implementations of the ensemble Kalman filter exist, which differ in the update

step. In the straightforward implementation of the ensemble Kalman filter [22], every ensemble

member is individually updated (Eq. (23)). It can be shown that the observations must be

randomly perturbed in order to guarantee a statistically consistent analysis scheme [23]. In

order to avoid the introduction of randomly generated numbers, the square-root filter is used

here [52]. The square-root filter belongs to a larger family of ensemble Kalman filters called

ensemble-transform Kalman filters [53, 54]. Unlike the straightforward implementation of the

ensemble Kalman filter, the mean and the deviations of the ensemble members are updated. This

requires the singular value decomposition of a symmetric, positive, semi-definite matrix (V ΣV T ,

where V is orthonormal and Σ diagonal), but no spurious errors due to the random perturbation

of the observations are introduced.

Theorem 4 (Square-root filter).

(ψa)
j

= ψa + (Ψa)j , (26)
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ψa = ψf + Ψf
(
MΨf

)T [
(n− 1)Cεε +MΨf

(
MΨf

)T ]−1 (
yk −Mψf

)
, (27)

Ψa = ΨfV [I− Σ]
1
2 V T , V ΣV T =

(
MΨf

)T [
(N − 1)Cεε +MΨf

(
MΨf

)T ]−1
MΨf ,

(28)

where I is the identity matrix.

Following Eq. (20) and (21), the Bayesian smoother (Theorem 2) becomes the Rauch-Tung-

Striebel smoother, also known as Kalman smoother (Theorem 5). It can be shown that the

smoothed distribution becomes a normal distribution with mean ψs and covariance matrix Csψψ.

In order to again avoid the shortcomings of assuming linearity, an ensemble Kalman smoother

is presented here (Theorem 6).

Theorem 5 (Rauch-Tung-Striebel smoother).

p(xk | y1:k) = N
(
xk | ψs, Csψψ

)
, (29)

ψs = ψa +
((
Cfψψ

)−1
k+1

GCaψψ

)T [
ψsk+1 − ψfk+1

]
, (30)

Csψψ = Caψψ −
((
Cfψψ

)−1
k+1

GCaψψ

)T [(
Cfψψ

)
k+1
−
(
Csψψ

)
k+1

] ((
Cfψψ

)−1
k+1

GCaψψ

)
. (31)

Theorem 6 (Ensemble Kalman smoother).

(ψs)
j

= (ψa)
j

+ Ψa
(
Ψf
)−1
k+1

[
(ψs)

j
k+1 −

(
ψf
)j
k+1

]
. (32)

3. Level-set methods

When data assimilation is applied to the motion of an interface, the question arises as to

what constitutes its probabilistic state space. Refining the distinction between front-tracking and

front-capturing methods, there are at least three ways to view the motion of an interface [1, 4]:

Geometric view. The interface is parameterized and discretized so that one follows the motion

of the whole interface by solving the laws of motion for a sufficient number of points on

the interface.
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Set-theoretic view. A characteristic function is defined over the whole domain. The charac-

teristic function assumes one of two values, depending on whether the point at the location

in question is inside or outside the region enclosed by the interface.

Analytic view (also known as “analysis view” [4]). A level-set function is defined over

the whole domain. The interface is reconstructed by identifying the position of a par-

ticular level set.

Beyond the description of motion, these three views also pertain to the assimilation of data. In

fact, all three views have been employed in earlier level-set data assimilation frameworks: While

using a level-set method when solving for the motion of the interface, [43] take each entry in

the innovation vector yk −Mψf (Eq. (22)) as the distance between one point on the predicted

interface and one point on the observed interface. This framework corresponds to the geometric

view. [44] compute yk and ψf in the innovation vector from a progress variable. The progress

variable assumes values between zero and one, with most intermediate values assumed near

the interface. This framework is an approximation of the set-theoretic view. [42] compute yk

and ψf from a level-set function. This framework corresponds to the analytic view, and comes

closest to the level-set data assimilation framework presented in this study. The motion of an

interface depends on the values of the level-set function in the immediate environment of the

interface, whereas the values of the level-set function are not unique away from the interface.

The level-set data assimilation framework presented in this study (i) introduces an additional

constraint in agreement with the the analytic view, (ii) validates the choice of the constraint for

two analytical test cases in one and two dimensions respectively, and (iii) addresses shortcomings

in the aforementioned frameworks.

In order to construct the probabilistic state space, the derivation of the level-set method is

revisited in this section. The centerpiece of this derivation is the Hamilton-Jacobi equation. In

theory, the level-set method may alternatively be derived as the transport of a passive scalar

quantity [8, Chapter 2]. Although the value of the level-set function is well defined at the

interface, the choice of values for the level-set function away from the interface is in general not

unique, and would require an ad-hoc constraint. It is demonstrated how the necessary constraint

to the Hamilton-Jacobi equation naturally follows from the choice of phase space. Finally, it

is shown that the solutions to the Hamilton-Jacobi equation, the so-called generating functions,

form the appropriate probabilistic state space for data assimilation. Two complimentary level-set

algorithms are combined to solve the Hamilton-Jacobi equation computationally efficiently: the
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narrow-band method [40] and the fast-marching method [41]. Along with the ensemble Kalman

filter (Theorem 4), the three algorithms form the backbone of our level-set data assimilation

framework.

3.1. Hamilton-Jacobi equation

The laws of motion of an interface shall be given by

dr

dt
= u(r) , (33)

where r is the position of one point on the interface, and u is the velocity. In Hamiltonian

mechanics, motion is described in phase space using generalized coordinates and momenta [55,

Chapter 3]. With interfaces in mind, a natural choice for the phase space is to use the position r

as generalized coordinates and the normal vector n as generalized momenta.

For the Hamilton-Jacobi equation, the generating function G(r, t) shall satisfy the following

properties:

• The initial interface r(0) is given by a level set G(r(0), 0) = const.

• The moving interface is identified as the level set G(r(t), t) = G(r(0), 0).

• Huygens’ principle [55, Chapter 9] states that∇G = n. Given the choice of phase space, this

is a necessary relationship between the generating function and the generalized coordinates

and momenta.

The first two properties are present in every front-capturing method [8]. The third property,

Huygens’ principle, follows from Hamiltonian mechanics (Appendix B). Physically speaking,

every point on the interface is interpreted as the source of a wave. As the waves propagate

through the domain, they connect each point on the interface to every other point in the domain.

Geometrically speaking, Huygens’ principle gives an eikonal field [56].

It remains to show how the generating function translates into a level-set method. The

Lagrangian L(r, ṙ, t) is given by (Appendix B, Lemma 1)

L(r(t), ṙ(t), t) = 0 , (34)

s.t. G(r(t), t)−G(r(0), 0) = 0 , (35)

s.t. n(t) · n(t)− 1 = 0 . (36)
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The Hamiltonian H(r, n, t), subject to the same constraints as the Lagrangian L(r, ṙ, t) (Eq. (35),

(36)), is given by (Appendix B, Lemma 2)

H(r(t), n(t), t) = u(r(t)) · n(t) . (37)

Finally, the Hamilton-Jacobi equation is given by (Appendix B, Theorem 9)

∂G

∂t
+ u(r(t)) · n(t) = 0 . (38)

The solution to the Hamilton-Jacobi equation, the generating function G(r, t), is defined over

the whole domain. As such, it represents the state of the interface in the probabilistic state

space. Eq. (38) is solved near the interface. Away from the interface, the generating function is

constrained by (Eq. (36))

|∇G| = 1 . (39)

Eq. (39) is an eikonal equation [56]. The solutions to this eikonal equation are signed distance

functions.

