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Abstract

The diffuse-domain, or smoothed boundary, method is an attractive approach

for solving partial differential equations in complex geometries because of its sim-

plicity and flexibility. In this method the complex geometry is embedded into

a larger, regular domain. The original PDE is reformulated using a smoothed

characteristic function of the complex domain and source terms are introduced

to approximate the boundary conditions. The reformulated equation, which is

independent of the dimension and domain geometry, can be solved by standard

numerical methods and the same solver can be used for any domain geometry. A

challenge is making the method higher-order accurate. For Dirichlet boundary

conditions, which we focus on here, current implementations demonstrate a wide

range in their accuracy but generally the methods yield at best first order accu-

racy in ε, the parameter that characterizes the width of the region over which

the characteristic function is smoothed. Typically, ε ∝ h, the grid size. Here,

we analyze the diffuse-domain PDEs using matched asymptotic expansions and

explain the observed behaviors. Our analysis also identifies simple modifications

to the diffuse-domain PDEs that yield higher-order accuracy in ε, e.g., O(ε2)

in the L2 norm and O(εp) with 1.5 ≤ p ≤ 2 in the L∞ norm. Our analytic

results are confirmed numerically in stationary and moving domains where the

level set method is used to capture the dynamics of the domain boundary and

to construct the smoothed characteristic function.
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1. Introduction

Many problems in the physical, biological and engineering sciences involve

solving partial differential equations (PDEs) in complex geometries that change

their size and shape in time. There are two main approaches for solving such

problems. In one approach, interface-fitted meshes are used. Examples include

finite element methods (e.g., [1]), boundary integral (e.g., [2]) and boundary

element (e.g., [3]) methods. Because of the challenges associated with generating

interface-fitted meshes for complex geometries, especially in three-dimensions,

and because in many applications the complex geometry evolves in time, which

would require a new mesh to be generated at each time step, embedded domain

methods have been developed as an alternative approach.

In this second approach, the complex domain is embedded into a larger,

regular domain and the boundary conditions are approximated by a variety of

different techniques. Examples include the adaptive fast multipole accelerated

Poisson solver (e.g., [4]), which combines boundary and volume integral methods

in the larger domain, fictitious domain methods (e.g., [5, 6, 7, 8]) where Lagrange

multipliers are applied in order to enforce the boundary conditions, immersed

boundary (e.g., [9, 10, 11, 12]), front-tracking (e.g., [13, 14, 15]) and arbitrary

Lagrangian-Eulerian methods (e.g., [16, 17, 18, 19]) utilize separate surface and

volume meshes where force distributions are interpolated from the surface to the

volume meshes, in a neighborhood of the domain boundary, to approximate the

boundary conditions. In addition, a number of specialized methods have been

designed to achieve better than first order accuracy in the L∞ norm. These

include the immersed interface (e.g., [20, 21, 22, 23][24, 25]), ghost fluid (e.g.,

[26, 27, 28, 29]), cut-cell methods (e.g., [30, 31, 32, 33]) and Voronoi interface

(e.g., [34, 35]) methods. These methods modify difference stencils near the
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domain boundary to account for the boundary conditions. Further, the extended

finite element method (e.g., [36, 37, 38]) approximates the boundary conditions

by enriching the space of test functions. A related approach is the virtual node

method [39, 40], which can achieve 2nd order accuracy in L∞ and involves

adding (virtual) degrees of freedom along the interface together with Lagrange

multipliers to enforce the boundary conditions. Another related approach is

the active penalty method [41], which can achieve higher order accuracy in

the L∞ norm by extending the boundary function off the interface such that

the extension matches the physical function and its normal derivatives at the

interface. The smoothness of the solution and the number of matched normal

derivatives constrains the accuracy of the method. A disadvantage of most

of the methods described above is that either modifications of standard finite

element and finite difference software packages are needed, or extra auxiliary

equations have to be solved.

Diffuse-domain methods (DDM), also known as smoothed boundary meth-

ods, have emerged as an attractive alternative approach because they are easy

to implement and the formulation does not depend on the dimension of the

problem or the geometry of the domain. In the DDM, the complex geometry

is embedded into a larger, regular domain and a phase-field function is used to

provide a smooth approximation to the characteristic function of the complex

domain. A parameter ε, usually proportional to the grid size, is introduced that

characterizes the width of the diffuse interfacial region and typically controls the

accuracy of the approximation. The original PDE is reformulated with addi-

tional source terms that enforce the boundary conditions. When ε is small, the

DDM is most efficient when combined with adaptive mesh refinement to enable

the use of small grid cells to resolve the narrow (≈ O(ε)) transition layer and

large grid cells in the extended, non-physical part of the regular domain. While

DDMs are not always as accurate as some of the specialized methods described

above and involve the solution of equations with non-constant coefficients and

introduce additional length scales, DDMs have the advantage that they can be

easily formulated for a wide range of equations and solved using standard uni-

3



form or adaptive discretizations combined with iterative matrix solvers, which

are normally contained in standard PDE software packages. Further, the same

solver can be used for any domain geometry.

The DDM was first used in [42, 43, 44] to solve diffusion equations with

Neumann (no-flux) boundary conditions. The DDM was extended to simu-

late PDEs on surfaces in [45], to PDEs with Robin and Dirichlet boundary

conditions in [46] and to cases in which bulk and surface equations are cou-

pled [47]. Later, in [48] and [49] alternate derivations of diffuse-domain meth-

ods for such problems were presented. Diffuse-domain methods have been ap-

plied to a wide variety of problems that arise, for example, in biology (e.g.,

[42, 50, 51, 52, 53, 54, 55, 56, 57, 58]), in fluid dynamics (e.g., [59, 60, 61, 62, 63])

and in materials science (e.g., [64, 55, 65, 66, 67]), just to name a few, and have

been implemented using a wide spectrum of methods including in-house finite-

difference, finite-element and pseudo-spectral algorithms and software packages

such as Matlab, AMDiS [68], MRAG [69], and BSAM [70].

Using rigorous mathematical theory [71, 72, 73, 74], matched asymptotic ex-

pansions and numerical simulations (e.g., [45, 46, 47, 48, 49]), the DDMs have

been shown to converge to the original PDE and boundary conditions as the

diffuse interface parameter ε tends to zero. Further, in [75] a matched asymp-

totic analysis for general DDMs with Neumann and Robin boundary conditions

showed that for certain choices of the source terms, the DDMs were second-

order accurate in ε and in the grid size h in both the L2 and L∞ norms, taking

ε ∝ h; see the recent paper [74] for a rigorous proof.

For Dirichlet boundary conditions it is more challenging to obtain higher-

order accurate diffuse domain methods. Current implementations of DDMs

demonstrate a wide range in their accuracy but generally the methods yield at

best first-order accuracy in ε [71, 48, 73, 74, 49]. For example, some schemes,

including one presented in [46], achieve sub-first order accuracy: O(ε ln ε) in

both the L2 and the L∞ norms. While others, including some presented in

[46, 48, 49], achieve first-order accuracy: O(ε) in both the L2 and L∞ norms.

Further, in [49] it was shown using asymptotic analysis that for several DDM
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approximations of the diffusion equation with Dirichlet boundary conditions,

that while the order of accuracy was O(ε) in L2 the error could be significantly

reduced by special choices of the DDM parameters. However, because DDMs

for Dirichlet boundary conditions derive from introducing penalty terms in the

equation, which are inherently low-order accurate, new modifications must be

introduced to achieve higher-order accuracy.

In this paper, we analyze, using matched asymptotic expansions, several

DDMs for approximating PDEs with Dirichlet boundary conditions. Our anal-

ysis explains the wide variation in the observed accuracy of the schemes and

identifies simple modifications of the DDMs that can yield higher-order accu-

racy in ε. Similar to the active penalty method [41], our modifications are

designed to enforce continuity of the normal derivative of the physical solution

and its extension off the interface. However, we match the normal derivative

only at the leading order in the asymptotic expansion in ε, which simplifies the

method. Our new schemes are O(ε2) in the L2 norm and O(εp) in the L∞ norm,

with p ranging from 1.5 to 2 depending on the range of ε and h considered. For

example, in the limit, ε → 0 and ε/h → 0 we obtain p → 1.5. Surprisingly, the

schemes can be more accurate when ε ∝ h. We find this can occur because the

truncation/discretization error uh,ε − uε and the analytic error uε − u can have

similar magnitudes but opposite signs so that there can be cancellation in the

total error uh,ε−u. As h decreases, the error eventually becomes dominated by

the analytic error.

Our formulation is dimension-independent, easy to implement and indepen-

dent of computational methodology. Here we use the level-set method [76, 77]

to generate the phase-field, or smoothed characteristic, function, and adap-

tive finite-difference discretizations with a mass-conserving multigrid method

on block-structured adaptive meshes (BSAM) [70] to obtain highly-efficient

schemes. We present examples in 1D, 2D and 3D in stationary and moving

domains and confirm our analytic results.

The outline of the paper is as follows. In Sec. 2, we analyze DDM approxi-

mations to the Poisson equation with Dirichlet boundary conditions and present

5



1D numerical results that confirm our analysis. In Sec. 3, we extend our analy-

sis and simulations to time-dependent equations, focusing on the heat equation

with external forcing. We consider both stationary and moving domains. We

discuss different approaches to model the moving domains (phase-field versus

level-set) and present 1D numerical simulations using the method. 2D and 3D

numerical results are provided in Secs. 4 and 5, respectively. Finally, in Sec.

7, we present conclusions and discuss future work. In Appendixes A and B, we

provide additional numerical results and theoretical details.

2. Diffuse domain method to the Poisson equation with Dirichlet

boundary conditions

Consider the Poisson equation with Dirichlet boundary condition on a com-

plex (non-regular) domain D:

∆u = f in D, (1)

u = g on ∂D. (2)

To approximate Eqs. (1) and (2), we consider three DDM approximations

defined in [46] and posed on a larger, regular domain Ω:

DDM1 : ∇ · (φ∇uε)−
1

ε3
(1− φ)(uε − g) = φf, (3)

DDM2 : φ∆uε −
1

ε2
(1− φ)(uε − g) = φf, (4)

DDM3 : ∇ · (φ∇uε)−
|∇φ|
ε2

(uε − g) = φf, (5)

where the source terms 1
ε3 (1 − φ)(uε − g), 1

ε2 (1 − φ)(uε − g) and |∇φ|ε2 (uε − g)

represent different choices for enforcing the Dirichlet boundary condition u = g.

The function φ approximates the characteristic function of D, e.g.

φ(x, t) =
1

2
(1− tanh (

3r(x, t)

ε
)), (6)

here r(x, t) is the signed-distance function to ∂D, which is taken to be negative

inside D, and ε is the interface thickness. The interface thickness ε should be
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smaller than any physically relevant length scale. In particular, ε << 1/|κ|
where κ is the total curvature of the interface and ε < ||u||∂D,∞/||∇u||∂D,∞
where the norms denote the L∞ norm on the boundary ∂D. In addition, we

require ε < δ, where δ = δ(κ) is the width of a layer around the boundary where

the functions g and f can be smoothly extended outside D constant in the

normal direction. The distance over which g and f need to be extended, and the

distance between ∂D and ∂Ω, depends on the speed at which the approximate

characteristic function φ asymptotes. Generally, this distance should be at least

3ε so that φ is sufficiently close to zero. Accordingly, we take δ = 3ε and find

no significant improvement in the errors when larger values of δ are used. To

be safe, we took the distance between ∂D and ∂Ω to be ≈ 10ε and find this

works well for all the numerical simulations in this paper, although we likely

could have used a smaller value.

Note that for DDM3, since the phase field function φ and its gradient vanish

rapidly outside D, in order to prevent the equation from being ill-posed, we use

the following modified gradient instead in the numerical calculation [75],

|∇φ̂| = τ + (1− τ)|∇φ|, (7)

where τ = 10−15. Note that no such regularization is required for DDMs 1

and 2 because the 1 − φ ≈ 1 terms dominate outside D. In all the DDMs we

consider, we assume that the boundary function g is defined in a small O(ε)

neighborhood of ∂D using an extension off ∂D that is constant in the normal

direction and that f is similarly extended smoothly out of the domain D. This

can always be done if ε is sufficiently small as described above.

