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State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of
Science, Beijing 100190

November 6, 2019

Abstract

The present paper proposes that reconstruction scheme and interpolation scheme can be converted
into each other through two series of adapter schemes, which include reconstruction-to-interpolation
(RI) adapter schemes and interpolation-to-reconstruction (IR) adapter schemes. For the high-order spa-
tial discretization of the compressible Navier-Stokes equations, the RI adapter schemes can be used
to derive interpolation schemes for the interpolation-based cell-centered finite difference method from
the available optimized reconstruction schemes. The main advantage of the interpolation-based cell-
centered finite difference method is the capability to realize high-order discretization on curvilinear
grids with both shock-capturing capability and satisfaction of the geometric conservation law. In the
present paper, we first derive the IR adapter schemes by comparing the difference schemes with their
strong conservative forms. We then develop the corresponding RI adapter schemes by inversing the
IR adapter schemes. Thereafter, the applications to the one-dimensional linear wave equation and the
one-dimensional inviscid Burgers’ equation have been briefly discussed. Finally, to demonstrate the ap-
plication to three-dimensional Navier-Stokes equations, three highly optimized nonlinear reconstruction
schemes are adapted into the corresponding interpolation ones through RI adapter schemes, which in-
clude WENO-CU6, WGVC-WENO7 and OMP6 schemes. The new interpolation schemes from adapters
are compared with their original reconstruction ones through several benchmark cases. No noticeable
robustness loss or accuracy loss has been found in these cases, indicating the effectiveness of the adapter
schemes. No obvious increase in time cost has been observed, indicating the efficiency of the adapter
schemes.

Keywords: high-order scheme; geometric conservation law; finite difference method; adapter scheme;
multiblock grids;

1 Introduction

In computational fluid dynamics (CFD), high-order high-resolution spatial discretization has been stud-
ied extensively. Compared with the high-order methods on unstructured mesh, such as discontinuous
Galerkin [1] and flux reconstruction [2], the finite difference methods on structured grids, which include
the dispersion-relation-preserving (DRP) scheme [3], weighted essentially non-oscillatory (WENO) scheme
[4] and weighted compact nonlinear scheme (WCNS) [5] etc., are computationally efficient due to multi-
dimensional decomposition of discretization in each individual direction, leading to their wide applications
in turbulent flows and aeroacoustics.

In wave propagation problem for aeroacoustics, Tam and Webb [3] developed the DRP scheme for
linearized Euler equations. This DRP scheme is a 4th-order linear node-to-node difference scheme optimized
for dispersion property on a 6-point stencil. The DRP scheme is usually used in the simulations of low-speed
flows.

∗Postdoc, 89f.liao@gmail.com
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In discontinuous flows, Jiang and Shu [4] successfully developed WENO-JS scheme for both finite
difference methods and finite volume methods. The key idea of WENO scheme is to introduce multi-stencil
weighting technique to recover optimal order in smooth flow regions on the basis of the essentially non-
oscillatory (ENO) scheme. Based on WENO-JS scheme, many variants have been developed, such as the
Mapped WENO from Henrick et al. [6], WENO-Z from Borges et al. [7] and WENO-CU6 [8] from Hu
and Adams. Based on an early discussion [9] about the freestream preservation of WENO and WCNS on
non-Cartesian grids, the alternative flux formulation of finite difference WENO from Jiang et al. [10] and
the Freestream Preserving WENO (PFWENO) from Nonomura et al. [11] have been proposed to reduce
the geometric errors on highly curvilinear grids and randomized grids to further improve the robustness on
non-Cartesian grids.

The WCNS method proposed by Deng and Mao [5] is another promising shock-capturing scheme based
on multi-stencil weighting technique. An important advantage or feature of the WCNS method is that the
variable interpolation is performed on the primitive/conservative/characteristic variables from the solution
points to the flux points. Therefore, flux difference splitting schemes, such as Roe scheme, which has
reasonable dissipation, are applicable in WCNS. After the first discussion [9] on the freestream preservation
of WCNS, a symmetrical conservative metric method (SCMM) was later proposed by Deng et al. [12]
for the WCNS to satisfy the geometric conservation law (GCL) on multiblock curvilinear grids, which
greatly increases its robustness in three-dimensional practical simulations. Another advantage of the WCNS
method was found by Nonomura et al. [13] that the high-order WCNS is very suitable for the simulation
of multi-component flows when the interpolation of primitive variables and the quasi-conservative form of
mass fraction equations are adopted.

The cell-centered finite difference method (CCFDM) [14] is the cell-centered version of the interpolation-
based WCNS method on multiblock curvilinear grids. In CCFDM, solution points are placed at high-order
cell centers while flux points are located at high-order face centers, which totally eliminates the overlapped
solution points at multiblock interfaces, leading to better conservation in numeric. To satisfy GCL on
curvilinear grids, the cell-centered symmetrical metric method (CCSCMM) has been designed for the
geometric discretization for CCFDM. The technical roadmap of current research is illustrated in Fig.1.

Structured Grid
Constrained topology

Dimension-by-dimension discretization

Unstructured Grid
Free topology

Multi-dimensionally coupled discretization

Finite Difference Method (FDM)
Easy to achieve multi-dimensional high order

Finite Volume Method (FVM)
Difficult to realize high order on curvilinear grids

Node-Centered FDM
Characteristic decomposition at 

multiblock interfaces.
DOFs  increase with blocks splitting.

Cell-Centered FDM
Easy interface treatment

DOFs do not increase with splitting

Interpolation-based FDM
(WCNS, ...)

Satisfy GCL
Both Flux Difference Splitting and Flux Vector Splitting

(Roe, AUSM, HLLC, …)   (Steger-Warming, van Leer, ...)

Reconstruction-based FDM
(WENO, ...)

Hard to satisfy GCL
Flux Vector Splitting Only

(Steger-Warming, van Leer, ...)

Cell-Centered Symmetric 
Conservative Metric Method
(Geometric Conservation Law Method)

High-Order High-Resolution Methods

Figure 1: Technical Roadmap of Current Research

The reconstruction schemes are more widely used than the interpolation schemes in both finite volume
method and finite difference method. However, deriving optimized high-order high-resolution nonlinear
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scheme is usually time consuming and inefficient due to the difficulty in the balance between robustness
and accuracy. To obtain optimized high-order high-resolution interpolation schemes for CCFDM, this paper
proposes a series of reconstruction-to-interpolation (RI) linear adapter schemes which are able to convert
those highly optimized nonlinear reconstruction schemes into the corresponding interpolation ones. This
approach is different from the previous one where optimized interpolation schemes are directly derived.
With the proposed adapter schemes, the accuracy and robustness of the nonlinear reconstruction schemes
can be mainly preserved.

This paper is arranged as follows. In section 2, governing equations in curvilinear coordinates are
derived with a brief discussion on GCL. In section 3.1 and 3.2, CCFDM and CCSCMM are introduced as
discretization methods for flow variables and geometric variables, respectively. In section 3.3 and 3.4, two
series of adapter schemes, IR adapter schemes and RI adapter schemes, are derived and discussed. In section
3.5, the RI adapter schemes are applied to CCFDM to convert three well-optimized reconstruction schemes,
which are WENO-CU6, WGVC-WENO7 and OMP6 schemes, into corresponding interpolation ones. In
section 4, the methodologies are validated with several benchmark cases, which include 3D freestream
preservation, 1D Shu-Osher problem, 1D shock tube problem, 2D isentropic vortex problem, 2D shock
wave impingement on spatially evolving mixing layer and 2D shock vortex interaction. Finally, this paper
is concluded in section 5.

2 Governing Equations

In the Cartesian coordinates, the non-dimensional compressible Navier-Stokes equations can be written as

∂Q

∂t
+

∂E

∂x
+

∂F

∂y
+

∂G

∂z
=

M

Re

(
∂Ev

∂x
+

∂Fv

∂y
+

∂Gv

∂z

)
(1)

where

Q =

⎛
⎜⎜⎜⎜⎝

ρ
ρu
ρv
ρw
ρe

⎞
⎟⎟⎟⎟⎠ , E =

⎛
⎜⎜⎜⎜⎝

ρu
ρu2 + p
ρvu
ρwu

(ρe+ p)u

⎞
⎟⎟⎟⎟⎠ , F =

⎛
⎜⎜⎜⎜⎝

ρv
ρuv

ρv2 + p
ρwv

(ρe+ p)v

⎞
⎟⎟⎟⎟⎠ , G =

⎛
⎜⎜⎜⎜⎝

ρw
ρuw
ρvw

ρw2 + p
(ρe+ p)w

⎞
⎟⎟⎟⎟⎠ , (2)

