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ε−2h2) in the presence of a small semiclassical parameter ε in the time–
dependent Schrödinger equation. The recently introduced semiclassical split-
ting was shown to be of order O

(
εh2
)
. We present now an algorithm that

is of order O
(
εh7 + ε2h6 + ε3h4

)
at the expense of roughly three times the

computational effort of the semiclassical splitting and another that is of or-
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semiclassical splitting.
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1 Introduction

The standard techniques for the numerical solution of the time–dependent
Schrödinger equation in its semiclassical formulation1

i ε2 ∂tψ = H(ε)ψ (1)

were known to be able to give only convergence of order O
(
hk/ε2

)
, see [3,2,

12], which forces the use of small time-steps h. However, significant progress
has been made recently in improving the pessimistic behaviour in ε2, see [1]
and [14]. Here, ψ = ψ(x, t) is the wave function that depends on the spatial
variables x = (x1, . . . , xd) ∈ R

d and the time variable t ∈ R. The Hamiltonian

H(ε) = −ε
4

2
∆x + V (x)

involves the Laplace operator ∆x and a smooth real potential V . Some ap-
plications use physical observables whose values doesn’t necessarily need the
precise solution and allow techniques that avoid the direct solution of (1), e.g.
[19], but other applications such as scattering [16,15], non-adiabatic transitions
[9], photodissociation [11,10], vibronic spectra in quantum control [22] need
precise knowledge about the wavefunction values in presence of small but fixed
parameter ε. In physical chemistry one often use the phrase “exact quantum
calculations” for a numerical approximation with Fourier basis in space and
a Strang splitting in time, which may be extremely expensive and inefficient
at the same time. Hagedorn wavepackets provide a spectral approximation in
space with a time-dependent set of basis functions that give the exact solu-
tion for the Schrödinger equation with the potential locally approximated by
a quadratic function. We show that, when the actual solution is localised and
the approximation in space can be done accurately by Hagedorn wavepackets,
there are time integrators that are extremely efficient and do not deteriorate
for small values of the model parameter ε. In this paper we focus only on the
time integration and hence we set d = 1, but the computational efficiency is
even more evident for higher d as seen in [13].

When the behaviour of the exact solution is semiclassical, i.e. as long as it
stays localized in space or in frequency domain, good approximations in terms
of ε are possible: concrete assumptions and results are in [17]. This insight
has been recently turned into practical numerical methods: [13] sets the foun-
dations of the algorithms and takes advantage of the spectral approximation
with Hagedorn wavepackets in R

d in order to attack higher dimensional prob-
lems; [14] defines the semiclassical splitting, which is rigorously proven to be
of order O

(
ε h2

)
. The order of convergence was improved in the same work to

ε h4 via a combination of the semiclassical splitting with a Magnus integration
step, which triples the computational cost per time step.

1 Some authors use ε or ~ where we use ε2; we prefer this notation in order to avoid
fractional powers in the convergence rates and in order to stay consistent with the notation
used by George Hagedorn, whose wavepackets are used here for the approximation in space.
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While the pessimist behaviour in ε has been reversed, the accuracy needed
by applications in physics and chemistry requests a systematic way of raising
the convergence order. Theorem 7.2 in [17] stimulates us to search for a nu-
merical method of higher order in ε, too. The combination of the insight given
by Lemma 3 and Lemma 4 from [14] with the splitting methods for perturbed
systems from [20] and [5] gives a systematic way of improving the semiclassical
splitting algorithm, not only in terms of powers of the time-step h, but also
in terms of the semiclassical parameter ε. Numerical experiments with our
favourite algorithm below give results of order

O
(
εh7 + ε2h6 + ε3h4

)
,

while the computational time is roughly three times that of the semiclassical
splitting. If we can afford only the computational effort of the semiclassical
splitting, then we should use the last algorithm in this paper; it gives results
of order

O
(
εh6 + ε2h4

)

only at the computational cost of the semiclassical splitting. The main idea
in order to achieve this efficiency is to use perturbation aware splittings. The
fundamental observation is that the right hand side can be seen as the pertur-
bation of an operator whose role in the algorithm is essential but harmless in
terms of computational effort.