2.1. Numerical results for DDM1-3

We present representative numerical results in 1D for the DDMs given in Sec.

2. We suppose the original Poisson equation is defined in D = [−1.111, 1.111]

with Dirichlet boundary conditions at x = ±1.111, which are not grid points.

We take the forcing function f = 1 and boundary condition g = 1.1112/2 so
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that the exact solution to Eqs. (1)-(2) is u = x2/2. The results from other test

cases can be found in Appendix A.

We solve the DDMs in a larger domain Ω = [−2, 2] with the same Dirichlet

boundary condition as the original Poisson equation. Note that the choice for

boundary condition for the outer domain Ω should not affect the inner domain

D. Therefore the distance between ∂D and ∂Ω should be large compared to ε.

The equations are discretized on a uniform grid with the standard second-order

central difference scheme (adaptive mesh refinement is used later in 2D, see Sec.

4). The discrete system is solved using the Thomas method [78].

The numerical solutions of DDM1-3, together with the exact solution, are

shown in Fig. 1(a), a close-up of the solutions with x ∈ [−0.1, 0.1] is shown as

an inset. Here, we have taken ε = 0.0125 and h = ε/4. We next calculate and

compare the error between the simulated DDM solutions uh,ε and the analytic

solution u of the original PDE. We present the errors in both the L2 and the

L∞ norms, defined as

E(2)
ε =

‖φ(u− uh,ε)‖L2(Ω)

‖φu‖L2(Ω)
, (8)

where ‖·‖L2 is the discrete L2 norm:

‖u‖L2 =

√√√√1/N

N∑
i=1

u2
i , (9)

where N is the number of grid points in Ω. The error in the L∞ norm is defined

as [20]

E(∞)
ε =

‖(u− uh,ε)‖L∞(D)

‖u‖L∞(D)
, (10)

and ‖u‖L∞(D) = max1≤i≤M |ui| and M is the number of grid points in D . Note

this is not L∞ in Ω. The convergence rate in ε is calculated as

k =
log(

Eεi
Eεi−1

)

log( εi
εi−1

)
. (11)

The results are presented in Tabs. 1 and 2. We observe that DDM2 is 1st order

accurate, which is consistent with findings in [48, 49], while the convergence
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rates of DDM1 and DDM3 are less than 1 in both L2 and L∞ norms (see also

Tabs. 7-12 in Appendix A for other test cases).
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Figure 1: (a). Numerical solutions of DDM1–3 from Eqs. (3)-(5); (b). The corresponding

modified diffuse domain methods mDDM1-3 from Eqs. (77)-(79); with f = 1, g = 1.1112/2,

ε = 0.0125 and h = ε/4.

DDM1 DDM3

ε E(2) k E(∞) k E(2) k E(∞) k

2.00E-01 4.88E-01 0.00 2.12E-01 0.00 3.82E-02 0.00 4.73E-02 0.00

1.00E-01 1.12E-01 2.12 5.26E-02 2.01 9.45E-02 -1.31 4.42E-02 0.10

5.00E-02 9.88E-03 3.51 7.96E-03 2.72 8.03E-02 0.24 3.66E-02 0.27

2.50E-02 1.31E-02 -0.41 5.89E-03 0.44 5.39E-02 0.58 2.44E-02 0.59

1.25E-02 1.41E-02 -0.11 6.31E-03 -0.10 3.33E-02 0.69 1.50E-02 0.70

6.25E-03 1.04E-02 0.44 4.66E-03 0.44 1.97E-02 0.76 8.84E-03 0.76

3.13E-03 6.80E-03 0.62 3.04E-03 0.62 1.14E-02 0.79 5.09E-03 0.80

1.56E-03 4.16E-03 0.71 1.86E-03 0.71 6.42E-03 0.82 2.87E-03 0.82

Table 1: The L2 and L∞ errors in DDM1 and DDM3 with h = ε/4.
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DDM2

ε E(2) k E(∞) k

2.00E-01 3.42E-01 0.00 1.65E-01 0.00

1.00E-01 1.70E-01 1.01 7.95E-02 1.05

5.00E-02 8.45E-02 1.01 3.88E-02 1.04

2.50E-02 4.17E-02 1.02 1.91E-02 1.02

1.25E-02 2.07E-02 1.01 9.51E-03 1.00

6.25E-03 1.03E-02 1.00 4.82E-03 0.98

3.13E-03 5.16E-03 1.00 2.40E-03 1.00

1.56E-03 2.58E-03 1.00 1.20E-03 1.01

Table 2: The L2 and L∞ errors in DDM2 with h = ε/4.

To understand this behavior, the scaled errors near the boundary x = 1.111

are shown in Fig. 2. In Fig. 2(a), we plot uε−u
ε versus the stretched inner

variable z = r
ε (r = x − 1.111) using ε = 0.00625 and N = 2560, which

is obtained from the grid size h = ε
4 . When z << 0 (inside the domain),

uε−u
ε tends to a constant, C(ε). In Fig. 2(b), the constants C(ε) from DDM1

and DDM3 are plotted as a function of ln(ε). Linear fits give that C(ε) ≈
−0.186 ln(ε) − 0.475 for DDM1 and C(ε) ≈ −0.188 ln(ε) − 0.143 for DDM3,

which suggests that the orders of accuracy of DDM1 and DDM3 are ε ln(ε) as

ε → 0. In Fig. 2(c), we plot the limit value C(ε) from DDM2 as a function of

ε. The plots suggest that C(ε)→ −0.45 6= 0, which implies DDM2 is 1st order

accurate.
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Figure 2: Comparisons of the behavior of DDM1, DDM2 and DDM3 near ∂D. (a): uε−u
ε

with ε = 0.00625, (b): C(ε) for DDM1 and DDM3 (see text), (c): C(ε) for DDM2.

2.2. Matched asymptotic analysis of DDMs

In this section, we perform a matched asymptotic analysis in 1D for DDM1-3

in order to explain the numerical results in Sec. 2.1. This analysis can be easily

extended to higher dimensions. Without loss of generality, we also assume

the boundary is located at x = 0 and we take the signed distance (near the

boundary) to be r = x, again x < 0 denotes the interior of D. We consider the

expansion of diffuse-domain variables in powers of the interface thickness ε in

regions close to and far from the interface, which are known as inner (û) and
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outer (ū) expansions, respectively. On each side of the interface, there exists

an outer expansion, here labeled ū1(x; ε) where x < 0 and φ = 1, and ū2(x; ε)

where x > 0 and φ = 0 (see Fig. 3 for an illustration). Clearly for all three

DDMs, we have

ū2 = g. (12)

Note that there could be multiple layers near the boundary and hence multiple

inner expansions may be required to match the two outer expansions.

2.2.1. Analysis of DDM2

We first present the matched asymptotic analysis of DDM2. In 1D, DDM2

is,

φ
d2

dx2
uε −

1

ε2
(1− φ)(uε − g) = φf, (13)

We assume the outer expansion ū1 satisfies,

ū1(x; ε) = ū
(0)
1 (x) + εū

(1)
1 (x) + ... (14)

Plugging into Eq. (13) and assuming that neither f nor g depends on ε, we

have,

d2

dx2
ū

(0)
1 = f, (15)

d2

dx2
ū

(k)
1 = 0, k = 1, 2, ... (16)

Now, if ū
(0)
1 = g on ∂D so that ū

(0)
1 is the unique solution to Eqs. (1) and (2),

then DDM2 reduces to the Poisson equation with Dirichlet boundary condition

at leading order. The L2 convergence rate is then determined by the next

leading order term, ū
(1)
1 . In order to determine the boundary conditions for ū

(0)
1

and ū
(1)
1 , we need to analyze the behavior of DDM2 (Eq. (13)) near ∂D using

inner expansions and then match the inner and outer expansions in a region of

overlap.

To get the inner equations, we first rewrite DDM2 by substituting φ with

Eq. (6) and dividing by φ:

d2

dx2
uε −

e6x/ε

ε2
(uε − g) = f. (17)
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Inner OuterOuter

φ = 0φ = 1

K 1

ū1 ū2 = g

x ∼ O(ε)

z1 = x/ε

d/dx = ε−1d/dz1

1− φ ∼ O(1)

û1

Figure 3: Inner layer K1

Consider Eq. (17) in a region K1 (see Fig. 3), where x ∼ O(ε) and e6x/ε ∼ O(1)

and we introduce a stretched variable,

z1 =
x

ε
. (18)

In a local coordinate system near ∂D, the derivatives become

d

dx
=

1

ε

d

dz1
, (19)

d2

dx2
=

1

ε2
d2

dz2
1

, (20)

The inner expansion associated with the stretched variable z1 is

û1(z1; ε) = û
(0)
1 (z1) + εû

(1)
1 (z1) + ... (21)

To obtain the matching conditions for each outer solution ūi (i = 1, 2), we

assume that there is a region of overlap where both the inner and the outer

expansions are valid. In this region, if we evaluate the outer expansion in the

inner coordinates, this must match the limits of the inner solutions away from

the interface, that is,

û1(z1; ε) ' ū1(εz1; ε), as z1 → −∞ and εz1 → 0−, (22)

û1(z1; ε) ' ū2(εz1; ε) = g, as z1 → +∞ and εz1 → 0+. (23)

Here a single inner expansion û1 is able to match both outer expansions up to

O(ε) for DDM2 as shown below. As we see later in Sec. 2.2.2, this is not the case
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for DDM1 and DDM3 and an additional layer needs to be introduced. Com-

bining Eqs. (12), (14), (21)-(23), we have the following asymptotic matching

conditions up to O(ε),

û
(0)
1 (z1) = ū

(0)
1 (0), as z1 → −∞, (24)

û
(1)
1 (z1) = ū

(1)
1 (0) + z1

d

dx
ū

(0)
1 (0), as z1 → −∞, (25)

and

û
(0)
1 (z1) = g, as z1 → +∞, (26)

û
(1)
1 (z1) = 0, as z1 → +∞. (27)

Plugging Eq. (21) into Eq. (17) and using derivatives in the local coordinate

system (Eqs. (19) and (20)), we obtain the following equations for the inner

expansion û1:

At O(ε−2),
d2

dz2
1

û
(0)
1 − e6z1(û

(0)
1 − g) = 0, (28)

At O(ε−1),
d2

dz2
1

û
(1)
1 − e6z1 û

(1)
1 = 0. (29)

Note that the solution to the following homogeneous ordinary differential equa-

tion,

y′′ − e6xy = 0, (30)

is given by

y = C1I0(
e3x

3
) + C2K0(

e3x

3
), (31)

where I0 and K0 are the modified Bessel functions of the first and second kind,

respectively, and C1 and C2 are constants. Clearly, û
(0)
1 = g is a solution to Eq.

(28). Therefore,

û
(0)
1 (z1) = g + C1I0(

e3z1

3
) + C2K0(

e3z1

3
), (32)

û
(1)
1 (z1) = C3I0(

e3z1

3
) + C4K0(

e3z1

3
), (33)
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where Ci’s are constants. The modified Bessel functions satisfy:

lim
z1→−∞

I0(
e3z1

3
) = 1, (34)

lim
z1→+∞

I0(
e3z1

3
) = +∞, (35)

lim
z1→−∞

K0(
e3z1

3
) ∼ − ln(

1

2

e3z1

3
)− γ ∼ −3z1 + ln 6− γ, (36)

lim
z1→+∞

K0(
e3z1

3
) = 0, (37)

where γ ≈ 0.5772 is the Euler−Mascheroni constant. From Eq. (36) and the

matching condition (24) we conclude that C2 = 0. Using Eq. (35) and the

matching conditions as z1 → +∞ (Eqs. (26) and (27)), we have C1 = C3 = 0.

Putting everything together and using (25), we find

û
(0)
1 = g, (38)

û
(1)
1 = −A

3
K0(

e3z1

3
) ∼ Az1 +

A

3
(− ln 6 + γ), as z1 → −∞, (39)

where A = d
dx ū

(0)(0) is the derivative of the exact solution at the boundary.