Ev =

⎛
⎜⎜⎜⎜⎝

0
τ11
τ12
τ13
ϕ1

⎞
⎟⎟⎟⎟⎠ , Fv =

⎛
⎜⎜⎜⎜⎝

0
τ21
τ22
τ23
ϕ2

⎞
⎟⎟⎟⎟⎠ , Gv =

⎛
⎜⎜⎜⎜⎝

0
τ31
τ32
τ33
ϕ3

⎞
⎟⎟⎟⎟⎠ , (3)

and

ρe =
p

γ − 1
+

1

2
ρu2i , (4)

in which ui (i = 1, 2, 3) stand for u, v and w. And the pressure p can be calculated by the following
non-dimensional equation according to the ideal gas equation of state

p =
ρT

γ
. (5)

The viscous stress and heat flux related terms have the following form

τij = μ

(
∂ui
∂xj

+
∂uj
∂xi

)
− 2

3
μδij

∂uk
∂xk

, (6)

ϕi = ujτij + k
∂T

∂xi
, k =

Cpμ

Pr
. (7)

where xi (i = 1, 2, 3) stand for x, y and z.
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It should be stated that the above equations are non-dimensionalized by introducing the following
dimensional freestream parameters as reference: freestream sound of speed c∗∞ for velocity, freestream ρ∗∞
for density, freestream T ∗∞ for temperature, freestream μ∗∞ for dynamic viscosity, freestream κ∗∞ for heat
conductivity, (c∗∞)2 for energy, ρ∗∞(c∗∞)2 for pressure, and L∗/c∗∞ for time, where L∗ is the length used for
grid non-dimensionalization. To be specific, they are

M =
u∗∞
c∗∞

, Re =
ρ∗∞u∗∞L∗

μ∗∞
,

M

Re
=

(
ρ∗∞c∗∞L∗

μ∗∞

)−1

,

ρ =
ρ∗

ρ∗∞
, p =

p∗

ρ∗∞(c∗∞)2
, T =

T ∗

T ∗∞
, e =

e∗

(c∗∞)2
,

(u, v, w, c) =
(u∗, v∗, w∗, c∗)

c∗∞
, (x, y, z) =

(x∗, y∗, z∗)
L∗ , t =

t∗c∗∞
L∗ ,

(8)

where the superscript* refers to dimensional variables. And the obtained non-dimensional freestream
parameters are

ρ∞ = 1, p∞ =
1

γ
, T∞ = 1, e∞ =

1

γ(γ − 1)
+

M2

2
, (u, v, w, c)∞ = (M, 0, 0, 1). (9)

By introducing coordinate transformation on stationary grids

x = x(ξ, η, ζ), y = y(ξ, η, ζ), z = z(ξ, η, ζ), (10)

J =

∣∣∣∣∣∣∣∣∣∣∣∣

∂x

∂ξ

∂x

∂η

∂x

∂ζ
∂y

∂ξ

∂y

∂η

∂y

∂ζ
∂z

∂ξ

∂z

∂η

∂z

∂ζ

∣∣∣∣∣∣∣∣∣∣∣∣
, (11)

the inviscid flux terms in Eqs. (1) can be expressed as

∂E

∂x
+

∂F

∂y
+

∂G

∂z
=

∂E

∂ξi

∂ξi
∂x

+
∂F

∂ξi

∂ξi
∂y

+
∂G

∂ξi

∂ξi
∂z

=
1

J

∂E

∂ξi
J
∂ξi
∂x

+
1

J

∂F

∂ξi
J
∂ξi
∂y

+
1

J

∂G

∂ξi
J
∂ξi
∂z

=
1

J

∂

∂ξi

(
EJ

∂ξi
∂x

)
− 1

J
E

∂

∂ξi

(
J
∂ξi
∂x

)
︸ ︷︷ ︸

Ix

+
1

J

∂

∂ξi

(
FJ

∂ξi
∂y

)
− 1

J
F

∂

∂ξi

(
J
∂ξi
∂y

)
︸ ︷︷ ︸

Iy

+
1

J

∂

∂ξi

(
GJ

∂ξi
∂z

)
− 1

J
G

∂

∂ξi

(
J
∂ξi
∂z

)
︸ ︷︷ ︸

Iz

=
1

J

∂

∂ξi

(
EJ

∂ξi
∂x

)
+

1

J

∂

∂ξi

(
FJ

∂ξi
∂y

)
+

1

J

∂

∂ξi

(
GJ

∂ξi
∂z

)

=
1

J

(
∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ

)

(12)

Equation for viscous terms Ev, Fv and Gv can be obtained in the very same way.
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It should be noticed that in Eqs. (12), several conditions should be satisfied. The third line in Eqs.
(12) requires the satisfaction of the following equation in discretized form

(f · g)′ = f ′ · g + f · g′, (13)

which will not be discussed in this paper. And the sixth line in Eqs. (12) requires the following conditions
to be satisfied in numeric

Ix = (Jξx)ξ + (Jηx)η + (Jζx)ζ = 0,

Iy = (Jξy)ξ + (Jηy)η + (Jζy)ζ = 0,

Iz = (Jξz)ξ + (Jηz)η + (Jζz)ζ = 0,

(14)

which represent the surface conservation law (SCL) of the geometric conservation law (GCL).
It should be clarified that in Eqs. (12), the notation ξi (i = 1, 2, 3) stand for ξ, η and ζ. And the

notation ξx in Eqs. (14) stands for ∂ξ/∂x.
Finally, the Navier-Stokes equations in curvilinear coordinates can be rewritten as

∂Q̂

∂t
+

∂Ê

∂ξ
+

∂F̂

∂η
+

∂Ĝ

∂ζ
=

M

Re

(
∂Êv

∂ξ
+

∂F̂v

∂η
+

∂Ĝv

∂ζ

)
(15)

where
Q̂ = JQ,

Ê = JξxE + JξyF + JξzG,

F̂ = JηxE + JηyF + JηzG,

Ĝ = JζxE + JζyF + JζzG,

Êv = JξxEv + JξyFv + JξzGv,

F̂v = JηxEv + JηyFv + JηzGv,

Ĝv = JζxEv + JζyFv + JζzGv.

(16)

3 Numerical Methods

This paper focused on the cell-centered discretization method. Before further introduction, the notations
for node, edge, face and cell should be clarified. In the following sub-sections, (i, j, k) and (i ± 1/2, j ±
1/2, k ± 1/2) represent the cell centers and the grid nodes, respectively. And the notations (i ± 1/2, j, k),
(i, j ± 1/2, k) and (i, j, k ± 1/2) stand for the face centers in each of the ξ, η and ζ directions. After grid
generation, only the coordinates at grid nodes are known at first.

The solution points and flux points are located at cell centers and face centers, respectively. In the
following part of this paper with one-dimensional demonstration, the cell centers are usually represented
with subscripts i− 1, i, i+1 etc., and the face centers are always denoted by the subscripts i− 1/2, i+1/2
etc. And all the variables computed at face centers will have truncation error. In the rest of this paper,
the truncation error at face centers are neglected to keep simple and clear.

3.1 Cell-Centered Finite Difference Method

In this section, the discretization for flow variables is introduced and discussed. The main problem is to
obtain the spatial terms Êξ, F̂η and Ĝζ for Eqs. (15). In the rest of this section, term Êξ is focused as
illustration.

The original WCNS-E-5 proposed by Deng [5] use the following 6th-order difference scheme

δξÊi =
75

64
(Êi+1/2 − Êi−1/2)−

25

384
(Êi+3/2 − Êi−3/2) +

3

640
(Êi+5/2 − Êi−5/2). (17)
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To achieve robust solution in the flows with strong shocks, Deng et al. [15] take the flux at cell centers into
the difference procedure, and obtain the following 6th-order difference scheme

δξÊi =
64

45
(Êi+1/2 − Êi−1/2)−

2

9
(Êi+1 − Êi−1) +

1

180
(Êi+2 − Êi−2). (18)

Later, Nonomura and Fujii [16] proposed the following scheme to avoid undershoot or overshoot in strong
discontinuities

δξÊi =
3

2
(Êi+1/2 − Êi−1/2)−

3

10
(Êi+1 − Êi−1) +

1

30
(Êi+3/2 − Êi−3/2). (19)

Eqs. (17) is called face-to-cell (F-to-C) difference scheme in this paper. And both Eqs. (18) and (19)
are called face-and-cell-to-cell (FC-to-C) difference schemes in this paper. To be specific, Eqs. (18) from
Deng [15] is called FC-to-C-D in this paper, and the scheme indicated by Eqs. (19) from Nonomura [16] is
denoted as FC-to-C-N in this paper.

As it is described before, the solution points and flux points are located at cell centers and face centers,
respectively. In F-to-C difference scheme, only face centers are adopted to obtain the derivative. Any
flux-differencing-splitting (FDS) scheme can be used for the face flux, such as Roe scheme [17]:

Êi+1/2 = Roe(QL
i+1/2, Q

R
i+1/2, Jξx, Jξy, Jξz), (20)

where QL and QR are interpolated to the left and right side of the face i + 1/2. In FC-to-C schemes, the
additional cell flux can be directly calculated by

Êi = Flux(Qi, Jξx, Jξy, Jξz) =

⎛
⎜⎜⎜⎜⎝

ρU
ρuU + pJξx
ρvU + pJξy
ρwU + pJξz
(ρe+ p)U

⎞
⎟⎟⎟⎟⎠

i

, (21)

where U = uJξx + vJξy + wJξz.
According to previous research [16] [18], two key points can be observed. First, the difference scheme

has close relation to the robustness of the whole method but has minor effects on the analytical resolution of
the whole method. Second, the performance of the whole method is mainly determined by the interpolation
scheme, which will be focused on in the following sections.

