
ar
X

iv
:1

90
8.

01
29

2v
2

 [
m

at
h.

N
A

]
 2

9
N

ov
 2

01
9

NUMERICAL APPROXIMATION OF THE SCHRÖDINGER

EQUATION WITH CONCENTRATED POTENTIAL

L. BANJAI ∗ AND M. LÓPEZ-FERNÁNDEZ †

Abstract. We present a family of algorithms for the numerical approximation of the Schrödinger
equation with potential concentrated at a finite set of points. Our methods belong to the so-called
fast and oblivious convolution quadrature algorithms. These algorithms are special implementations
of Lubich’s Convolution Quadrature which allow, for certain applications in particular parabolic
problems, to significantly reduce the computational cost and memory requirements. Recently it has
been noticed that their use can be extended to some hyperbolic problems. Here we propose a new
family of such efficient algorithms tailored to the features of the Green’s function for Schrödinger
equations. In this way, we are able to keep the computational cost and the storage requirements
significantly below existing approaches. These features allow us to perform reliable numerical sim-
ulations for longer times even in cases where the solution becomes highly oscillatory or seems to
develop finite time blow-up. We illustrate our new algorithm with several numerical experiments.

Keywords: fast and oblivious algorithms, convolution quadrature, Schrödinger equa-
tion, boundary integral equations, contour integral methods.

AMS Classification: 65R20, 65L06, 65M15, 65M38

1. Introduction. We consider the efficient numerical approximation of Schrödinger
equations with the potential concentrated at a finite set of points in dimension D =
1, 2, 3. These problems can be formally described by the equation

1

i
ψt(t, x) =

∆−
M
∑

j=1

Vjδ(x− xj)

ψ(t, x), x ∈ R
D, (1.1)

where ∆ denotes the Laplacian and the coupling factors Vj may depend on t, Vj =
Vj(t), and/or on the value of ψ at (t, xj), Vj = Vj(ψ(t, xj)), j = 1, . . . ,M . These mod-
els have been used to describe different phenomena in solid state physics, optics and
acoustics, and have been rigorously analyzed by several authors in the mathematical
physics community, starting from the one-dimensional case [3], followed by the three-
dimensional case [1, 2], and more recently the two-dimensional case [11, 12]. The
reformulation of these models as M -dimensional systems of Volterra integral equa-
tions has proven to be very useful for the analysis of the existence, uniqueness, and
regularity of solutions. In this paper we address the efficient numerical approximation
of such integral representations. Even with the reduction to a finite dimensional sys-
tem of integral equations, the numerical approximation of (1.1) can be quite delicate
[13], particularly in the nonlinear case. We notice that the long-time behaviour of the
solution to the nonlinear Schrödinger equation (NLS) with concentrated potential is
not always well-understood and it might become highly oscillatory and even develop
blow-up in finite time.

Let us recall that for the Schrödinger equation in the whole space

1

i
ψt(t, x) −∆ψ(t, x) = 0, x ∈ R

D, (1.2)

∗The Maxwell Institute for Mathematical Sciences, School of Mathematical & Computer Sciences,
Heriot-Watt University, Edinburgh EH14 4AS, UK. (l.banjai@hw.ac.uk)

†Department of Mathematical Analysis, Statistics and O.R. and Applied Mathematics, Faculty
of Sciences, University of Málaga, Spain (maria.lopezf@uma.es) and Department of Mathematics
Guido Castelnuovo, Sapienza University of Rome, Italy

1

http://arxiv.org/abs/1908.01292v2

with D = 1, 2, 3, the Green’s function is given by [15, Equation (2.24)]

k(t, x) = i

(

1

4πit

)D/2

ei‖x‖
2/4t, x ∈ R

D, t > 0. (1.3)

The corresponding transfer operator, i.e., the Laplace transform of k

K(z, x) =

∫ ∞

0

e−ztk(t, x)dt, Re z > 0,

is given by

K(z, x) =

1

2
√

z/i
exp

(

−|x|
√

z/i
)

for D = 1,

1

2π
K0

(

‖x‖
√

z/i
)

for D = 2,

1

4π‖x‖ exp
(

−‖x‖
√

z/i
)

for D = 3.

(1.4)

In the above K0 is the modified Bessel function of the second kind [14] and

√

z/i = e−iπ/4
√
z, (1.5)

where
√
z is the branch with the positive real part and with the branch cut along the

negative real axis. Hence the transfer operatorK(x, z) as a function of z is analytically
extended to the cut complex plane C \ (−∞, 0].

In applications, see [19, 13] and Section 6, it is important to be able to compute
accurately and efficiently the convolution in time with the Green’s function. Namely,

ψ(t, x) =

∫ t

−∞
k(t− τ, x− x0)f(τ, x0)dτ, (1.6)

solves the Schrödinger equation with a source at x0:

1

i
ψt(t, x) −∆ψ(t, x) = f(t, x0).

Due to the kernel being non-local and highly oscillatory, accurate and efficient dis-
cretization of (1.6) is not easy. In [13] a carefully constructed, accurate numerical
method is presented and in [21] numerical experiments illustrated the good compu-
tational properties of convolution quadrature (CQ) for (1.6). Due to the non-locality
of the kernel, computing ψ(x, t) at N time steps tj using the method in [13] has
an O(N2) computational complexity, whereas standard FFT based methods for CQ,
[20, 10] can reduce this to O(N logN) for linear problems and to O(N log2N) for
nonlinear problems [16, 10]. However, both methods require to store N solution vec-
tors in memory. In this work we describe an algorithm that is both very easy to
implement and can significantly reduce the amount of memory used. More precisely
the memory requirements will be reduced from O(N) to O(n0+logN), with n0 ≪ N .
Our method belongs to the family of oblivious algorithms [24, 7], the name indicating
that the memory requirements can be significantly reduced. Due to the way our al-
gorithm is built we also expect it to be extendable to a variable step implementation,
something which by construction is difficult for FFT based methods [16, 10].

2

Oblivious quadratures were first developed for parabolic problems [23, 24], where
the transfer operator is sectorial, i.e., it admits a holomorphic extension to the com-
plement of an acute sector in the left half of the complex plane and it grows at most
algebraically as |z| → ∞. The extension of such ideas to hyperbolic problems, where
the transfer operator typically exhibits exponential growth as Re z → −∞, is much
more recent and has been first developed for the two-dimensional and the damped
three dimensional wave equation [7]. The application to the Schrödinger equation
has never been addressed to our knowledge. Furthermore in this paper we use a new
approach which allows a substantial simplification of the implementation with respect
to the algorithms in [23, 24, 7] and in our experience even a marginal improvement
in the compressibility and the computational times. In particular, we take the real
inverse Laplace transform approach introduced in [6] for the fractional integral, which
fits the more favourable sectorial framework. We thus generalize the ideas in [6] to the
non-sectorial situation of the Schrödinger Green’s kernel and propose a mosaic-free,
fast and oblivious algorithm for the approximation of (1.6). Here mosaic refers to the
special partition of the integration domain τ ≤ t and organization of the book-keeping
which is required to compress the memory by the algorithms in [23, 24, 7]. The al-
gorithm we propose here will only require the computation and storage of certain
quantities at the beginning of the integration procedure and the update of a unique
set of ordinary differential equations from one step to the next one, for the whole time
interval. More details about the implementation are given in Section 5.

The outline of the paper is as follows. In Section 2 we give a brief introduction
to Runge-Kutta based convolution quadrature, in Section 3 we describe a new (real)
integral representation of the convolution quadrature weights associated to the trans-
fer operator (1.4). An efficient quadrature of this representation of the convolution
weights is described in Section 4. The use of this quadrature in an efficient algorithm
for computing discrete convolutions is explained in Section 5. The new method is then
illustrated by several substantial numerical experiments in Section 6. In particular we
describe in detail an application to a nonlinear Schrödinger equation describing the
suppression of quantum beating taken from [13]. The codes used for these experiments
are published at [5].

