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Abstract

Convergence failure and slow convergence rate are among the biggest challenges
with solving the system of non-linear equations numerically. While using strictly small
time steps sizes and unconditionally stable fully implicit scheme mitigate the problem,
the computational load becomes enormous. We introduce a sequential local refinement
scheme in space-time domain that improves convergence rate and prevents convergence
failure while not restricting to small time step, thus boosting computational efficiency.
We rely on the non-linear two-phase flow model. The algorithm starts by solving the
coarsest mesh. Then regions with certain features such as saturation front is refined
to the finest resolution sequentially. Such process prevents convergence failure. After
each refinement, the solution from the previous mesh is used to estimate initial guess
of the current mesh for faster convergence. Numerical results are presented to confirm
accuracy of our algorithm as compared to the traditional fine time step approach. We
also observe 5 times speedup in the runtime by using our algorithm.

Keywords. Space-time domain decomposition, Mixed finite element method, Sequential
local refinement, Iterative solver, Non-linear problrm

1 Introduction

Complex multi-phase flow and reactive transport in subsurface porous media is modeled
by a system of non-linear equations. A common practice to solve such non-linear system
is to approximate it in linear form and use iterative methods, such as Newton’s method,
to find the true solution. For large-scale models, such approach is usually computationally
prohibitive even after parallelization. Due to the large number of unknowns, the approxi-
mate linear system becomes computationally exhaustive. More importantly, the significant
non-linearity in the true system either requires a large number of iterations for convergence
or results in failure of convergence when time-stepping is too aggressive. If the iterative
method could be optimized such that, the number of iterations is minimized and the con-
vergence is guaranteed, then we can achieve orders of magnitude greater computational
efficiency.

Prior work exists to improve computational efficiency by reducing the size of the approx-
imate linear system. Adaptive homogenization [1, 12] addresses the problem by replacing
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fine grid with coarse grid in regions where non-linearity and variable (eg. saturation) vari-
ation is negligible, thus reducing the total number of spatial unknowns. However, fine and
coarse grid in space requires different time scales for stable numerical solution. Forcing
the coarse grid to accommodate the fine grid by taking fine time steps fails to reduce the
number of unknowns in time. Space-time domain decomposition addresses this issue by al-
lowing different time scales for different spatial grid, thus reducing the number of temporal
unknowns. Several space-time domain decomposition approaches has been proposed in the
past. [7, 8] proposed space-time finite element method for elastodynamics with discontinu-
ous Galerkin (DG) in time. The method has also been applied to other types of problems
such as diffusion with different time discretization schemes [2, 3, 9, 10].

The aforementioned literatures applied space-time decomposition method to mechanics
problems. On the other hand, prior work regarding flow mostly focused on linear single
phase flow and transport problems where flow is naturally decoupled from the advection-
diffusion component transport [5, 6]. [14] first presented results for solving non-linear cou-
pled multiphase flow and transport problem using space-time domain decomposition. [14]
enforces strong continuity of fluxes at non-matching space-time interface with enhanced
velocity. It also constructs and solves a monolithic system to avoid computational over-
heads associated with iterative solution schemes ([5]) that require subdomain to be solved
iteratively until weak continuity of fluxes is satisfied at interface. [13] further improves
the method by allowing adaptive mesh refinement, thus improving computational efficiency
while maintaining accuracy as compared to fine scale solution. It uses initial residual to
search for regions that need refinement in space-time domain. As shown in Fig.1, the nor-
malized non-linear residual becomes the largest in the region with the highest non-linearity
(saturation front) and thus consumes most computational resources and affects accuracy
the most. Refining such region will reduce computational cost while maintaining accuracy
as compared to solving the fine scale problem.
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Figure 1: Saturation and normalized initial non-linear residual at 100 and 800 days

The adaptive local mesh refinement improves computational efficiency by reducing the
size of the approximate linear system. [13] demonstrated the approach with only one level
of refinement in both space and time, restricting the largest coarse time step allowed for
stable numerical convergence. Also, no effort has been made to optimize the iterative
method by reducing the number of iterations required for convergence. The iterative method
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approaches the true solution from the initial guess in a stepwise fashion. The rate of
convergence in Newton’s method heavily relies on the non-linearity possessed by the model
and the initial guess. If the derivative of the residual function changes direction rapidly
during iterations, its most likely to cause convergence failure. Meanwhile, if the initial
guess is already close to the true solution, not many iterations are required to achieve
convergence. Since derivative tends to be stable near the true solution, having a close
initial guess becomes the key to avoid convergence failure and to improve convergence rate.
In this work, we present a framework that allows several levels of refinement in space-time
domain to represent features (eg. saturation front) of the system with the minimum number
of grid cells. We will also optimize the convergence rate of the iterative method by providing
better initial guess through sequential refinement.