The next section reviews the ideas of the semiclassical splitting and spots
light on the fundamental idea. Then we review some essential facts from the
general splitting methods. The processed methods with modified potentials
for perturbed systems and the case of the non-autonomous systems for the
semiclassical Schrödinger equation are discussed. Finally, we present the two
most important arising algorithms together with simulation results for two
model problems.

2 Semiclassical splitting

The Hagedorn (semiclassical) wavepackets depending on the parametersΠ(t) =
(q(t), p(t), Q(t), P (t)) ∈ R

d × R
d × C

d×d × C
d×d and denoted ϕε

k[q, p,Q, P ],
k = 0, 1, . . . form an orthonormal basis of L2(Rd). Since we focus on the space
dimension d = 1, we can simplify the notations a lot, but the presented tech-
niques are valid for general d. The basis is constructed in [17] with appropriate
raising and lowering operators starting from the Gaussian

ϕε
0[q, p,Q, P ](x) = (π)−

1
4 (εQ)−

1
2 exp

(
i

2 ε2
PQ−1(x− q)2 +

i

ε2
p(x− q)

)
,

and has the property that each state ϕk[Π](x) = ϕε
k[q, p,Q, P ](x) is con-

centrated in position near q and in momentum near p with uncertainties
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ε|Q|
√
k + 1

2 and ε|P |
√
k + 1

2 , respectively. The initial condition for (1) is writ-

ten as a linear combination of Hagedorn wavepackets

ψ(0) = eiS(0)/ε2
K−1∑

k=0

ck(0, ε)ϕk[Π(0)] , (2)

and a numerical approximation of the solution is searched in the time-dependent
space span{ϕ0[Π(t)], . . . , ϕK−1[Π(t)]}, i.e. of the form

eiS(t)/ε2
K−1∑

k=0

ck(t, ε)ϕk[Π(t)] .

We decompose the Hamiltonian during one time-step of length h in two
parts

H = A+W

with

A = T + U = − ε4

2
∆x + U(q(t), x) ,

where T = − ε4

2 ∆x is the kinetic energy operator, U(q(t), x) is the quadratic
Taylor expansion of V (x) around the time dependent classical position q(t)
and W (q(t), x) is the corresponding remainder:

V (x) = U(q, x)+W (q, x) = V (q)+V ′(q)(x−q)+ 1

2
V ′′(q)(x−q)2+W (q, x) .

The semiclassical splitting in [14] is

exp

(
− i

ε2
h

2
A

)
exp

(
− i

ε2
hW (q(

h

2
))

)
exp

(
− i

ε2
h

2
A

)
. (3)

Splittings based on this decomposition approximate the solution of the Schrödinger
equation with the time-independent right hand side (1) by a smart composition
of the solutions of some equations involving different time-dependent operators
on their right hand side: A(q(t)) and W (q(t)).

In the discretisation setting of the Hagedorn wavepackets, the propagation
with A can be done fast (and most important, cheap) via an accurate splitting
in its components T and U , since each part can be propagated exactly, see [13].
If we denote δt = h/N the time step used for this (internal) splitting (with a
sufficiently large number N of internal time steps as it will be indicated later),
we have here an order O ((δt)r). Indeed, the propagation with A involves only
solving ordinary differential equations not depending on ε for the parameters
Π and S:

q̇(t) = p(t)

Q̇(t) = P (t)

Ṡ(t) =
1

2
p(t)2 − U(q(t)) (4)

ṗ(t) = −U ′(q(t))

Ṗ (t) = −U ′′(q(t))Q(t) .
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We see the vector field Π = (q, p,Q, P )T as the sum of two vector fields
(q, 0, Q, 0)T and (0, p, 0, P )T . In the following equations, one of the vector
fields is used to advance q, Q and S while keeping the other constant; the
other one is used to advance p, P and S.