3.2. Level-set data assimilation framework

The level-set data assimilation framework presented in this study combines three algorithms:

(i) the narrow-band method to solve the Hamilton-Jacobi equation near the interface [40], (ii) the

fast-marching method to extend the eikonal field from the narrow band to the whole domain [41],

and (iii) the ensemble Kalman filter and smoother to assimilate data [18].

The narrow-band method forms the backbone of the level-set data assimilation framework [40].

It solves the Hamilton-Jacobi equation (Eq. 38) in a narrow band near the interface. Using a

narrow band reduces the computational cost by one order of magnitude compared to finding the

generating function over the whole domain [57]. In a numerical simulation, the spatial resolution

shall be denoted by ∆x and the temporal resolution by ∆t. The temporal resolution has to

satisfy the Courant-Friedrich-Lewy condition u∆t < ∆x at every point on the interface [40].

The narrow-band method consists of the following steps (Fig. 2, left):

Initialize. Before the first timestep, the signed distance field has to be known in a sufficiently

wide neighborhood of the initial interface. It may be obtained from either a previously

computed generating function or exact knowledge of the position of the initial interface.

Localize. At the timestep k, a band T k = {r : G(r, tk) < γ∆x} is formed, where γ is a constant

chosen according to the width of the narrow band. A second, enveloping band Nk = {r :

14



Figure 2: Activity diagrams of narrow-band method (left) and level-set data assimilation (right).

G(r + r′, tk) < γ∆x , ∃|r′| < ∆x} is formed. It follows from the Courant-Friedrich-Lewy

condition that the band Nk contains the band T k+1 formed at the next timestep k + 1.

Advance. The generating function over the band Nk is evolved by one timestep. Note that

the solution G̃k+1(r) is not the generating function at the next timestep k + 1. While

the position of the interface correctly coincides with the level set of the solution G̃k+1(r),

Huygens’ principle is no longer satisfied [58].

Reinitialize. The following Hamilton-Jacobi equation is solved over the band Nk until steady

state is reached [58]:

∂G̃

∂t̃
+ sgn

(
G̃
(
r, t̃
))(∣∣∣∇G̃∣∣∣− 1

)
= 0 , (40)

G̃(r, 0) = G̃k+1(r) . (41)

The steady-state solution G̃(r, t̃ → ∞) gives the generating function G(r, tk+1) over the

band Nk at the timestep k + 1. Note that this Hamilton-Jacobi equation is a numerical
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continuation of the eikonal equation (Eq. (39)), where t̃ denotes a pseudo-time [59].

When observations are available, the prediction step is followed by an update step (Fig. 2,

right). Like the prediction step, the update step involves localization and reinitialization so that

the narrow band follows the position of the interface. Instead of the advancement step, there is

an extension step and an assimilation step:

Extend. While a narrow band is sufficient to capture the motion of an interface, data assimila-

tion has to be performed in one probabilistic state space for all interfaces. In a numerical

simulation, the state comprises the values of the generating function at every grid point.

The fast-marching method extends the generating function from the narrow band to the

whole domain, thus returning a well-defined state. The complexity of the fast-marching

method is O(m2 log(m)) in two dimensions or O(m3 log(m)) in three dimensions, where m

denotes the number of grid points in one dimension [41]. While the generating function

over the whole domain is relatively expensive to compute, the fast-marching method is

only called when observations are available. If combined with the narrow-band method

(complexity O(m) or O(m2) [40]), this level-set method becomes affordable overall.

Assimilate. The ensemble Kalman filter (Theorem 4) and/or smoother (Theorem 6) are ap-

plied. The assimilation step is followed by a localization step and a reinitialization step

in order to prepare the narrow band for the next prediction step. Note that the result of

data assimilation is in general not an eikonal field. While the band localized after data

assimilation may in theory be too narrow, it can be shown that the slopes in the filtered

solutions are in expectation less than or equal to unity (Appendix C).

Combining the building blocks of the level-set method and data assimilation gives the level-set

filtering and smoothing frameworks (Fig. 3). In the following subsections, the update step in the

level-set filtering framework is verified using two analytical test cases: In a one-dimensional test

case, the level-set filtering framework, which represents the analytic view of data assimilation, is

contrasted with the geometric and set-theoretic views of data assimilation. It is shown that the

analytic view of data assimilation works correctly, which sets the stage for its generalization to

higher dimensions. Afterwards, the level-set filtering framework is applied to a two-dimensional

test case, and the effect of the observations on the shape of the interface is discussed. It is shown

how various parameters such as the number of observations and the observation error may affect

the performance of the level-set data assimilation framework.
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Figure 3: Activity diagrams of filtering (left) and smoothing (right) frameworks. The prediction and update steps

are defined in Fig. 2. Note how the smoothing framework (right) builds on top of the filtering framework (left).

3.3. One-dimensional test case

The predicted and observed positions x and y of an interface in one dimension are respectively

given by (Fig. 4)

x ∼ N (x | µψ, Cψψ) , µψ = 0 , Cψψ = 0.64 , (42)

y = x ∼ N (x | µε, Cεε) , µε = 1 , Cεε = 0.36 . (43)

In one dimension, an interface reduces to a point. The normal vector on the interface is unique

up to its orientation. Geometric data assimilation using the Kalman filter (Theorem 3) reduces

to optimal interpolation of the positions µψ and µε (Eq. (23)):

x = µψ +
Cψψ

Cεε + Cψψ
(µε − µψ) = 0.64 . (44)

The filtered position x is closer to the observation than to the prediction in accordance with the

variances Cψψ and Cεε (Fig. 4, left).
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For set-theoretic data assimilation, the characteristic function χ is assumed to be bounded

by ±1 with the interface at χ = 0:

χ(x) =


−1 x < c

0 x = c

1 x > c

, c ∼ N (c | µψ, Cψψ) . (45)

The characteristic function χ follows a Bernoulli distribution, which is the appropriate probability

distribution for a random variable with two possible outcomes, at every location x [60, Chapter 6]:

p (χ(x) = 1) = Φ

(
x− µψ√
Cψψ

)
, p (χ(x) = −1) = 1− Φ

(
x− µψ√
Cψψ

)
, (46)

where Φ denotes the cumulative density function of the normal distribution. The characteristic

function χ does not follow a normal distribution whereas the Kalman filter requires the mean χ

and the covariance function Cχχ:

χ(x) = 2Φ

(
x− µψ√
Cψψ

)
−1 , Cχχ(x1, x2) = 4Φ

(
min(x1, x2)− µψ√

Cψψ

)(
1− Φ

(
max(x1, x2)− µψ√

Cψψ

))
,

(47)

Note that the mean χ is not a characteristic function. Set-theoretic data assimilation using the

Kalman filter (Theorem 3) gives

χ(x) = 2Φ

(
x− µψ√
Cψψ

)
− 1−

4Φ

(
min(x,µε)−µψ√

Cψψ

)(
1− Φ

(
max(x,µε)−µψ√

Cψψ

))
1 + 4Φ

(
µε−µψ√
Cψψ

)(
1− Φ

(
µε−µψ√
Cψψ

)) (
2Φ

(
µε − µψ√
Cψψ

)
− 1

)

(48)

= 2Φ (1.25x)− 1− 4Φ (1.25 min(x, 1)) (1− Φ (1.25 max(x, 1)))

1 + 4Φ (1.25) (1− Φ (1.25))
(2Φ (1.25)− 1) . (49)

The interface is localized at x ≈ 0.139 (Fig. 4, middle). The filtered position x is closer to

the prediction than to the observation although the prediction variance Cψψ is larger than the

observation variance Cεε. Note that the filtered position x is independent of the variance Cεε.