By the matching conditions (Eqs. (24) and (25)), the two leading terms of the

outer solution ū1 satisfies

ū
(0)
1 (0) = g, (40)

ū
(1)
1 (0) =

A

3
(− ln 6 + γ). (41)

Therefore, ū
(0)
1 = u, which is the exact solution of the Poisson equation with

Dirichlet boundary condition (Eqs. (1) and (2)), and DDM2 is first order accu-

rate in ε in the L2 norm since ū1 − u ∼ O(ε) if A 6= 0. As for the L∞ norm, we

also need to consider the error at the boundary , e.g., û1(0)−g ≈ εû(1)
1 (0) ∼ O(ε)

for DDM2. Thus, DDM2 is first order accurate in ε in the L∞ norm as well if

A 6= 0. If A = 0, then the asymptotic analysis suggests better than first-order

accuracy. In fact when A = 0, DDM2 is O
(
ε2
)

accurate in both L2 and L∞ as

shown in Appendix A.

To confirm our analysis, we compute ū
(1)
1 (0) ≈ C(ε), where C(ε) ≈ (uε−u)/ε

as z1 << 0 is shown in Fig. 2(c). Using A = 1.111, both the asymptotic analysis
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and the numerical results agree and give ū
(1)
1 ≈ −0.450 (see Tab. 19 in Appendix

C for other cases).

2.2.2. Analysis of DDM1 and DDM3

We now extend the matched asymptotic analysis in Sec.2.2.1 to DDM1 and

DDM3. In 1D, DDM1 reads,

d

dx
(φ

d

dx
uε)−

1

ε3
(1− φ)(uε − g) = φf, (42)

Substituting φ from Eq. (6), we have,

d2

dx2
uε −

6

ε

1

1 + e−6x/ε

d

dx
uε −

e6x/ε

ε3
(uε − g) = f. (43)

We assume that

ū1(x; ε) = ū
(0)
1 (x) + εū

(1)
1 (x; ln ε) + o(ε). (44)

Note that ln ε is included in the outer expansion, which we will explain later.

Plugging Eq. (44) into the DDM1 (Eq. (42)), again we have,

d2

dx2
ū

(0)
1 = f, (45)

d2

dx2
ū

(k)
1 = 0, k = 1, 2, ... (46)

As for inner expansion, we first consider DDM1 (Eq. (43)) in K1, where

x ∼ O(ε) and e6x/ε ∼ O(1). We introduce the same stretched variable,

z1 =
x

ε
, (47)

and the inner expansion,

û1(z1; ε) = û
(0)
1 (z1) + εû

(1)
1 (z1) + ..., (48)
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φ = 0φ = 1

K 1

ū1 ū2 = g

x ∼ O(ε)

z1 = x/ε

1− φ ∼ O(1)

û1

Inner

z1 → +∞z2 → +∞
û2

x ∼ (ε ln ε)/6 +O(ε)

z2 = x/ε− ln ε/6

1− φ ∼ O(ε)

K 2

−∞ ← z2

Figure 4: Inner layers K1 and K2

Plugging into Eq. (43), we have the following equations,

At O(ε−3), e6z1(û
(0)
1 − g) = 0, (49)

At O(ε−2),
d2

dz2
1

û
(0)
1 −

6

1 + e−6z1

d

dz1
û

(0)
1 − e6z1 û

(1)
1 = 0, (50)

At O(ε−1),
d2

dz2
1

û
(1)
1 −

6

1 + e−6z1

d

dz1
û

(1)
1 − e6z1 û

(2)
1 = 0, (51)

At = O(1),
d2

dz2
1

û
(2)
1 −

6

1 + e−6z1

d

dz1
û

(2)
1 − e6z1 û

(3)
1 = f, (52)

(53)

It follows that

û
(0)
1 = g, (54)

û
(1)
1 = û

(2)
1 = 0, (55)

û
(3)
1 = −fe−6z1 . (56)

Thus,

û1(z1; ε) = g − ε3fe−6z1 + o(ε3). (57)

Clearly, û1 satisfies two of the matching conditions as z1 → +∞ (Eqs. (26) and

(27)). However, lim
z1→−∞

û1(z1; ε) = −∞, which implies û1 does not satisfy the

other two matching conditions (Eqs. (24) and (25)) and hence there exists an-

other layer, namely K2, and another inner solution û2 (see Fig. 4). Accordingly,

we introduce the layer K2 where x ∼ αε ln(ε) + O(ε). Here we choose α = 1/6

and consider the two leading terms in the inner expansions, other choices of α
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will result different layers, but their inner expansions are the same up to O(ε).

We consider a new stretched variable,

z2 =
x− ε(ln ε)/6

ε
=
x

ε
− ln ε

6
(58)

Similar to Eq. (22), we derive the corresponding matching conditions in K2,

that is

ū1(εz2 +
ε ln ε

6
) ' û2(z2), as z2 → −∞ and εz2 → 0−. (59)

It follows that

lim
z2→−∞

û
(0)
2 (z2) = ū

(0)
1 (0), (60)

lim
z2→−∞

û
(1)
2 (z2) = ū

(1)
1 (0) + (z2 +

ln ε

6
)
d

dx
ū

(0)
1 (0). (61)

As z2 → +∞, we need to match the inner solutions û2(z2) with û1(z1) from K1.

This is described below.

Plugging in the inner expansion into DDM1 (Eq. (43)) and using that

e6x/ε = εe6z2 , we obtain:

At O(ε−2),
d2

dz2
2

û
(0)
2 − e6z2(û

(0)
2 − g) = 0, (62)

At O(ε−1),
d2

dz2
2

û
(1)
2 − 6e6z2

d

dz2
û

(0)
2 − e6z2 û

(1)
2 = 0. (63)

The general solution to Eq. (62) is

û
(0)
2 (z2) = g + C1I0(

e3z2

3
) + C2K0(

e3z2

3
), (64)

where I0 and K0 are the modified Bessel functions of the first and second kind,

respectively, and C1, C2 are constants.

Then we need to match û
(0)
2 (z2) with the leading order of the inner solution

in K1 (Eq. (54)) as z2 → +∞, that is

lim
z2→+∞

û
(0)
2 (z2) = g. (65)

It follows that C1 = 0. From Eq. (60) and (36), we obtain C2 = 0. Thus,

û
(0)
2 (z2) = g, (66)
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which implies

ū
(0)
1 (0) = lim

z2→−∞
û

(0)
2 (z2) = g. (67)

Hence, DDM1 recovers the Poisson equation with Dirichlet boundary condition

at leading order and ū
(0)
1 is the exact solution to Eqs. (1) and (2).

Plugging Eq. (66) into Eq. (63), we have

û
(1)
2 (z2) = C3I0(

e3z2

3
) + C4K0(

e3z2

3
), (68)

where C3 and C4 are constants. û
(1)
2 needs to match û

(1)
1 = 0 in K1 as z2 → +∞,

that is

lim
z2→+∞

û
(1)
2 (z2) = 0, (69)

Hence, C3 = 0. On the other side where z2 → −∞, by the matching condition

Eq. (61), we obtain

lim
z2→−∞

û
(1)
2 (z2) = ū

(1)
1 (0) +A(z2 +

ln ε

6
), (70)

where A = d
dx ū

(0)
1 (0) is the derivative of exact solution at the boundary x = 0.

Therefore, taking the limit of Eq. (68) as z2 → −∞ and equating the result to

Eq. (70), it follows that

ū
(1)
1 (0) = −A

6
ln ε+

A

3
(− ln 6 + γ) ∼ O(ln ε) (71)

Hence, the convergence rate of DDM1 in the L2 norm is ε ln(ε) if A 6= 0. Al-

though the error at the boundary is û1(0)− g ∼ O(ε3) as seen from Eq. (57)),

the L∞ error is dominated by ε ln(ε).

As for DDM3, Replacing 1−φ
ε with |∇φ|ε2 and conducting an analogous anal-

ysis, we obtain

ū
(0)
1 (0) = g, (72)

ū
(1)
1 (0) = −A

6
ln ε+

A

3
(− ln(

1

2

√
2

3
) + γ) ∼ O(ln ε). (73)

Thus, DDM3 is also of O(ε ln ε) in both L2 and L∞ norms if A 6= 0. If A = 0, our

analysis suggests that DDM1 and DDM3 are better than first-order accurate.

In fact, we find the schemes are O
(
ε2 (ln ε)

2
)

accurate (see Appendix A).
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To validate our analysis, we plot C(ε) ≈ (uε − u)/ε versus ln(ε) as in Fig.

2(b) and compute the slope through a linear fit using the numerical results in

Sec. 2.1. For both DDM1 and DDM3, our asymptotic analysis suggests that

the slope is −A/6 ≈ −0.185 using A = 1.111. Numerically, we obtain the slopes

−0.186 and −0.188 from DDM1 and DDM3, respectively, which agrees well with

the theory (see Tab. 20 in Appendix C for other cases).

2.3. Development and analysis of higher-order, modified DDMs

In order to achieve higher order accuracy, we need to guarantee that the

first order term in the outer expansion (ū1) vanishes, that is, ū
(1)
1 = 0. From

the matching condition, Eq. (25), we observe that if û
(1)
1 (z1) behaves as Az1

as z1 → −∞, where A is the derivative of the exact solution at the boundary,

then ū
(1)
1 (0) must be 0 and hence ū

(1)
1 (x) = 0 since d2ū

(1)
1 /dx2 = 0 from Eqs.

(16) and (46). Therefore, if we can modify the original DDMs in a way such the

inner solution û1(z1) satisfies,

lim
z1→±∞

û
(0)
1 (z1) = g, (74)

lim
z1→+∞

û
(1)
1 (z1) = 0, (75)

lim
z1→−∞

û
(1)
1 (z1) ∼ Az1, (76)

we should be able to achieve higher-order accuracy based on the asymptotic

analysis. Accordingly, this suggests that to achieve higher-order accuracy we

may modify the DDMs (referred to as the mDDMs) in the following way:

mDDM1 : ∇ · (φ∇uε)−
1

ε3
(1− φ)(uε − g − rn · ∇uε) = φf, (77)

mDDM2 : φ∆uε −
1

ε2
(1− φ)(uε − g − rn · ∇uε) = φf, (78)

mDDM3 : ∇ · (φ∇uε)−
|∇φ|
ε2

(uε − g − rn · ∇uε) = φf, (79)

where n = − ∇φ|∇φ| is the normal vector and the new term rn · ∇uε is designed

to cancel the contribution of the derivative of the exact solution (e.g., the A

terms) in the outer solutions ū
(1)
1 . This is similar to, but simpler than, the

active penalty method in [41], which introduces penalty terms to match the
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solution and normal derivatives across the physical boundary. The modified

boundary condition g+rn ·∇uε is simply a linear approximation of the solution

near the boundary in the normal direction to the boundary. Next, we analyze

these methods in the following two sections to determine their actual order of

accuracy.