While higher order methods would be possible, we used here a method of
order r = 8 for exp

(
− i

ε2
h
2A
)
; the propagated parameters are then of order

O
(
(δt)8 h

2

)
. For the sake of completeness, we give here the propagation step

with T and with U , respectively:

q(δt) = q(0) + δt p(0) p(δt) = p(0)− δt∇U(q(0))

Q(δt) = Q(0) + δt P (0) P (δt) = P (0)− δt∇2U(q(0))Q(0)

S(δt) = S(0) + δt
1

2
p(0)T p(0) S(δt) = S(0)− δt U(q(0))

for an internal time-step δt.
The propagation with the time-dependent remainderW (q(t)) involves only

the propagation of the coefficients c, given the evolution of the parameters Π,
and it is the most expensive part of the algorithm. The rest of this section re-
call the key ideas in the proof of the convergence of the semiclassical splitting;
they gave the main hint for the new algorithms.

Two functions that play the role of intermediate approximations are used
in the proof of the convergence rate in [14]. Let Ψ and ũ denote the exact
and the numerical solutions of (1), respectively. Define u(t) the Hagedorn
wavepacket with the exact parameters Π(t) and S(t) from (4) and with the
exact coefficients c given by the solution to the linear system of ordinary
differential equations

i ε2 ċ = F [Π(t)] c , (5)

where the K ×K matrix F [Π] has entries

Fj,k [Π(t)] =

∫
ϕj [Π(t)](x) W (q(t), x) ϕk[Π(t)](x) dx .

We can write the coefficients c(t) as

c(t) = exp

(
− i

ε2

∫ t

0

F [Π(s)] ds

)
c(0) .

If we keep the exact Π and S, but approximate the coefficients c(t) e.g. via
the BCH-formula or a Magnus scheme involving a quadrature formula that
corresponds to what is used in the construction of the numerical solution u,
we get a function u1 which is used as an intermediate solution in the proof of
the error estimates. Let us shortly review the steps of the proof in [14]:

The Theorem 2 in [14] gives

‖Ψ(t)− u(t)‖ ≤ C εN ,

with suitable N ≥ 1 depending on the smoothness of V .
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Lemma 4 in [14] ensures that the error in wavepackets is of orderO
(
(δt)8h/ε2

)

which leads to the same order in the difference between an intermediate solu-
tion and the numerical solution, as in Theorem 4 in [14]:

‖u1(h)− ũ(h) ‖ ≤ C (δt)8

ε2
h .

Hence the local error

‖u(h)− ũ(h) ‖ ≤ ‖u1(h)− ũ(h) ‖ + ‖u(h)− u1(h) ‖

≤ C (δt)8

ε2
h+ ‖u(h)− u1(h) ‖

is dominated by the difference between the numerical solution u and the in-
termediate solution u1, if we choose the internal time-step δt accordingly.

Lemma 3 in [14] shows that the remainder W manifests itself as a pertur-
bation of order O

(
ε3
)
on the solution described solely by the parameters Π

and S. Here is the new idea of this article: instead of the semiclassical splitting,
it is more efficient and natural to use a splitting method which is specialized
for perturbed systems.

3 Higher order splitting methods

The first step in the process to choose an appropriate method (or to build a
new one) for numerically solving a given problem is to analyze the algebraic
structure of the problem as well as to identify the costly parts when considering
different ways to solve it.

In our case, the problem to be solved can be written as a separable per-
turbed problem as follows

u̇ = (A(t) + εB(t))u (6)

where we denote W = εB with ε the small parameter in order to highlight
that it is a perturbed system. According to the considerations in the previous
section, the non-autonomous equation

u̇ = A(t)u (7)

can be efficiently and cheaply solved to high accuracy, while the solution of

u̇ = εB(t)u (8)

involves the costly part. However, if the explicit dependence on time is frozen
in B(t), the numerical solution of (8) can be carried out directly.

It seems natural to solve the problem using splitting methods, yet to choose
the most appropriate one is not obvious. There are hundreds of splitting meth-
ods in the literature at different orders and tailored to different classes of
problems (see [4,18,20] and references therein) and the performance achieved
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strongly depends on the choice of the method and its implementation in the
appropriate way.

One can split a system in many different ways and to split into the cor-
rect form jointly with the use of the appropriate method makes an enormous
difference as we will see.

For convenience of the reader, we briefly review splitting methods and focus
on some subclasses of methods in which our problem belongs and for which
there are tailored methods with improved performance.