For analytic data assimilation, the predicted and observed positions x and y are viewed as

points on the level sets of the predicted and observed generating functions respectively. It follows

from Eq. (42) that the predicted generating function is given by

G(x) ∼ N (G(x) | x− µψ, Cψψ) . (50)
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The mean G and the covariance function CGG are given by

G(x) = x− µψ , CGG(x1, x2) ≡ Cψψ . (51)

Analytic data assimilation using the Kalman filter (Theorem 3) on the generating function gives

G(x) = x− µψ −
Cψψ

Cεε + Cψψ
(µε − µψ) = x− 0.64 . (52)

The filtered position x is given by the level set of the filtered generating function G (Eq. (52)),

which is identical to the result from geometric data assimilation (Fig. 4, right).

In summary, geometric, set-theoretic and analytic data assimilation are compared. Set-

theoretic data assimilation gives implausible results in one dimension, and is thus discarded

from any further consideration. Geometric and analytic data assimilation give consistent results

in one dimension. Nevertheless, the generalization of geometric data assimilation to higher

dimensions is not straightforward because it requires a one-to-one correspondence between the

predicted interface and the observations. In the next test case, the generalization of analytic

data assimilation, as the most feasible framework, to higher dimensions is investigated.
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Figure 4: Data assimilation from geometric (left), set-theoretic (middle) and analytic view (right). The blue

square at x = 0 marks the predicted position of the interface. The red circle at x = 1 marks the observed position

of the interface. The grey, dash-dotted lines give the coordinates of the filtered position of the interface. In one

dimension, data assimilation from the geometric view (left) reduces to optimal interpolation of the x coordinates,

weighted by Cψψ and Cεε respectively. The geometric solution may be considered the most intuitive one. In the

middle figure, the Kalman filter is applied to the characteristic function χ (blue line). The set-theoretic solution

(dashed line) localizes the interface at x ≈ 0.139, significantly differently from the geometric solution. This shows

that oft-used physical quantities, which exhibit behavior similar to a characteristic function in the vicinity of the

interface of interest, are not suitable for data assimilation. In the right figure, the Kalman filter is applied to

the generating function G (blue line). The analytic solution (dashed line) localizes the interface at x = 0.64,

identically to the the geometric solution.
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3.4. Two-dimensional test case

The distance field S of a corner in (x0, y0) is given by

S(x, y;x0, y0) =


x− x0 π

4 ≤ θ ≤ π

y − y0 −π2 ≤ θ ≤ π
4

−
√

(x− x0)2 + (y − y0)2 π ≤ θ ≤ 3π
2

. (53)

For prediction, the coordinates of the corner (x0, y0) are taken to be independent and normally

distributed:

x0 ∼ N (x0 | 0, 1) , y0 ∼ N (y0 | 0, 1) . (54)

A sketch of the corner and its median distance field S(x, y; 0, 0) are given in Fig. 5.
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(x, y)

r

θ
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Figure 5: Sketch of a corner (left) and its median distance field S(x, y; 0, 0) (right). The walls of the corner (left,

dashed line), which are represented by the zero-level set in analytic data assimilation, are parallel to the positive x

and y axes and share their orientations (right). The points with 0 < θ < π
2

are defined to have positive distance.

For analytic data assimilation, the predicted position x is again viewed as the level set of a

predicted generating function. It follows from Eq. (53) and (54) that the predicted generating

function is given by

G(x, y) ∼ N (G(x, y) | G(x, y), CGG(x1, y1, x2, y2)) , (55)
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where the mean G and the covariance function CGG are given by

G(x, y) = Ex0,y0 [S](x, y) (56)

=

∫ ∞
−∞

∫ ∞
−∞

S(x, y; ξ, η)p(x0 = ξ, y0 = η) dξdη , (57)

CGG(x1, y1, x2, y2) = Ex0,y0 [(S − Ex0,y0 [S])× (S − Ex0,y0 [S])] (x1, y1, x2, y2) (58)

= Ex0,y0 [S × S] (x1, y1, x2, y2)− Ex0,y0 [S](x1, y1)Ex0,y0 [S](x2, y2) (59)

=

∫ ∞
−∞

∫ ∞
−∞

S(x1, y1; ξ, η)S(x2, y2; ξ, η)p(x0 = ξ, y0 = η) dξdη

− Ex0,y0 [S](x1, y1)Ex0,y0 [S](x2, y2) , (60)

where Ex0,y0 denotes the expected value over the random variables x0 and y0, and the ’×’ symbol

denotes the Cartesian product of two random variables. The mean G and the covariance function

CGG are computed from Eq. (57) and (60) using Gauss-Hermite quadrature [61]. Alternatively,

the mean and the variance function can be computed from the following one-dimensional integrals

on the unit circle:

Ex0,y0 [S](x, y) =

∫ π

π/4

cos(θ)g(θ) dθ +

∫ π/4

−π/2
sin(θ)g(θ) dθ −

∫ 3π/2

π

g(θ) dθ , (61)

Ex0,y0

[
S2
]

(x, y) =

∫ π

π/4

cos(θ)2h(θ) dθ +

∫ π/4

−π/2
sin(θ)2h(θ) dθ +

∫ 3π/2

π

h(θ) dθ . (62)

The auxiliary functions g and h are given by

g(θ) = ϕ(w)
[(
v2 + 1

)
Φ(v) + vϕ(v)

]
, h(θ) = ϕ(w)

[(
v2 + 2

)
ϕ(v) +

(
3v + v3

)
Φ(v)

]
,

(63)

where ϕ and Φ denote the probability density function and cumulative distribution function of

the normal distribution. The natural coordinates (v, w) are given by

v = x cos(θ) + y sin(θ) , w = x sin(θ)− y cos(θ) . (64)

The mean and the standard deviation of the predicted generating function are shown in Fig. 6.

Artefacts from the interaction between the nonlinearity of distance fields and the assumption

of normal distributions are visible: The mean of the predicted generating function (Fig. 6, left)

is rounded in the corner whereas distance fields are supposed to have right angles (Fig. 5).

The standard deviation of the predicted generating function (Fig. 6, right) assumes non-unity

values along θ = 45◦ although the coordinates of the corner are independent and normally

distributed (Eq. (54)). The effects of the artefacts in the predicted generating function are now

examined in various observation scenarios.