The method described in this section is named as the cell-centered finite difference method (CCFDM)
in [14].

3.2 Cell-Centered Symmetrical Conservative Metric Method

In this section, the discretization for geometric variables is introduced, which indicates the x,y,z related
metrics and Jacobians. Many researches [12][19][20] have been focused on the geometric conservation law
(GCL).

It has been shown in the previous section that the surface conservation law (SCL) should be satisfied
when Eqs.(15) are used. To satisfy SCL, the following equations [21][22] are adopted

Jξx =
(Jξx)

S1 + (Jξx)
S2

2
, Jξy =

(Jξy)
S1 + (Jξy)

S2

2
, Jξz =

(Jξz)
S1 + (Jξz)

S2

2
,

Jηx =
(Jηx)

S1 + (Jηx)
S2

2
, Jηy =

(Jηy)
S1 + (Jηy)

S2

2
, Jηz =

(Jηz)
S1 + (Jηz)

S2

2
,

Jζx =
(Jζx)

S1 + (Jζx)
S2

2
, Jζy =

(Jζy)
S1 + (Jζy)

S2

2
, Jζz =

(Jζz)
S1 + (Jζz)

S2

2
,

(22)

where
(Jξx)

S1 = (yηz)ζ − (yζz)η, (Jξy)
S1 = (zηx)ζ − (zζx)η, (Jξz)

S1 = (xηy)ζ − (xζy)η,

(Jηx)
S1 = (yζz)ξ − (yξz)ζ , (Jηy)

S1 = (zζx)ξ − (zξx)ζ , (Jηz)
S1 = (xζy)ξ − (xξy)ζ ,

(Jζx)
S1 = (yξz)η − (yηz)ξ, (Jζy)

S1 = (zξx)η − (zηx)ξ, (Jζz)
S1 = (xξy)η − (xηy)ξ,

(23)
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and
(Jξx)

S2 = (zζy)η − (zηy)ζ , (Jξy)
S2 = (xζz)η − (xηz)ζ , (Jξz)

S2 = (yζx)η − (yηx)ζ ,

(Jηx)
S2 = (zξy)ζ − (zζy)ξ, (Jηy)

S2 = (xξz)ζ − (xζz)ξ, (Jηz)
S2 = (yξx)ζ − (yζx)ξ,

(Jζx)
S2 = (zηy)ξ − (zξy)η, (Jζy)

S2 = (xηz)ξ − (xξz)η, (Jζz)
S2 = (yηx)ξ − (yξx)η.

(24)

The above equations originate from the node-centered symmetrical conservative metric method (SCMM)
in previous research [12] [20]. Then, SCMM is further extended to the cell-centered method using the
following equations

(Jξx)
S1 = δζ2( z

edge−η
δη3 y

node︸ ︷︷ ︸
edge−η

)

︸ ︷︷ ︸
face−ηζ

− δη2( z
edge−ζ

δζ3 y
node︸ ︷︷ ︸

edge−ζ

)

︸ ︷︷ ︸
face−ηζ

, (25)

J =
1

3
{ δξ1[ x

face−ηζ
(Jξx)︸ ︷︷ ︸
face−ηζ

+ y
face−ηζ

(Jξy)︸ ︷︷ ︸
face−ηζ

+ z
face−ηζ

(Jξz)︸ ︷︷ ︸
face−ηζ

]

︸ ︷︷ ︸
cell−ξηζ

+ δη1 [ x
face−ξζ

(Jηx)︸ ︷︷ ︸
face−ξζ

+ y
face−ξζ

(Jηy)︸ ︷︷ ︸
face−ξζ

+ z
face−ξζ

(Jηz)︸ ︷︷ ︸
face−ξζ

]

︸ ︷︷ ︸
cell−ξηζ

+ δζ1 [ x
face−ξη

(Jζx)︸ ︷︷ ︸
face−ξη

+ y
face−ξη

(Jζy)︸ ︷︷ ︸
face−ξη

+ z
face−ξη

(Jζz)︸ ︷︷ ︸
face−ξη

]

︸ ︷︷ ︸
cell−ξηζ

}.

(26)

where the difference operators are divided into three categories: the node-to-edge difference operator δ3,
the edge-to-face difference operator δ2 and the face-to-cell difference operator δ1, representing that the
geometric information is gradually transformed from node to edge, from edge to face and from face to cell,
respectively.

For arbitrary variable V , the node-to-edge difference operator δ3 is defined by

V ′
ξ

edge−ξ

= δξ3( V
node

), V ′
η

edge−η

= δη3( V
node

), V ′
ζ

edge−ζ

= δζ3( V
node

). (27)

Similarly, the edge-to-face difference operator δ2 is defined by

V ′
ξ

face−ξη

= δξ2( V
edge−η

), V ′
ξ

face−ξζ

= δξ2( V
edge−ζ

), V ′
η

face−ηζ

= δη2( V
edge−ζ

),

V ′
η

face−ξη

= δη2( V
edge−ξ

), V ′
ζ

face−ξζ

= δζ2( V
edge−ξ

), V ′
ζ

face−ηζ

= δζ2( V
edge−η

).
(28)

And the face-to-cell difference operator δ1 is defined by

V ′
ξ

cell−ξηζ

= δξ1( V
face−ηζ

), V ′
η

cell−ξηζ

= δη1( V
face−ξζ

), V ′
ζ

cell−ξηζ

= δζ1( V
face−ξη

). (29)

To be specific, second-order differencing is demonstrated as illustration

V ′
i = Vi+1/2 − Vi−1/2. (30)

Note that in Eqs.(25) and (26), the coordinates x, y and z are not only needed at node, but also wanted
at edge centers and face centers. Thus, a series of linear central schemes are introduced for the interpolation
of geometric coordinates.

The node-to-edge linear interpolation operator χ3 is defined as

V
edge−ξ

= χξ
3( V
node

), V
edge−η

= χη
3( V

node
), V

edge−ζ
= χζ

3( V
node

). (31)
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The edge-to-face linear interpolation operator χ2 is defined as

V
face−ξη

=
1

2
[χξ

2( V
edge−η

) + χη
2( V

edge−ξ
)],

V
face−ξζ

=
1

2
[χξ

2( V
edge−ζ

) + χζ
2( V
edge−ξ

)],

V
face−ηζ

=
1

2
[χη

2( V
edge−ζ

) + χζ
2( V
edge−η

)].

(32)

And the face-to-cell linear interpolation operator χ1 is defined as

V
cell−ξηζ

=
1

3
[χξ

1( V
face−ηζ

) + χη
1( V

edge−ξζ
) + χζ

1( V
edge−ξη

)]. (33)

The second-order scheme is demonstrated as illustration

Vi =
1

2
(Vi−1/2 + Vi+1/2). (34)

In this paper, we choose

δξ1 = δξ2 = δξ3, δη1 = δη2 = δη3 , δζ1 = δζ2 = δζ3 , (35)

χξ
1 = χξ

2 = χξ
3, χη

1 = χη
2 = χη

3, χζ
1 = χζ

2 = χζ
3. (36)

The method described in this section is called the cell-centered symmetrical conservative metric method
(CCSCMM) in [14].

3.3 Interpolation-to-Reconstruction (IR) Adapter Schemes

To begin with, we focus on the discretization of ∂u/∂ξ at cell center i, where u is an arbitrary variable.
In the reconstruction-based finite difference method, the derivative ∂u/∂ξ is obtained by(

∂u

∂ξ

)
i

= δξui = ũi+1/2 − ũi−1/2︸ ︷︷ ︸
face: reconstructed

, (37)

where the ũ is implicitly defined by

u(ξ) =
1

Δξ

ˆ Δξ
2

−Δξ
2

ũ(ξ + s)ds. (38)

Arbitrary reconstruction scheme can be applied to obtain ũi±1/2 with the known ui, ui−1, ui+1, etc. at
solution points. The linear part of the WENO scheme [4] is utilized here as demonstration

ũLi+1/2 =
1

30
ui−2 − 13

60
ui−1 +

47

60
ui +

9

20
ui+1 − 1

20
ui+2, (39)

where the superscript L indicates the upwind reconstruction to the left side of i+ 1/2.
While in the interpolation-based finite difference method, the derivative ∂u/∂ξ is computed by