2.3.1. Asymptotic analysis of mDDM1 and mDDM3

Similar to Sec. 2.2, we assume x = 0 is the boundary and r = x. Consider

mDDM1 in 1D:

d

dx
(φ

d

dx
uε)−

1

ε3
(1− φ)(uε − g − x

d

dx
uε) = φf, (80)

Substituting φ with Eq. (6), we obtain

d2

dx2
uε −

6

ε

1

1 + e−6x/ε

d

dx
uε −

e6x/ε

ε3
(uε − g − x

d

dx
uε) = f. (81)

After examining possible ways of performing matched asymptotic expansions

for Eq. (81), the simplest approach is to choose a new inner variable z3 = x
ε1.5

and the corresponding inner solution û3(z3) in the region K3 (see Fig. 5), where

x ∼ ε1.5 and e6x/ε ≈ 1. In the local coordinate system, the derivatives become

d

dx
=

1

ε1.5
d

dz3
, (82)

d2

dx2
=

1

ε3
d2

dz2
3

, (83)

Similar to Eqs. (22) and (23), we develop matching conditions for K3, that is,

û3(z3; ε) ' ū1(ε1.5z3; ε), as z3 → −∞, and ε1.5z3 → 0− (84)

û3(z3; ε) ' ū2(ε1.5z3; ε) = g, as z3 → +∞, and ε1.5z3 → 0+. (85)

Since we use the scale ε1.5, it is natural to include half powers in the outer and

inner expansions:

ū1(x; ε) = ū
(0)
1 (x) + ε0.5ū

(0.5)
1 (x) + εū

(1)
1 (x) + ε1.5ū

(1.5)
1 (x)..., (86)

û3(z3; ε) = û
(0)
3 (z3) + ε0.5û

(0.5)
3 (z3) + εû

(1)
3 (z3) + ε1.5û

(1.5)
3 (z3).... (87)
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ū1 ū2 = g

x ∼ O(ε1.5)
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z3 = x/ε1.5

φ = 0
û3
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Figure 5: Inner layer K3

Plugging into Eqs. (84) and (85), we obtain the matching conditions,

û
(0)
3 (z3) = g, as z3 → +∞, (88)

û
(k)
3 (z3) = 0, k = 0.5, 1, 1.5, ..., as z3 → +∞, (89)

and

û
(k)
3 (z3) = ū

(k)
1 (0), k = 0, 0.5, 1, as z3 → −∞, (90)

û
(1.5)
3 (z3) = ū

(1.5)
1 (0) + z3

d

dx
ū

(0)
1 (0), as z3 → −∞. (91)

Plugging Eq. (87) into Eq. (81) we derive the following inner equation at the

leading order O(ε−3):

d2

dz2
3

û
(0)
3 − (û

(0)
3 − g − z3

d

dz3
û

(0)
3 ) = 0, (92)

Clearly, û
(0)
3 = g is a solution to Eq. (92). Note that the general solution to the

following homogeneous ordinary differential equation,

y′′ + xy′ − y = 0, (93)

involves a linear combination of parabolic cylinder functions (D−2(x)) [79]:

y = e−x
2/4(C1D−2(x) + C2D−2(−x)), (94)

where C1 and C2 are constants. Thus,

û
(0)
3 = g + e−z

2
3/4(C1D−2(z3) + C2D−2(−z3)), (95)
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where D−2(z3) ∼ z2
3e
−z23/4 as z3 → +∞ and D−2(z3) = −

√
2πz3e

z23/4 as z3 →
−∞. By the matching conditions (Eqs. (88) and (90)), we have C1 = C2 = 0

and

û
(0)
3 = g, (96)

ū
(0)
1 (0) = g. (97)

Hence mDDM1 recovers the Poisson equation at the leading order, e.g., ū
(0)
1 = u,

the exact solution.

At the next order O(ε−2.5) in Eq. (81), we have,

d2

dz2
3

û
(0.5)
3 − (û

(0.5)
3 − z3

d

dz3
û

(0.5)
3 ) = 0. (98)

Thus,

û
(0.5)
3 = e−z

2
3/4(C1D−2(z3) + C2D−2(−z3)). (99)

Again, using the matching conditions (Eqs. (89) and (90)), we derive û
(0.5)
3 = 0.

A similar argument at O(ε−2) in Eq. (81) gives û
(1)
3 = 0.

At O(ε−1.5) in Eq. (81), we obtain,

d2

dz2
3

û
(1.5)
3 − (û

(1.5)
3 − z3

d

dz3
û

(1.5)
3 ) = 0. (100)

Hence,

û
(1.5)
3 = e−z

2
3/4(C1D−2(z3) + C2D−2(−z3)). (101)

Applying the matching conditions (Eqs. (89) and (91)), we get

û
(1.5)
3 = −Ae

−z23/4
√

2π
D−2(z3) ∼ Az3 as z3 → −∞, (102)

where A = d
dx ū

(0)
1 (0) is the derivative of the exact solution at the boundary.

Plugging into Eq. (91), we conclude

ū
(1.5)
1 (0) = 0. (103)

Thus, the asymptotic analysis suggests that ū1(x) = ū
(0)
1 (x)+O(ε2) and mDDM1

is 2nd order accurate in ε in the L2 norm as desired.
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To analyze the error in the L∞ norm, we need to consider the error at the

boundary. At the boundary, û3(0) − g ∼ ε1.5û
(1.5)
3 (0) = −Aε1.5√

2π
. This suggests

that mDDM1 is 1.5 order accurate in ε in the L∞ norm.

This analysis can be easily extended to higher dimensions and to mDDM3

to obtain the same conclusions. The only difference with respect to mDDM3 is

that 1−φ
ε3 is replaced with |∇φ|ε2 , which gives û3(0) − g ∼ ε1.5û

(1.5)
3 (0) = −Aε1.5√

6π
.

The errors in the L2 norm and L∞ norm are still suggested to be 2nd and 1.5

orders, respectively.

To confirm our analysis, we compute û
(1.5)
3 (0) numerically in the following

way. We plot the values of (uε − u)/ε1.5 at the boundary (z3 = 0) versus
√
ε,

where uε is the numerical solution, and we find the y-intercept of a quadratic fit.

Since A = 1.111, our asymptotic analysis gives that the values of û
(1.5)
3 (0) are

-0.443 and -0.256 for mDDM1 and mDDM3, respectively. We obtain -0.442 and

-0.257 from the numerical results of mDDM1 and mDDM3, respectively, which

is consistent with our theory (see Tab. 21 in Appendix C for other cases).

2.3.2. Asymptotic analysis of mDDM2

Even though mDDM2 is obtained using the same modification as in mDDM1

and mDDM3, surprisingly as our analysis below suggests and numerical results

confirm (see Sec. 2.4), mDDM2 is only first-order accurate in both L2 and L∞.

In 1D, the mDDM2 is:

φ
d2

dx2
uε −

1

ε2
(1− φ)(uε − g − x

d

dx
uε) = φf. (104)

Substituting φ from Eq. (6), we obtain

d2

dx2
uε −

e6x/ε

ε2
(uε − g − x

d

dx
uε) = f. (105)

Considering Eq. (105) in K1, we use the inner variable z1 = x
ε to derive the

following inner equations for û1:

At O(ε−2),
d2

dz2
1

û
(0)
1 − e6z1(û

(0)
1 − g − z1

d

dz1
û

(0)
1 ) = 0, (106)

At O(ε−1),
d2

dz2
1

û
(1)
1 − e6z1(û

(1)
1 − z1

d

dz1
û

(1)
1 ) = 0. (107)
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Clearly, û
(0)
1 = g is a solution to Eq. (106), and the general solution to the

homogeneous ordinary differential equation below,

y′′ − e6x(y − xy′) = 0, (108)

is given by,

y = C1x+ C2(−ee6x(1−6x)/36 − x
∫ x

0

h(t)dt), (109)

where h(x) = ee
6x(1−6x)/36+6x (see Appendix D for details). It follows that

û0
1(z1) = g + C1z1 + C2(−ee6z1 (1−6z1)/36 − z1

∫ z1

0

h(t)dt), (110)

û1
1(z1) = C3z1 + C4(−ee6z1 (1−6z1)/36 − z1

∫ z1

0

h(t)dt), (111)

where the Ci are constants and

lim
z1→−∞

ee
6z1 (1−6z1)/36 = 1, (112)

lim
z1→+∞

ee
6z1 (1−6z1)/36 = 0, (113)

lim
z1→−∞

∫ z1

0

h(t)dt ≈ 0.17, (114)

lim
z1→+∞

∫ z1

0

h(t)dt ≈ 2.75. (115)

Combining with the matching conditions as z1 → ±∞ (Eqs. (24)-(27)) and

solving for the constants Ci, we obtain that

û
(0)
1 (z1) = g, (116)

û
(1)
1 (z1) ≈ A

2.92
(−ee6z1 (1−6z1)/36 + z1

∫ ∞
z1

h(t)dt), (117)

where as before A = d
dx ū

(0)
1 (0). Therefore,

lim
z1→−∞

û(1)(z1) ∼ Az1 −
A

2.92
, (118)

which implies

ū
(1)
1 (0) ≈ − A

2.92
6= 0, if A 6= 0. (119)
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This suggests mDDM2 is 1st order accurate in ε in the L2 norm when A 6= 0.

Plugging z1 = 0 into Eq. (117) and we have

û
(1)
1 (0) ≈ −Ae

1/36

2.92
, (120)

which implies that mDDM2 is also 1st order accurate in the L∞ norm.

To confirm our analysis, we compute ū
(1)
1 numerically, which is given by

(uε − u)/ε as z << 0, using the numerical solution uε in Sec. 2.4. In addition,

we interpolate and plot the boundary values of (uε−u)/ε at z1 = 0 versus ε, and

then calculate û(1)(0) from the y-intercept of a linear fit. Since A = 1.111, our

analysis indicates that ū
(1)
1 ≈ − A

2.92 ≈ −0.381 and û(1)(0) ≈ −Ae1/362.92 ≈ −0.391.

The numerical results yield ū
(1)
1 ≈ −0.380 and û(1)(0) ≈ −0.391, which agrees

very well with the theory (see Tab. 22 in Appendix C for other cases).

2.4. Numerical results for mDDM1-3

We adopt the same problem setup and an analogous discretization as in Sec.

2.1. The results using h = ε/4 are presented in Fig. 1(b). Clearly mDDM3

and mDDM1 are more accurate than DDM1-3 and mDDM2. Further, mDDM2

and DDM2 (Fig. 1(a)) display similar levels of accuracy as suggested by our

analysis.

To test the order of accuracy in ε predicted by theory, we next take h = ε1.5/4

in order to resolve the inner layer K3, as guided by our asymptotic analysis in

Sec. 2.3.1. Later, in Secs. 3 and 4, we will test convergence with ε ∝ h. In

Tabs. 3 and 4, we present convergence results for mDDM1-3 for case 1 (see

also Tabs. 13-18 in Appendix B for other cases). Consistent with our analysis,

we observe that mDDM1 and mDDM3 are approximately 2nd order accurate

in the L2 norm but approximately 1.5 order accurate in the L∞ norm. Also

as predicted, mDDM2 is only 1st order accurate in both norms. Therefore, in

practice we recommend using mDDM1 or mDDM3.

However, taking h ∼ ε1.5 is often too constraining for solving problems in

2D and 3D. Instead, one may choose h = ε/c. Doing this, one can obtain results
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with orders of accuracy ranging from 1.5 to 2 (1.5 for large c and approximately

2 for c ≈ 1; see Tabs. 5 and 6 in Sec. 3 and Tabs. 25, 26 and 28 in Appendices).

mDDM1 mDDM3

ε E(2) k E(∞) k E(2) k E(∞) k

2.00E-01 4.88E-01 0.00 2.10E-01 0.00 1.55E-01 0.00 8.23E-02 0.00

1.00E-01 1.50E-01 1.70 6.59E-02 1.67 3.77E-02 2.04 2.23E-02 1.88

5.00E-02 4.46E-02 1.75 1.98E-02 1.74 8.54E-03 2.14 5.96E-03 1.91

2.50E-02 1.26E-02 1.83 5.58E-03 1.83 1.89E-03 2.17 2.03E-03 1.55

1.25E-02 3.34E-03 1.91 1.55E-03 1.85 4.16E-04 2.19 6.15E-04 1.72

6.25E-03 8.61E-04 1.95 4.91E-04 1.65 8.74E-05 2.25 2.29E-04 1.42

Table 3: The L2 and L∞ errors for mDDM1 and mDDM3 with h = ε1.5/4.

mDDM2

ε E(2) k E(∞) k

2.00E-01 4.58E-01 0.00 2.19E-01 0.00

1.00E-01 2.24E-01 1.03 1.06E-01 1.05

5.00E-02 1.11E-01 1.02 5.19E-02 1.03

2.50E-02 5.47E-02 1.02 2.59E-02 1.00

1.25E-02 2.72E-02 1.01 1.29E-02 1.01

6.25E-03 1.36E-02 1.00 6.45E-03 1.00

Table 4: The L2 and L∞ errors for mDDM2 with h = ε1.5/4.