22



−10 −5 0 5 10
−10

−5

0

5

10

−12

−6

0

6

12

−10 −5 0 5 10
−10

−5

0

5

10

0.800

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

Figure 6: Mean (left) and standard deviation (right) of predicted generating function. The zero-level set in the

mean is marked by a dashed line. Away from θ = 45◦, the mean of the generating function comes close to its

median (Fig. 5, right). Note that the distance field S (Eq. (53)) is smooth but not differentiable on θ = 45◦.

This explains why the right angles observed in the median are not preserved but are rounded in the mean. At

the origin, the right angle is thus offset by 1
2
√
π

+ 1
4

√
π
2

≈ 0.5954. Away from the origin, the right angles are

asymptotically offset by 1√
π

≈ 0.5642. The same can be observed in the standard deviation. Away from θ = 45◦,

the standard deviation is close to unity, which is identical to the standard deviation in the coordinates of the

corner (Eq. (54)). At the origin, the standard deviation assumes a value of
√

5
4
− 3

4π
− π

32
− 1

4
√
2
≈ 0.8581. Away

from the origin, the standard deviation asymptotically assumes a value of
√

1 − 1
π

≈ 0.8256.

Unlike the one-dimensional example, where one point fully characterizes an interface, obser-

vations in two (and higher) dimensions vary in resolution, ranging from the position of one point

on the interface to a full sampling of the interface. In Fig. 7, the influence of one observation

depending on its location is investigated. It is evident that one observation is insufficient to

represent a corner. Nevertheless, analytic data assimilation gives qualitatively meaningful re-

sults in that the observation shifts the vertical and horizontal edges proportionally depending

on the location of the observation. This is fundamentally different from geometric data assimila-

tion (Fig. 4, left), where every point on the interface is required to correspond to an observation.

This makes the presented (analytic) level-set data assimilation framework fully front-capturing

(rather than front-tracking), both with respect to the description of the motion of the interface

and the assimilation of data. As the number of observation points increases, the right angle in

the corner is retrieved (Fig. 8).

It is worth pointing out the probabilistic nature of the presented level-set data assimilation

framework. Similar to soft clustering [60], the points on the predicted interface are not associated

with distinct observations but with all observations to varying degrees. If we consider ψa to be
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Figure 7: Means of filtered generating functions for one observation of the interface at various locations. The

observed location is marked by a cross. Its coordinates are specified in each caption. The zero-level set is marked

by a dashed line. Without loss of generality, the observation error is set to zero. (a) The observation is located

significantly closer to the vertical than the horizontal edge of the predicted generating function (Fig. 6, left).

Hence, the observation is primarily associated with points on the vertical edge. Data assimilation thus mainly

shifts the points on the vertical edge while the vertex and the horizontal edge remain largely unaffected. (b) As

the location of the observation moves downwards, the observation gets more strongly associated with the vertex

of the corner while the horizontal edge remains largely unaffected. (c) As the location of the observation crosses

the x-axis, data assimilation also shifts the points on the horizontal edge. (d) As the location of the observation

reaches the diagonal, data assimilation equally affects the vertical and horizontal axes of the corner.

a function of ψf , Cfψψ, y, Cεε and M (Eq. (23)), the sensitivity to data is given by

∂ψa

∂y
=
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

, (65)

where the columns represent the sensitivities to individual observations. The shift in the zero-

level set (Fig. 8) is the superposition of the contributions due to the individual observations. For

example, while the points on the vertical edge far away from the vertex are mainly affected by

the uppermost observation (Fig. 9a), the other observations have a vanishing effect on them as

well (Fig. 9b-d). Nevertheless, the shape deformations are more localized compared to Fig. 7.

While Eq. (65) does not formally depend on the observations y, it includes information about

the number and the locations of the observations signified by the measurement operator M .

Note that each observation of interest leaves the values of the generating function at the other

observation locations intact.

In summary, analytic data assimilation is applied to a prototypical two-dimensional shape, a

corner. Within the level-set data assimilation framework, the differences between distance fields,

predicted generating functions and filtered generating functions are illustrated. In particular,

the effects of the number of observation points and their locations are studied. In the following

section, the level-set data assimilation framework is applied to a more realistic experiment. In

general, the predicted generating function is taken as a composition of straight sections, which
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(a) 3 observations. (b) 7 observations. (c) 15 observations. (d) 31 observations.
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Figure 8: Means of filtered generating functions for multiple observations of the interface at various resolutions.

The observed locations are marked by crosses and the zero-level sets by dashed lines. The observations are

equidistantly spaced between (−3, 3) and (3,−3) via (−3,−3). The number of observations is specified in each

caption. For better readability, the observations are not marked in (b)-(d). Without loss of generality, the

observation error is set to zero. From (a) to (d), as the number of the observation increases, the observations

give a clearer image of the observed corner. Hence, the zero-level set of the the filtered generating function more

closely resembles a corner.

(a) (−3, 3) (b) (−3, 1) (c) (−3,−1) (d) (−3,−3)
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Figure 9: Means of filtered generating functions due to individual observations. The observed locations are marked

by crosses and the zero-level sets by dashed lines. The observations are equidistantly spaced between (−3, 3) and

(3,−3) via (−3,−3). The location of the observation of interest is specified in each caption. Without loss of

generality, the observation error is set to zero.

exhibit the behavior discussed for the one-dimensional test case, and strongly curved sections

insufficiently resolved by the observations, which exhibit the behavior discussed for the two-

dimensional test case. The theoretical insights from this section will be referenced throughout

the next section.

4. Twin experiments for a premixed flame inside a duct

Thermoacoustic instabilities are a persistent challenge in the design of jet and rocket engines:

Velocity and pressure oscillations inside the combustion chamber interact with the flame and

cause an unsteady heat release rate. If moments of higher heat release rate coincide with moments
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of higher pressure (and lower heat release rate with lower pressure), acoustic oscillations arise.

This can lead to large-amplitude oscillations causing structural damage in the jet or rocket

engine [62, 63].

The so-called G-equation model is a reduced-order model to study the flame dynamics which

lead to heat release rate perturbations [9, 10]. The premixed flame is modeled as an interface

captured by a level set. The velocity of a point in the level set is the sum of the flame speed, which

is normal to the interface and points towards the unburnt gas, and the underlying flow field. The

underlying flow field includes both hydrodynamic and acoustic contributions. The G-equation

model is used to compute flame transfer functions (FTF) or flame describing functions (FDF),

which give the heat release perturbation to a given velocity perturbation. Coupled with linear

acoustics models, the G-equation model has been very successful in qualitatively characterizing

the linear and nonlinear dynamics of self-excited thermoacoustic oscillations [11, 12, 64, 65].

We demonstrate our level-set data assimilation framework by performing twin experiments

for the G-equation model applied to a ducted premixed Bunsen flame under acoustic forcing. In

our twin experiments, both the model predictions and the observations come from G-equation

simulations, but with different sets of parameters [66, Chapter 9]. This leads to uncertainties in

the parameters and, as a result, in the states. In the absence of uncertainties in the model, the

twin experiment is an important benchmark in the quantitative assessment of a data assimilation

framework because it becomes possible to compare filtered and smoothed solutions to a reference

solution at all times [66, Chapter 8]. An example for the application of our level-set data

assimilation framework to more realistic observations from a direct numerical simulation can be

found in the proceedings of the 2018 CTR Summer Program [67].