2. Runge-Kutta convolution quadrature. In this section we briefly describe
convolution quadrature (CQ) as applied to the evaluation of one sided convolutions

u(t) =

∫ t

0

k(t− τ)g(τ)dτ, (2.1)

where k is a given kernel with Laplace transform K(z) = L k(z) and given data
g. In the applications in this paper, k will also be a function of x, but as this
dependence plays no role in this section we supress it for now. A basic assumption
for the application of CQ to (2.1) is that there exist C > 0 and µ ∈ R such that

|K(z)| ≤ C|z|µ, for Re z > 0. (2.2)

In this paper we use CQ based on implicit A-stable Runge-Kutta methods [17]. We
employ standard notation for an s-stage Runge-Kutta discretization based on the
Butcher tableau described by the matrix A = (aij)

s
i,j=1 ∈ Rs×s and the vectors

b = (b1, . . . , bs)
T ∈ Rs and c = (c1, . . . , cs)

T ∈ [0, 1]s. The corresponding stability
function is given by

r(z) = 1 + zbT (I− zA)−1
1, (2.3)

3

where

1 = (1, 1, . . . , 1)T .

Recall that A-stability is equivalent to the condition |r(z)| ≤ 1 for Re z ≤ 0. In
the following we collect all the assumptions on the Runge-Kutta method. These
are satisfied by, for example, Radau IIA and Lobatto IIIC families of Runge-Kutta
methods.

Assumption 1.

(a) The Runge-Kutta method is A-stable with (classical) order p ≥ 1 and stage order
q ≤ p.

(b) The stability function satisfies |r(iy)| < 1 for all real y 6= 0.
(c) The Runge-Kutta coefficient matrix A is invertible.
(d) The Runge-Kutta method is stiffly accurate, i.e.,

bTA−1 = (0, 0, . . . , 1).

This implies that

lim
|z|→∞

r(z) = 1− bTA−1
1 = 0

and cs = 1.
Since r(z) is a rational function, the above assumptions imply that

r(z) = O(z−1), |z| → ∞. (2.4)

Following the theory in [22], we define the weight matrices Wn corresponding to
the operator K as the coefficients of the power expansion

∞
∑

n=0

Wnζ
n = K

(

∆(ζ)

h

)

, (2.5)

where h is the step size and the matrix-valued function ∆(ζ) is the so-called symbol
of the Runge–Kutta method:

∆(ζ) =
(

A+
ζ

1− ζ
1bT

)−1

. (2.6)

Denoting by ωn = (ω1
n, . . . , ω

s
n) the last row of Wn, the approximation to the convo-

lution integral (2.1) at time tn+1 = (n+ 1)h is given by

un+1 =

n
∑

j=0

s
∑

i=1

ωi
n−j g(tj + cih) =

n
∑

j=0

ωn−j gj, (2.7)

with the column vector gj = g(tj + ch) =
(

g(tj + cih)
)s

i=1
.

The convergence order of this approximation has been investigated in [22] for
parabolic problems, i.e., for sectorial K, and in [8] and [9] for hyperbolic problems,
i.e., for non-sectorial operators.

With the row vector en(z) = (e1n(z), . . . , e
s
n(z)) defined as the last row of the s×s

matrix En(z) given by

(∆(ζ) − zI)−1 =

∞
∑

n=0

En(z) ζ
n, (2.8)

4

we obtain an integral formula for the weights

ωn =
h

2πi

∫

Γ

K(z)en(hz) dz. (2.9)

This representation follows from Cauchy’s formula and the definition of the weights in
(2.5), with the integration contour Γ chosen so that it surrounds the poles of en(hz).
An explicit expressing for en is given by

en(z) = r(z)nq(z), (2.10)

with the row vector q(z) = bT (I − zA)−1; cf. [22, Lemma 2.4]. The A-stability
assumption implies that the poles of r(z) are all in the right-half plane. Further, due
to the decay of the rational function r(z), see (2.4), for n > µ+1 with µ in (2.2), the
contour Γ can be deformed into the imaginary axis.

For the weight matrices it holds

Wn =
h

2πi

∫

Γ

K(z)En(hz) dz. (2.11)

By [22, Lemma 2.4], for n ≥ 1, En(z) is the rank-1 matrix given by

En(z) = r(z)n−1(I − zA)−1
1bT (I − zA)−1. (2.12)

The Runge-Kutta approximation of the inhomogeneous linear problem

y′(t) = zy(t) + g(t), y(0) = 0, (2.13)

at time tn+1 is given by

yn+1(z) = h

n
∑

j=0

en−j(hz)gj (2.14)

and thus the approximation of the convolution integral in (2.7) can be rewritten as [22,
Proposition 2.4]

un+1 =
1

2πi

∫

Γ

K(z)yn+1(z)dz. (2.15)

We will require the following technical lemmas proved in [7] and [6] where exam-
ples of numerically computed values of γ can also be found.

Lemma 2. Let r(z) be the stability function of a Runge-Kutta method satisfying
Assumption 1 and let

γ(ξ) = inf
−ξ≤Re z≤0

log |r(z)|
Re z

.

Then γ(ξ) ∈ (0, 1] for ξ > 0, it monotonically increases as ξ → 0 and

|r(z)| ≤ eγ(ξ)Re z ,

for all z in the strip −ξ ≤ Re z ≤ 0.
Lemma 3. There exist constants ν > 1, b > 0 and Cq > 0 such that

|r(z)| ≤ eν Re z, for 0 ≤ Re z ≤ b,

5

and

‖q(z)‖ ≤ Cq, for Re z ≤ b,

where Cq depends on the choice of the norm ‖ · ‖.
Lemma 4. There exists a constant CA > 0 such that

max(r(z), ‖q(z)‖) ≤ CA|z|−1 ∀Re z ≤ 0.

Proof. The estimate follows from r(z) = bTA−1(I − zA)−1
1, q(z) = bT (I −

zA)−1, and the fact that the eigenvalues of A have a strictly positive real part.
Remark 5. For the backward Euler method, CA = 1. For other RK methods

the constant can be estimated numerically. We obtained that for the 2-stage Radau
IIA method CA ≈ 2.1213, for the 3-stage Radau IIA CA ≈ 3.479, and for the 3-stage
Lobatto IIIA CA ≈ 3.6224.

In the next section we discuss how to approximate the integral in (2.9) by an
efficient quadrature rule.

3. Integral representation of the convolution quadrature weights. We
will follow the same idea as in the derivation of the real inversion formula for the
Laplace transform in [18, Section 10.7], but with en(hz) in place of ezt. For the rest
of the paper we will write

d = ‖x‖. (3.1)

In the following results we will need some properties of the modified Bessel function
K0. First of all, by K0 we mean the principal branch analytic in the cut complex
plane C \ (−∞, 0] as described in [14, §10.25]. The large argument behaviour is

lim
|z|→∞

√
zezK0(z) =

√

π/2 | arg(z)| ≤ π; (3.2)

see [14, 10.25.3]. Whereas the small argument behaviour is

lim
|z|→0

−K0(z)/ log z = 1; (3.3)

see [14, 10.25.3]. From these two results it follows that there exists a constant CK0
> 0

such that

|K0(z)| ≤ CK0
e−Re z |z|−1/2 | arg(z)| < π. (3.4)

Lemma 6. For n ≥ 1,

ωn(x) =
h

2π

∫ ∞

−∞
en(−ihy)K(−iy, x)dy.

Proof. Note that for Re z ≥ 0, Re
√
ze−iπ/4 ≥ 0 and hence |K(z, x)| ≤ 1

2 |z|−1/2

for D = 1, |K(z, x)| ≤ CK0
|z|−1/2 for D = 2 and |K(z, x)| ≤ 1

4πd for D = 3. As

‖en(z)‖ ≤ Cn+1
A |z|−n−1 we can deform the contour as required by the statement of

the lemma.
Lemma 7. Given d > 0 and ξ > 0

f±(y) = e−dRe(e−iπ/4√−ξ±iy)

6

are decreasing functions of y ≥ 0.
Proof. Note that it is sufficient to show that g±(y) decreases with g± the real

part of the exponent:

g±(y) := −dRe(e−iπ/4
√

−ξ ± iy).

Let us first consider g−(y):

g−(y) = −d|ξ + iy|1/2 cos(arg(−ξ − iy)/2− π/4).

Notice that the cosine above is negative. Then by using the half-angle formula for the
cosine we obtain

g−(y) = d|ξ + iy|1/2
√

1 + cos(arg(−ξ − iy)− π/2)

2

= d|ξ + iy|1/2
√

1− sin(arg(−ξ − iy))

2

= d(ξ2 + y2)1/4

√

√

√

√

1− y/ξ√
1+y2/ξ2

2
=

d√
2

√

(ξ2 + y2)1/2 − y.