In this work, we restrict ourselves to non-linear two-phase flow problems in subsurface
porous media. We intent to approach more complicated non-linear problems such as black
oil problem in the near future. The rest of the paper begins by describing the governing
equations for two phase flow and its fully discrete form in Section 2. Then we will present
the solution algorithm for the sequential solver in Section 3. Afterwards, we demonstrate
results from numerical experiments using the proposed algorithm in Section 4.

2 Two phase flow formulation

2.1 Governing equations

We consider the following well-known two-phase, slightly compressible flow in porous medium
model, with oil and water phase mass conservation, constitutive equations, boundary and
initial conditions.

∂(φραsα)

∂t
+∇ · uα = qα in Ω × J (1)

uα = −Kρα
krα
µα

(∇pα − ραg) in Ω × J (2)

uα · ν = 0 on ∂Ω × J (3)

{
pα = p0

α

sα = s0
α

at Ω × {t = 0} (4)

φ and K are porosity and permeability tensor. ρα, sα, uα and qα are density, saturation,
velocity and source/sink, respectively for each phase. The phases are slightly compressible
and the phase densities are calculated by (5).

ρα = ρα,ref · ecf,α(pα−pα,ref ) (5)

with cf,α being the fluid compressibility and ρα,ref being the reference density at reference
pressure pα,ref . In the constitutive equation (2) given by Darcy’s law, krα, µα and pα are
the relative permeability, viscosity and pressure for each phase. Relative permeability is
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a function of saturation. Pressure differs between wetting phase and non-wetting phase
because of capillary pressure which is also a function of saturation.

krα = f(sα) (6)

pc = g(sα) = pnw − pw (7)

The saturation of all phases obeys the constrain (8).∑
α

sα = 1 (8)

The boundary and initial conditions are given by (3) and (4). J = (0, T ] is the time domain
of interest while Ω is the spatial domain.

Now we will give a brief introduction of mixed weak formulation in space-time domain.
The functional spaces for mixed weak formulation are

V = H(div; Ω) =
{
v ∈

(
L2(Ω)

)d
: ∇ · v ∈ L2(Ω)

}
,

W = L2(Ω),
with finite dimensional subspace as Vh and Wh. As described in [14], following the discon-
tinuous Galerkin discretization in time, define space

V t
h =

{
v : J → Vh : v

∣∣
Jm
∈
(
Pl(Jm)

)d
,m = 1, . . . , q, d = 1, 2 or 3

}
,

W t
h =

{
w : J →Wh : w

∣∣
Jm
∈ Pl(Jm),m = 1, . . . , q

}
,

Pl(Jm) =

{
w : Jm →Wh : w(t) =

l∑
a=1

wat
a with wa ∈Wh

}
.

d is the dimension of spatial domain. V t
h and W t

h are spaces of functions that map from
time domain J to Vh and Wh for each time interval Jm. These functions are represented by
polynomials with degree up to l. In our framework, we will use DG0 (polynomial of degree
zero) discretization in time. Then the space-time mixed finite element space is

V t,∗
h = V t

h

⋂
H(div; Ω)× J .

Consider the oil-water system, the expanded variational form of Eqn.(1) through (4) is: find
utα,h ∈ V

t,∗
h , ũtα,h ∈ V

t,∗
h , Stw,h ∈W t

h, pto,h ∈W t
h such that(

∂

∂t
φ
(
ρws

t
w,h + ρo(1− stw,h)

)
, w

)
+

(
∇ ·
(
utw,h + uto,h

)
, w

)
=

(
qw + qo, w

)
(9)

(
∂

∂t

(
φρws

t
w,h

)
, w

)
+

(
∇ · utw,h, w

)
=

(
qw, w

)
(10)

(
K−1ũto,h,v

)
−
(
pto,h,∇ · v

)
= 0 (11)

(
K−1ũtw,h,v

)
−
(
ptw,h,∇ · v

)
= −

(
pc,∇ · v

)
(12)

(
utα,h,v

)
=
(
λαũ

t
α,h,v

)
(13)
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with w ∈W and v ∈ V . The mobility ratio in (13) is defined as

λα =
krαρα
µα

(14)

The additional auxiliary phase fluxes ũα is used to avoid inverting zero phase relative
permeability [11]. The oil saturation and water pressure are eliminated by the saturation
constrain and the capillary pressure relation (assume oil phase being the non-wetting phase).