4.1. Reference solution

The G-equation is given by [8, Chapter 2]

∂G

∂t
+ [u(r, t)− sLn] · ∇G = 0 , (66)

where the underlying flow field is denoted by u(r, t) and the laminar flame speed by sL. For

|∇G| = 1, the G-equation is formally equivalent to the Hamilton-Jacobi equation (Eq. 38).

The underlying flow field u(r, t) is a superposition of the steady, inviscid flow field U and the

time-dependent perturbation velocity field u′(r, t). In the reduced-order model of u′(r, t), the

perturbation has an amplitude εU , and travels downstream at the phase speed U/K, where K

and ε are model parameters [69]. In the axisymmetric case, the cylindrical components of the
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Table 4: G-equation parameters for the reference simulation.

Parameter ri [m] ra [m] U [m/s] sL [m/s] ω [rad/s] K [-] ε [-]

Parameter value 0.006 0.012 1.0 0.164 277.78 1.0 0.1

perturbation velocity field are given by

u′(r, t) =


u′ρ

u′θ

u′z

 =


1
2kρεU sin(kz − ωt)

0

εU cos(kz − ωt)

 , (67)

where the wavenumber k and the angular frequency ω satisfy the dispersion relation ω(k) =

Uk/K. The perturbation velocity field u′(r, t) is, mathematically speaking, divergence-free, and,

physically speaking, satisfies the continuity equation.

In Fig. 10, a sketch of the ducted premixed flame is shown. The ducted premixed flame is

forced at an angular frequency of 277.78 rad/s. Tab. 4 shows the measurements of the burner

and the tube. The G-equation is numerically solved using the narrow-band level-set method

with distance reinitialization [40, 58]: The computational domain is discretized using a weighted

essentially non-oscillatory (WENO) scheme in space and a total-variation diminishing (TVD)

version of the Runge-Kutta scheme in time, which give up to fifth-order accuracy in space and

third-order accuracy in time [70, 71, 72]. At the base of the flame, a rotating boundary condition

is used [73]. The G-equation solver has been verified in a number of studies [74, 11, 12, 75, 65].

These studies showed that the G-equation reproduces the dynamics of premixed flames only

qualitatively, not quantitatively. With our level-set data assimilation framework, significant

improvements on quantitative predictions are achieved. In axial and radial coordinates, a uniform

401× 401 Cartesian grid is used, which corresponds to 30µm× 180µm grid cells. An advection

Courant-Friedrich-Lewy (CFL) number of 0.02 is chosen, which corresponds to a timestep of

3.6µs or approximately 6,283 timesteps over one period.

Snapshots of the reference solution to the G-equation for the ducted premixed flame are shown

in Fig. 11. The flame is attached to the burner lip, while the perturbations travel from the base

of the flame to the tip. When the perturbations are sufficiently large, a fuel-air pocket pinches

off. In our reduced-order model, the perturbations are mainly governed by two non-dimensional

parameters K and ε, which govern phase speed and amplitude respectively [69]. In practice,

neither parameter is accurately known a priori, which is a major source of uncertainty.
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Figure 10: Sketch of the ducted premixed flame without perturbations (left). The superposition of the underlying

flow field and the propagation of the premixed flame into the unburnt gas gives velocity vectors, which are locally

tangential to the flame surface (right).

4.2. Combined state and parameter estimation

Three variations of the twin experiment are performed:

Monte-Carlo experiment. An ensemble of 32 G-equation simulations is performed. Each

simulation has a different set of parameters K and ε. They are independently sampled

from a normal distribution with a standard deviation of 20 %.

State estimation. In addition to the procedure described for the Monte-Carlo experiment,

the ensemble Kalman filter (Theorem 4) is applied every 1,000 timesteps to update the

discretized generating function G while leaving each set of parameters K and ε unaltered.

The observations are extracted from the reference solution (Section 4.1): The measurement

operator M is an indicator matrix which identifies all grid points in the reference solution

adjacent to its zero-level set. All aforementioned grid points are treated as observations

of the flame surface. As such, all entries in the vector yk are set to 0. The observation

error σε is set to 60µm, which corresponds to two grid cells.

Combined state and parameter estimation. In addition to the procedure described for the

state estimation, the discretized generating function G is augmented by appending the pa-

rameters K and ε to the state vector (Eq. 6). Thus, both the state and the parameters are
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Figure 11: Snapshots of G-equation simulation over one period of harmonic forcing. The fuel-air mixture leaves

the burner at the bottom of each frame. The infinitely thin flame surface separates the burnt gas (red) from the

unburnt gas (blue). Each snapshot from left to right is distanced by a quarter of the forcing period.

updated whenever data in the form of observations from the reference solution is assimi-

lated.

In each variation of the twin experiment, the k-th entry in the state vector ψ is marginally

distributed according to

ψ[k] ∼ N (ψ[k] | ψ[k], Cψψ[k, k]) . (68)

The mean ψ[k] and the variance Cψψ[k, k] are computed from Eq. (25). Explicitly, the likelihood

for the flame surface to be found at the location of the k-th entry is given by

p[k] =
1√

2πCψψ[k, k]
exp

(
− ψ[k]2

2Cψψ[k, k]

)
. (69)

Alternatively, the logarithm of the normalized likelihood is given by [76]

log

(
p[k]

p0[k]

)
= − ψ[k]2

2Cψψ[k, k]
. (70)

In Fig. 12, the logarithm of the normalized likelihood is shown for the three variations of the

twin experiment. Its zero-level set gives the maximum-likelihood location of the flame surface.

The more negative the value at a location is, the less likely the flame surface is to be found there.

In Fig. 12a, the logarithm of the normalized likelihood is shown for the Monto-Carlo experiment.

As the perturbation travels from the base of the flame to the tip, the high-likelihood region

for the location of the flame surface spreads out. The high-likelihood region is largest when

fuel-air pockets pinch off, which represents maximal uncertainty. In Fig. 12b, the logarithm of

the normalized likelihood is shown for the twin experiment with state estimation. A qualitative

comparison to Fig. 12a shows that the high-likelihood region for the location of the flame surface
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is significantly tighter. While the high-likelihood region still grows as the perturbation travels, the

regular assimilation of data suppresses it to the vicinity of the observed flame surface. In Fig. 12c,

the logarithm of the normalized likelihood is shown for the twin experiment with combined state

and parameter estimation. After few data assimilation cycles, the state-augmented ensemble

Kalman filter has learnt the parameters K and ε almost exactly. Knowledge of the parameters

enables highly precise predictions of the location of the flame surface, even during pinch-off events.

Unlike in Fig. 12a and b, no growth in the high-likelihood region is qualitatively discernable.