3.1 Splitting an autonomous problem into two parts

Assume that the differential equation can be written as follows

ẋ = f [1](x) + f [2](x) = Ax+Bx, x(0) = x0 ∈ R
d (9)

where

A =

d∑

i=1

f
[1]
i

∂

∂xi
, B =

d∑

i=1

f
[2]
i

∂

∂xi

and such that each sub-problem

ẋ = Ax, ẋ = Bx,

can be integrated exactly (or more generally, it is simpler to integrate than
the original system).

An s-stage splitting method is given by the composition

Ψ(h) = ebshB eashA · · · eb1hB ea1hA = eF (h)

with

F (h) = hvaA+ hvbB + h2vab[A,B] + h3vaab[A, [A,B]] + h3vbab[B, [A,B]] +O(h4)(10)

and va, vb, . . . are polynomials in ai, bi. Since the exact solution is x(h) =
eh(A+B)x0 we compare F (h) with h(A+B) and we have to impose va = vb = 1
to have a consistent scheme. If in addition vab = 0, then the resulting method
is order two, etc. so the method is of order r if

eF (h) = eh(A+B) +O(hr+1).

A set of efficient methods up to order ten can be found in [20,4,18] and refer-
ences therein.
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3.2 Perturbed systems

Consider now that the equation takes the form

ẋ = f(x) = f [1](x) + εf [2](x), (11)

with |ε| ≪ 1, where a consistent splitting method takes now the form

Ψ(h) = ebshεB eashA · · · eb1hεB ea1hA = eh(A+εB+E(h,ε)), (12)

with

E(h, ε) = h ε vab[A,B] + h2 ε vaab[A, [A,B]] + h2 ε2 vbab[B, [A,B]] (13)

+h3 ε vaaab[A, [A, [A,B]]] + h3ε2vbaab[B, [A, [A,B]]] + h3ε3 vbbab[B, [B, [A,B]]] +O(h4) .

Since one typically deals with small values of ε, we have to examine the
local error as ε → 0. This can be done of course by analyzing the difference
between Ψ(h) and eh(A+εB) or directly E(h, ε).

According to [20], the method is said to be of generalized order (r1, r2, . . . , rm)
(where r1 ≥ r2 ≥ · · · ≥ rm) if the remainder in (14) is such that

hE(h, ε) = O(εhr1+1 + ε2hr2+1 + · · ·+ εmhrm+1).

As a result, one can use an scheme for perturbed problems that provides
similar accuracy as a general splitting method, but at a reduced cost.

The following methods from [20] have shown to be highly efficient and were
also considered and implemented for this work:

The 2-stage symmetric method of generalized order (4,2) given by the
composition

Ψ(4,2) = ea1hA eb1hεB ea2hAeb1hεB ea1hA (14)

with a1 = (3−
√
3)/6, a2 = 1− 2a1, b1 = 1/2.

The 5-stage symmetric method of generalized order (8,4)

Ψ(8,4) = ea1hA eb1hεB ea2hA eb2hεB ea3hA eb3hεB ea3hA eb2hεB ea2hA eb1hεB ea1hA ,(15)

with
a1 = 0.0753469602698929 a2 = 0.5179168546882568 a3 = 1/2− (a1 + a2)
b1 = 0.1902259393736766 b2 = 0.8465240704435263 b3 = 1− 2(b1 + b2)
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3.3 Processed methods for perturbed systems

The number of order conditions for a given splitting scheme grows in general
very rapidly with the order and this is true even for perturbed problems. Dif-
ferent strategies have been proposed along the years to reduce the number and
complexity of the order conditions, thus ensuring that the resulting schemes
require less evaluations than conventional methods.

One of such strategies is the use of a processor or corrector. The idea is:
given an integrator ψh (the kernel), one tries to find a (near-identity) para-
metric map πh : Rd −→ R

d (the pre-processor) such that the new scheme

ψ̂h = π−1
h ◦ ψh ◦ πh (16)

is more accurate than ψh. Application of n steps of the new integrator ψ̂h

leads to ψ̂n
h = π−1

h ◦ ψn
h ◦ πh.

The method ψh is of effective order r if a pre-processor πh exists for which
ψ̂h is of (conventional) order r, that is, if π−1

h ◦ ψh ◦ πh = v +O(hr+1), where
v is here the exact solution.