2.2 Fully discrete formulation

We will start by stating the basis functions in RT0 × DG0 discretization scheme. The
pressure and saturation are piecewise constants while velocity is piecewise linear.

wmi =

{
1 on Emi = xi− 1

2
≤ x ≤ xi+ 1

2

⋂
tm < t ≤ tm+1

0 otherwise
(15)

ϕm
i+ 1

2

=


x−x

i− 1
2∣∣Emi ∣∣ on Emi

x
i+3

2
−x∣∣Emi+1

∣∣ on Emi+1

(16)

The solution to Eqn.(9) through (13) can be written in discrete form using the basis func-
tions as 

po =

q∑
m=1

r∑
i=1

Pmi w
m
i

sw =

q∑
m=1

r∑
i=1

Smw,iw
m
i

uα =

q∑
m=1

r+1∑
i=1

Um
α,i+ 1

2

ϕm
i+ 1

2

ũα =

q∑
m=1

r+1∑
i=1

Ũm
α,i+ 1

2

ϕm
i+ 1

2

(17)

We now substitute the testing functions in the variational forms of mass conservation and
constitutive equation with wnj and ϕn

j+ 1
2

, while keeping the solution in discrete form. For

the first term in Eqn.(11) and (12) we obtain

(
K−1ũα,ϕ

n
j+ 1

2

)
Ω×J

=

(
K−1

q∑
m=1

r+1∑
i=1

Ũm
α,i+ 1

2

ϕm
i+ 1

2

,ϕn
j+ 1

2

)
Ω×J

=
1

2
∣∣∣en
j+ 1

2

∣∣∣
(
xj+ 1

2
− xj− 1

2

Kj
+
xj+ 3

2
− xj+ 1

2

Kj+1

)
Un
α,j+ 1

2

(18)

5



Here,
∣∣∣en
j+ 1

2

∣∣∣ is an edge of a space-time element. Since the framework uses backward Euler

scheme in time to avoid Courant-Fredricks-Levy condition, we have the construction

ϕm
i+ 1

2

(en
j+ 1

2

) =


1∣∣en
j+1

2

∣∣ as i = j and m = n

0 otherwise

(19)

The second term in Eqn.(11) and (12) can be written as(
pα,∇ ·ϕnj+ 1

2

)
Ω×J

=

(
q∑

m=1

r∑
i=1

Pmα,iw
m
i ,∇ ·ϕnj+ 1

2

)
Ω×J

=

∫
Enj

Pnα,j∣∣Enj ∣∣ −
∫

Enj+1

Pnα,j+1∣∣Enj+1

∣∣
= Pnα,j − Pnα,j+1

(20)

In case non-matching grid is encountered when the time scale is different at (j + 1
2)− and

(j + 1
2)+, assume the ratio between coarse and fine time step is δtc

δtf
= τ , then

(
pα,∇ ·ϕ

n− 1
τ
k

j+ 1
2

)
Ω×J

=

(
q∑

m=1

r∑
i=1

Pmα,iw
m
i ,∇ ·ϕ

n− 1
τ
k

j+ 1
2

)
Ω×J

= P
n− 1

τ
k

α,j − Pnα,j+1

(21)

The variational form of capillary pressure term can be re-written in similar way as Eqn.(20)
and (21). Now we evaluate the mass conservation equation. The first term in Eqn.(10)
becomes (

∂

∂t

q∑
m=1

r∑
i=1

φρws
m
w,iw

m
i , w

n
j

)
Ω×J

=
(

(φρwSw)nj − (φρwSw)n−1
j

)∣∣En−1
j

∣∣ (22)

In fine time scales, Eqn.(22) can be altered as follow.(
∂

∂t

q∑
m=1

r∑
i=1

φρws
m
w,iw

m
i , w

n− 1
τ
k

j

)
Ω×J

=
(

(φρwSw)
n− 1

τ
k

j − (φρwSw)
n− 1

τ
(k+1)

j

)∣∣∣En− 1
τ

(k+1)

j

∣∣∣
(23)

The second term is calculated as

(∇ · uw, wnj )Ω×J =

(
∇ ·

q∑
m=1

r+1∑
i=1

Um
α,i+ 1

2

ϕm
i+ 1

2

, wnj

)
Ω×J

= Un
w,j+ 1

2

− Un
w,j− 1

2

(24)