A global, more quantitative measure for the uncertainty in the location of the flame surface

is the root mean square (RMS) error, which is defined as the square-root of the trace of the

covariance matrix of the ensemble (Eq. (25)):

RMS error =

√√√√ 1

n− 1

N∑
j=1

(
ψj − ψ

)T (
ψj − ψ

)
. (71)

In Fig. 13, the RMS error is plotted over time for the three variations of the twin experiment

from t = 0 for eight cycles. The RMS error is initially zero in all three twin experiments because

all members in each ensemble share the same initial condition. In the Monte-Carlo experi-

ment (Fig. 13, blue line), the RMS error subsequently grows until it reaches a high-uncertainty

plateau. Momentary spikes in the uncertainty occur approximately every 6000 timesteps, and

coincide with the pinch-off events observed in the reference solution (Fig. 11). With state es-

timation (Fig. 13, orange line), the assimilation of data regularly suppresses the uncertainty

as qualitatively observed in Fig. 12b. As a result, the predictions of the location of the flame

surface significantly improve. With combined state and parameter estimation (Fig. 13, green

line), the predictions further improve. Beginning with the first instance of data assimilation at

timestep 1,000, the uncertainty steadily decreases until it reaches a low-uncertainty plateau after

approximately 10,000 timesteps. At this point, the state-augmented ensemble Kalman filter has

optimally calibrated the parameters, and the state has reached a statistically stationary state.

To gain insight into the effect of combined state and parameter estimation, it is instructive

to analyze the probability distributions in the parameters. In Fig. 14, the marginal distributions

in the normalized residuals of K and ε are shown, signified by their means and three-sigma

confidence levels at every timestep. By timestep 15,000, no improvement is visible in either

the estimates of the means or the uncertainties, which matches the evolution of the RMS er-

ror (Fig. 13). While both K and ε quickly converge to the values used in the reference simula-

tion (Tab. 4), the low uncertainty in K compared to ε reflects the physical significance of this

parameter: The nonlinear dynamics of a premixed flame are highly sensitive to the timings of
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(a) Monte-Carlo experiment.
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(c) Combined state and parameter estimation.

Figure 12: Snapshots of the logarithm of the normalized likelihood (Eq. (70)) over one period for the three

variations of the twin experiment respectively. The observations (black) are extracted from a reference solution to

the G-equation (Fig. 11). High-likelihood (yellow) and low-likelihood (green) regions are shown. Each snapshot

from left to right is distanced by a quarter of the forcing period.
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Figure 13: Logarithmic plot of root mean square (RMS) error over 50,000 timesteps for the Monte-Carlo ex-

periment (blue line) as well as the twin experiments with state estimation (orange line) and combined state

and parameter estimation (green line). 6,283 timesteps correspond to one period of harmonic forcing. Data is

assimilated every 1,000 timesteps. The black rectangle marks the time window depicted in Fig. 12.

pinch-off events [77], which in turn depend on the phase speed at which perturbations travel

along with the flame. In our reduced-order model based on the G-equation, the phase speed is

regulated by the parameter K, which makes it highly observable even in the presence of obser-

vation noise. Similar to sensitivity analysis [78, 79? ], this physical insight is gained from the

inspection of the uncertainties, which here exceed the residuals between the means and the set

of reference values by several orders of magnitude.

Finally, combined state and parameter estimation using the ensemble Kalman smoother is

performed (Theorem 6). In Fig. 14, the marginal distributions in the normalized residuals of K

and ε are shown for both the ensemble Kalman filter and smoother. The effect of the ensemble

Kalman filter has already been described in Fig. 14. In the forward-backward implementation,

the ensemble Kalman smoother takes the last solution of the ensemble Kalman filter and works

itself backwards in time (Theorem 2). In terms of information theory, the ensemble Kalman

smoother takes at every timestep k all observations, from the past, present and future, into

account compared to the ensemble Kalman filter, which only takes the past and the present

into account. Statistically speaking, the smoothed distributions are more strictly conditioned

than the filtered distributions, over y1:N compared to y1:k (Tab. 3). This surplus in information

is evident in the form of lower error bars not just towards the end of the combined state and

parameter estimation, but extending all the way to the very first instances of data assimilation.

The evaluation of Eq. 6 does not rely on the solution of the governing equations, but instead relies

on the predicted and filtered distributions in storage. The ensemble Kalman smoother is thus a
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Figure 14: Logarithmic plots of normalized residuals of K (left) and ε (right) over 20,000 timesteps for com-

bined state and parameter estimation; linear scales for normalized likelihoods between ±10−2. The marginal

distributions in K and ε are represented by their means (crosses) and three-sigma confidence levels (error bars).

computationally inexpensive tool to quantify the uncertainties especially at the beginning of the

simulation, where little retrospective data is available. In analogy to direct-adjoint looping [81,

82], combined state and parameter estimation based on filtering and smoothing can be used to

obtain otherwise inevitably ad-hoc initial conditions and parameters.
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Figure 15: Logarithmic plots of normalized residuals of K (top) and ε (bottom) over 50,000 timesteps for com-

bined state and parameter estimation using the ensemble Kalman filter (blue cross) and the ensemble Kalman

smoother (orange square); linear scales for normalized likelihoods between ±10−2.

4.3. Effect of observation noise

In a first parameter study, the observation error σε is varied to investigate the effect of

observation noise on the level-set data assimilation framework. In Section 4.2, it has been

established that combined state and parameter estimation eventually leads to a statistically

stationary state. In Fig. 16, the same RMS error is plotted over time for different observation

errors σε. This reveals that the sustained low uncertainties are epistemic in nature [83]: Every

reduction in the observation error σε by one order of magnitude reduces the RMS error by one

order of magnitude. It is clear that the observation error poses a lower epistemic bound on how

low the uncertainty can be reduced by combined state and parameter estimation.

In Fig. 17, the marginal distributions in the normalized residuals of K and ε are plotted over

time for the different observation errors. The means of the residuals quickly vanish for all three

observation errors σε. For the lower observation errors, the error bars increasingly fail to contain

the zero residual. Considering that three sigmas correspond to a confidence of 99.7 % under the

assumption of normal distributions (Section 2.3), the frequency at which the error bars fail leads

to the conclusion that the level-set data assimilation framework underpredicts the uncertainties

for low observation errors. This is in agreement with the theoretical analysis of the level-set data
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Figure 16: Logarithmic plot of root mean square (RMS) error over 50,000 timesteps for combined state and

parameter estimation with different observation errors σε (σε = 60µm blue line, σε = 6µm orange line, σε =

0.6µm green line).
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Figure 17: Logarithmic plots of normalized residuals of K (left) and ε (right) over 20,000 timesteps for combined

state and parameter estimation with different observation errors (σε = 60µm blue cross, σε = 6µm orange square,

σε = 0.6µm green circle); linear scales for normalized likelihoods between ±10−4.

assimilation framework for the two-dimensional test case (Section 3.4): Although the individual

simulations predict the formation of sharp cusps as the perturbations travel on the respective

flame surfaces, the cusps are rounded in the mean of the ensemble (Fig. 6, left). Furthermore,

the observable sharpness of a cusp depends on the local number of observations of points on

the flame surface. A decrease in the observation error σε without an increase in the number

of observations amounts to a relative decrease in the resolution of the observed cusp (Fig. 8).

Therefore, the local values of the eikonal fields of the individual simulations significantly deviate

from normal distributions (Fig. 6, right), which leads to incorrect distributions and uncertainties.
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Figure 18: Logarithmic plot of root mean square (RMS) error over 50,000 timesteps for combined state and

parameter estimation with different subsamples of observation points (100 % blue line, 10 % orange line, 2 %

green line).