(
∂u

∂ξ

)
i

= δξui =

Na∑
l=0

al (ui+l+1/2 − ui−l−1/2)︸ ︷︷ ︸
face: interpolated

+

Nb∑
l=1

bl (ui+l − ui−l)︸ ︷︷ ︸
cell: solution points

, (40)

where the ui±1, ui±2, · · · at cell centers are known in the beginning, and the ui±1/2, ui±3/2, · · · at face
centers are computed through interpolation schemes. The linear part of the WCNS scheme [5] is used here
as demonstration

uLi+1/2 =
3

128
ui−2 − 20

128
ui−1 +

90

128
ui +

60

128
ui+1 − 5

128
ui+2. (41)
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The coefficients al and bl for 2nd-order to 10th-order difference schemes by Eq.(40) are listed in Table 1.
In Table 1, if all bl equal to 0, the obtained schemes are called face-to-cell (F-to-C) difference, otherwise
they are called face-and-cell-to-cell (FC-to-C) difference in this paper. The FC-to-C-D series are based
on the HWCNS from Deng [15], while the FC-to-C-N schemes originate from the WCNS-MND schemes
from Nonomura [16]. It can be seen that F-to-C-2, FC-to-C-D2 and FC-to-C-N2 are the same scheme, and
FC-to-C-D4 and FC-to-C-N4 are also the same one. It has been shown by Nonomura [16] that FC-to-C
schemes are more robust than F-to-C schemes in the problems with strong shocks. And in the consideration
of the width of the discretization stencil, which is vital to the construction Jacobian matrix of the implicit
time-integration method, the FC-to-C-D schemes have the most compact cell-to-cell stencil. The cell-to-cell
stencil is obtained by substituting the cell-to-face interpolation stencil into the face-to-cell/face-and-cell-
to-cell difference stencil. Finally, FC-to-C-D schemes are suggested in the present paper.

Table 1: Coefficients for difference schemes for Eq.(40)

Scheme a0 a1 a2 a3 a4 b1 b2 b3 b4

F-to-C-2 1

F-to-C-4 9
8 − 1

24

F-to-C-6 75
64 − 25

384
3

640

F-to-C-8 1225
1024 − 245

3072
49

5120 − 5
7168

F-to-C-10 19845
16384 − 735

8192
567

40960 − 405
229376

35
294912

FC-to-C-D2 1

FC-to-C-D4 4
3 −1

6

FC-to-C-D6 64
45 −2

9
1

180

FC-to-C-D8 256
175 −1

4
1

100 − 1
2100

FC-to-C-D10 16384
11025 − 4

15
1
75 − 4

3675
1

17640

FC-to-C-N2 1

FC-to-C-N4 4
3 −1

6

FC-to-C-N6 3
2

1
30 − 3

10

FC-to-C-N8 8
5

8
105 −2

5 − 1
140

FC-to-C-N10 5
3

5
42

1
630 −10

21 − 5
252

By comparing the right sides of Eq.(37) and Eq.(40), we could obtain the following relations between
the reconstructed ũi+1/2 and the interpolated ui+1/2:

ũi+1/2︸ ︷︷ ︸
face: reconstructed

= c0 ui+1/2︸ ︷︷ ︸
face: interpolated

+

Nc∑
l=1

cl (ui+1/2+l + ui+1/2−l)︸ ︷︷ ︸
face: interpolated

+

Nd∑
l=1

dl (ui+l + ui−l+1)︸ ︷︷ ︸
cell: solution points

, (42)

which represents the interpolation-to-reconstruction (IR) adapter schemes in the present paper. The coef-
ficients cl and dl for different orders are listed in Table 2. Substituting Eq.(42) into Eq.(37) will recover
Eq.(40).

It can be seen that the interpolated face value ui+1/2 could be converted into the reconstructed face
value ũi+1/2 using Eqs. (42). Thus, the combination of an interpolation scheme and Eqs. (42) can be
regarded as a reconstruction scheme. This is the reason why Eqs. (42) is called IR adapter scheme in this
paper.

3.4 Reconstruction-to-Interpolation (RI) Adapter Schemes

In the present research, the reconstruction schemes are available but the interpolation schemes are in need.
By letting the interpolated face values on the left side and the reconstructed face values on the right side

9



Table 2: Coefficients for interpolation-to-reconstruction (IR) adapter schemes for Eq.(42)

Scheme c0 c1 c2 c3 c4 d1 d2 d3 d4

IR-2 1

IR-4 13
12 − 1

24

IR-6 1067
960 − 29

480
3

640

IR-8 30251
26880 − 7621

107520
159

17920 − 5
7168

IR-10 5851067
5160960 − 100027

1290240
31471

2580480 − 425
258048

35
294912

IR-D2 1

IR-D4 4
3 −1

6

IR-D6 64
45 −13

60
1

180

IR-D8 256
175 −101

420
1

105 − 1
2100

IR-D10 16384
11025 − 641

2520
31

2520 − 13
12600

1
17640

IR-N2 1

IR-N4 4
3 −1

6

IR-N6 23
15

1
30 − 3

10

IR-N8 176
105

8
105 − 57

140 − 1
140

IR-N10 563
315

38
315

1
630 −125

252 − 5
252

of Eqs. (42), we could obtain another series of adapter schemes

ui+1/2︸ ︷︷ ︸
face: interpolated

+

Nh∑
l=1

hl (ui+1/2+l + ui+1/2−l)︸ ︷︷ ︸
face: interpolated

= r0 ũi+1/2︸ ︷︷ ︸
face: reconstructed

+

Nr∑
l=1

rl (ui+l + ui−l+1)︸ ︷︷ ︸
cell: solution points

, (43)

where the coefficients hl and rl can be found in Table 3.
These schemes, indicated by Eqs.(43) and Table 3, are called reconstruction-to-interpolation (RI)

adapter schemes in this paper. And it is obvious that when all hl become zero, Eqs. (43) will be ex-
plicit. According to Table 3, it can be seen that the RI schemes originating from F-to-C and FC-to-C-N are
implicit and the schemes derived from FC-to-C-D are explicit. Besides, RI-D schemes have the simplicity in
boundary treatment, ghost cells of solution points might work. While the RI schemes derived from F-to-C
and FC-to-C-N need ghost face of flux points at boundaries, which adds complexity to the application.
Thus, only RI-D schemes are focused in the rest of this paper.

3.5 Application to 1D Linear Wave Equation

The one-dimensional (1D) linear wave equation has the following form

∂u

∂t
+

∂f(u)

∂x
= 0, (44)

where f = cu, and c > 0 is constant. The above equation can be discretized as

∂u

∂t
= −∂f

∂x
= − 1

Δx

∂f

∂ξ
, (45)

where ∂f/∂ξ is computed by Eq.(40). Here we use FC-to-C-D6 for example

∂f

∂ξ
=

64

45

(
fi+1/2 − fi−1/2

)− 2

9
(fi+1 − fi−1) +

1

180
(fi+2 − fi−2) , (46)
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Table 3: Coefficients for reconstruction-to-interpolation (RI) adapter schemes for Eq.(43)

Scheme h1 h2 h3 h4 r0 r1 r2 r3 r4

RI-2 1

RI-4 − 1
26

12
13

RI-6 − 58
1067

9
2134

960
1067

RI-8 − 7621
121004

477
60502 − 75

121004
26880
30251

RI-10 − 400108
5851067

62942
5851067 − 8500

5851067
1225

11702134
5160960
5851067

RI-D2 1

RI-D4 3
4

1
8

RI-D6 45
64

39
256 − 1

256

RI-D8 175
256

505
3072 − 5

768
1

3072

RI-D10 11250
16384

22435
131072 − 1085

131072
91

131072 − 5
131072

RI-N2 1

RI-N4 3
4

1
8

RI-N6 1
46

15
23

9
46

RI-N8 1
22

105
176

171
704

3
704

RI-N10 38
563

1
1126

315
563

625
2252

25
2252

where
fi+1 = f(ui+1) = cui+1, fi+1/2 = cuLi+1/2, (47)

where uLi+1/2 can be obtained through interpolation schemes, such as Eq.(41) for linear problems. While,

in the present paper, uLi+1/2 is computed through RI schemes indicated by Eq.(43). Here the RI-D6 is used
as illustration.

uLi+1/2 =
45

64
ũLi+1/2 +

39

256
(ui + ui+1)− 1

256
(ui−1 + ui+2) , (48)

where ũLi+1/2 can be obtained through reconstruction schemes, such as Eq.(39) for linear problems.

If Eq.(48) is substituted into Eq.(47), and the obtained equation is then substituted into Eq.(46), we
will obtain

∂f

∂ξ
=

64

45

{
c

[
45

64
ũLi+1/2 +

39

256
(ui + ui+1)− 1

256
(ui−1 + ui+2)

]

−c
[
45

64
ũLi−1/2 +

39

256
(ui−1 + ui)− 1

256
(ui−2 + ui+1)

]}
− 2

9
(cui+1 − cui−1) +

1

180
(cui+2 − cui−2) ,

= c
(
ũLi+1/2 − ũLi−1/2

)
,

(49)

which means that the FC-to-C-D6 and RI-D6 will cancel out each other, because the f = cu is linear
with u. This indicates that the interpolation schemes through RI adapters is meaningless to linear wave
problems. In these problems, directly adopting the reconstruction schemes is simple and efficient.