The situation for non-matching grid is a little different for this term. Assume fine time
stays on (j + 1

2)− side, then on the fine time element we have

(∇ · uw, w
n− 1

τ
k

j ) = U
n− 1

τ
k

w,j+ 1
2

− Un−
1
τ
k

w,j− 1
2

(25)

6



while for coarse time element we have

(∇ · uw, wnj+1) = Un
w,j+ 3

2

−
τ∑
k=1

U
n− 1

τ
k

w,j+ 1
2

(26)

The oil phase mass conservation equation is similar. Adding the equation for these two
phases will provide the expression for the total mass conservation equation. The two sides
of Eqn.(13) is estimated as

(uα,v) =

q∑
m=1

r+1∑
i=1

Um
α,i+ 1

2

(
ϕm
i+ 1

2

,ϕn
j+ 1

2

)
=
xj+ 3

2
− xj− 1

2

2
∣∣en
j+ 1

2

∣∣ Un
α,j+ 1

2

(27)

(λαũα,v) ≈ (λ∗αũα,v) =
xj+ 3

2
− xj− 1

2

2
∣∣en
j+ 1

2

∣∣ λ∗,n
α,j+ 1

2

Un
α,j+ 1

2

(28)

The λ∗,n
α,j+ 1

2

is the upwind mobility for stable numerical solution and is defined as

λ∗,n
α,j+ 1

2

= ρ∗,n
α,j+ 1

2

krα,∗
j+ 1

2

µα
=

{
1

2µα
(ρnα,j + ρnα,j+1)krα(Snα,j) if Ũn

α,j+ 1
2

> 0

1
2µα

(ρnα,j + ρnα,j+1)krα(Snα,j+1) otherwise
(29)

The above section provides us a non-linear system of equations of pressure and saturation.
To solve such system, we linearize it and use Newton’s method to approach the true solution
through iteration process. Depending on the level of non-linearity and the closeness between
initial guess and true solution, Newton’s method could take numerous iterations before
achieving convergence. In the next section, we will introduce our sequential local refinement
algorithm to minimize the number of iterations while maintaining solution accuracy.

3 Solution algorithm

3.1 Sequential local refinement

In this section we present the solver algorithm that uses sequential local refinement in
space-time domain to provide initial guess close to the true solution, thus reducing the
time for Newton convergence. The algorithm starts by solving the problem at its coarsest
resolution. Then the given domain is sequentially refined isotropically in space-time domain
to its finest resolution in regions colored by specific indicators. Fig.2 demonstrates a sample
semi-structured grid generated during sequential local refinement. Here the x axis represents
time in 2-D spatial problem. Please note that we always refine cells that contain wells for
accurate estimate of rate and bottom-hole pressure.

After each refinement, before solving the problem on the new mesh, the unknowns of
newly generated fine elements are populated by the solution of the previous mesh using
spatial and temporal linear interpolation. Such approach provides a close initial guess to
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Figure 2: Sequential local mesh refinement in space-time domain from coarsest (level
0) to finest (level 1) resolution

the true solution, however it also creates a problem. The indicator used in [13] is the
normalized initial non-linear residual calculated as

R̃ =
|R|∥∥|R|∥∥∞ (30)

It measures the closeness between the initial guess and the true solution. This indicator
works perfectly during single level refinement. However, for multiple level refinement, since
we are providing initial guess through linear interpolation, the initial guess on refined grid
is naturally closer to the true solution and thus the initial residual does not expose certain
feature of the system anymore. Fig.3 provides an example. After the first level of refinement,
the interpolation calculates very close initial guess that causes the residual to appear only
sporadicly.
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Figure 3: Normalized initial non-linear residual at each refinement level

The observation on initial residuals infers that we need another indicator to track fea-
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tures at each refinement level. The changes of certain solution variable in space and time
measures the solution sensitivity to different scales. A large change in unit space/time in-
dicates the existence of feature and that refinement provides more accurate solution. So we
define an error indicator as

ε =

(
(∆sSw)2

‖(∆sSw)2‖∞
+

(∆tSw)2

‖(∆tSw)2‖∞

) 1
2

(31)

ε̃ =
ε

‖ε‖∞
(32)

Here we use the saturation to calculate the error indicator because the pressure solution is
too smooth. The change in space and time are normalized respectively so that they will
have the same weight on calculating the error indicator. Eqn.(32) simply normalizes the
error indicator to [0, 1] scale. Fig.4 shows the normalized error indicator distribution that
exposes feature at each refinement level.
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Figure 4: Normalized error indicator at each refinement level