3. Time-dependent problems

We next extend the mDDMs to simulate time-dependent PDEs in a mov-

ing domain D(t) with Dirichlet boundary conditions. As we discuss later, our

approach and analysis holds for much more general time-dependent equations,

but we consider the diffusion equation here for simplicity of presentation:

∂tu = ∆u+ f in D(t), (121)

u = g on ∂D(t), (122)

u(x, 0) = u0(x) in D(t). (123)
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3.1. Derivation and analysis of high-order, modified DDMs for time-dependent

PDEs

To approximate Eqs. (121) and (122), we formulate the diffuse domain

model using an approximation (mDDMt3), which is analogous to mDDM3 in

Sec. 2.3.1:

mDDMt3: ∂t(φuε) = ∇(φ∇uε)−
1

ε2
|∇φ|(uε − g − rn · ∇uε) + φf (124)

where as before r is the signed distance function, with r < 0 denoting the

interior of D. Since the domain may be time-dependent, φ may depend on time

and thus φ needs to be in the time derivative [46]. Note that in time-dependent

problems, the initial condition needs to be extended outside D as well although

this extension need not be constant in the normal direction.

The asymptotic analysis for the time-dependent problem is very similar to

that for the Poisson equation presented in Sec. 2.3.1. The only difference is

that now the time derivative must be analyzed as well. Assuming the inner

and outer expansions and matching conditions hold as in Sec. 2.3.1, from the

leading order outer equation, we find that ū
(0)
1 satisfies Eq. (121).

In the inner expansion, taking z3 = x/ε1.5, the time derivative can be written

as:

∂t = − v

ε1.5
∂z3 + o(1) (125)

where v is the normal velocity of the domain boundary. Since ∂t is of order ε−1.5,

the time derivative will not affect the higher-order terms in the inner expansions

of mDDM3. Therefore, we can still derive û
(0)
3 = g and û

(0.5)
3 = û

(1)
3 = 0.

Plugging into the inner equation at the next leading order (O(ε−1.5)), we obtain

the same solution for û
(1.5)
3 as that for the time-independent equation. Thus,

mDDMt3 should be O(ε2) accurate in L2 and O(ε1.5) accurate in L∞ for the

time-dependent (diffusion) equation. Analogously, mDDM1 has the same order

of accuracy as mDDM3 and mDDM2 is O(ε) accurate in both L2 and L∞

(results not shown).
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3.2. Numerical results using mDDMt3 for time-dependent problems

For time-dependent problems, we first assume the domain does not change

in time. Then, taking f = cos(x) cos(t) + cos(x) sin(t) and g = cos(1.111) sin(t),

we obtain the exact solution u = cos(x) sin(t) on the domain D=[-1.111,1.111].

Therefore we take the initial uε(x, 0) = 0 and the constant normal extension

of f is obtained analytically. We use central difference discretizations in space

(as in Sec. 2.1) and the Crank-Nicholson method discretization in time to solve

Eq. (124) on the larger domain Ω = [−2, 2] with φ from Eq. (6). We still use

the Thomas algorithm to solve the tridiagonal matrix system. We calculate the

errors at t = 1 in the L2 and L∞ norms by setting dt = h where dt and h are

the time step and grid size, respectively. Here, instead of taking h ∝ ε1.5 as in

the previous section, we instead take h = ε/c where c is a constant.

Various choices of c have been tested and here we present results using

c = 4, 16, 128 in Tabs. 5, 6. We observe that mDDMt3 is 2nd order accurate

in the L2 norm for all choices of c. However, in L∞, we find that when c = 4,

the schemes are roughly 2nd order accurate in ε while if c = 128 the order of

accuracy decreases to 1.5, consistent with our theory. In Fig. 6, we show the

numerical solutions of mDDMt3 near the boundary x = 1.111 for difference

choices of c. When c = 4, the boundary layer K3 is not resolved and hence

the numerical solution is less smooth near the boundary than is the continuous

solution of mDDMt3. Nevertheless, the solution with c = 4 is actually closer

to the exact solution close to the boundary of D. This occurs because the

discretization error, uh,ε − uε, and analytic error, uε − u, have opposite signs

but similar magnitudes so that they can at least partially cancel one another in

the total error uh,ε − u = (uh,ε − uε) + (uε − u), yielding higher order accuracy

than might be expected. As h decreases, the total error eventually becomes

dominated by the analytic error, which results in errors that scale like O(ε1.5)

in L∞ as predicted by theory. See App. E for details.

Outside of D, the mDDMt3 solutions tend to the extension of the exact so-

lution, that is constant in the normal direction, because the boundary condition

at ∂Ω is equal to the boundary condition at ∂D. Other choices of boundary
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conditions at ∂Ω would yield similar errors near ∂D but different behavior far

from D (results not shown).

ε c=4 k c=16 k c=128 k

0.2 2.85E-02 0.00 2.88E-02 0.00 2.88E-02 0.00

0.1 7.19E-03 1.99 7.39E-03 1.96 7.40E-03 1.96

0.05 1.68E-03 2.10 1.76E-03 2.07 1.76E-03 2.07

0.025 4.08E-04 2.04 4.19E-04 2.07 4.20E-04 2.07

0.0125 9.71E-05 2.07 1.03E-04 2.02 1.03E-04 2.03

0.00625 2.48E-05 1.97 2.61E-05 1.98 2.62E-05 1.98

Table 5: The L2 errors for simulating the time-dependent (diffusion) equation using mDDMt3

with h = ε/c on a fixed domain.

ε c=4 k c=16 k c=128 k

0.2 3.87E-02 0.00 3.85E-02 0.00 4.01E-02 0.00

0.1 1.00E-02 1.95 1.10E-02 1.81 1.18E-02 1.76

0.05 2.15E-03 2.22 3.17E-03 1.79 3.56E-03 1.73

0.025 5.00E-04 2.10 1.08E-03 1.55 1.10E-03 1.69

0.0125 1.59E-04 1.65 3.27E-04 1.72 3.41E-04 1.69

0.00625 4.38E-05 1.86 8.86E-05 1.88 1.15E-04 1.57

Table 6: The L∞ errors for simulating the time-dependent (diffusion) equation using mDDMt3

with h = ε/c on a fixed domain.
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Figure 6: Numerical solutions of mDDMt3 near the boundary x = 1.111 on the 1D stationary

domain with different c. The green dashed line denotes the extension (e.g., constant in the

normal direction) of the exact solution out of the domain. The black dashed line marks the

right boundary x = 1.111.

Next we assume the boundary of the domain is also moving and set xl(t) =

−1.111, xr(t) = 1.111 + 0.5t, where xl(t) and xr(t) represent the left and

right hand sides of the domain D, respectively. We take f = cos(x) cos(t) +

cos(x) sin(t), g = cos(x∗) sin(t), where x∗ = xl, xr, and the exact solution is

u = cos(x) sin(t).

In general, neither the signed distance function r nor the function φ are

given analytically. Because we need to use the signed distance function in the

modified DDMs, we find it convenient to apply the level-set method [76, 77]

to determine both r and φ. Therefore, we solve the following Hamilton-Jacobi

equation:

∂tr + v|∇r| = 0, (126)

using a 5th order upwind WENO scheme [80] and a 2nd order Total Variation

Diminishing (TVD) Runge-Kutta (RK) method time discretization to obtain an
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accurate fully discrete solution [81]. In order to keep |∇r| = 1, we periodically

perform reinitialization [82, 83] by solving the following equation,

∂τr = sgnh(r0)(1− |∇r|), (127)

where τ is pseudo time and sgnh(r0) is a smoothed approximation function of

the sign of the initial signed distance function [84]:

sgnh(r) =


−1 r < −h
1 r > h

r
h + 1

π sin(πrh ) else

(128)

To determine whether reinitialization is needed or not, we calculate the slope

of r near the boundaries of D(t). Then we check if the maximum difference

between the absolute value of the slope and 1 exceeds a threshold, here taken

to be 0.01. If so, then we perform reinitialization.

Once the signed distance function r(x, t) is obtained, we construct the phase

field function φ through Eq. (6). Next, we solve mDDMt3 using the same

numerical setup as before. The results are very similar to the stationary domain

case. We again find that mDDMt3 is 2nd order accurate in the L2 norm and

between 1.5 and 2nd order accurate in the L∞ norm, which is consistent with

our analysis. See Tabs. 25 and 26 in App. F.

4. 2D numerical results

Now we consider the 2D diffusion equation Eqs. (121) and (122) on a moving

2D domain D(t). The initial domain is enclosed by the polar curve (shown in

Fig. 8(a)):

r(θ) = 1 + 0.1 cos(3θ) + 0.02 cos(5θ). (129)

We suppose the velocity of the domain v(x, t) is given by,

v = (0.2(1 + 2t) cos(3θ) + 0.12(1 + 6t) cos(5θ))(cos(θ), sin(θ)), (130)

and solve for the signed distance function r(x, t) using the level-set method as

described in Sec. 3.2. The phase field function φ is determined from the signed
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distance function r via Eq. (6). We choose f and g such that the exact solution

is u(r, θ, t) = 1
4r

2. Accordingly, we take the initial condition uε(x, 0) = 1
4r

2.

The extensions of f , g off D that are constant in the normal direction are

accomplished by solving [84]

ψt + sgnh(r)
∇r
|∇r| · ∇ψ = 0, (131)

in a region near ∂Dt with width of O(ε), where ψ = f or g and sgnh is given by

Eq. (128). Because the Hamilton-Jacobi equations (126)-(127) for the signed

distance function r and Eq. (131) for the extensions of f and g need to be solved

only in a narrow band around ∂D and explicit time stepping methods are used,

the costs associated with solving these equations are negligible compared to

those associated with solving the mDDM equations.

We solve mDDMt3 (Eq. (124)) on the larger domain Ω = [−2, 2] × [−2, 2]

using the Crank-Nicholson method and the standard second-order central dif-

ference scheme together with adaptive, block-structured mesh refinement as in

[85]. The implicit equations are solved using a mass-conserving multigrid solver

[70]. Empirically, we found the number of iterations of the multigrid solver is

insensitive to the choice of the minimum grid size hfine and only weakly depen-

dent on ε. See Tab. 27 in App. G. The L2 and L∞ norms of the errors are

calculated using 2D extensions of Eqs. (8) and (10). We use an adaptive mesh

with a maximum of three levels of refinement. The mesh is refined according

to the undivided gradient of (uεφ), e.g., if |∇ (uεφ) | ≥ 10−4/ (2h), where h is

the local grid size, then the mesh is targeted for block-structured refinement

(see [85] for details). We start with ε = 0.2 and the coarse mesh grid size

hcoarse = 4/16, which gives the fine mesh size hfine = 4/128 = ε/6.4, and the

time step dt = 0.1/128. Then, the parameters ε, hcoarse and dt are refined at

the same time while the number of levels and hfine = ε/6.4 are fixed.

Note that for the 2D and 3D numerical numerical implementations, we need

to discretize the normal vector n in the mDDMs in the following way in order

for the solvers to converge:
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n =

 −
∇φ
|∇φ| , if r ≤ 0,

0 else.

We believe this is related to the smoothing properties of the relaxation step, but

a full analysis is beyond the scope of this paper and will be considered in future

work. Effectively this means that the modification in the mDDMs is performed

in a region near the boundary but within the physical domain. The solution uε

in the evolving domain is shown at t = 0.1 using ε = 0.025 in Fig. 7(a). In

Figs. 7(b) and 7(c), the L2 and L∞ errors are shown at this time (see also Tab.

28 in App. G). The results suggest mDDMt3 is 2nd order accurate in h, ε and

dt in L2 and between 1.5 and 2nd order in L∞, consistent with our theory and

numerical results from the previous section.