As g′−(y) = − d
2
√
2

√

(ξ2 + y2)1/2 − y/
√

ξ2 + y2 ≤ 0, the function f−(y) decreases as y

increases.
For the exponent of f+(y) we obtain

g+(y) = −d| − ξ + iy|1/2 cos(arg(−ξ + iy)/2− π/4)

= −d|ξ + iy|1/2
√

1− sin(arctan(−y/ξ))
2

= −d(ξ2 + y2)1/4

√

√

√

√

1 + y/ξ√
1+y2/ξ2

2

= − d√
2

√

(ξ2 + y2)1/2 + y.

Clearly this function is decreasing, hence again f+(y) decreases as y increases.
Theorem 8. The weights are given by

ωn(x) =
h

2πi

∫

Γ+∪Γ
−

K(z, x)en(hz) dz

+
h

2πi

∫ ξ

0

(

K(λe−iπ, x) −K(λeiπ, x)
)

en(−hλ) dλ,
(3.5)

where

Γ± = {−ξ ± iy : y > 0}. (3.6)

Further, the function G(λ, x) := K(λe−iπ, x)−K(λeiπ , x) is given by

G(λ, x) =

ieiπ/4√
λ

cosh(|x|eiπ/4
√
λ) D = 1,

i

2
J0(e

−iπ/4
√
λ‖x‖) D = 2,

1

2π‖x‖ sinh(‖x‖eiπ/4
√
λ) D = 3.

7

Proof. We first deform the integration contour from the imaginary axis to the
contour described in Figure 1. Letting R → ∞ and δ → 0 and using the estimate
for K(z) from the previous lemma for D = 1 and D = 2 and the bound on en(z)
as before we obtain the required expression (3.5). As (3.4) shows that the kernel in
D = 2 dimensions is bounded up to a constant by the same expression as in D = 1
dimension, the same argument works here too.

To derive the simplified expression for G(λ, x) for the 3D Schrödinger equation
note that

K(λe−iπ, x)−K(λeiπ, x) =
1

4πd

[

exp(−de−i3π/4
√
λ)− exp(−deiπ/4

√
λ)
]

=
1

4πd

[

exp(deiπ/4
√
λ)− exp(−deiπ/4

√
λ)
]

=
1

2πd
sinh(deiπ/4

√
λ).

Similarly in 1D we have

K(λe−iπ, x)−K(λeiπ , x) =
eiπ/4

2
√
λe−iπ/2

exp(−de−i3π/4
√
λ)− eiπ/4

2
√
λeiπ/2

exp(−deiπ/4
√
λ)

=
ieiπ/4

2
√
λ

[

exp(deiπ/4
√
λ) + exp(−deiπ/4

√
λ)
]

=
ieiπ/4√

λ
cosh(deiπ/4

√
λ).

In 2D we have

K(λe−iπ, x)−K(λeiπ , x) =
1

2π

[

K0(e
−iπ/2d

√
λe−iπ/4)−K0(e

iπ/2d
√
λe−iπ/4)

]

=
i

2
J0(d

√
λe−iπ/4),

where in the last step we used [14, 10.27.9].

4. Quadrature for the convolution weights. In this section we develop an
efficient quadrature for the approximation of the convolution quadrature weights,
written as (3.5). Let T be the final time, h = T/N the time-step and N the total
number of time steps in our approximation (see (2.7)). Our goal is to use the same
quadrature weights and nodes for the approximation of ωn(x) for all n0 < n ≤ N ,
for some n0 ≪ N to be determined, and all 0 ≤ x ≤ L, for L the maximal distance
between the points xj in (1.1).

In the first place we will bound the size of the contribution along the vertical lines
Γ±, showing that in some cases it can be neglected. Thus we will approximate

ωn(x) ≈ In :=
h

2πi

∫ ξ

0

G(λ, x)en(−hλ) dλ. (4.1)

For the rest of the paper we restrict ourselves to D = 1. In view of the very
similar expression for the 3D kernel and the bound (3.4) in 2D, we expect that similar
estimates will hold also in higher dimensions. The single bigger change would be the
treatment of the singularity at the origin.

8

-10 -5 0 5
-10

-8

-6

-4

-2

0

2

4

6

8

10

R

-R

-

Figure 1. The contour in the proof of Theorem 8 is the union of the dashed and solid lines.
The angle at the negative real axis is denoted by δ > 0 and −ξ is the real part of the solid vertical
lines.

4.1. Truncation to a finite interval. We start by bounding the contribution
to the integral along the vertical semilines, i.e. the error in (4.1).

Proposition 9. We have the bound

‖ωn(x)− In‖ ≤ h

4π

∫ ∞

0

‖en(h(ξ + iy))‖e−dRe(e−
iπ
4
√
−ξ+iy)(ξ2 + y2)−

1
4 dy

+
h

4π

∫ ∞

0

‖en(h(ξ − iy))‖e−dRe(e−
iπ
4
√
−ξ−iy)(ξ2 + y2)−

1
4 dy.

(4.2)

or more explicitly

‖ωn(x)− In‖ ≤ CA

√

2π/ξ

2Γ(3/4)2
cosh(d

√

ξ/2)e−γ(hξ)tnξ. (4.3)

Proof. To prove the result we need to bound the integrals over Γ+ ∪ Γ− in
Theorem 8. The estimate (4.2) follows directly from the definition of the integrand.

Note that Lemma 7 implies

|K(−ξ − iy, x)| ≤ 1

2
(ξ2 + y2)−1/4ed

√
ξ/2

and

|K(−ξ + iy, x)| ≤ 1

2
(ξ2 + y2)−1/4e−d

√
ξ/2.

We require a bound on en(h(−ξ±iy)) which follows from en(z) = r(z)nq(z), Lemma 2
and Lemma 4

‖en(h(−ξ ± iy))‖ ≤ CAe
−γ(hξ)tnξ

h−1

(ξ2 + y2)1/2
.

9

Hence
∣

∣

∣

∣

∣

h

2πi

∫

Γ
−

K(z, x)en(hz) dz

∣

∣

∣

∣

∣

≤ CA
1

4π
ed
√

ξ/2−γ(hξ)tnξ

∫ ∞

0

(ξ2 + y2)−3/4dy

= CA
1

4πξ1/2
ed
√

ξ/2−γ(hξ)tnξ

∫ ∞

0

(1 + y2)−3/4dy

= CA

√

2π/ξ

4Γ(3/4)2
ed
√

ξ/2−γ(hξ)tnξ.

Similarly
∣

∣

∣

∣

∣

h

2πi

∫

Γ+

K(z, x)en(hz) dz

∣

∣

∣

∣

∣

≤ CA

√

2π/ξ

4Γ(3/4)2
e−d

√
ξ/2−γ(hξ)tnξ.

The following corollary will be used to determine the value of n0. More details
are given in Section 5.

Corollary 10. For a given ε > 0 and ξ > 1

|ωn(x) − In| ≤ ε

if

n ≥ 1

hξγ(hξ)

(

d
√

ξ/2 + log

(

CA

√
2π

4
√
ξΓ(3/4)2ε

))

.

In order to efficiently approximate In, we use the splitting

In =
J
∑

j=0

In,j , (4.4)

with

In,j :=
h

2πi

∫ Lj

Lj−1

G(λ, x)en(−hλ) dλ, (4.5)

where L−1 = 0, L0 > 0 is a free parameter, and Lj = (1+B)Lj−1 for j > 1 and some
fixed B ≥ 1. Every sub-integral In,j will be approximated by an appropriate Gauss
quadrature. The case of In,0 is treated separately due to the integrable singularity of
the integrand at 0. To analyse the error due to Gauss quadrature, we use the following
classical result.

Theorem 11. Let f be analytic inside the Bernstein ellipse

E̺ = {z : z =
1

2
(w + w−1), |w| = ̺}

with ̺ > 1 and bounded there by M . Then the error of Gauss quadrature with weight
w(x) is bounded by

|If − IQf | ≤ 4M
̺−2Q+1

̺− 1

∫ 1

−1

w(x)dx,

10

where If =
∫ 1

−1 w(x)f(x)dx and IQf =
∑Q

j=1 wjf(xj) is the corresponding Gauss
formula, with weights wj > 0.