Now the question is how do we choose the region for refinement. We first define the range
[0.01, 1] of normalized residual and error indicator as the analysis range. Anything below
0.01 is neglected. At each level, we will refine the region with 50% of the largest normalized
values in the analysis range. The cumulative distribution function of initial residual and
error indicator at each refinement level is plotted in Fig.5 and Fig.6 against sample data
recorded during simulation. As demonstrated by the graphs, the initial residual data is
better represented by log-normal distribution. Meanwhile the error indicator data follows
the trend between normal and log-normal distribution. Therefore, the threshold for initial
residual is the log-mean while for error indicator is the average of mean and log-mean.
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Figure 5: Cumulative distribution function fitted to initial residual data at each
refinement level
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Figure 6: Cumulative distribution function fitted to error indicator data at each
refinement level

Please note that the sporadic appearance of large initial residuals after the first refinement
is also reflected in its cumulative distribution function. In Fig.5 from level 1 to 3, the initial
residual samples stay concentrated towards 0, unlike the error indicator samples that spread
smoothly across the range. The complete algorithm is illustrated in Fig.7.
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NoYes
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Figure 7: Solution algorithm for sequential local refinement solver

3.2 Data structure

The local mesh refinement process creates semi-structured grid which is stored in a tree
formation. Each element on the coarsest grid is represented by a root node. All the other
nodes in the tree are created during grid refinement. Each node is linked to its parent and
children by pointers. This data structure facilitates the sequential refinement process as we
can simply evolve the tree instead of creating every refined grid from scratch. After grid
generation is complete, all the elements are indexed to the construct the monolithic system
for the solver.

To successfully construct the monolithic system, we need to accurately pinpoint the
neighbors given a specific element. We designed an algorithm to search the neighbors in
each space-time direction separately (front/back/left/right/top/bottom/past/future. Fu-
ture neighbor is not used for calculation. We only search it for auxiliary purposes such as
visualization). During the search, we first ascend the tree from the original element until a
neighbor exists among the sibling elements in the intended search direction. Then we move
to that sibling and start descending the tree. If the descend terminates at or before the
refinement level of the original element, then we have found the one and only neighbor. If
more levels exist after descending to the same level as the original element, we use a re-
cursive subroutine to locate all the neighbors on the deeper levels. The neighbor searching
algorithm is shown in Fig.8.
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Figure 8: Neighbor searching algorithm

We give an example of the neighbor searching algorithm outcome in Fig.9 based on a
complex semi-structured grid. Shown in two different angles, the original element is colored
in yellow and the neighbor elements are colored in green.

X

Y Z

X

Y Z

Figure 9: Neighbor searching algorithm outcome from two viewing angle

Now that we have introduced the all the important algorithms involved in our solver, in the
next section we will present some numerical results.
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4 Numerical results

In this section we will show results from two numerical experiments with 2-D two phase
flow problem. Both experiments use the same fluid data from the SPE10 ([4]) dataset.
The oil and water reference densities in Eqn.(5) are taken to be 53 [lb/ft3] and 64 [lb/ft3]
respectively and compressibilities are 1× 10−4 psi−1 and 3× 10−6 psi−1. We use Brooks’s
Corey model for both relative permeability and capillary pressure. The equations for relative
permeability are krw = k0

rw

(
Sw−Swirr

1−Sor−Swirr

)nw
kro = k0

ro

(
So−Sor

1−Sor−Swirr

)no (33)

The endpoint values are Sor = Swirr = 0.2 and k0
ro = k0

rw = 1.0 and the model exponents
are nw = no = 2. The equation for capillary pressure is

pc(Sw) = Pen,cow

( 1− Swirr
Sw − Swirr

)lcow
(34)

with Pen,cow = 10 psi and lcow = 0.2. Fig.10 visualizes the relative permeability and
capillary pressure curve.
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Figure 10: Relative permeability (left) and capillary pressure (right) curve for
numerical experiments

In the first experiment, we use a gaussian-like permeability and porosity distribution
which is plotted in Fig.11.
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Figure 11: Gaussian-like fine permeability (left) and porosity (right) distribution