In Fig. 8, we present a long time simulation of the dynamics using mD-

DMt3 (Eq. (124)) using the domain Ω = [−4, 4] × [−4, 4] with ε = 0.025,

hcoarse = 8/64, three levels of mesh refinement and dt = 0.1/512. Here the com-

putational domain is larger than that used for the convergence test presented

earlier ([−2, 2]× [−2, 2]) to accommodate the growth of the physical domain D

(see Fig. 8). To improve efficiency, we could dynamically increased the size of

Ω to accomodate the growth of D. In general, the buffer between ∂D and ∂Ω

should be larger than ≈ 10ε. We present the solution restricted to the moving

domain D(t) at different times, up to t=1.9. The pointwise error at t = 1.9 is

shown in Fig. 8(f) and the largest error, which is of order 10−3, occurs near the

right most finger. As can be seen from these figures, mDDMt3 is able to ac-

curately simulate solutions on time-dependent, highly complex non-rectangular

domains.

34



(a)

-2-1.8-1.6-1.4-1.2-1-0.8-0.6

log
10

(ǫ)

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

1
0
(L

2
 e

rr
o
r)

L
2
 error

slope 2

(b)

-2-1.8-1.6-1.4-1.2-1-0.8-0.6

log
10

(ǫ)

-3

-2.5

-2

-1.5

-1

-0.5

lo
g

1
0
(L

∞

 e
rr

o
r)

L
∞

 error

slope 2

(c)

Figure 7: Error analysis of the 2D diffusion equation using mDDMt3 on the moving domain

D(t), see text for details. The green curve denotes the boundary ∂D. (a): The solution at

t = 0.1 restricted on D(t) with the boundary contour (green line), (b): The L2 error at t=0.1,

(c): The L∞ error at t=0.1.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Solution of mDDMt3 from Eq. (124) at different times. The solution is restricted

to D(t) whose boundary ∂D is denoted by the green curve. See text for details. (a): t=0, (b):

t=0.5, (c): t=1.0, (d): t=1.5, (e): t=1.9. (f): The point-wise error at t=1.9 together with the

block-structured adaptive mesh.
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5. 3D numerical results

5.1. 3D Poisson test problem

We next consider a 3D Poisson equation on a stationary complex domain D:

−∇ · (β(x)∇u(x)) = f(x), x ∈ D, (132)

u = p(x). x ∈ ∂D. (133)

Following [40], in which this equation was used as as test problem for the virtual

node method, we take β(x, y, z) = 7 +x+ 2y+ 3z and set f and p such that the

exact solution is u(x, y, z) = xey + ez
√

1 + y2. The domain D is bounded by a

torus centered at (0, 0, 0) with major radius Ra = 0.6, minor radius Rb = 0.3,

and axis along (0,− sin(0.75), cos(0.75)). See Fig. 9(left), which also shows the

block-structured adaptive mesh we used.

To approximate Eqs.(132) and (133), we use a version of mDDM3:

−∇ · (φβ∇uε) +
|∇φ|
ε2

(uε − g − rn ·∇uε) = φf. (134)

The signed distance function r is taken to be:

r =

√√√√((Ra −√rx2 + ry2

)2

+ rz2

)
−Rb, (135)

where rx = x, ry = y sin(θ) + z cos(θ), rz = y cos(θ) − z sin(θ), and θ = 135o.

The phase field function φ is determined from the signed distance function r via

Eq. (6).

We solve Eq. (134) on the larger domain Ω = [−1, 1]3 using the standard

second-order difference scheme together with adaptive, block-structured mesh

refinement as in Sec. 4. We start with ε = 0.2 and a uniform grid with mesh

size h = 2/16. We test convergence by decreasing ε by factors of two and

concommittantly increasing the number of levels of refinement by one such that

the finest mesh size hfine = ε/3.2 is fixed. Fig. 9(left) shows the torus surface

(in grey) with an adaptive mesh of 2 refinement levels, which corresponds to
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ε = 0.05. Note that the refined mesh is concentrated near ∂D. The mDDM3

solution uε on ∂D is shown in Fig. 9(right).

The L∞ errors, compared with those using the second order virtual node

method [40], which like other specialized, higher-order embedded boundary

methods is more difficult to implement than mDDM3, are shown in Fig. 10.

The grid size N for mDDM3 is obtained by assuming that we are using an

uniform grid N3 so that hfine = 2/N . The results suggest that the rate of con-

vergence in N of mDDM3 is similar to that of the virtual node method (about

1.8 order), although the absolute errors in mDDM3 are larger by about an or-

der of magnitude. The reasons for this discrepancy are not entirely clear but

are likely due to a combination of factors including the choices of the relation

between hfine and ε and the scaling of the |∇φ| term in the boundary condition

term Eq. (133). In particular, by varying these choices, there are many ways the

error could be optimized. For example, for each hfine, we could find an optimal

choice of ε that minimizes the error. While we tested a few combinations that

could reduce the error, the optimal relation between hfine and ε to minimize

the error is not clear. However, taking ε ∝ hfine as we did robustly yields

nearly 2nd order convergence rates. In addition, following [49], one could intro-

duce an additional parameter α in the boundary condition term in Eq. (133),

e.g., replace |∇φ| with α|∇φ|, and try to minimize the error through judicious

choices of α. Other aspects of the solver (e.g., distances over which extensions

are performed, adaptive mesh parameters, etc.) could also be optimized. These

are subjects for future work.
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Figure 9: A 3D example of the Poisson equation in a complex domain D using mDDM3.

(left): The boundary of D is the toroidal surface (in grey), which is shown together with a 2-

level adaptive mesh that corresponds to the interface thickness ε = 0.05, (right): the mDDM3

solution uε at the boundary ∂D. See text for details.
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Figure 10: L∞ errors in solving the 3D Poisson equation on the toroidal domain D from

Fig. 9. The open circles correspond to results from [40] using the virtual node method while

the diamonds correspond to results using mDDM3. N is the number of grid points in one

dimension for the virtual node method, which uses a uniform mesh, while N = 2/hfine for

mDDM3 in which an adaptive mesh is used. See text for details.
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6. Simulation of drug perfusion in the human brain

As a final example, we simulate the perfusion of a drug in a 3D model of a

human brain. In particular, we used an anatomical template of the human brain

from the ICBM atlas [86, 87, 88, 89]. The atlas provides smooth, probabilistic

segmentations for the anatomical structures in the brain.This data is given on

a Cartesian 2563 voxel grid Ωh where the volume of each voxel is 1 mm3. Each

voxel in this grid can contain white matter (WM), grey matter (GM), cerebral

spinal fluid (CSF) or no brain matter (empty space).

We thresholded the CSF such that in the interior brain voxels contain only

CSF or solid tissue (GM/WM) and only those voxels near CSF/solid tissue

boundaries contain a combination of CSF and solid tissue. The corresponding

volume fractions of the WM and GM are φW and φG, which are smooth func-

tions. The CSF region is inferred as the region where φW + φG < 0.5 in the

brain interior. There is also a thin rim of CSF at the outer boundary of the

brain. See Fig. 11 (leftmost column) where the regions from lightest to darkest

denote the WM (where φW ≥ 0.5), the GM (where φG ≥ 0.5) and CSF. Denote

these regions by DW , DG, and DCSF .

Let uW and uG be the drug concentrations in DW and DG, respectively. As

a simple model, we assume that the drug is delivered through the CSF, which

is modeled as a Dirichlet boundary condition for the drug concentration at the

boundary between the solid tissue and the CSF regions. Therefore, we model

the perfusion of drug by:

∂tuW (x, t)−∇ · (βW∇uW ) + αuW = 0, x ∈ DW , (136)

∂tuG(x, t)−∇ · (βG∇uG) + αuG = 0, x ∈ DG, (137)

uW (x, t) = uG(x, t) = g(x, t), x ∈ ∂DCSF , (138)

uW (x, t) = uG(x, t), x ∈ ∂DG ∩ ∂DW , (139)

βW∇uW · n(x, t) = βG∇uG · n(x, t), x ∈ ∂DG ∩ ∂DW ,

(140)

where βW , βG are the diffusion coefficients in the WM and GM, respectively,
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and for simplicity we have assumed that the uptake rate of drug, α, is the same

in WM and GM.

To approximate Eqs.(136)-(140), we first nondimensionalize using the length

scale L = 64 mm and time scale L2/β̄, where β̄ is a characteristic diffusion

coefficient. Then, we formulate a nondimensional diffuse domain model using a

time-dependent version of mDDM1:

(φSuε)t −∇ · (φSβ∇uε) + αφSuε +
1− φS
ε3

(uε − g − rn ·∇uε) = 0, (141)

where β = βWφW + βGφG is a nondimensional diffusion coefficient and φS is

the hyperbolic tangent function in Eq. (6) using the signed-distance function r

obtained by solving Eq. (127) using the initial condition

r(x, 0) = φW + φG − 0.5. (142)

Note that this formulation also utilizes a diffuse domain approximation of the

continuity of concentration and flux at the WM/GM interfaces [46, 90]. We

solve the system using a 3D version of the solver in Sec. 4 on the uniform 2563

grid (e.g., the nondimensional spatial grid size is h = 4/256). We take g = 1,

ε = 0.03 ≈ 2h, α = 0.005 and time step ∆t = 0.001. The results are shown in

Fig. 11, which depicts the evolution of the concentration field in the solid tissue

φsuε using different diffusion coefficient ratios βW /βG.

As time evolves, the extent of the drug penetration into the brain tissue

depends on βW /βG and by time t = 0.05, the drug concentration field has equi-

librated. In Fig. 11(a), where βW = 1 and βG = 0.1, the drug is mainly confined

to regions of the brain around the CSF since most of the CSF is surrounded by

GM where the diffusion coefficient is small. For this reason in Fig. 11(b), where

the diffusivity is larger in GM (βW = 0.1 and βG = 1.0), the drug penetrates

much farther into the brain tissue. The most drug perfusion is observed in Fig.

11(c) where the diffusivities are matched (βG = βW = 1). While we considered

the diffusivities to be isotropic in the brain tissue, the presence of fibers in the

WM can introduce anisotropic diffusion. This can be considered in future work.
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Figure 11: Drug perfusion in an anatomical template for the human brain from the ICBM

atlas [86] (see text). Leftmost column: Light gray (white matter, WM), darker grey (grey

matter, GM), darkest grey (cerebral spinal fluid, CSF). A Dirichlet boundary condition is

posed at the boundary of the CSF region. The evolution of the drug concentration is shown

over time for different ratios of drug diffusivities βW and βG in the WM and GM, respectively.

(a): βW /βG = 10, (b): βW /βG = 0.1, (c): βW /βG = 1.
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7. Conclusions and future work

We have analyzed several diffuse domain methods (DDMs) originally de-

veloped in [46] for both the Poisson equation and the diffusion equation with

Dirchlet boundary conditions on stationary and moving domains. Advantages of

DDM methods is that they are flexible and easy to implement. The same solver

can be used for any domain, whether moving or stationary, and that the meth-

ods can be implemented using the tools provided in standard software packages

so that one does not need to write specialized code that requires treating the

region near the interface differently from that in bulk regions.

Our analysis reveals why different DDM formulations yield varying degrees

of accuracy. Guided by our analysis, we presented new modifications of the

DDMs (mDDMs) that provide higher-order accuracy. While the DDM and

mDDM systems require the solution of non-constant coefficient equations that

introduce extra length scales to the problem, iterative matrix solvers available

in most software packages are sufficient to solve the discrete equations. Here,

we used a mass-conservative, finite-difference multigrid method for which the

number of iterations is not sensitive to the smoothing thickness ε or the local

grid size h.

Using a matched asymptotic analysis, two methods, mDDM1 and mDDM3,

were shown to be 2nd order accurate in L2, e.g., O(ε2) where ε is the diffuse

interface smoothing parameter. The analysis shows that the errors in the L∞

norm scale as O(ε1.5). Using numerical simulations in 1D, 2D and 3D for se-

lected test cases, where the level-set method was used to implicitly capture the

domain movement, to construct the smoothed characteristic function needed

by the methods and to perform the needed constant normal extensions, these

theoretical predictions were confirmed when the grid size h ∼ ε1.5 is used to

resolve the boundary layer (e.g., K3 in Sec. 2.3.1).