Proof. To the best of our knowledge, the first proof of this result appeared in [26].
A different proof for w(x) ≡ 1, which can easily be extended to the case of a general
weight as in [6], can be found in [25, Chapter 19].

4.2. Gauss-Jacobi quadrature for the initial interval. We fix the first in-
terval [0, L0] and compute

In,0 =
h

2πi

∫ L0

0

G(λ, x)en(−hλ) dλ =
hL0

4πi

∫ 1

−1

G((1+y)L0/2, x)en(−h(1+y)L0/2) dy.

In the 1D case, G(λ, x)
√
λ = ieiπ/4 cosh(deiπ/4

√
λ) is an entire function of λ. Hence

in this interval we will use Gauss-Jacobi quadrature with weight w(x) = (x+ 1)−1/2

on the interval [−1, 1]. We denote by τn,0(Q) the corresponding quadrature error
when taking Q quadrature nodes.

To estimate the error of the quadrature, we will need to bound, according to
Theorem 11,

f(ζ) = h

√
2L0

4π
en(−h(1 + ζ)L0/2) cosh(de

iπ/4
√

L0(1 + ζ)/2), ζ ∈ E̺, (4.6)

where we have already neglected the modulus one quantity eiπ/4 included in the
definition of G(λ, d). Notice that there is a maximal value of ̺, which we denote
̺max, determined by the location of the poles of en.

Theorem 12. Let b and ν be as in Lemma 3,

̺max = 1 +
2b

L0h
+

√

(

2b

L0h

)2

+
4b

L0h
(4.7)

and

̺opt =
2Q

(

d
√

3L0/2 + νtnL0/2
) +

√

√

√

√

√1 +

2Q
(

d
√

3L0/2 + νtnL0/2
)

2

. (4.8)

Then, if ̺opt ∈ (2 +
√
3, ̺max), we can bound the error of the Q-node Gauss-Jacobi

quadrature by

‖τn,0(Q)‖ ≤ Cqh
4
√
L0

π

̺opt
̺opt − 1

e
(

d
√

3L0/2 + νtnL0/2
)

4Q

2Q

.

Otherwise

‖τn,0(Q)‖ ≤ Cqh
4
√
L0

π

̺−2Q+1
max

̺max − 1
exp

(

b

h

(

d
√

6/L0 + νtn

)

)

.

Remark 13. The second estimate, seems quite pessimistic because of the expo-
nentially growing term. However, notice that we can take b = h which implies ν ≈ 1
and ̺max > 1 + 4/L0. Hence both estimates imply that if we choose L0 ∝ T−1,

11

Q = O(log ε) quadrature nodes are sufficient to obtain ‖τn,0(Q)‖ ≤ ε. Note, that
in numerical experiments reported in this paper, it was always the case that ̺opt ∈
(2 +

√
3, ̺max).

Proof. [Theorem 12] Note that

| cosh(deiπ/4
√

L0(1 + ζ)/2)| ≤ e
d
∣

∣

∣
Re eiπ/4

√
L0(1+ζ)/2

∣

∣

∣ ≤ ed|L0(1+ζ)/2|1/2 .

As we will want to avoid the poles of en and use Lemma 3 we need that ̺ ≤ ̺max.
This upper bound (4.7) is obtained as a solution of

h
(

̺max + ̺−1
max − 2

)

L0/4 = b.

From Lemma 3 and the definition of en we can now bound

‖f(ζ)‖ ≤ Cqh

√
2L0

4π
exp

(

d|L0(1 + ζ)/2|1/2 − νtnL0(1 + Re ζ)/2
)

, Re ζ ≤ −1, ζ ∈ E̺

≤ Cqh

√
2L0

4π
exp

(

dL
1/2
0 (̺+ ̺−1 − 2)1/2/2 + νtnL0(̺+ ̺−1 − 2)/4

)

.

Let ̺ = eδ for δ > 0. Then

‖f(ζ)‖ ≤ Cqh

√
2L0

4π
exp

(

dL
1/2
0 (cosh δ − 1)1/2/

√
2 + νtnL0(cosh δ − 1)/2

)

.

Assuming ̺ ≥ 2 +
√
3 implies cosh δ ≥ 2 and

‖f(ζ)‖ ≤ Cqh

√
2L0

4π
exp

((

d
√

L0/2 + νtnL0/2
)

(cosh δ − 1)
)

, Re ζ ≤ −1, ζ ∈ E̺.

For Re ζ ≥ −1, ζ ∈ E̺ we have that |r(−h(1 + ζ)L0/2)| ≤ 1 and hence

‖f(ζ)‖ ≤ Cqh

√
2L0

4π
ed|L0(1+ζ)/2|1/2

≤ Cqh

√
2L0

4π
ed
√

L0/2|1+cosh δ|1/2

≤ Cqh

√
2L0

4π
ed
√

3L0/2(cosh δ−1),

where we have used that (1 + x)1/2 ≤
√
3(x− 1) for x ≥ 2.

Therefore, from Theorem 11 we deduce that

‖τn,0(Q)‖ ≤ Cqh
4
√
L0

π
min
δ>0

eδ

eδ − 1
exp

(

−2Qδ +
(

d
√

3L0/2 + νtnL0/2
)

(cosh δ − 1)
)

.

So we minimize

g(δ) = −2Qδ +
(

d
√

3L0/2 + νtnL0/2
)

(cosh δ − 1).

As

g′(δ) = −2Q+
(

d
√

3L0/2 + νtnL0/2
)

sinh δ

12

and

g′′(δ) =
(

d
√

3L0/2 + νtnL0/2
)

cosh δ ≥ 0

the minimum is reached at

δopt = sinh−1

(

2Q

d
√

3L0/2 + νtnL0/2

)

.

Using the identities

sinh−1 y = log
(

y +
√

1 + y2
)

, coshx =
√

1 + sinh2 x,

we obtain the value of ̺opt = eδopt in the statement and

e−2Qδopt ≤
(

d
√

3L0/2 + νtnL0/2

4Q

)2Q

.

Using now that −1 +
√
1 + x2 ≤ x, for x ≥ 0, we have

exp(cosh δopt − 1) ≤ exp(sinh δopt) = exp

(

2Q

d
√

3L0/2 + νtnL0/2

)

.

Hence, in case ̺opt ∈ (1, ̺max) the following bound holds

‖τn,0(Q)‖ ≤ Cqh
4
√
L0

π

̺opt
̺opt − 1

(

e
d
√

3L0/2 + νtnL0/2

4Q

)2Q

.

Otherwise we choose ̺ = ̺max = eδmax and obtain

‖f(ζ)‖ ≤ Cqh

√
2L0

4π
exp

((

d
√

3L0/2 + νtnL0/2
)

(cosh δmax − 1)
)

= Cqh

√
2L0

4π
exp

(

(

d
√

6/L0 + νtn

) b

h

)

and the stated bound for the error.

4.3. Gauss quadrature away from the singularity. In this section we an-
alyze the error in the Gauss-Legendre (w(x) = 1) quadrature of the integrals In,j in
(4.4), with j ≥ 1, which can be written as

In,j = h
∆Lj

4πi

∫ 1

−1

G

(

Lj−1 +
∆Lj

2
(y + 1), x

)

en

(

−h
(

Lj−1 +
∆Lj

2
(y + 1)

))

dy,

with ∆Lj := Lj − Lj−1 = BLj−1.
Theorem 14. Let τn,j(Q) be the error in the approximation of In,j by Gauss

quadrature with weight w(x) = 1 and Q quadrature nodes. Then

‖τn,j(Q)‖ ≤ h
2BL

1/2
j−1

π
min

̺∈(1,̺max)

̺−2Q+1

̺− 1
max
θ∈[0,π]

hn,j(̺, θ),

13

with

hn,j(ε) = η
−1/2
θ edL

1/2
j−1

(1+(̺/2)2)1/4η
1/2
θ −γ(hLj−1ηθ)ηθLj−1tn (4.9)

and

̺max = 1+
2

B

(

1 +
√
1 +B

)

. (4.10)

and

ηθ = (1 +B((̺+ ̺−1) cos θ + 2)/4). (4.11)

Proof. According to Theorem 11 we now need to bound the function

f(ζ) = h
∆Lj

4πi
G

(

Lj−1 +
∆Lj

2
(ζ + 1), x

)

en

(

−h
(

Lj−1 +
∆Lj

2
(ζ + 1)

))

, ζ ∈ E̺,
(4.12)

In order to avoid the singularity of the square root we require

Lj−1 −
∆Lj

4
(̺+ ̺−1 − 2) = Lj−1

(

1− B

4
(̺+ ̺−1 − 2)

)

> 0,

which is satisfied for 1 < ̺ < ̺max and

̺max = 1+
2

B

(

1 +
√
1 +B

)

.