There are processed methods that are addressed to perturbed problems
and we choose the following composition that provides a method of generalized
order (7,6,4) with a 3-stage kernel given by2:

Ψ
[P ]
(7,6,4) = π−1

6 ◦ ψ3 ◦ π6

=
(
ϕ
[A]
−z1h

◦ ϕ[εB]
−y1h

◦ · · · ◦ ϕ[A]
−z6h

◦ ϕ[εB]
−y6h

)

◦
(
ϕ
[A]
a1h

◦ ϕ[εB]
b2h

◦ ϕ[A]
a2h

◦ ϕ[εB]
b2h

◦ ϕ[A]
a2h

◦ ϕ[εB]
b1h

◦ ϕ[A]
a1h

)
(17)

◦
(
ϕ
[εB]
y6h

◦ ϕ[A]
z6h

◦ · · · ◦ ϕ[εB]
y1h

◦ ϕ[A]
z1h

)
,

with coefficients given in Table 1. It is possible to build more elaborated pre-
and post-processors leading to methods of generalized order (s, 6, 4) with s as
large as desired.

3.4 Processed methods with modified potentials for perturbed systems

Let us now look closer at the semiclassical Schrödinger equation in the context
of the above splittings:

∂tψ =

((
i
ε2

2
∆x − i

1

ε2
U(t, x)

)
− i

1

ε2
W (t, x)

)
ψ = (A+B)ψ

2 We write the scheme as a composition of maps because the exponentials of Lie operators
act in the reverse order as they are written. This is not a problem for symmetric compo-
sitions, but processed methods are not symmetric compositions and we want to avoid any
confusion in the application of the methods.
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Table 1 Coefficients for the (7,6,4) processed splitting method.

a1 = 0.5600879810924619 a2 = 1/2− a1
b1 = 1.5171479707207228 b2 = 1− 2b1

z1 = −0.3346222298730800 z2 = 1.0975679907321640 z3 = −1.0380887460967830
z4 = 0.6234776317921379 z5 = −1.1027532063031910 z6 = −0.0141183222088869
y1 = −1.6218101180868010 y2 = 0.0061709468110142 y3 = 0.8348493592472594
y4 = −0.0511253369989315 y5 = 0.5633782670698199 y6 = −0.5

where W is the remainder in the quadratic Taylor expansion of the potential
V as in Section 2:

W (q, x) = V (x)−U(q, x) = V (x)−V (q)−V ′(q)(x−q)− 1

2
V ′′(q)(x−q)2 . (18)

The commutator ([A,B] = (AB − BA)) acting on the wave function is given
by

[A,B]ψ = [i
ε2

2
∆x − i

1

ε2
U(t, x),−i 1

ε2
W (x, t)]ψ = [i

ε2

2
∆x,−i

1

ε2
W (t, x)]ψ

=
1

2
[∆x,W ]ψ =

1

2
∆xWψ +∇xW · ∇xψ.

We used here that U an W commute, so we obtained

[A,B] =
1

2
∆xW +∇xW · ∇x,

that we use further in

[B, [A,B]]ψ = [−i 1
ε2
W (t, x),

1

2
∆xW +∇xW · ∇x]ψ = −i 1

ε2
[W (t, x),∇xW · ∇x]ψ

= i
1

ε2
∇xW · ∇xWψ.

As a result we have that

[B, [A,B]] = −i 1
ε2

(−∇xW · ∇xW ) ,

i.e., it depends on coordinates and commutes with B. In addition, (18) gives

∇xW = V ′(x)− V ′(q)− V ′′(q)(x− q) ,

so ∇xW · ∇xW can be computed from the previous evaluations of W . Hence,
the evaluation of eB+[B,[A,B]] has similar complexity and computational cost
as the evaluation of eB .