In addition, numerical simulations revealed that in the L2 norm, mDDM1

and mDDM3 and their time-dependent versions (mDDMt1, mDDMt3) areO(ε2)

even when h ∝ ε, which is much cheaper computationally and hence more cost-
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effective to use for 2D and 3D problems. In this case, however, the L∞ errors

were found to be more variable over the range of parameters tested. In L∞,

simulations with h = ε/c show that when c is small, the schemes are roughly

O(ε2) whereas when c is large the errors are roughly O(ε1.5). This occurs because

when c is small, the truncation and analytic errors are close in magnitude but

of opposite signs so that there is cancellation in the total error and the total

error is smaller than would be expected. However, as h decreases, the analytic

errors dominate and the total errors scale as O(ε1.5) as predicted by theory.

We also compared the performance of mDDM3 in 3D to the virtual node

method in [40], which is more difficult to implement than mDDM3. We found

that mDDM3 and the virtual node method converge to the exact solution at

a similar rate in L∞ but that the error is larger using mDDM3 for the same

minimum grid size hmin. While the reasons for this are unclear, we identified

ways that the accuracy of mDDM3 could be further improved. However, it is

open question as to whether the mDDM3 could be made as accurate as the

virtual node method.

As a final example in 3D, we simulated the dynamics of drug perfusion in

an anatomical template of the human brain. Although the geometry is highly

complex, no changes in the algorithm are needed. Assuming the drug is ad-

ministered through the cerebral spinal fluid, which is modeled using a Dirichlet

boundary condition, we investigated the effect of different drug diffusivities in

the white and grey matter regions of the brain on the spatiotemporal drug

distributions.

Although we have focused on the Poisson and diffusion equations here, the

mDDMs can be applied to general elliptic and parabolic partial differential

equations following previous work (e.g., [46, 48]). For example, consider the

following general partial differential equation with Dirichlet boundary conditions

in a moving domain D(t),

∂tu−∇ · (A∇u) + b · ∇u+ cu = f in D(t), (143)

u = g on ∂D(t), (144)
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with A = A(u,∇u, x, t) a positive definite matrix, b = b(u,∇u, x, t) a vector,

c = c(u,∇u, x, t) ∈ R and f = f(x, t). Then, the corresponding version of

mDDMt3 is given by,

∂t(φu)−∇· (φA∇u) +φb ·∇u+φcu+
|∇φ|
ε2

(u− g− rn ·∇u) = φf in Ω. (145)

with A, b and c extended coefficients. The other mDDMs can be defined anal-

ogously.

While the matched asymptotic analysis was presented here in for the Poisson

and diffusion equations 1D, the same results hold in 2D and 3D for arbitrary

smooth domains and for general PDEs such as in Eqs. (143)-(144). This is

because in 2D and 3D, the boundary appears flat at leading order and the

effects of curvature appear in lower order terms that ultimately do not affect

the expansions to the orders we calculated here, provided that the interface

thickness ε is sufficiently small, e.g., smaller than any physically relevant length

scale, such as the radius of curvature of the boundary, and the region around the

boundary over which functions can be smoothly extended out of the physical

domain. The additional terms in the equations (advection and reaction) also

do not affect the expansions we calculated here because they are lower order as

well.

In future work, we plan to develop a theoretical proof of convergence for

the mDDMs. In addition, we plan to apply the methods developed here to im-

portant physical applications including fluid flows in complex geometries, which

involves applying the theory developed here to the Navier-Stokes equations, and

to the epitaxial growth of graphene heterostructures, which involves solving dif-

fusion equations in domains that evolve according to flux balance conditions

determined from the solutions to the diffusion equations themselves.
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Appendices

A. Additional numerical results of DDMs for 1D time-independent

problems

We have tested the following three DDMs using h = ε/4:

DDM1: ∇(φ∇u)− 1
ε3 (1− φ)(u− g) = φf ,

DDM2: φ∆u− 1
ε2 (1− φ)(u− g) = φf ,

DDM3: ∇(φ∇u)− 1
ε2 |∇φ|(u− g) = φf ,

on the following seven cases,

Case1: u = x2

2 ;

Case2: u = (x2 − 1.111)2;

Case3: u = 1
x2+1 ;

Case4: u = cos(x);

Case5: u = (x2 + 1)2;

Case6: u = log(x2 + 1);

Case7: u =
√
x2 + 1.

The original Poisson equation with Dirichlet boundary condition is again defined

on [−1.111, 1.111] and we solve the DDMs on a larger domain [−2, 2]. Tables 7 -

12 show the L2 and L∞ norms of errors for the three DDMs for the seven cases.

In cases 3-7, the convergence orders of DDM1-3 in both L2 and L∞ are similar

to those in case 1. However in case 2, where the derivative of the exact solution

is 0 at the boundary (A = 0), we observe 2nd order convergence in DDM2 and

higher than 1st order convergence in DDM1 and DDM3. Our analysis in Sec.

2.2 indicates that ū
(1)
1 (0) = A

3 (− ln 6 +γ), see Eq. (41), −A6 ln ε+ A
3 (− ln 6 +γ),

see Eq. (71), and −A6 ln ε+ A
3 (− ln( 1

2

√
2
3 ) + γ), see Eq. (73) for DDM2, DDM1

and DDM3, respectively. Note that these all vanish when A = 0. Hence,

DDMs can achieve higher than 1st order accuracy when A = 0. In fact, the

errors in both norms for DDM1 and DDM3 are dominated by O(ε2(ln(ε))2).

This term rises in the next order matching in K2, that is limz2→−∞ û
(2)
2 =

ū
(2)
2 (0) + (z2 + ln ε/6)2 d2

dx2 ū
(0)
1 (0) + .... Using an analogous argument to that
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given in Sec. 2.2.2, we obtain ū
(2)
2 (0) ∼ O((ln ε)2). In Fig. 12(a), we plot

D(ε) = limz2→−∞(uε−u)/ε2 versus ln(ε) using the numerical solution of DDM1

in case 2 and find that it is a quadratic function of ln(ε).
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)
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quadratic fit

(a)
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Figure 12: (a): D(ε) for DDM1 in case 2, (b): D(ε) for mDDM1 in case 2.
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ε case 1 k case 2 k case 3 k

2.00E-01 4.88E-01 0.00 1.55E-02 0.00 6.79E-02 0.00

1.00E-01 1.12E-01 2.12 2.75E-03 2.50 1.59E-02 2.10

5.00E-02 9.88E-03 3.51 9.39E-05 4.87 1.40E-03 3.51

2.50E-02 1.31E-02 -0.41 1.93E-04 -1.04 1.87E-03 -0.43

1.25E-02 1.41E-02 -0.11 1.15E-04 0.75 2.02E-03 -0.10

6.25E-03 1.04E-02 0.44 4.94E-05 1.22 1.49E-03 0.44

3.13E-03 6.80E-03 0.62 1.85E-05 1.41 9.70E-04 0.62

1.56E-03 4.16E-03 0.71 6.46E-06 1.52 5.94E-04 0.71

case 4 k case 5 k case 6 k case 7 k

1.25E-01 0.00 4.88E-01 0.00 3.03E-01 0.00 7.32E-02 0.00

2.95E-02 2.08 1.13E-01 2.10 6.97E-02 2.12 1.72E-02 2.09

2.63E-03 3.49 1.01E-02 3.49 6.09E-03 3.52 1.52E-03 3.50

3.52E-03 -0.42 1.33E-02 -0.40 8.11E-03 -0.41 2.03E-03 -0.42

3.80E-03 -0.11 1.44E-02 -0.11 8.72E-03 -0.10 2.19E-03 -0.11

2.81E-03 0.43 1.07E-02 0.43 6.44E-03 0.44 1.62E-03 0.43

1.83E-03 0.62 6.95E-03 0.62 4.19E-03 0.62 1.06E-03 0.62

1.12E-03 0.71 4.25E-03 0.71 2.57E-03 0.71 6.46E-04 0.71

Table 7: The L2 errors for DDM1
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ε case 1 k case 2 k case 3 k

2.00E-01 2.12E-01 0.00 1.09E-02 0.00 5.36E-02 0.00

1.00E-01 5.26E-02 2.01 1.93E-03 2.49 1.28E-02 2.07

5.00E-02 7.96E-03 2.72 8.82E-05 4.45 1.93E-03 2.73

2.50E-02 5.89E-03 0.44 1.42E-04 -0.69 1.46E-03 0.40

1.25E-02 6.31E-03 -0.10 7.86E-05 0.86 1.57E-03 -0.10

6.25E-03 4.66E-03 0.44 3.28E-05 1.26 1.16E-03 0.44

3.13E-03 3.04E-03 0.62 1.22E-05 1.43 7.53E-04 0.62

1.56E-03 1.86E-03 0.71 4.20E-06 1.53 4.60E-04 0.71

case 4 k case 5 k case 6 k case 7 k

1.04E-01 0.00 2.32E-01 0.00 1.47E-01 0.00 5.82E-02 0.00

2.57E-02 2.02 5.81E-02 2.00 3.60E-02 2.03 1.43E-02 2.02

3.88E-03 2.72 8.83E-03 2.72 5.43E-03 2.73 2.17E-03 2.72

2.91E-03 0.41 6.48E-03 0.45 4.06E-03 0.42 1.62E-03 0.42

3.14E-03 -0.11 6.96E-03 -0.10 4.35E-03 -0.10 1.74E-03 -0.10

2.32E-03 0.43 5.14E-03 0.44 3.21E-03 0.44 1.29E-03 0.44

1.51E-03 0.62 3.35E-03 0.62 2.09E-03 0.62 8.40E-04 0.62

9.26E-04 0.71 2.05E-03 0.71 1.28E-03 0.71 5.14E-04 0.71

Table 8: The L∞ errors for DDM1
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ε case 1 k case 2 k case 3 k

2.00E-01 3.42E-01 0.00 5.80E-02 0.00 4.44E-02 0.00

1.00E-01 1.70E-01 1.01 1.37E-02 2.09 2.28E-02 0.96

5.00E-02 8.45E-02 1.01 3.31E-03 2.04 1.16E-02 0.98

2.50E-02 4.17E-02 1.02 8.19E-04 2.02 5.84E-03 0.99

1.25E-02 2.07E-02 1.01 2.03E-04 2.01 2.93E-03 0.99

6.25E-03 1.03E-02 1.00 5.07E-05 2.00 1.47E-03 1.00

3.13E-03 5.16E-03 1.00 1.27E-05 2.00 7.35E-04 1.00

1.56E-03 2.58E-03 1.00 3.16E-06 2.00 3.68E-04 1.00

case 4 k case 5 k case 6 k case 7 k

9.27E-02 0.00 3.74E-01 0.00 1.99E-01 0.00 5.26E-02 0.00

4.54E-02 1.03 1.79E-01 1.06 1.01E-01 0.97 2.60E-02 1.02

2.25E-02 1.02 8.77E-02 1.03 5.12E-02 0.99 1.29E-02 1.01

1.12E-02 1.00 4.30E-02 1.03 2.55E-02 1.01 6.44E-03 1.01

5.59E-03 1.00 2.13E-02 1.01 1.27E-02 1.00 3.21E-03 1.00

2.79E-03 1.00 1.06E-02 1.01 6.36E-03 1.00 1.60E-03 1.00

1.39E-03 1.00 5.29E-03 1.00 3.18E-03 1.00 8.02E-04 1.00

6.97E-04 1.00 2.64E-03 1.00 1.59E-03 1.00 4.01E-04 1.00

Table 9: The L2 errors for DDM2
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ε case 1 k case 2 k case 3 k