Note that (using |z| ≤
√

1 + (Im z/Re z)2|Re z|)
∣

∣

∣

∣

Lj−1 +
∆Lj

2
(ζ + 1)

∣

∣

∣

∣

≤
√

1 +
(̺− ̺−1)(Lj − Lj−1)/4

(Lj−1 + Lj)/2

(

Lj−1 +
∆Lj

2
(Re ζ + 1)

)

=

√

1 +
(̺− ̺−1)2(1 +B)2

4(2 +B)2

(

Lj−1 +
∆Lj

2
(Re ζ + 1)

)

≤
√

1 + (̺/2)2
(

Lj−1 +
∆Lj

2
(Re ζ + 1)

)

=
√

1 + (̺/2)2Lj−1ηθ,

where ηθ = 1 +B((̺+ ̺−1) cos θ + 2)/4.
With this notation we can bound, for every ζ ∈ E̺, ̺ ∈ (1, ̺max)

‖f(ζ)‖ ≤ h
∆Lj

4π

∣

∣

∣

∣

Lj−1 +
∆Lj

2
(ζ + 1)

∣

∣

∣

∣

−1/2

e
d
∣

∣

∣
Lj−1+

∆Lj
2

(ζ+1)
∣

∣

∣

1/2
∥

∥

∥

∥

en

(

−h
(

Lj−1 +
∆Lj

2
(ζ + 1)

))∥

∥

∥

∥

≤ h
∆Lj

4π
(Lj−1ηθ)

−1/2edL
1/2
j−1

(1+(̺/2)2)1/4η
1/2
θ

−γ(hLj−1ηθ)ηθLj−1tn

= h
BL

1/2
j−1

4π
η
−1/2
θ edL

1/2
j−1

(1+(̺/2)2)1/4η
1/2
θ −γ(hLj−1ηθ)ηθLj−1tn .

The result then follows from Theorem 11.
Remark 15. The above result is somewhat unsatisfactory as it still contains

a min-max problem. The following corollary simplifies the estimate but is too pes-
simistic in practice. Hence, we make use of the corollary only for the discussion about

14

the complexity of the algorithm and in practice numerically solve the above min-max
problem in order to obtain optimal parameters.

Corollary 16. With notation as in Theorem 14

‖τn,j(Q)‖ ≤ h
2BL

1/2
j−1

π
min

̺∈(1,̺max)

̺−2Q+1

̺− 1
η
−1/2
− edL

1/2
j−1

(1+(̺/2)2)1/4η
1/2
+

−Lj−1tnγ(hη+)η
−

where

η± = 1 +B(±(̺+ ̺−1) + 2)/4.

Proof. The proof follows from the fact that γ(ξ) decreases for increasing argument
and that ηθ from Theorem 14 decreases from θ = 0 to θ = π.

Remark 17. To understand the required number of quadrature points let us set
B = 3, as in the numerical experiments, giving ̺max = 3. Choosing ̺ = 2 we get
η+ = 35/8 and η− = 5/8 and

‖τn,j(Q)‖ ≤ ChL1/24−Qec+dL
1/2
j−1

−c
−
Lj−1tn ≤ ChL1/24−Qe

c2
+

d2

4c
−

tn ,

where C = 12
π η

−1/2
− , c+ = 21/4η

1/2
+ and c− = γ(hLj−1η+)η−. Hence to obtain accu-

racy ε we need to choose Q = O(log ε−1 + d2

tn
) quadrature nodes. Furthermore, this

indicates that the integrand can get exponentially large as tn → 0 which can create
difficulties in finite precision arithmetic.

5. Parameter choice and the fast method. In this section we specify the
choice of the most relevant parameters in our method and explain our algorithm.

In the first place we choose the truncation parameter ξ. The estimate in Coro-
llary 10 suggests choosing ξ ∝ h−1. Hence, let ξ = A0/h for some constant A0 > 0.
Then if n0 is chosen such that

n0 ≥
d
√

A0

2h + log
(

CA

√
2πh

4
√
A0Γ(3/4)2ε0

)

A0γ(A0)
,

the error due to truncation is less than ε0 for n ≥ n0. Note that this means that at
least O(h−1/2) weights will need to be computed directly. Here we use the estimate
(4.3). Some minor gains can be made by computing the truncation error numerically
using (4.2).

Next, according to Theorem 12 we need to choose L0 proportional to T−1, for T
the final time in our approximation as stated at the beginning of Section 4. Hence
we set L0 = A1/T for some constant A1 > 0. There will then be J intervals away
from the singularity where Gauss quadrature is used with L0(1 + B)J = ξ implying
J = 1

(1+B) log
(

A0T
h

)

= O(log(T/h)).

Once all these parameters are set we can choose the number of quadrature nodes
and weights in each interval so that each quadrature error τn,j(Q) ≤ ε for j = 0, . . . , J
and n ≥ n0. Then with the choice ε0 = tol/2 and ε = tol

2(J+1) we have that the total

error is bounded by the tolerance tol > 0. As explained in Remark 13, Q = O(log ε)
guadrature nodes of the Gauss-Jacobi quadrature are sufficient to obtain error of size

ε in this first interval. According to Remark 17, we need to use O
(

log ε−1 + d2

n0h

)

quadrature nodes in each of the remaining intervals.

15

Let us now describe the fast method for computing the discrete convolution un =
∑n

j=0 ωj(x)fn−j for a general sequence of s × 1 vectors fj , j = 0, . . . , N . Using this
formula requires the full sequences ωj and fj , for j = 0, . . . , N to be kept in memory
requiring O(N) memory. This can instead be evaluated most efficiently by applying
our quadrature approximation of the convolution weights in the same way as in [6,
Section 7.2]. We thus split the sum into two terms, the local term, with summation
index j = 1, . . . , n0, and the remaining history term:

un =

n0
∑

j=0

ωj(x)fn−j +

n
∑

j=n0+1

ωj(x)fn−j . (5.1)

The local term is evaluated directly, by precomputing and keeping in memory the first
n0 + 1 convolution weights. The history term is instead evaluated by means of a fast
summation algorithm which is based on the quadrature developed in Section 4. After
replacing the CQ weights by the result of applying our quadrature we are led to the
formula

n
∑

j=n0+1

ωj(d)fn−j ≈ h

NQ
∑

k=1

wkG(xk, d)(r(−hxk))n0+1Qn,k,

with

Qℓ,k =

ℓ−n0−1
∑

j=0

(r(−hxk))jq(−hxk)fℓ−n0−1−j

satisfying the recursion

Qℓ,k = r(−hxk)Qℓ−1,k + q(−hxk)fℓ−n0−1, Qn0,k = 0.

Let us investigate the complexity and the memory requirements of the above de-
scribed algorithm. The vectors fj , j = n − n0 − 1, n − n0, . . . , n and Qn−1,k, k =
1, . . . , NQ need to be kept in memory at each time step tn, i.e., n0 +NQ vectors need

to be stored at any time. Recalling now that NQ = O
((

log ε−1 + d2

n0h

)

log(T/h)
)

the total memory requirements are given by O
(

n0 +
(

log ε−1 + d2

n0h

)

log(T/h)
)

. If

we choose n0 = O(h−1/2), then the memory requirements are reduced to O((h−1/2 +
log ε−1) log h−1). Turning to computational complexity, if the local term is com-
puted using FFT methods as described in [10, 16], the total computational cost is
O(n0 log

2 n0 +NNQ). This reduces to O(h
−3/2 log h−1) if we choose n0 = O(h−1/2).