3.6 Application to 1D Inviscid Burgers’ Equation

The one-dimensional (1D) inviscid Burgers’ equation has the following form

∂u

∂t
+

∂f(u)

∂x
= 0, (50)
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where f = u2/2, and ∂f/∂u = u. The above equation can be discretized as

∂u

∂t
= −∂f

∂x
= − 1

Δx

∂f

∂ξ
, (51)

where ∂f/∂ξ is computed by Eq.(40). Here we use FC-to-C-D6 for example

∂f

∂ξ
=

64

45

(
fi+1/2 − fi−1/2

)− 2

9
(fi+1 − fi−1) +

1

180
(fi+2 − fi−2) , (52)

where

fi+1 = f(ui+1) =
1

2
u2i+1,

fi+1/2 = f(uLi+1/2, u
R
i+1/2) =

⎧⎪⎨
⎪⎩
f(uLi+1/2) =

1
2(u

L
i+1/2)

2, if
uL
i+1/2

+uR
i+1/2

2 ≤ 0

f(uRi+1/2) =
1
2(u

R
i+1/2)

2, otherwise

,
(53)

where uLi+1/2 is computed through RI schemes indicated by Eq.(43). Here the RI-D6 is used as illustration.

uLi+1/2 =
45

64
ũLi+1/2 +

39

256
(ui + ui+1)− 1

256
(ui−1 + ui+2) , (54)

where ũLi+1/2 can be obtained through reconstruction schemes, such as Eq.(39) for linear problems. The

other terms in Eq.(52) and Eq.(53), which are fi−1, fi−1/2, fi+2, fi−2, and uRi+1/2, can be computed in
similar ways.

It can be seen that the FC-to-C and RI schemes will not cancel out each other anymore, because of the
nonlinear flux f = u2/2. The above procedures can be directly extended to three-dimensional problems in
high order, which is to be discussed in the next section for CCFDM.

3.7 Application to 3D Euler/Navier-Stokes Equations

To begin with, the convective term ∂Ê/∂ξ in Eq.(15) is focused in this section. The discretization has
been shown in Eq.(17), Eq.(18) and Eq.(19). Here, the FC-to-C-D6 is chosen as illustration, which has the
following form.

∂Ê

∂ξ

∣∣∣
i
=

64

45
(Êi+1/2 − Êi−1/2)−

2

9
(Êi+1 − Êi−1) +

1

180
(Êi+2 − Êi−2). (55)

As shown in Eq.(20) and Eq.(21), the flux at face centers can be calculated by arbitrary approximate
Riemann solver, and the flux at cell centers can be directly calculated. To be specific, they are

face: Êi+1/2 = Roe(QL
i+1/2, Q

R
i+1/2, Jξx, Jξy, Jξz),

cell: Êi+1 =

⎛
⎜⎜⎜⎜⎝

ρU
ρuU + pJξx
ρvU + pJξy
ρwU + pJξz
(ρe+ p)U

⎞
⎟⎟⎟⎟⎠

i+1

,
(56)

where U = uJξx + vJξy + wJξz, and QL
i+1/2 is obtained from the RI schemes indicated by Eq.(43). We

still choose the RI-D6 for illustration

QL
i+1/2 =

45

64
Q̃L

i+1/2 +
39

256
(Qi +Qi+1)− 1

256
(Qi−1 +Qi+2) , (57)

where Q̃L
i+1/2 can be obtained through reconstruction schemes, such as Eq.(39) for linear problems.

Note that not only the conservative variables Q can be used above, but also the primitive variables and
the characteristic variables can be adopted.

In the following subsections, three well-optimized high-order high-resolution nonlinear reconstruction
schemes are introduced in the present paper for this Q̃L

i+1/2.
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3.7.1 WENO-CU6 from Hu et al.

The WENO-CU6 reconstruction scheme from Hu et al. [8] is used in the present research with the following
form

Q̃L
i+1/2 =

3∑
k=0

ωkQ̃
L
i+1/2,k (58)

where the schemes on the sub-stencils are

Q̃L
i+1/2,0 =

1

3
Qi−2 − 7

6
Qi−1 +

11

6
Qi,

Q̃L
i+1/2,1 = −

1

6
Qi−1 +

5

6
Qi +

1

3
Qi+1,

Q̃L
i+1/2,2 =

1

3
Qi +

5

6
Qi+1 − 1

6
Qi+2,

Q̃L
i+1/2,3 =

11

6
Qi+1 − 7

6
Qi+2 +

1

3
Qi+3.

(59)

The nonlinear weights are calculated by

ωk =
αk∑3
k=0 αk

, αk = dk

(
C +

τ6
βk + ε

)
, (60)

where ε = 10−40, C = 20 and

β0 =
1

4
(Qi−2 − 4Qi−1 + 3Qi)

2 +
13

12
(Qi−2 − 2Qi−1 +Qi)

2,

β1 =
1

4
(Qi−1 −Qi+1)

2 +
13

12
(Qi−1 − 2Qi +Qi+1)

2,

β2 =
1

4
(3Qi − 4Qi+1 +Qi+2)

2 +
13

12
(Qi − 2Qi+1 +Qi+2)

2.

(61)

The additional β3 for the downwind stencil is calculated by

β3 = β6 =
1

10080
[Qi−2(271779Qi−2 + 2380800Qi−1 + 4086352Qi − 3462252Qi+1 + 1458762Qi+2 − 245620Qi+3)

+Qi−1(5653317Qi−1 − 20427884Qi + 17905032Qi+1 − 7727988Qi+2 + 1325006Qi+3)

+Qi(19510972Qi − 35817664Qi+1 + 15929912Qi+2 − 2792660Qi+3)

+Qi+1(17195652Qi+1 − 15880404Qi+2 + 2863984Qi+3)

+Qi+2(3824847Qi+2 − 1429976Qi+3)

+ 139633Q2
i+3].

(62)

The global τ6 has the following form

τ6 =
∣∣∣β6 − 1

6
(β0 + 4β1 + β2)

∣∣∣. (63)

And the optimal weights depend on

d0 =
1

20
, d1 =

9

20
, d2 =

9

20
, d3 =

1

20
. (64)

All the above equations form the WENO-CU6 scheme. When all the stencils are smooth enough, this
scheme will become

Q̃i+1/2 =
1

60
(Qi−2 − 8Qi−1 + 37Qi + 37Qi+1 − 8Qi+2 +Qi+3). (65)

In the following section, the reconstruction schemeWENO-CU6 is transformed into interpolation scheme
through RI-D6. The resulting interpolation scheme with CCFDM is then compared with the original
reconstruction scheme with cell-centered finite volume method.

Note that the interpolation version of WENO-CU6, which is the WCNS-CU6, has been proposed in
[23][24][25]. However, the RI schemes are still useful for those solvers with WENO-CU6 available.
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3.7.2 WGVC-WENO7 from He et al.

The WGVC-WENO7 scheme proposed by He et al. [26] is a hybrid scheme of weighted group velocity
control (WGVC) scheme and WENO scheme. The WGVC-WENO7 scheme is formed by weighting four
sub-schemes. To begin with, we have the following equation

Q̃L
i+1/2 =

3∑
k=0

ωkQ̃
L
i+1/2,k (66)

where the schemes on the sub-stencils are

Q̃L
i+1/2,0 =

1

12
(−3Qi−3 + 13Qi−2 − 23Qi−1 + 25Qi),

Q̃L
i+1/2,1 =

1

12
(Qi−2 − 5Qi−1 + 13Qi + 3Qi+1),

Q̃L
i+1/2,2 =

1

12
(−Qi−1 + 7Qi + 7Qi+1 −Qi+2),

Q̃L
i+1/2,3 =

1

12
(3Qi + 13Qi+1 − 5Qi+2 +Qi+3).

(67)

The nonlinear weights are defined by

ω0 = (1− θ) · (0.0882�m) +θ · ωWENO
0 ,

ω1 = (1− θ) · (0.2 + 0.441�m) +θ · ωWENO
1 ,

ω2 = (1− θ) · (0.6− 0.2646�m) +θ · ωWENO
2 ,

ω3 = (1− θ) · (0.2− 0.2646�m) +θ · ωWENO
3 .