This property allows us to use a processed method in which the kernel is a
small modification of the semiclassical splitting at no extra cost corresponding
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Table 2 Coefficients for the (6,4) processed splitting method.

y1 = −0.1659120515409654 y2 = −0.1237659000825160 y3 = 0.0250397323738759
y4 = 0.2269372219010943
z1 = −0.9125829692505096 z2 = −0.3605243318856133 z3 = 0.7354063037876117
z4 = 0.5

to the following scheme of effective generalized order (6,4) from [6] whose
coefficients are collected in Table 2

Ψ
[P ]
(6,4) = π−1

4 ◦ ψ1,1 ◦ π4

=
(
ϕ
[B]
−y1h

◦ ϕ[A]
−z1h

◦ ϕ[B]
−y2h

◦ ϕ[A]
−z2h

◦ ϕ[B]
−y3h

◦ ϕ[A]
−z3h

◦ ϕ[B]
−y4h

◦ ϕ[A]
−z4h

)

◦
(
ϕ
[A]
h/2 ◦ ϕ̃

[Bm]
h,h/24 ◦ ϕ

[A]
h/2

)
(19)

◦
(
ϕ
[A]
z4h

◦ ϕ[B]
y4h

◦ ϕ[A]
z3h

◦ ϕ[B]
y3h

◦ ϕ[A]
z2h

◦ ϕ[B]
y2h

◦ ϕ[A]
z1h

◦ ϕ[B]
y1h

)
,

with

ϕ̃
[Bm]
h,h/24 ≡ ehB+h

3

24 [B,[A,B]]

= exp

(
−i 1
ε2
h

(
W (q(

h

2
))− h2

24
∇xW (q(

h

2
)) · ∇xW (q(

h

2
))

))
.

3.5 Splitting methods for non-autonomous systems

Notice that the splitting methods we have considered until now are valid for
the numerical integration of autonomous equations. However, our splitting
introduces a time-dependence. The question we analyze next is whether the
same schemes can be used when there is an explicit time dependence in the
equation to integrate. The answer is positive if the schemes are used properly.

Let us consider a non-autonomous perturbed system given by

ẋ = f(t, x) = f [1](t, x) + εf [2](t, x), x(0) = x0. (20)

Then we can take t as a new coordinate and transform (20) into an equivalent
autonomous equation to which splitting algorithms for perturbed problems
are subsequently applied. More specifically, equation (20) is equivalent to the
enlarged system

d

dt

(
x
xt

)
=

(
f [1](xt, x)

1

)

︸ ︷︷ ︸
f̂ [1]

+ε

(
f [2](xt, x)

0

)

︸ ︷︷ ︸
f̂ [2]

(21)

with xt ∈ R leading to the following (autonomous) equations

ẏ = f̂ [1](y), ẏ = εf̂ [2](y)
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with y = (x, xt). Since the equation ẋ = 1 has been appended to the dominant
part, the equation still retains the structure of a perturbed problem and then
we can use the previous splitting methods for such class of problems [7].

This splitting requires the exact solution of the non-autonomous problem

ẋ = f [1](t, x), (22)

or to numerically solve it to high accuracy. Since this is the cheap part of
our problem, one can safely use a high-order method to solve it at a low
computational cost.

On the other hand, since the equation to be solved in the extended phase
space is autonomous, processed methods can be used and it only remains to
check if the scheme with modified potential can still be used as well as to
analyze how it must be adapted to the non-autonomous case.

To this purpose we write the equation to solve as follows

∂t

(
ψ
ut

)
=

(((
i ε

2

2 ∆x − i 1
ε2U(ut, x)

)
− i 1

ε2W (ut, x)
)
ψ

1

)

=

((
i ε

2

2 ∆x − i 1
ε2U(ut, x)

)
ψ

1

)
+

(
−i 1

ε2W (ut, x)ψ
0

)

= (Ã+ B̃)

(
ψ
ut

)

where now Ã, B̃ are Lie operators defined as follows

Ã ≡
(
i
ε2

2
∆x − i

1

ε2
U(ut, x)

)
δ

δψ
+ 1 · δ

δut
,

B̃ ≡ −i 1
ε2
W (ut, x)

δ

δψ
.

We can easily check that

[B̃, [Ã, B̃]]

(
ψ
ut

)
=

(
i 1
ε2∇xW · ∇xWψ

0

)
.

To sum up, we can use splitting methods for perturbed problems with
processing and modified potentials. This requires to solve either exactly or
numerically to high accuracy, the non-autonomous problem

∂tψ =

(
i
ε2

2
∆x − i

1

ε2
U(t, x)

)
ψ

as well as to solve the autonomous problem (the time is frozen at each stage)

∂tψ = −i 1
ε2
Wψ

or, for the kernel (that contains a modified potential)
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∂tψ = −i 1
ε2

(
W − h2

24
∇xW · ∇xW

)
ψ.