We need to say a few more words about the choice of n0. Any choice of n0 as a
function of h that implies tn0

→ 0 and h→ 0 would allow for exponentially increasing
integrand, see Remark 17. In finite precision arithmetic this could lead to destructive
cancellation and complete loss of accuracy. Choosing n0 = O(h−1) would entirely
remove this difficulty however would require us to use many more direct steps and
more memory. Nevertheless, even so our algorithm would bring many advantages if
n0 ≪ N ; compare this with [7]. Hence, n0 should be chosen between const · h−1/2

and const · h−1 depending on the parameters of the problem investigated. In the two
applications that we investigate in the numerical experiments, we choose the smallest
possible n0 that ensures that the truncation error, see Proposition 9, is bounded by
the tolerance, i.e., n0 = O(h−1/2).

16

10 2 10 4
10 -10

10 -8

10 -6

10 -4

10 5
10 -10

10 -8

10 -6

10 -4

10 -2

Figure 2. We plot the error ‖ωn(x) − In‖ for different tolerances and n ≥ n0 and h = 10−2

on the left and with h = 10−3 on the right. The total number of quadrature points is shown on the
graphs. For h = 10−2, n0 was computed as 8 and 15 for the two tolerances and for h = 10−3 these
were 20 and 27.

6. Numerical experiments. Next, we present results of various experiments
to illustrate the new method. The codes used to perform these experiments can be
found at [5].

6.1. Approximation of CQ weights. In the first place we test our new quadra-
ture and compare the CQ weights we obtain with those given by the standard method
based on FFT.

We start by setting the parameters as in Section 5 with A0 = 1 and A1 = 2. We
fix B = 3 and given a tolerance tol > 0 compute the number of nodes in each interval
so that the error is bounded as described in Section 5. The results for h = 10−2, 10−3,
T = 100, d = 1 are given in Figure 2. As reported in the caption of Figure 2 and
the legends, for a target accuracy of 3 digits in the computation of the CQ weights
we need n0 = 8 and NQ = 28 for h = 10−2, and n0 = 20, NQ = 48 for h = 10−3.
Thus the storage in our algorithm will be reduced from N = 104 to 8 + 28 quantities
if h = 10−2, and from N = 105 to 20 + 48 if h = 10−3. For a more stringent target
accuracy of six digits in the computation of the CQ weights, we need instead 15+48
quantities in storage (rather than 104) for h = 10−2, and 27+74 for h = 10−3 (rather
than 105).

We can see that the chosen tolerance is not exceeded and the error for n close
to n0 is close to the tolerance. However, the error for larger n is much better than
the tolerance. The truncation error and the quadrature error on the intervals away
from the singularity all get quickly better with the larger n so this is not so surprising.
However, as the error bound for the Gauss-Jacobi quadrature in the first interval does
not improve with increasing n, this suggests that possibly our estimate in the first
interval is not optimal. This is not a great issue, as this single quadrature does not
contribute a great deal to the overall costs: around 5% of quadrature points are in
this interval in the above calculations.

6.2. A linear Schrödinger equation with concentrated potential. We
start by considering the same example as in [21] and compute the solution ψ(x, t), for
x ∈ R, t > 0 to:

1

i
∂tψ = ∂xxψ −

M
∑

j=1

Vj(t)δxjψ; ψ(x, 0) = ψ0(x) (6.1)

17

for some given time-dependent amplitudes Vj(t).
Assuming that

Vj(t) ≡ V j and ψ(x, t) = ψ0(x)e
iωt, for t ≤ 0,

the values qj(t) := ψ(xj , t) satisfy the system of Volterra integral equations

qj(t) +
M
∑

k=1

∫ t

0

k(t− s, xj − xk)
(

Vk(s)qk(s)− V kψ0(xk)e
iωs
)

ds = ψ0(xj)e
iωt, (6.2)

for j = 1, . . . ,M and the solution to (6.1) can be written

ψ(x, t) +

M
∑

k=1

∫ t

0

k(t− s, x− xk)
(

Vk(s)qk(s)− V kψ0(xk)e
iωs
)

ds = ψ0(x)e
iωt, (6.3)

with k as in (1.3) with D = 1. For more detail on derivation of this system see [21].
For our experiments we take M = 2,

x1 = −1, x2 = 1, ω = 1,

ψ0(x) =

{

coshx/ cosh 1, for |x| ≤ 1,

e1−|x|, for |x| > 1,

V 1 = V 2 = −c, with c = 1 + tanh 1,

V1(t) = −c(1 + sin(t)), V2(t) = −c(1− sin(t)), for t > 0.

(6.4)

The application of Runge–Kutta based CQ to (6.2) yields for j = 1, . . . ,M ap-
proximations qj,n ≈ qj(tn), with tn = (tn + cih)

s
i=1, n = 0, 1, . . . , N , defined by

qj,n +
M
∑

k=1

n
∑

ℓ=0

Wn−ℓ(xj − xk)
(

Vk,ℓqk,ℓ − V kψ0(xk)e
iωtℓ
)

= ψ0(xj)e
iωtn , (6.5)

where Vk,ℓ := diag(Vk(tℓ + c1h), . . . , Vk(tℓ + csh)).
We then need to solve the discrete linear system

q1,n +
∑n

ℓ=0

(

Wn−ℓ(0)
(

V1,ℓq1,ℓ − V 1ψ0(x1)e
iωtℓ
)

+Wn−ℓ(2)
(

V2,ℓq2,ℓ − V 2ψ0(x2)e
iωtℓ
))

= ψ0(x1)e
iωtn

q2,n +
∑n

ℓ=0

(

Wn−ℓ(0)
(

V2,ℓq2,ℓ − V 2ψ0(x2)e
iωtℓ
)

+Wn−ℓ(2)
(

V1,ℓq1,ℓ − V 1ψ0(x1)e
iωtℓ
))

= ψ0(x2)e
iωtn ,

This is
(

Is +W0(0)V1,n W0(2)V2,n

W0(2)V1,n Is +W0(0)V2,n

)(

q1,n

q2,n

)

=

(

(Is + V1W0(0))ψ0(x1)e
iωtn + V2ψ0(x2)W0(2)e

iωtn

(Is + V2W0(0))ψ0(x2)e
iωtn + V1ψ0(x1)W0(2)e

iωtn

)

−
n
∑

ℓ=1

(

Wℓ(0) Wℓ(2)
Wℓ(2) Wℓ(0)

)(

V1,n−ℓq1,n−ℓ − V 1ψ0(x1)e
iωtn−ℓ

V2,n−ℓq2,n−ℓ − V 2ψ0(x2)e
iωtn−ℓ

)

(6.6)

18

0 5 10 15 20 25 30 35 40
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 5 10 15 20 25 30 35 40
0

0.5

1

1.5

2

2.5

3

3.5

4
10 -6

Figure 3. On the left we plot the approximate solution |qj(t)| of the linear charge equations
(6.2) obtained by the fast method with tol = 10−6. On the right we show the difference ej(t) =
|qj(t) − qstj (t)| between this solution and the one obtained by the standard implementation of CQ.

To compute the memory term on the right-hand side we use the fast method
described in Section 5. The optimal choice of the various Gauss quadrature weights
and nodes used in this algorithm depend on d which is above d = 0 or d = 2. However
from our analysis it follows that the error when using the optimal choice for a certain
d = dmax will be bounded by the tolerance for every d ∈ (0, dmax). We thus compute
the optimal quadrature for d = 2 and use it to represent both Wj(0) and Wj(2), for
every j = n0 + 1, . . . , N .

In Figure 3 we show a plot of the solution and the difference in the solutions
obtained by our fast method and the standard implementation of CQ. In these ex-
periments we choose T = 40, h = 0.1, tol = 10−6 and d = 2. Our optimization
routines returned n0 = 14 and the total number of quadrature points NQ = 36. As
we see, the error is slightly larger than the tolerance, which is to be expected as the
tolerance is valid for the computation of the weights not the final result of the discrete
convolution.