(68)

where
θ(s) = sq · (q + 1− q · s), s = 1− �m�s

DmDs
. (69)

In the above equations,

q = 100, Dm =
1000

3087
, Ds =

2087

3087
, (70)

�m =
γm

γm + γs
, �s =

γs
γm + γs

, (71)

γm = Dm(1 + (
τ

β0
+ ε)p), γs = Ds(1 + (

τ

β3
+ ε)p), (72)

τ = |β0 − β3|. (73)

The WENO7 related weights in Eqs.(68) is defined by

ωWENO
k =

αk∑3
k=0 αk

, αk =
ck

(βk + ε)p
, (74)

ε = 10−6, p = 2, (75)

The smoothness indicator for the original WENO7 is defined by

β0 = Qi−3(547Qi−3 − 3882Qi−2 + 4642Qi−1 − 1854Qi)

+Qi−2(7043Qi−2 − 17246Qi−1 + 7042Qi) +Qi−1(11003Qi−1 − 9402Qi) + 2107Q2
i ,

β1 = Qi−2(267Qi−2 − 1642Qi−1 + 1602Qi − 494Qi+1)

+Qi−1(2843Qi−1 − 5966Qi + 1922Qi+1) +Qi(3443Qi − 2522Qi+1) + 547Q2
i+1,

β2 = Qi−1(547Qi−1 − 2522Qi + 1922Qi+1 − 494Qi+2)

+Qi(3443Qi − 5966Qi+1 + 1602Qi+2) +Qi+1(2843Qi+1 − 1642Qi+2) + 267Q2
i+2,

β3 = Qi(2107Qi − 9402Qi+1 + 7042Qi+2 − 1854Qi+3)

+Qi+1(11003Qi+1 − 17246Qi+2 + 4642Qi+3) +Qi+2(7043Qi+2 − 3882Qi+3) + 547Q2
i+3.

(76)
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And the optimal weights for WENO depend on

c0 =
1

35
, c1 =

12

35
, c2 =

18

35
, c3 =

4

35
. (77)

In this paper, the WGVC-WENO7 scheme is used in combination with RI-D8 scheme for CCFDM.

3.7.3 OMP6 from Li et al.

The sixth-order monotonicity-preserving optimized scheme (OMP6) proposed by Li et al. [27] is adopted
in this paper. Detailed equations are as follows.

Q̃L
i+1/2 =

⎧⎨
⎩Q̃Linear

i+1/2 if
(
Q̃Linear

i+1/2 −Qi

)(
Q̃Linear

i+1/2 − Q̃MP
i+1/2

)
≤ 10−10

Q̃Nonlinear
i+1/2 otherwise

(78)

where

Q̃Linear
i+1/2 =

3

6000
Qi+4 +

79

6000
Qi+3 − 737

6000
Qi+2 +

3595

6000
Qi+1 +

3805

6000
Qi − 863

6000
Qi−1

+
121

6000
Qi−2 − 3

6000
Qi−3,

Q̃Nonlinear
i+1/2 = Q̃Linear

i+1/2 +minmod
(
Q̃min

i+1/2 − Q̃Linear
i+1/2 , Q̃max

i+1/2 − Q̃Linear
i+1/2

)
,

Q̃MP
i+1/2 = Q̃Linear

i+1/2 +minmod [Qi+1 −Qi, 4(Qi −Qi−1)] ,

Q̃min
i+1/2 = max

[
min

(
Qi, Qi+1, Q̃

MD
i+1/2

)
,min

(
Qi, Q̃

UL
i+1/2, Q̃

LC
i+1/2

)]
,

Q̃max
i+1/2 = min

[
max

(
Qi, Qi+1, Q̃

MD
i+1/2

)
,max

(
Qi, Q̃

UL
i+1/2, Q̃

LC
i+1/2

)]
,

Q̃MD
i+1/2 =

1

2
(Qi +Qi+1)− 1

2
dMi+1/2,

Q̃UL
i+1/2 = Qi + 4 (Qi −Qi−1) ,

Q̃LC
i+1/2 =

1

2
(3Qi −Qi−1) +

4

3
dMi−1/2,

dMi+1/2 = minmod (4Qi −Qi+1, 4Qi+1 −Qi, Qi, Qi+1) ,

di = Qi−1 − 2Qi +Qi+1.

(79)

In the following sections, the RI-D10 adapter scheme is utilized to convert OMP6 to its interpolation
version.

3.7.4 Approximate Dispersion Relation of the Nonlinear Schemes

In this section, the dispersion and dissipation of the implemented nonlinear schemes are analyzed by the
approximate dispersion relation (ADR) [28], which is shown in Fig.2. In Fig.2, the interpolation forms of
the WENO-CU6, WGVC-WENO7 and OMP6 are compared with their original reconstruction forms. It
has to be point out that the ADR technique depends on the 1D linear wave equation, which will make
the derived interpolation schemes the very same with the original reconstruction ones. However, when the
derived interpolation schemes are applied to nonlinear Euler or Navier-Stokes equations. The numerical
results will be different, which can be found in the next section of this paper.

In the comparison of dispersion, the WGVC-WENO7 on the 7-point stencil and the OMP6 on the
8-point stencil are very close to the theoretical dispersion when kΔx < 1.7. In the wavenumber range
of kΔx < 1.3, the WENO-CU6 on the 6-point stencil is also close to the theoretical dispersion. In high
wavenumber range, the OMP6 has the best dispersion.

In the comparison of dissipation, all the three schemes have similar dissipation with theoretical dissipa-
tion when kΔx < 1.3. The WENO-CU6 has almost the best dissipation, except that the WGVC-WENO7
is slightly better in the range of 1.5 < kΔx < 2.1. And the OMP6 has the largest dissipation in high
wavenumber range.
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The explanation to the observations is simple. Both WGVC-WENO7 and OMP6 are dispersion opti-
mized at the cost of the schemes’ orders lower than the highest achievable orders. And the WENO-CU6
is optimized through adding a downwind global stencil to make the upwind stencil central. Thus, the
dispersion optimized WGVC-WENO7 and OMP6 have very good dispersion, and the dissipation optimized
WENO-CU6 has attractive dissipation.
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Figure 2: ADR of the WENO-CU6, WGVC-WENO7 and OMP6

3.8 Further Discussion on CCFDM and CCSCMM

In this section, the relation between CCFDM and finite volume method (FVM) is briefly discussed by
focusing on the geometric metrics and Jacobian. In the following discussion, 2nd-order linear central
schemes are utilized for the geometric discretization, which include

(·)′i = (·)i+1/2 − (·)i−1/2,

(·)i = 1

2

[
(·)i+1/2 + (·)i−1/2

]
.

(80)

First, the metrics on the red surface in Fig. 3 calculated by Eq. (23) can be discretized in the following
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form

(Jξx)
S1 = δζ2( z

edge−η
δη3 y

node︸ ︷︷ ︸
edge−η

)

︸ ︷︷ ︸
face−ηζ

− δη2( z
edge−ζ

δζ3 y
node︸ ︷︷ ︸

edge−ζ

)

︸ ︷︷ ︸
face−ηζ

=
[
( z
edge−η

δη3 y
node︸ ︷︷ ︸

edge−η

)
∣∣∣
F
− ( z

edge−η
δη3 y

node︸ ︷︷ ︸
edge−η

)
∣∣∣
H

]
︸ ︷︷ ︸

face−ηζ

−
[
( z
edge−ζ

δζ3 y
node︸ ︷︷ ︸

edge−ζ

)
∣∣∣
E
− ( z

edge−ζ
δζ3 y

node︸ ︷︷ ︸
edge−ζ

)
∣∣∣
G

]
︸ ︷︷ ︸

face−ηζ

=
[
zF (yB − yC)− zH(yA − yD)

]︸ ︷︷ ︸
face−ηζ

− [
zE(yB − yA)− zG(yC − yD)

]︸ ︷︷ ︸
face−ηζ

=
zB + zC

2
(yB − yC)− zA + zD

2
(yA − yD)− zA + zB

2
(yB − yA) +

zC + zD
2

(yC − yD)

=
1

2

[
(yA − yC)(zB − zD)− (yB − yD)(zA − zC)

]
.

(81)

Similarly, the following equations can be obtained

(Jξy)
S1 =

1

2

[
(xB − xD)(zA − zC)− (xA − xC)(zB − zD)

]
,

(Jξz)
S1 =

1

2

[
(xA − xC)(yB − yD)− (xB − xD)(yA − yC)

]
,

(82)

which indicate (
Jξx, Jξy, Jξz

)S1
=

1

2

−→
CA×−−→DB =

(
Sx, Sy, Sz

)FVM
, (83)

which means that 2nd-order surface metrics are exactly the same with the surface vector of FVM in numeric.

Figure 3: Metrics on face− ηζ. Note that the cell center is not illustrated.

Second, consider the following equation which adopts the Green-Gauss equation

‹
∂Ω

(x, y, z)d
−→
S =

˚
Ω
∇ · (x, y, z)dV =

˚
Ω

(∂x
∂x

+
∂y

∂y
+

∂z

∂z

)
dV = 3V, (84)

where V is the cell volume. When the 2nd-order central difference scheme and the above Eq.(83) are
applied to Eq.(26), the following relation can be obtained

J = V =
∑
f∈∂Ω

(xf , yf , zf )
−→
S f , (85)
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where
−→
S f is in the outward normal direction. Note that, the sum of surface integration in outward normal

direction in FVM can be regard as the difference of surface variables in uniform normal direction in CCFDM.
This further indicates that the 2nd-order Jacobian is exactly identical to the volume of FVM in numeric.

The above discussion with Eq.(83) and Eq.(85) lays the foundation that cell-centered FVM can be
realized through CCFDM with 2nd-order geometric discretization. Because both FVM and CCFDM can
be concluded into three main steps in spatial-discretization:

• step 1: cell-to-face reconstruction/interpolation of primitive/conservative/characteristic variables;

• step 2: approximate Riemann solver for flux variables on the faces;

• step 3: face-to-cell difference for the derivatives of flux variables.