The computational domain is 56ft×216ft×1ft×700days with coarsest and finest element
size of 8ft×8ft×1ft×10days and 1ft×1ft×1ft×1.25days. We allow three refinement levels
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in our experiment. Although our framework allows each level to have different refinement
ratio, for the sake of simplicity we will set the same ratio, a factor of 2, for all three
levels. We place a rate specified injection well at bottom left corner and a pressure specified
production well at upper right corner. The injection rate is 1 ft3/day and production
pressure is 1000 psi. Furthermore, the initial pressure and water saturation are set to be
1000 psi and 0.2.
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Figure 12: Adaptive saturation distribution (top) and adaptive mesh (middle)
generated by sequential refinement solver as compared to fine scale solution (bottom)

at 200 and 500 days

Fig.12 shows the adaptive grid saturation profile along with its mesh as compared to
fine grid saturation profile at 200 and 500 days. The shape of the front looks similar while
elements are coarsened behind the front in the adaptive solver. The production rates and
runtime of the two solutions are plotted in Fig.13.
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Figure 13: Two phase production rate and runtime from adaptive and fine solution

The oil and water production rate matches well between the two different solutions which
indicates that the sequential solver is accurate. While maintaining the accuracy, the se-

14



quential solver using adaptive grid reduces the total runtime by approximately 5 times with
linear system construction and solving providing 4 times and 6 times reduction respectively.

Although the solver improves computational efficiency while maintaining accuracy, we
observe several problems during the experiment. The first major problem is over refining
the elements. The saturation has the biggest change in time at the front. Meanwhile,
behind the front the saturation is stable time wise but varies significantly in space. Since
we rely on isotropic refinement in space-time domain and our error indicator is calculated
with both spatial and temporal variation of saturation, we are forcing the front region to
be fine in space and behind-the-front region to be fine in time, which is redundant. Such
over-refinement could cause sever increase in time needed for linear system construction.
The isotropic refinement could also ignore some important features of the system. The
second major problem is associated with estimating initial guess after each refinement. The
isotropic refinement scheme requires us to interpolate spatially and temporally at the same
time. The calculated initial guess does prevent convergence failure and improve convergence
rate but not to a significant extent. These two problems suggest that separating time and
space refinement is the solution.

In the second experiment, we use a channel-like permeability and porosity distribution
as demonstrated by Fig.14.

XPERM

4

3
2
1
0

1
2

Fine scale permeability

POR

0.38
0.32
0.26
0.2
0.14

0.08
0.02

Fine scale porosity

Figure 14: Channel-like fine permeability (left) and porosity (right) distribution

Considering the dramatic changes in petrophysical properties, we only allow two levels of
refinement so that the coarsest level (level 0) does not destroy too much features of the
system. For the same reason, the coarsest time scale has to be small to prevent convergence
failure. The computational domain is 56ft×216ft×1ft×200days with coarsest and finest
element size of 4ft × 4ft × 1ft × 0.5day and 1ft × 1ft × 1ft × 0.125day. The injection
rate, production pressure and initial condition is kept the same as the previous experiment.
Fig.15 shows the adaptive grid saturation profile along with its mesh as compared to fine
grid saturation profile at 100 and 200 days. The shape of the front looks similar however we
do observe some minor feature lost in the coarse region of the adaptive grid. The algorithm
also reduced the runtime by 5 times, however due to the lost of features, the production
rates are less accurate. Meanwhile, the problems that appeared in the previous experiment
deteriorates in this channel case. These observations also indicates that we need to separate
the time and space refinement, which will be done next in the near future.
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Figure 15: Adaptive saturation distribution (top) and adaptive mesh (middle)
generated by sequential refinement solver as compared to fine scale solution (bottom)

at 100 and 200 days

5 Conclusions

We have presented an algorithm that sequentially refines the coarse mesh to solve non-
linear two phase flow problems. After each refinement, the previous solution is used to
interpolate the initial guess for the new mesh. Results from two numerical experiments are
demonstrated. We have achieved 5 times speedup in computational time using our algorithm
by both reducing the number elements and providing a better initial guess. Convergence
failure is better prevented and convergence rate is improved. The result for the Gaussian-
like permeability field shows similar saturation profile between the adaptive solution and
fine solution. The production rates of the two solutions also match pretty well. For the
channel case the sequential solver becomes less accurate. The main problem that caused the
inaccuracy is the isotropic refinement in space-time domain. The error indicator calculated
by both spatial and temporal variation may sometimes mislead the refinement process and
fail to capture certain features in the system. It also over-refine the coarse grid, causing
increased runtime. We will solve this problem by separating the spatial and temporal
refinement in the near future.
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