6.3. A non linear Schrödinger equation with concentrated potential.

We consider nonlinear Schrödinger equations with concentrated potentials and, in
particular, the case studied in [13]. Thus, we compute the solution ψ(x, t), for x ∈ R,
t > 0 to:

1

i
∂tψ = ∂xxψ −

M
∑

j=1

γj |ψ|2σδxjψ; ψ(0, x) = ψ0(x), (6.7)

with γj < 0, σ ≥ 0. Writing the solution using Duhamel’s principle gives

ψ(t, x) = φ(t, x) −
M
∑

j=1

γj

∫ t

0

k(t− s, x− xj)|ψ(t− s, xj)|2σψ(t− s, xj)ds, (6.8)

where k is the Green’s function (1.3) for D = 1 and φ(t, x) is the solution of the
homogeneous problem:

φ(t, x) =

∫

R

k(t, x− y)ψ0(y)dy. (6.9)

19

Evaluating (6.8) at x = xk, k = 1, . . . ,M , gives the following system of integral
equations

ψ(t, xk) +

M
∑

j=1

γj

∫ t

0

k(t− s, xk − xj)|ψ(t− s, xj)|2σψ(t− s, xj)ds = φ(t, xk). (6.10)

In the following numerical experiments we set M = 2, x1 = −a, x2 = a, γ1 =
γ2 = γ < 0,

q1(t) = ψ(−a, t), q2(t) = ψ(a, t), φ1(t) = φ(−a, t), φ2(t) = φ(a, t), (6.11)

giving the system of equations

qk(t) + γ
2
∑

j=1

∫ t

0

k(t− s, xk − xj)|qj(s)|2σqj(s) ds = φk(t), k = 1, 2. (6.12)

For optimal performance, convolution quadrature requires that the data can be
extended smoothly to negative times by zero. Since q1,2(0) 6= 0 we modify the system
as follows

qk(t) + γ

2
∑

j=1

∫ t

0

k(t− s, xk − xj)
(

|qj(s)|2σqj(s)− |qj(0)|2σqj(0)
)

ds = φk(t)− fk(t),

(6.13)
k = 1, 2 with correction terms

fk(t) = γ

2
∑

j=1

|qj(0)|2σqj(0)
∫ t

0

k(s, xk − xj) ds.

To compute the correction terms we use the formula obtained using symbolic compu-
tation software

∫ t

0

k(s, d) ds =
eiπ/4√
π

∫ t

0

1√
4s

eid
2/4s ds

=
eiπ/4

4
√
π

∫ 4t

0

eid
2/u

√
u

du =
eiπ/4

2
√
π

∫ 2
√
t

0

eid
2/ξ2 dξ

= eiπ/4ei
d2

4t

√

t/π − (d/2)erf

(

e3πi/4d

2
√
t

)

− d/2,

(6.14)

where erf is the error function.
After discretization of (6.13) using CQ as in Section 6.2 we obtain a non-linear

system to be solved at each step of the form
(

Is + γW0(0) γW0(6)
γW0(6)| Is + γW0(0)

)(

diag(|q1,n|2σ)q1,n − diag(|q1,0|2σ)q1,0

diag(|q2,n|2σ)q2,n − diag(|q2,0|2σ)q2,0

)

=

(

φ1(tn)
φ2(tn)

)

+H(tn),

where H(t) is the history term containing terms known at time-step n. We solve
the non-linear equation by a fixed-point iteration with the initial guess given by the
solution at the previous time-step. The history term H(tn) is computed using our
fast method.

20

6.4. The linear case. Let us first consider the linear case, i.e., σ = 0. We look
for solutions of the form

ψ(t, x) = αeiλf tφf(x) + βeiλetφe(x), (6.15)

with α2 + β2 = 1 and

φf(x) = Nf (K(iλf , x+ a) +K(iλf , x− a)) (6.16)

and

φe(x) = Ne (K(iλe, x+ a)−K(iλe, x− a)) , (6.17)

where constants Nf and Ne are chosen so that ‖φf‖L2(R) = ‖φe‖L2(R) = 1. Here, φf
and φe correspond to the fundamental respectively excited state, see [13]. The initial
data is hence of the form

ψ0(x) = αφf (x) + βφe(x). (6.18)

Substituting this ansatz into (6.7) with σ = 0, gives the following relations that
need to be satisfied by λf and λe

K(iλf , 0) +K(iλf , 2a) = − 1

γ

and

K(iλe, 0)−K(iλe, 2a) = − 1

γ
.

We choose the parameters α =
√
0.01, β =

√
0.99, a = 3, γ = −0.5. Solving nu-

merically the above nonlinear equations gives the eigenvalues λf = 0.085894322668323
and λe = 0.021229338264198. For this special initial data, formulas similar to (6.14)
are available for expressing the solution to the free Schrödinger equation φ(t, x) in
terms of the error function, see [13].

We apply the fast convolution quadrature method based on the 2-stage Radau
IIA Runge-Kutta method. The numerical results with T = 100 and h = 1 are given
in Figure 4. There we plot |qj(t)|2 and the error

ej(t) =
∣

∣|qj(t)|2 − |qexj (t)|2
∣

∣ ,

where qj(t) is the numerically obtained solution and qexj (t) the exact solution. The
results are of high quality with, as expected, larger error near t = 0 and slight increase
in error with increase in time.

The importance of this example is that it shows the so-called beating motion of
the system. This is not an easy problem to solve numerically and these excellent
results in the linear case give us confidence in the nonlinear results presented in the
next section. In Table 6.1 we also show the numerically observed convergence rate of
the error measure

eh = max
n

max(e1(tn), e2(tn))

as the time-step h > 0 is reduced. We should note here that there seems to be a
slight discrepancy in the initial data we obtain to the ones that could be seen in
Fig. 7 in [13], where the same parameters are used. We obtain |q1(0)|2 ≈ 0.1385 and
|q2(0)|2 ≈ 0.0889, values slightly smaller than in [13]. The reason for this is possibly
different normalization.

21

0 50 100 150 200
0.08

0.09

0.1

0.11

0.12

0.13

0.14

0 50 100 150 200
0

0.5

1

1.5

2

2.5

3

3.5
10 -5

Figure 4. On the left we plot the numerically computed |qj(t)|2 for j = 1, 2. On the right we
show the error ej(t) = ||qexj (t)|2 − |qj(t)|2|.

h 2 1 1/2 1/4 1/8
eh 7.22× 10−5 3.11× 10−5 1.12× 10−5 5.69× 10−6 2.29× 10−6

EOC 1.2 1.5 0.98 1.3
Table 6.1

Error eh for decreasing values of h for the linear beating motion problem and the estimated
order of convergence.

6.5. Non-linear case. In the non-linear case we take the same initial data
(6.18) as in the linear case and observe for which values of σ > 0 is the beating effect
supressed. All other parameters are the same as in the linear case except for

γ = − 1

|ψ0(a)|2σ + |ψ0(−a)|2σ
.

We compute the solution for σ = 0.3, 0.6, 0.7, 0.8, 0.9, 0.98. For low values of σ the
beating phenomenon is still visible, whereas for stronger non-linearities it begins to
disappear. It is also interesting that the numerical computation becomes increasingly
difficult with increasing σ. This is not suprising as it is known that for large enough
σ blow-up can occur in finite time [13]. Solutions for the different σ is given in
Fugures 6–8 with some extra detail for σ = 0.9 given in Figure 9. The plots for
σ = 0.3, 0.6, 0.7, 0.8 do not change at this scale for smaller time-step h. For σ = 0.9
the basic shape of the solution seems to be well captured but as indicated in Figure 9 q1
becomes increasingly oscillatory and the error for q1 increases significantly for larger t.
Finally for σ = 0.98 blow-up seems to occur near t = 14.3, decreasing h just increases
the height of the peak. Note that the largest computation for σ = 0.9 and h = 1/128
required us to compute N = 25600 time-steps. For this case our algorithm needed
n0 = 57 direct steps and NQ = 112 quadrature nodes for tol = 10−8. In Figure 5
we compare the computational times of the new method, the O(N log2N) method
based on FFT introduced in [16] and as modified in [4, 10], and the standard naive
O(N2) implementation. These timings, clearly show that the availability of a fast
method was essential to perform experiments in reasonable time. Furthermore the
new method is the fastest in all the listed experiments, though the FFT based method
is also very fast. However, only the new method brings savings in terms of memory.
These are not significant in the one dimensional cases with a potential concentrated
in only two points as investigated here. For a potential concetrated in many points,

22

10 3 10 4

10 0

10 1

10 2

10 3

Figure 5. We compare the new, fast and oblivious method with the method of [16] based on FFT
and the naive O(N2) implementation. To do this, we solve the non-linear Schrödinger equation with
concentrated potentials using the ones stage Radau IIA method, i.e., the backward Euler method,
with a fixed final time T = 200, σ = 0.8 and an increasing number of time steps N . We see that the
new method is the fastest, whereas the naive method is extremely slow.