As a result, we have a numerical scheme that has similar stability and
computational cost as the semiclassical splitting, but provides a considerably
improved accuracy.

4 Numerical results

Let us summarise first the main results of the previous section. We saw that
the splitting methods for perturbed systems A+W = A+ εB are the natural
choice to increase the convergence order. They all look like

∏

j

exp

(
− i

ε2
bjhW (q(bjh))

)
exp

(
− i

ε2
ajhA

)
(23)

with constants aj and bj properly chosen. Since the expensive part is that
involving W , only AWA-schemes in the sense of [20] come into play. Moreover,
since the splitting is time-dependent, we have to deal in each step with equa-
tions that depend explicitly on time; we make them autonomous by adding an
unknown for the time. A crucial remark is that the propagation of the time-
variable must be done together with the propagation with A, in order not to
loose the advantage that W acts as a perturbation of order O (ε). The Theo-
rem 3 in [14] brings up the result on the error from the order of the involved
quadrature rule.

The global convergence rates and the costs in terms of the most expensive
propagation (that involving W ) are summarised in the Table 3. The most
efficient method is the preprocessor splitting method (19) with the modified
potential, while a compromise between work and accuracy gives the 3-stages
(7, 6, 4)-method (17).

The exact implementation details are in the python library WaveBlocks
[8] that is publicly available. We give below the complete description of the
propagation algorithm based on the (7, 6, 4)-scheme. In IntSplit we used the
propagation with A via the order 8 splitting of Kahan and Li, e.g. [18] page
157, and the exact propagation with U and T as in (5).

We may choose δt such that we let the error term (δt)8h/ε2 to match any of
the above orders. We took the number of the internal steps of length δt = h/N
to be N = 1 + [(h8−β/ε2+α)1/8] fitting the overall error εαhβ .

The benchmark problem is the same as that used in [14]: the initial value

ψ(0) = ϕ[1, 0, 1, i] (24)

is propagated from t = 0 to the time T = 2 using 24 wavepackets into the tor-
sional potential V (x) = 1− cos(x). All error plots use the same legends which
are displayed in Fig. 1. The error plots for various values of the parameter ε
for the modified (6, 4) perturbed method (19) and the semiclassical (7, 6, 4)
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Table 3 Comparison of the high order splitting methods.

Method Type Cost Order
(3) semiclassical 1 εh2

(14) perturbed 2 εh4 + ε2h2

(15) perturbed 5 εh8 + ε2h4

(19) perturbed, processor, modification 1 εh6 + ε2h4

(17) perturbed, processor 3 εh7 + ε2h6 + ε3h4

h=0.001953125
h=0.00390625
h=0.0078125
h=0.015625
h=0.03125
h=0.0625
h=0.125
h=0.25
h=0.5
y=10−8ε
y=10−8ε2

ε=0.007943282347242814
ε=0.010003558111850486
ε=0.012598214506614535
ε=0.015865855626574995
ε=0.019981035775439138
ε=0.05026156357112989
ε=0.1264311220402291
ε=0.3180328562148623
ε=0.7999999999999999
y=10−4h4

Fig. 1 The legends for all the experiments.
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Fig. 2 The error dependence on ε and on h: semiclassical modified (6, 4) processed method,
torsional potential.

method are in Figs. 2, 3 and 4 and should be compared with the left part of
Figures 2 and 3 in [14].

In Figs. 2 and 3, the results for various parameters are compared to refer-
ence computations with the same algorithm with the timestep h = 10−12.

In Fig. 4 we used the semiclassical (7, 6, 4)-method with the timestep h =
10−12 as the reference solution.