This further indicates that those finite volume solvers on structured grids can be “UPGRADED” to high-
order CCFDM with the most of the algorithms and codes reused without further modification, such as
boundary condition, time-advancing, pre/post-treat methods, etc. To be specific, three main steps have to
be taken:

• step 1: replace reconstruction scheme with interpolation scheme, or use RI scheme to make one;

• step 2: replace difference scheme of FVM with those F-to-C/FC-to-C difference schemes of CCFDM;

• step 3: replace surface vectors and volumes of cells with surface metrics and Jacobians of cells.

Note that as is pointed out by Titarev and Toro [29], the FVM without Gaussian integration of flux on the
surface is 2nd-order only. However, in the simulation with relative good quality of grids, the high-resolution
property of the reconstruction scheme could still be remained in this FVM, which will be shown in the
following section.

Finally, two working modes are developed: the 2nd-order FVM mode and the high-order FDM mode.
Both modes are realized through CCFDM and CCSCMM, the details of which are listed in Table 4.

Table 4: The 2nd-order FVM and the high-order FDM realized through CCFDM

Working Mode 2nd-order FVM high-order FDM

Geometric Schemes
(·)′i = (·)i+1/2 − (·)i−1/2 high-order F-to-C/FC-to-C difference

(·)i = 1
2

[
(·)i+1/2 + (·)i−1/2

]
high-order central interpolation

Geometric Variables
Surface Vector: (Sx, Sy, Sz) Surface Metrics: (Jξx, Jξy, Jξz) etc.

Volume of Cell: V Jacobian of Cell: J

Cell-to-Face Scheme
Reconstruction Interpolation

(Pimitive/Characteristic)

Flux at Face Roe, AUSM, SLAU, HLLC, etc.

Face-to-Cell Difference
(·)′i = (·)i+1/2 − (·)i−1/2 high-order F-to-C/FC-to-C difference

(Flux)

The present paper is a step forward that the interpolation schemes do not have to be totally re-derived,
whereas they can be obtained from the available reconstruction schemes through RI adapter schemes, which
further makes the reconstruction schemes reusable in the FDM mode. In the following section, the derived
CCFDM with reconstruction schemes and RI adapters are in “high-order” mode of CCFDM, while the
original reconstruction schemes are adopted through the “2nd-order FVM” mode of CCFDM. Detailed
schemes used are listed in Table5.

4 Verification

In this section, the derived high-order schemes with corresponding adapters are verified through a series
of benchmark cases in comparison with their 2nd-order FVM forms. The verification includes both linear
and nonlinear problems, both accuracy test and resolution test.
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Table 5: Schemes and methods implemented in the following Verification section

Working Mode Reconstruction Scheme RI Scheme Difference of Flux

FVM

WENO-CU6 N/A F-to-C-2

WGVC-WENO7 N/A F-to-C-2

OMP6 N/A F-to-C-2

FDM

WENO-CU6 RI-D6 FC-to-C-D6

WGVC-WENO7 RI-D8 FC-to-C-D8

OMP6 RI-D10 FC-to-C-D10

In this section, the 3-step 3rd-order TVD Runge-Kutta scheme [5] is used for time advancement.

4.1 Freestream Preservation

Freestream preservation refers to the property that in the simulation without disturbance the flow variables
at solution points should remain constants under the condition that these flow variables are constants
everywhere initially.

To be specific, in the problem with farfield boundary conditions only, initialize the simulation domain
with uniform freestream parameters. If the flow variables could remain freestream parameters after long
time simulation, then freestream is considered to be preserved.

Freestream preservation is the basic requirement to CFD discretization methods. The non-preserved
freestream from discretization error may result in nonphysical fluctuation or even divergence of the simu-
lation. The freestream preservation is usually not satisfied in finite difference method due to the violation
of GCL. Thus this benchmark case is chosen to verify method in this paper.

Firstly, a two-dimensional highly wavy grid with 60×60 cells is used. Periodic boundary condition is
specified in both directions. The error of pressure at t = 1, which is shown in Fig.4 and Table6, is defined
by

Perror =
P − P0

P0
, (86)

where P0 = 1/1.4 is the pressure at t = 0.
It is quite obvious that without GCL satisfied the error introduced on highly wavy grid is tremendous.

And CCSCMM is able to satisfy GCL to obtain physical result.

Table 6: Error of pressure on 2D wavy grid.

Method |Perror|L1−norm |Perror|L2−norm |Perror|L∞−norm

Non-GCL 2.894115248602842×10−2 5.367442346553225×10−2 2.969166883808172×10−1

GCL(CCSCMM) 3.790178047956437×10−17 2.414079206411703×10−16 4.440892098500626×10−15

Secondly, a three-dimensional grid from the 1st High Lift Prediction Workshop is adopted for the
verification of the freestream preservation property in practical 3D configuration. By re-specifying all the
“wall” boundary as the “farfield” boundary, freestream should be preserved. The grid topology, iteration
residual and contours of pressure errors are displayed in Fig.5. In addition, the pressure errors are also
listed in Table 7.

It can be seen that due to the satisfied GCL, the geometry induced error is totally eliminated by
CCSCMM, leading to much more physical result in practical simulations.
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(a) Wavy Grid (b) Residual

(c) Pressure Error without GCL (d) Pressure Error with GCL(CCSCMM)

Figure 4: Freestream preservation benchmark on 2D wavy grid. In (c), GCL is violated because metrics are
calculated by inversion of coordinate transformation matrix. In (d), GCL is satisfied through CCSCMM.

Table 7: Error of pressure with different geometric method using the High Lift configuration.

Method |Perror|L1−norm |Perror|L2−norm |Perror|L∞−norm

Non-GCL 1.818023975514759×10−2 2.488010242753828×10−2 7.397856884418441×10−2

GCL(CCSCMM) 3.645818150301382×10−13 4.913787857526584×10−13 1.942224159279249×10−12
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(a) Grid Topology (b) Residual

(c) Pressure Error without GCL (d) Pressure Error with GCL(CCSCMM)

Figure 5: Freestream preservation benchmark with grid from the 1st High Lift Prediction Workshop. In
(a), the “wall” boundary (in red) is re-specified as “farfield” boundary. In (c), GCL is violated because
metrics are calculated by inversion of coordinate transformation matrix. In (d), GCL is satisfied through
CCSCMM.
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4.2 Stationary Isentropic Vortex

This case is utilized to evaluate the order of accuracy of the proposed method on two-dimensional grids.
The stationary isentropic vortex is initially located at (xc, zc) = (0, 0) with the following conditions

(u,w) =
β

2π
e

(
1−r2

2

)
[−(z − zc), (x− xc)] , T = 1− (γ − 1)β2

8γπ2
e(1−r2),

ρ = T
1

γ−1 , P = ρT, r =
√
(x− xc)2 + (z − zc)2,

(87)

where β = 5 is the strength of the vortex.
Two kinds of grids are adopted: uniform grids and wavy grids. For the uniform grids, the computational

domain is (x, z) ∈ (−8, 8) × (−8, 8). For the wavy grids, the coordinates are generated by the following
equations

x = xmin +Δx

[
i− 1 +Ax

N

60
sin(2πω) sin(

πB(k − 1)

N
)

]
, i = 1, 2, · · · , N + 1,

z = zmin +Δz

[
k − 1 +Az

N

60
sin(2πω) sin(

πB(i− 1)

N
)

]
, k = 1, 2, · · · , N + 1,

(88)

where
L = xmax − xmin = zmax − zmin, xmin = zmin = −8, xmax = zmax = 8,

Δx = Δz = L/N, Ax = 2, Az = 4, B = 6, ω = 0.25,

N = 60, 80, 100, 120, 140, 160.

(89)

Periodic boundary condition is specified in both directions. The flow should keep its initial condition
at t > 0. Thus, the solution at t = 12 is compared with initial condition to calculate numerical error. The
L2-norm of density error is defined by the following equation

Error(ρ) =

√
ΣN
i=1Σ

N
j=1[ρi,j(t)− ρi,j(0)]2

N2
. (90)

There is one thing that should be mentioned. Our finite volume method, which adopts dimensional-
by-dimensional discretization without Gaussian integration at faces of cells, ignores the differece between
the nodal value at cell centers and the cell-averaged value like most finite volume method, and thus is
second-order indeed. In this case on curvilinear grids to evaluate numerical accuracy, the initial values
at each cell for the finite volume method is chosen to be the cell-averaged conservative variables. 2D
Gaussian integration with 20×20 integration points in each cell is used to calculate the initial cell-averaged
conservative variables with the following equations

Q̄ik =
1

Sik

¨
Ωik

Q(x, z)dS =

´ Δζ
2

−Δζ
2

´ Δξ
2

−Δξ
2

J(ξi + ξ, ζk + ζ)Q(ξi + ξ, ζk + ζ)dξdζ

´ Δζ
2

−Δζ
2

´ Δξ
2

−Δξ
2

J(ξi + ξ, ζk + ζ)dξdζ
, (91)

where

Q = (ρ, ρu, ρv, ρw, ρe)T , J(ξ, ζ) =

∣∣∣∣∣∣∣∣
∂x

∂ξ

∂x

∂ζ
∂z

∂ξ

∂z

∂ζ

∣∣∣∣∣∣∣∣ , (92)

which can be obtained analytically through Eq.(87) and Eq.(88).
The errors of density and the calculated orders of accuracy are shown in Table 8, Table 9 and Fig. 6. It

can be seen that the orders of accuracy are very well preserved on the uniform grids, indicating that finite
volume methods are 2nd-order only and the finite difference methods are high-order. On the highly wavy
grids, the accuracy loss of the finite volume method is very obvious, but the finite difference method could
still preserve high-order accuracy.