0 50 100 150 200
0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

0.16

0.17

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 6. On the left we show the solution for σ = 0.3 and on the right for σ = 0.6. Time-step
h = 1/2 is used in both calculations.

or for higher dimensional problems with the potential concentrated on a manifold,
the memory savings will become equally important.

7. Conclusions. We have developed a special algorithm for the implementa-
tion of Lubich’s Convolution Quadrature when applied to the integral formulation
of Schrödinger equations with concentrated potential. The new algorithm belongs
to the family of the so-called fast and oblivious convolution algorithms, since for the
approximation of the solution at N time steps it is able to reduce the complexity from
O(N2) operations to O(N logN) and the storage from O(N) to O(n0 + logN), with
n0 ≪ N . These features allow us to reliably simulate the behavior of the solution to
non linear problems for long times and/or with a very small step, in order to capture
high oscillations or finite time blow up. Our results are in good agreement with those
reported in [21] and in [13], where two different methods with complexity O(N2) and
memory requirements O(N) are used. The MATLAB codes written to perform the
simulations in the current paper can be found in [5].

23

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

Figure 7. On the left we show the solution for σ = 0.7 and on the right with σ = 0.8. Time-step
h = 1/4 is used for σ = 0.7 and h = 1/8 for σ = 0.8.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 5 10 15 20 25
0

1

2

3

4

5

6

7

8

Figure 8. On the left we show the solution for σ = 0.9 and on the right with σ = 0.98. Time-
step h = 1/128 is used for σ = 0.9 and h = 1/256 for σ = 0.98. On the right blow-up seems to occur
around t = 14.3.

Future research will address the theoretical analysis of the error associated to the
Convolution Quadrature approximation of relevant non linear cases, the control of
the time step and the generalization of the algorithm and its application to the two
dimensional case, following the recent results in [11].

Acknowledgements. The second author acknowledges Alessandro Teta for very
useful discussion about the models during the preparation of the paper. The second
author also acknowledges partial support by INdAM-GNCS and the Spanish grant
MTM2016-75465-P.

REFERENCES

[1] R. Adami, G. Dell’Antonio, R. Figari, and A. Teta. The Cauchy problem for the Schrödinger
equation in dimension three with concentrated nonlinearity. Ann. Inst. H. Poincaré Anal.
Non Linéaire, 20(3):477–500, 2003.

[2] R. Adami, G. Dell’Antonio, R. Figari, and A. Teta. Blow-up solutions for the Schrödinger
equation in dimension three with a concentrated nonlinearity. Ann. Inst. H. Poincaré
Anal. Non Linéaire, 21(1):121–137, 2004.

[3] R. Adami and A. Teta. A class of nonlinear Schrödinger equations with concentrated nonlin-
earity. J. Funct. Anal., 180(1):148–175, 2001.

24

0 20 40 60 80 100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0 50 100 150 200
10 -10

10 -8

10 -6

10 -4

10 -2

10 0

Figure 9. On the left we compare the solution |q1(t)|2 for σ = 0.9 and two choices of time-step:
h = 1/64 and h = 1/128. On the right we show the difference in computing |qj(t)|

2, j = 1, 2, for
the two different choices of h.

[4] L. Banjai. Multistep and multistage convolution quadrature for the wave equation: Algorithms
and experiments. SIAM J. Sci. Comput., 32(5):2964–2994, 2010.

[5] L. Banjai and M. López-Fernández. Accompanying codes published at GitHub.
https://github.com/lehelb/fastCQSchroedinger DOI:10.5281/zenodo.3553729, 2019.

[6] L. Banjai and M. López-Fernández. Efficient high order algorithms for fractional integrals and
fractional differential equations. Numer. Math., 141(2):289–317, 2019.

[7] L. Banjai, M. López-Fernández, and A. Schädle. Fast and oblivious algorithms for dissipative
and two-dimensional wave equations. SIAM J. Numer. Anal., 55(2):621–639, 2017.

[8] L. Banjai and C. Lubich. An error analysis of Runge-Kutta convolution quadrature. BIT,
51(3):483–496, 2011.

[9] L. Banjai, C. Lubich, and J. M. Melenk. Runge-Kutta convolution quadrature for operators
arising in wave propagation. Numer. Math., 119(1):1–20, 2011.

[10] L. Banjai and M. Schanz. Wave propagation problems treated with convolution quadrature and
BEM. In U. Langer, M. Schanz, O. Steinbach, and W. L. Wendland, editors, Fast Boundary
Element Methods in Engineering and Industrial Applications, volume 63 of Lecture Notes
in Applied and Computational Mechanics, pages 145–184. Springer Berlin Heidelberg, 2012.

[11] R. Carlone, M. Correggi, and R. Figari. Two-dimensional time-dependent point interactions.
In Functional analysis and operator theory for quantum physics, EMS Ser. Congr. Rep.,
pages 189–211. Eur. Math. Soc., Zürich, 2017.

[12] R. Carlone, M. Correggi, and L. Tentarelli. Well-posedness of the two-dimensional nonlinear
Schrödinger equation with concentrated nonlinearity. Ann. Inst. H. Poincaré Anal. Non
Linéaire, 36(1):257–294, 2019.

[13] R. Carlone, R. Figari, and C. Negulescu. The quantum beating and its numerical simulation.
J. Math. Anal. Appl., 450(2):1294–1316, 2017.

[14] NIST Digital Library of Mathematical Functions. http://dlmf.nist.gov/, Release 1.0.22 of 2019-
03-15. F. W. J. Olver, A. B. Olde Daalhuis, D. W. Lozier, B. I. Schneider, R. F. Boisvert,
C. W. Clark, B. R. Miller and B. V. Saunders, eds.

[15] E. N. Economou. Green’s functions in quantum physics, volume 7 of Springer Series in Solid-
State Sciences. Springer-Verlag, Berlin, third edition, 2006.

[16] E. Hairer, C. Lubich, and M. Schlichte. Fast numerical solution of nonlinear Volterra convolu-
tion equations. SIAM J. Sci. Stat. Comput., 6(3):532–541, 1985.

[17] E. Hairer and G. Wanner. Solving ordinary differential equations. II, volume 14 of Springer
Series in Computational Mathematics. Springer-Verlag, Berlin, second edition, 1996. Stiff
and differential-algebraic problems.

[18] P. Henrici. Applied and computational complex analysis. Vol. 2. Wiley Interscience [John Wiley
& Sons], New York, 1977. Special functions—integral transforms—asymptotics—continued
fractions.

[19] J.-M. Lopez-Castillo, J.-P. Jay-Gerin, and C. Tannous. Dynamics of electron delocalization:
An exact treatment. Europhysics Letters (EPL), 5(3):259–264, feb 1988.

[20] C. Lubich. Convolution quadrature and discretized operational calculus II. Numer. Math.,
52:413–425, 1988.

[21] C. Lubich. On convolution quadrature and Hille-Phillips operational calculus. Appl. Nu-
mer. Math., 9(3-5):187–199, 1992. International Conference on the Numerical Solution of
Volterra and Delay Equations (Tempe, AZ, 1990).

25

http://dlmf.nist.gov/

[22] C. Lubich and A. Ostermann. Runge-Kutta methods for parabolic equations and convolution
quadrature. Math. Comp., 60(201):105–131, 1993.

[23] C. Lubich and A. Schädle. Fast convolution for nonreflecting boundary conditions. SIAM J.
Sci. Comput., 24(1):161–182, 2002.

[24] A. Schädle, M. López-Fernández, and C. Lubich. Fast and oblivious convolution quadrature.
SIAM J. Sci. Comput., 28(2):421–438 (electronic), 2006.

[25] L. N. Trefethen. Approximation theory and approximation practice. Society for Industrial and
Applied Mathematics (SIAM), Philadelphia, PA, 2013.

[26] B. von Sydow. Error estimates for Gaussian quadrature formulae. Numer. Math., 29:59–64,
1977.

26