4.4. Effect of number of observations

In a second parameter study, subsamples of the observation points are used to investigate the

effect of the number of observations on the level-set data asssimilation framework. Furthermore,

this serves to illustrate the superiority of our analytic view over the geometric view in data

assimilation (Section 3): In the geometric view, the observed interface must be parametric or at

least as highly resolved as the grid used in the level-set method to allow the optimal interpolation

of a sufficiently large number of points on the predicted interfaces. This restriction does not

exist in the analytic view. Hence, the effect of dispersed observation points on the level-set data

assimilation framework is also studied here.

In Fig. 18, the RMS error is plotted over time for different randomly sampled subsets of the

observation points. In Section 4.2, it has been established that combined state and parameter es-

timation eventually leads to a statistically stationary state after approximately 10,000 timesteps.

With 10 % of the observation points, it takes more than 30,000 timesteps to reach a comparable

low-uncertainty plateau. With 2 % of the observation points, the RMS error is still decreasing

after 50,000 timesteps while repeatedly failing to correctly predict the pinch-off events for the

whole ensemble.

In Fig. 19, the marginal distributions in the normalized residuals of K and ε are plotted over

time for the different subsamples. While the means of the residuals quickly vanish for all three

subsamples, the confidence levels for the incomplete subsamples improve less rapidly than for the

original sample of observation points. This is in agreement with the theoretical analysis of the

level-set data assimilation framework for the two-dimensional test case (Section 3.4): In particular

for the 2 %-subsample, certain features in the observed interfaces remain underresolved at the
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Figure 19: Logarithmic plots of normalized residuals of K (left) and ε (right) over 20,000 timesteps for combined

state and parameter estimation with different subsamples of observation points (100 % blue cross, 10 % orange

square, 2 % green circle); linear scales for normalized likelihoods between ±10−2.

individual timesteps (Fig. 7). Nevertheless, the ensemble at a timestep k representing the filtered

probability distribution p(xk, θ | y1:k, f) (Tab. 3) reflects the knowledge of the observations

at all previous timesteps due to the Markov chain property of the probabilistic state space

model (Section 2.1). In theory, the lack of resolution in the observations is compensated by more

instances of data assimilation to accumulate the same amount of information. The result is a

similar statistically stationary state reached at a later time.

5. Conclusion

Reduced-order models based on level-set methods are widely used tools to qualitatively cap-

ture and track the nonlinear dynamics of an interface. In this paper, we enhance such a level-set

model with a statistical learning technique in order to make the model quantitatively predic-

tive. The statistical learning method is Bayesian, so the uncertainty of the outputs is naturally

included in this framework. The main ingredients of the level-set statistical learning are (i) a

reduced-order model of an interface based on a level-set method with a law of motion; (ii) the

ensemble Kalman filter and smoother; and (iii) external reference data with its uncertainty. The

ensemble Kalman filter uses Bayes’ rule as its first principle while assuming normal distributions

when data is assimilated. The output of the algorithm is the combined state and parameters

estimation, which provides the most likely position of the interface and the model’s parameters

given observations. These observations can originate from experimental data or high-fidelity

simulations.
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To show and verify the algorithm, we perform twin experiments, where the observations are

produced by the same code. The assimilation of data from experimental data or high-fidelity

simulation requires virtually no modification to the proposed algorithm. The algorithm is applied

to three test cases, which are of increasing complexity.

First, a one-dimensional case is presented. We choose the Hamilton-Jacobi generating func-

tions over the whole domain to perform data assimilation, which is called the“analytic approach”.

The one-dimensional example shows that the analytic approach overcomes the inaccuracy of the

set-theoretic approach, which is based on characteristic functions. Moreover, it is argued that

the analytic approach is more straightforward to implement that the geometric approach when

moving to higher dimensions.

Second, a two-dimensional, time-independent case is presented, where the position of a sharp

corner has to be predicted. It is shown that the level-set data assimilation framework proposed

is fully front capturing. The effect that the number of observations has on capturing a sharp

corner is investigated. The sensitivity of the analysis solution to each observation is calculated.

The one- and two-dimensional cases show that the analytic approach we adopt is more robust

than the geometric and set-theoretic approaches that have been used in the past.

Third, the time-dependent nonlinear dynamics of a conical forced premixed flame is studied.

The most uncertain states are pinch-offs and the formation of sharp cusps, which are highly

nonlinear topological changes of the interface. The two most uncertain parameters are the

amplitude of the velocity perturbation at the flame’s base and the perturbation phase speed that

wrinkles the flame. In the twin experiment, the combined state and parameter estimation fully

recovers the reference solution, which validates the algorithm. Finally, the effect of uncertainty

and number of observations is analysed. The uncertainty on the observation most influences the

detection of the pinch-off events or the formation of sharp cusps. The data assimilation analytic

approach is shown to be versatile because it can assimilate data any time it becomes available,

avoiding the cumbersome parameterization required in a geometric approach.

The level-set data assimilation framework is applicable to a number of problems in computa-

tional physics involving the motion of an interface [1]. For example, a physical model coupling

the dynamics of a premixed flame with an acoustic model of a duct may be used for a data-driven

investigation of the Rijke tube [9, 10]. More generally, a number of computational fluid dynam-

ics (CFD) models of premixed combustion, short of direct numerical simulations, combine the

laws of motion with conservation laws for the inert flow, e.g. the Bray-Moss-Libby model or the

flamelet model [8]. Although it is tempting to directly apply data assimilation to the primitive
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variables in the Navier-Stokes equations, the discontinuities in density, temperature and species

concentrations in light of the theoretical analysis of the set-theoretic approach to level-set data

assimilation raise doubts as to whether the kinematics of a premixed flame, which are crucial to

thermoacoustics, will be correctly predicted.

Future work will focus on extending the applications of the proposed level-set data assim-

ilation framework. When applied to experiments, the effects of imperfect models will need to

be mitigated [66], for example with techniques such as covariance inflation [84, 85] and localiza-

tion [86]. Future work will also assess the uncertainties in the model, as opposed to uncertainties

in the state and parameters.
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Appendix A. Bayesian Inference

Theorem 7 (Marginalization). For a joint probability distribution p(X,Y ), the marginal prob-

ability distributions p(X) and p(Y ) are given by

p(X) =

∫
p(X,Y ) dY , (A.1)

p(Y ) =

∫
p(X,Y ) dX . (A.2)

Theorem 8 (Bayes’ rule). The conditional probability distributions p(X | Y ) and p(Y | X) are

related to the joint probability distribution via

p(X,Y ) = p(X)p(Y | X) = p(Y )p(X | Y ) . (A.3)

The conditional probability distribution p(X | Y ) is sometimes referred to as the inverse of the

conditional probability distribution p(Y | X). The inverse is given by Bayes’ rule:

p(X | Y ) =
p(X,Y )

p(Y )
=
p(X)p(Y | X)

p(Y )
. (A.4)

If p(X) and p(Y | X) are given, p(Y ) can be computed through marginalization.

Appendix B. Hamiltonian mechanics

Lemma 1 (Lagrangian).

L(r(t), ṙ(t), t) = 0 . (B.1)

Proof. The generating function is formally the same as the action integral [55, Chapter 9]. Thus,

the Lagrangian L(r, ṙ, t) is the total derivative of the generating function:

L(r(t), ṙ(t), t) =
d

dt
G(r(t), t) =

d

dt
G(r(0), 0) = 0 . (B.2)

Lemma 2 (Hamiltonian).