Finally, the time costs of the derived nonlinear schemes are compared with their original reconstruction
ones on the 60 × 60 grid in Table 10. It can be seen that due to the simplicity of the nonlinear limiter of
the OMP6 scheme, it has the fastest speed even though it has the largest scheme stencil.
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Table 8: L2-norm of density error of the stationary isentropic vortex problem on uniform grids.

Cells
Error(ρ) of WENO-CU6 Error(ρ) of WGVC-WENO7 Error(ρ) of OMP6

FVM FDM FVM FDM FVM FDM

60× 60 7.49× 10−5 3.54× 10−6 9.13× 10−5 3.55× 10−6 1.14× 10−4 4.80× 10−6

80× 80 4.25× 10−5 6.60× 10−7 4.99× 10−5 5.40× 10−7 6.44× 10−5 9.24× 10−7

100× 100 2.73× 10−5 1.81× 10−7 3.19× 10−5 1.21× 10−7 4.13× 10−5 2.53× 10−7

120× 120 1.90× 10−5 6.12× 10−7 2.22× 10−5 3.48× 10−8 2.88× 10−5 8.65× 10−8

140× 140 1.40× 10−5 2.57× 10−8 1.63× 10−5 1.21× 10−8 2.12× 10−5 3.48× 10−8

160× 160 1.07× 10−5 1.12× 10−8 1.25× 10−5 4.81× 10−9 1.62× 10−5 1.57× 10−8

Order 1.98 5.87 2.03 6.73 1.99 5.83

Table 9: L2-norm of density error of the stationary isentropic vortex problem on wavy grids.

Cells
Error(ρ) of WENO-CU6 Error(ρ) of WGVC-WENO7 Error(ρ) of OMP6

FVM FDM FVM FDM FVM FDM

60× 60 1.03× 10−3 8.09× 10−4 4.83× 10−4 3.31× 10−4 2.44× 10−3 1.25× 10−3

80× 80 9.42× 10−4 1.56× 10−4 4.73× 10−4 4.90× 10−5 1.56× 10−3 1.41× 10−4

100× 100 6.08× 10−4 4.38× 10−5 4.39× 10−4 1.12× 10−5 5.94× 10−4 4.83× 10−5

120× 120 4.52× 10−4 1.35× 10−5 4.13× 10−4 3.73× 10−6 3.66× 10−4 1.75× 10−5

140× 140 3.41× 10−4 4.87× 10−6 3.62× 10−4 1.46× 10−6 3.49× 10−4 7.12× 10−6

160× 160 2.78× 10−4 2.18× 10−6 3.03× 10−4 6.30× 10−7 3.87× 10−4 3.30× 10−6

Order 1.33 6.03 0.47 6.39 1.87 6.06
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Figure 6: Order of accuracy of the stationary isentropic vortex problem.

Table 10: Comparison of CPU-time (in seconds) of the isentropic vortex problem on the 60× 60 grid.

Methods CPU-time Methods CPU-time Methods CPU-time

WENO-CU6(FVM) 103.26 WGVC-WENO7(FVM) 171.38 OMP6(FVM) 65.07

WENO-CU6(FDM) 114.33 WGVC-WENO7(FDM) 182.98 OMP6(FDM) 75.24
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4.3 Shu-Osher Problem

The Shu-Osher problem is defined by the following initial condition:

(ρ, u, p) =

{
(3.587143, 2.629369, 10), if 0 ≤ x < 1

(1 + 0.2 sin(5x), 0, 1), if 1 ≤ x ≤ 10
(93)

Firstly, the three nonlinear schemes with their corresponding adapter schemes are simulated for com-
parison. The density at t = 1.8 is obtained in Fig. 7 with 200 cells and in Fig. 8 with 400 cells. It can be
seen that the reconstruction schemes are successfully made into the corresponding interpolation ones with
very similar performance in resolution.
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Figure 7: Density of Shu-Osher problem at t = 1.8 with 200 cells.
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Figure 8: Density of Shu-Osher problem at t = 1.8 with 400 cells.

Secondly, adapter schemes with different orders are tested for WENO-CU6, WGVC-WENO7 and OMP6
with 200 cells. The results are shown in Fig.9. It can be observed that 2nd-order RI adapter is not able to
give acceptable results, while other adapter schemes have similar performance. Another observation is that
even if 4th-order RI adapter is used, the 10-point OMP6 is still better than the 6-point WENO-CU6. This
indicates that the order and accuracy of adapter scheme will have minor effect on the global performance
under the condition that 4th-order or higher-order adapter schemes are adopted.

4.4 Shock tube problem

To demonstrate shock capturing capability, the Sod problem is utilized with the following initial condition

(ρ, u, p) =

{
(1, 0, 1), if 0 ≤ x < 0.5

(0.125, 0, 0.1), if 0.5 ≤ x ≤ 1
(94)
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Figure 9: Density of Shu-Osher problem at t = 1.8 with different adapter schemes in FDM mode.

The simulation is performed till t = 0.2 using 100 cells. Different adapter schemes are chosen for each of
these schemes according to the maximum available stencil width.

The calculated density profile is shown in Fig.10. It can be seen that no obvious overshoot or undershoot
can be observed, and the adapted interpolation schemes show similar performance in accuracy with the
original reconstruction schemes.
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Figure 10: Density of Sod problem at t = 0.2.

4.5 Shock Wave Impingement on a Spatially Evolving Mixing Layer

This case [30] focuses on the interaction of a reflecting shock wave with shear layer instabilities. The
computational domain is (x, z) ∈ (0, 200) × (−20, 20). The nonlinear interpolation schemes with adapter
schemes are verified in comparison with their reconstruction versions using 500 × 100 uniformly spaced
cells.

The simulated pressure contours at t = 120 are demonstrated in Fig.11. It can be found that the adapted
interpolated schemes have similar performance in accuracy with the original reconstruction schemes.

4.6 Shock Vortex Interaction

In this case, a moving vortex is passing through a stationary shock located at x = 0. The vortex is placed
at (xv, yv) = (4, 0) at t = 0. The initial condition for the flow field is given by the following equations

⎛
⎜⎜⎝

ρ
p
δu
δv

⎞
⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

(
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2 M2
v e
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) 1
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1
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⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(95)
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Figure 11: Pressure contours of shock wave impingement on a spatially evolving mixing layer. The contours
range from 0.16 to 0.726 with equally spaced 284 levels.
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where γ = 1.4, and R = 1.0 is the radius of the vortex. The characteristic Mach number of vortex is Mv =
1.0 in this case. The simulation is performed with 600×600 cells in a square domain [−35, 10]×[−22.5, 22.5]
with Δx = Δy = 3

40 .
The simulated pressure contours of shock vortex interaction problem at t = 16 are demonstrated

in Fig.12. It can be seen that the results from reconstruction schemes are quite similar to those from
interpolation schemes, indicating the effectiveness of adapter schemes.

(a) WCNS5 (b) WENO-CU6(FVM) (c) WGVC-WENO7(FVM) (d) OMP6(FVM)

(e) WCNS5Z (f) WENO-CU6(FDM) (g) WGVC-WENO7(FDM) (h) OMP6(FDM)

Figure 12: Pressure contours of shock vortex interaction problem at t = 16.0 with 600× 600 cells.

5 Conclusion

The present paper develops the high-order high-resolution optimized interpolation schemes for cell-centered
finite difference method (CCFDM). This paper proposes that nonlinear reconstruction scheme and nonlinear
interpolation scheme can be converted into each other by two series of linear adapter schemes, which in-
clude interpolation-to-reconstruction (IR) adapter schemes and reconstruction-to-interpolation (RI) adapter
schemes. With the proposed RI adapter schemes, three high-order high-resolution nonlinear reconstruction
schemes, which include WENO-CU6, WGVC-WENO7 and OMP6, are transformed into their corresponding
interpolation ones. Benchmark cases demonstrate that the RI adapter schemes could mainly preserve the
accuracy and robustness of the original well-optimized reconstruction schemes without noticeable increase
in computational time cost, indicating the effectiveness and efficiency of the schemes proposed.
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