In Fig. 5 we display the dependence on ε of the L2-norm of the error
estimated on a space grid of both the modified (6, 4) perturbed method and
the semiclassical (7, 6, 4)-method when the reference solution is based on a
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Fig. 3 The error dependence on ε and on h: semiclassical (7, 6, 4)-method, torsional poten-
tial.
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Fig. 4 The error dependence on ε and on h: semiclassical modified (6, 4) processed against
a reference solution by the semiclassical (7, 6, 4)-method, torsional potential.
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Fig. 5 The error dependence on ε of the L2-norm of the error estimated on a space grid;
the reference solution is given by an order 6 scheme in time with tiny h together with a very
precise Fourier approximation in space: the modified (6, 4) perturbed method (left) and the
semiclassical (7, 6, 4)-method (right). The line with crosses reminds us the 1/ε2-deterioration
of the standard schemes.
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Fourier approximation with 216 points in space and a symplectic Runge-Kutta-
Nystrom method of order 6 in time with step h = 10−16. We see that the
solution is not accurate for large ε, which corresponds to models that are not
semiclassical. The line with crosses reminds us the 1/ε2-deterioration of the
standard schemes. We see the improvement of the quality of our solution for
small ε; large time-steps can be used without loss in accuracy.

The methods are so precise that the strong round off in exp (−iη/ε2) −
exp (−i(η + eps)/ε2), with η 6= 0 and eps = machine precision, in the mea-
surement of the error is not avoidable. At ε close to 1, the semiclassical ap-
proximation is not valid anymore. At ε small, the solution based on Fourier
approximation and splitting is not accurate enough, so we used as reference
solution that produced by our own method with a small time-step and large
basis sets, which were observed to be enough for the propagation till endtime
T .

If the solution does not remain localized, more basis functions are needed,
as we can see in Fig. 6; here we look at the convergence with respect to the
time step and the choice of the basis size K for the physical parameters in
case of the interaction potential in 1Σ+

g Hg2 as found in [21]; the parameter
set for the potential and the initial value ψ(0) = ϕ[q0, p0, Q0, P0] as well as ε
are given inside the top of the Fig. 6.

Algorithm 1 A full simulation from t = 0 to end time t =Mh = T .
procedure Simulation(u[Π, c], h, M)

N = max

(

1, 1 +

⌊
√

h ε−
3
4

⌋)

⊲ Number of local steps to be used with A = T + U

u[Π, c] = PrePropagate(u[Π, c], h,N)
for i = 1, . . . ,M do

u[Π, c] = Propagate(u[Π, c], h,N)
end for

u[Π, c] = PostPropagate(u[Π, c], h,N)
return u[Π, c]

end procedure

Algorithm 2 A single timestep of the kernel.
procedure Propagate(u[Π, c], h, N)

for j = 1, . . . , k do ⊲ (7, 6, 4) has k = 4, while (19) has k = 1
h2 = ajh ⊲ Step with (in case of (19) modified) remainder W
F ∈ CK×K ; Fr,c :=< ϕr|W |ϕc >

c = exp
(

−ıh2
ε2

F
)

c

h1 = bjh ⊲ Step with A = T + U
u[Π, c] = IntSplit(u[Π, c], h1, N)

end for

return u[Π, c]
end procedure
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Fig. 6 Computational setting for 1Σ+
g Hg2 (top), the error dependence on the time step

h and on the size of the basis K in the semiclassical (7, 6, 4)-method at end time T = 5
(middle) and at T = 35 (bottom).
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Algorithm 4 Postprocessing.
procedure PostPropagate(u[Π, c], h, N)

for j = v, . . . , 1 do ⊲ (7, 6, 4) has v = 6, while (19) has v = 4
h2 = yjh ⊲ Step with remainder W

F ∈ C|K|×|K|; Fr,c :=< ϕr|W |ϕc >

c = exp
(

−ıh2
ε2

F
)

c

h1 = zjh ⊲ Step with A = T + U
u[Π, c] = IntSplit(u[Π, c], h1, N)

end for

return u[Π, c]
end procedure

Algorithm 3 Preprocessing.
procedure PrePropagate(u[Π, c], h, N)

for j = 1, . . . , v do ⊲ (7, 6, 4) has v = 6, while (19) has v = 4
h1 = −zjh ⊲ Step with A = T +W
u[Π, c] = IntSplit(u[Π, c], h1, N)
h2 = −yjh ⊲ Step with remainder W

F ∈ C|K|×|K|; Fr,c :=< ϕr|W |ϕc >

c = exp
(

−ıh2
ε2

F
)

c

end for

return u[Π, c]
end procedure
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