H(r(t), n(t), t) = u(r(t)) · n(t) . (B.3)

Proof. A Legendre transform of the Lagrangian L(r, ṙ, t) (Eq. (B.1)) gives the HamiltonianH(r, n, t):

H(r(t), n(t), t) = ṙ(t) · n(t)− L(r(t), ṙ(t), t) = u(r(t)) · n(t) . (B.4)
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It remains to be shown thatH(r, n, t) is indeed a Hamiltonian. The constraints, Eq. (35) and (36),

are only functions in r and n respectively. Hence, a suitable choice of Lagrange multipliers λr

and λn gives
∂H
∂n

= u+ λnn = u =
dr

dt
, (B.5)

∂H
∂r

= n · ∇u+ n× (∇× u) + λr
∂G

∂r
= n · ∇u+ n× (∇× u)− [n · (n · ∇u)]n = −dn

dt
. (B.6)

Eq. (B.5) follows from the laws of motion (Eq. (33)). Eq. (B.6) follows from tensor calculus:

dn

dt
=
∂n

∂t
+ u · ∇n+ µnn , (B.7)

where µn is the Lagrange multiplier for the constraint imposed by Eq. (36). The gradient of the

total derivative of the generating function gives an expression for the partial derivative of the

normal vector (Lemma 1):

∇
(

dG

dt

)
= ∇

(
∂G

∂t
+ u · ∇G

)
=
∂n

∂t
+∇ (u · n) = 0 . (B.8)

The dot product of the normal vector with the total derivative of the normal vector gives an

expression for the Lagrange multiplier µn:

n · dn

dt
=

1

2

d

dt
(n · n) = 0 , (B.9)

n · dn

dt
= n ·

(
∂n

∂t
+ u · ∇n+ µnn

)
(B.10)

= n · ∂n
∂t

+
1

2
(u · ∇) (n · n) + µnn · n (B.11)

= −n · ∇ (u · n) + µn . (B.12)

This gives:

dn

dt
= −∇ (u · n) + u · ∇n+ [n · ∇ (u · n)]n (B.13)

= −u · ∇n− n · ∇u− u× (∇× n)− n× (∇× u) + u · ∇n+ [(n · ∇u) · n]n+ [(n · ∇n) · u]n

(B.14)

= −n · ∇u− n× (∇× u) + n [n · (n · ∇u)] . (B.15)

Note that ∇×n = 0 because n = ∇G. This concludes the proof that H(r, n, t) is a Hamiltonian.
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Theorem 9 (Hamilton-Jacobi equation).

∂G

∂t
+ u(r(t)) · n(t) = 0 . (B.16)

Proof. The Hamilton-Jacobi equation is given by [55, Chapter 9]

∂G

∂t
+H =

∂G

∂t
+ u · n = 0 . (B.17)

Appendix C. Level-set methods

Lemma 3. The covariance matrix of a gradient in a filtered generated function without reini-

tialization is given by

E
[
Dψa (Dψa)

T
]

= E
[
Dψf

(
Dψf

)T ]−D (MCfψψ

)T [
Cεε +MCfψψM

T
]−1

MCfψψD
T , (C.1)

where D denotes the gradient operator.
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Proof. Eq. (23) gives

Dψa = Dψf +D
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1 (

yk −Mψf
)

, (C.2)

Dψa (Dψa)
T

= Dψf
(
Dψf

)T
+Dψf

(
yk −Mψf

)T [
Cεε +MCfψψM

T
]−1

MCfψψD
T

+D
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1 (

yk −Mψf
) (
Dψf

)T
+D

(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1 (

yk −Mψf
) (
yk −Mψf

)T [
Cεε +MCfψψM

T
]−1

MCfψψD
T

(C.3)

= Dψf
(
Dψf

)T
+Dψf (yk −Mxk)

T
[
Cεε +MCfψψM

T
]−1

MCfψψD
T

+Dψf
(
xk − ψf

)T
MT

[
Cεε +MCfψψM

T
]−1

MCfψψD
T

+D
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

(yk −Mxk)
(
Dψf

)T
+D

(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

M
(
xk − ψf

) (
Dψf

)T
+D

(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

(yk −Mxk) (yk −Mxk)
T
[
Cεε +MCfψψM

T
]−1

MCfψψD
T

+D
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

M
(
xk − ψf

) (
xk − ψf

)T
MT

[
Cεε +MCfψψM

T
]−1

MCfψψD
T

+D
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

(yk −Mxk)
(
xk − ψf

)T
MT

[
Cεε +MCfψψM

T
]−1

MCfψψD
T

+D
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

M
(
xk − ψf

)
(yk −Mxk)

T
[
Cεε +MCfψψM

T
]−1

MCfψψD
T .

(C.4)

The probabilistic state space model (Eq. (1), (2)) gives

E
[
(yk −Mxk) (yk −Mxk)

T
]

= Cεε , E
[(
ψf − xk

) (
ψf − xk

)T ]
= Cfψψ ,

E
[(
ψf − xk

)
(yk −Mxk)

T
]

= 0 . (C.5)
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Substituting Eq. C.5 into Eq. C.4 gives

E
[
Dψa (Dψa)

T
]

= E
[
Dψf

(
Dψf

)T ]
−D

(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

MCfψψD
T

−DCfψψMT
[
Cεε +MCfψψM

T
]−1

MCfψψD
T

+D
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

Cεε

[
Cεε +MCfψψM

T
]−1

MCfψψD
T

+D
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

MCfψψM
T
[
Cεε +MCfψψM

T
]−1

MCfψψD
T

(C.6)

= E
[
Dψf

(
Dψf

)T ]−D (MCfψψ

)T [
Cεε +MCfψψM

T
]−1

MCfψψD
T .

(C.7)

Lemma 4. The expected value of a slope in a filtered generated function without reinitialization

satisfies

E
[
|Dψa|2

]
= 1− tr

(
D
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

MCfψψD
T

)
. (C.8)

Proof. In general, the expected value of a slope is related to the covariance matrix of the corre-

sponding gradient in the following way:

E
[
|Dψ|2

]
= E

[
tr
(
Dψ (Dψ)

T
)]

= tr
(
E
[
Dψ (Dψ)

T
])

. (C.9)

Substituting Eq. (C.7) into Eq. (C.9) gives

E
[
|Dψa|2

]
= tr

(
E
[
Dψa (Dψa)

T
])

(C.10)

= tr
(
E
[
Dψf

(
Dψf

)T ])− tr

(
D
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

MCfψψD
T

)
(C.11)

= E
[∣∣Dψf ∣∣2]− tr

(
D
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

MCfψψD
T

)
. (C.12)

In the first term, the slope
∣∣Dψf ∣∣ is equal to 1 due to Huygens’ principle. This gives Lemma 4.

Theorem 10.

E [|Dψa|] < 1 . (C.13)
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Proof. Applying the following two observations to Eq. (C.8) gives Theorem 10:

1. E [|Dψa|]2 ≤ E
[
|Dψa|2

]
due to Jensen’s inequality [87].

2. tr

(
D
(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

MCfψψD
T

)
≥ 0 becauseD

(
MCfψψ

)T [
Cεε +MCfψψM

T
]−1

MCfψψD
T

is symmetric and positive semi-definite [88].
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