2.00E-01 1.65E-01 0.00 3.82E-02 0.00 3.53E-02 0.00

1.00E-01 7.95E-02 1.05 9.03E-03 2.08 1.81E-02 0.96

5.00E-02 3.88E-02 1.04 2.19E-03 2.04 9.11E-03 0.99

2.50E-02 1.91E-02 1.02 5.42E-04 2.02 4.61E-03 0.98

1.25E-02 9.51E-03 1.00 1.35E-04 2.01 2.33E-03 0.98

6.25E-03 4.82E-03 0.98 3.38E-05 2.00 1.19E-03 0.97

3.13E-03 2.40E-03 1.00 8.42E-06 2.00 5.93E-04 1.00

1.56E-03 1.20E-03 1.01 2.10E-06 2.00 2.96E-04 1.00

case 4 k case 5 k case 6 k case 7 k

7.84E-02 0.00 1.94E-01 0.00 1.06E-01 0.00 4.34E-02 0.00

3.83E-02 1.03 9.08E-02 1.10 5.26E-02 1.01 2.13E-02 1.03

1.88E-02 1.03 4.36E-02 1.06 2.61E-02 1.01 1.05E-02 1.02

9.39E-03 1.00 2.13E-02 1.04 1.30E-02 1.01 5.22E-03 1.01

4.71E-03 0.99 1.06E-02 1.01 6.50E-03 1.00 2.62E-03 1.00

2.40E-03 0.97 5.34E-03 0.98 3.31E-03 0.98 1.33E-03 0.98

1.20E-03 1.00 2.66E-03 1.01 1.65E-03 1.00 6.64E-04 1.00

5.96E-04 1.01 1.32E-03 1.01 8.22E-04 1.01 3.31E-04 1.01

Table 10: The L∞ errors for DDM2
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ε case 1 k case 2 k case 3 k

2.00E-01 3.82E-02 0.00 1.37E-02 0.00 6.82E-03 0.00

1.00E-01 9.45E-02 -1.31 7.22E-03 0.92 1.44E-02 -1.08

5.00E-02 8.03E-02 0.24 3.12E-03 1.21 1.17E-02 0.30

2.50E-02 5.39E-02 0.58 1.19E-03 1.39 7.79E-03 0.59

1.25E-02 3.33E-02 0.69 4.18E-04 1.51 4.80E-03 0.70

6.25E-03 1.97E-02 0.76 1.40E-04 1.58 2.83E-03 0.76

3.13E-03 1.14E-02 0.79 4.49E-05 1.64 1.63E-03 0.80

1.56E-03 6.42E-03 0.82 1.43E-05 1.66 9.18E-04 0.83

case 4 k case 5 k case 6 k case 7 k

1.10E-02 0.00 3.57E-02 0.00 2.61E-02 0.00 6.36E-03 0.00

2.59E-02 -1.23 9.39E-02 -1.39 6.02E-02 -1.21 1.50E-02 -1.23

2.16E-02 0.26 8.08E-02 0.22 5.02E-02 0.26 1.25E-02 0.26

1.46E-02 0.57 5.46E-02 0.56 3.35E-02 0.58 8.39E-03 0.57

9.01E-03 0.69 3.39E-02 0.69 2.06E-02 0.70 5.19E-03 0.69

5.34E-03 0.76 2.01E-02 0.75 1.22E-02 0.76 3.07E-03 0.76

3.07E-03 0.80 1.16E-02 0.79 7.02E-03 0.80 1.77E-03 0.80

1.74E-03 0.82 6.57E-03 0.82 3.96E-03 0.82 9.99E-04 0.82

Table 11: The L2 errors for DDM3
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ε case 1 k case 2 k case 3 k

2.00E-01 4.73E-02 0.00 9.52E-03 0.00 1.06E-02 0.00

1.00E-01 4.42E-02 0.10 4.92E-03 0.95 1.15E-02 -0.11

5.00E-02 3.66E-02 0.27 2.08E-03 1.24 9.17E-03 0.32

2.50E-02 2.44E-02 0.59 7.82E-04 1.41 6.08E-03 0.59

1.25E-02 1.50E-02 0.70 2.72E-04 1.52 3.73E-03 0.70

6.25E-03 8.84E-03 0.76 9.04E-05 1.59 2.20E-03 0.76

3.13E-03 5.09E-03 0.80 2.89E-05 1.64 1.26E-03 0.80

1.56E-03 2.87E-03 0.82 9.14E-06 1.66 7.12E-04 0.83

case 4 k case 5 k case 6 k case 7 k

2.27E-02 0.00 5.44E-02 0.00 3.11E-02 0.00 1.26E-02 0.00

2.19E-02 0.06 4.75E-02 0.19 3.12E-02 -0.01 1.22E-02 0.04

1.80E-02 0.28 3.99E-02 0.25 2.54E-02 0.30 1.00E-02 0.28

1.21E-02 0.58 2.67E-02 0.58 1.68E-02 0.59 6.71E-03 0.58

7.45E-03 0.70 1.65E-02 0.70 1.03E-02 0.70 4.14E-03 0.70

4.40E-03 0.76 9.74E-03 0.76 6.09E-03 0.76 2.44E-03 0.76

2.53E-03 0.80 5.61E-03 0.79 3.50E-03 0.80 1.41E-03 0.80

1.43E-03 0.82 3.17E-03 0.82 1.98E-03 0.82 7.94E-04 0.82

Table 12: The L∞ errors for DDM3

B. Additional numerical results of mDDMs for 1D time-independent

problems

We have tested the following three mDDMs using h = ε1.5/4:

mDDM1: ∇(φ∇u)− 1
ε3 (1− φ)(u− g − rn · ∇u) = φf ,

mDDM2: φ∆u− 1
ε2 (1− φ)(u− g − rn · ∇u) = φf ,

mDDM3: ∇(φ∇u)− 1
ε2 |∇φ|(u− g − rn · ∇u) = φf ,

on the seven cases given in Appendix A. The problem setup and the numerical

discretization are analogous to those in Appendix A. In case 3-7, mDDM1-3

perform analogously as those in case 1. However in case 2, in which A = 0, we
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observe similar behavior as those corresponding DDMs presented in Appendix

A. Our analysis in Sec. 2.3.2 indicates ū
(1)
1 (0) ≈ −A/2.92 (Eq. (119)) and

û
(1)
1 (0) ≈ Ae1/36/2.92 (Eq. (120)) for mDDM2, which both vanish when A = 0.

Hence, mDDM2 can achieve 2nd order accuracy when A = 0. As for mDDM1

and mDDM3, the errors are again dominated by O(ε2(ln(ε))2), whose coefficient

is not affected by our modification in the next order matching when A = 0. In

Fig. 12(b), we plot D(ε) = limz2→−∞(uε−u)/ε2 versus ln(ε) using the numerical

solution of mDDM1 in case 2 and find that it is a quadratic function of ln(ε).

ε case 1 k case 2 k case 3 k

2.00E-01 4.88E-01 0.00 3.11E-02 0.00 7.00E-02 0.00

1.00E-01 1.50E-01 1.70 9.11E-03 1.77 2.19E-02 1.68

5.00E-02 4.46E-02 1.75 2.64E-03 1.79 6.57E-03 1.73

2.50E-02 1.26E-02 1.83 8.14E-04 1.70 1.87E-03 1.81

1.25E-02 3.34E-03 1.91 2.69E-04 1.60 5.05E-04 1.89

6.25E-03 8.61E-04 1.95 9.25E-05 1.54 1.33E-04 1.92

case 4 k case 5 k case 6 k case 7 k

1.25E-01 0.00 4.81E-01 0.00 3.07E-01 0.00 7.37E-02 0.00

3.96E-02 1.66 1.49E-01 1.69 9.44E-02 1.70 2.31E-02 1.68

1.20E-02 1.73 4.45E-02 1.74 2.81E-02 1.75 6.94E-03 1.73

3.40E-03 1.82 1.25E-02 1.83 7.94E-03 1.82 1.97E-03 1.82

9.09E-04 1.90 3.31E-03 1.92 2.12E-03 1.90 5.25E-04 1.90

2.36E-04 1.95 8.44E-04 1.97 5.53E-04 1.94 1.36E-04 1.95

Table 13: The L2 errors for mDDM1
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ε case 1 k case 2 k case 3 k

2.00E-01 2.10E-01 0.00 2.06E-02 0.00 5.51E-02 0.00

1.00E-01 6.59E-02 1.67 5.93E-03 1.80 1.71E-02 1.69

5.00E-02 1.98E-02 1.74 1.70E-03 1.80 5.12E-03 1.74

2.50E-02 5.58E-03 1.83 5.22E-04 1.70 1.45E-03 1.82

1.25E-02 1.55E-03 1.85 1.72E-04 1.60 3.92E-04 1.89

6.25E-03 4.91E-04 1.65 5.91E-05 1.54 1.22E-04 1.68

case 4 k case 5 k case 6 k case 7 k

1.05E-01 0.00 2.26E-01 0.00 1.49E-01 0.00 5.85E-02 0.00

3.29E-02 1.67 7.11E-02 1.67 4.64E-02 1.68 1.83E-02 1.67

9.90E-03 1.73 2.14E-02 1.73 1.39E-02 1.74 5.51E-03 1.73

2.81E-03 1.82 6.01E-03 1.83 3.94E-03 1.82 1.56E-03 1.82

7.71E-04 1.86 1.70E-03 1.82 1.07E-03 1.88 4.28E-04 1.87

2.45E-04 1.65 5.42E-04 1.65 3.39E-04 1.66 1.36E-04 1.65

Table 14: The L∞ errors for mDDM1
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ε case 1 k case 2 k case 3 k

2.00E-01 2.85E-01 0.00 3.73E-02 0.00 3.75E-02 0.00

1.00E-01 1.41E-01 1.01 8.77E-03 2.09 1.92E-02 0.97

5.00E-02 6.98E-02 1.01 2.13E-03 2.04 9.70E-03 0.98

2.50E-02 3.46E-02 1.01 5.24E-04 2.02 4.88E-03 0.99

1.25E-02 1.73E-02 1.00 1.30E-04 2.01 2.45E-03 1.00

6.25E-03 8.62E-03 1.00 3.23E-05 2.01 1.23E-03 1.00

case 4 k case 5 k case 6 k case 7 k

7.65E-02 0.00 3.07E-01 0.00 1.68E-01 0.00 4.36E-02 0.00

3.77E-02 1.02 1.48E-01 1.05 8.48E-02 0.98 2.16E-02 1.01

1.87E-02 1.01 7.23E-02 1.03 4.25E-02 1.00 1.08E-02 1.01

9.33E-03 1.00 3.57E-02 1.02 2.12E-02 1.00 5.37E-03 1.00

4.66E-03 1.00 1.77E-02 1.01 1.06E-02 1.00 2.68E-03 1.00

2.33E-03 1.00 8.84E-03 1.00 5.31E-03 1.00 1.34E-03 1.00

Table 15: The L2 errors for mDDM2
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ε case 1 k case 2 k case 3 k

2.00E-01 1.33E-01 0.00 2.50E-02 0.00 2.96E-02 0.00

1.00E-01 6.48E-02 1.04 5.86E-03 2.09 1.52E-02 0.96

5.00E-02 3.19E-02 1.02 1.42E-03 2.05 7.67E-03 0.98

2.50E-02 1.59E-02 1.01 3.52E-04 2.01 3.88E-03 0.98

1.25E-02 7.93E-03 1.00 8.73E-05 2.01 1.95E-03 1.00

6.25E-03 3.96E-03 1.00 2.18E-05 2.00 9.77E-04 1.00

case 4 k case 5 k case 6 k case 7 k

6.43E-02 0.00 1.55E-01 0.00 8.67E-02 0.00 3.56E-02 0.00

3.17E-02 1.02 7.35E-02 1.07 4.34E-02 1.00 1.76E-02 1.02

1.57E-02 1.01 3.57E-02 1.04 2.16E-02 1.00 8.73E-03 1.01

7.89E-03 1.00 1.77E-02 1.02 1.09E-02 1.00 4.38E-03 1.00

3.94E-03 1.00 8.78E-03 1.01 5.43E-03 1.00 2.19E-03 1.00

1.97E-03 1.00 4.39E-03 1.00 2.72E-03 1.00 1.09E-03 1.00

Table 16: The L∞ errors for mDDM2
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ε case 1 k case 2 k case 3 k

2.00E-01 1.55E-01 0.00 3.89E-02 0.00 2.80E-02 0.00

1.00E-01 3.77E-02 2.04 1.38E-02 1.50 7.15E-03 1.97

5.00E-02 8.54E-03 2.14 4.87E-03 1.50 1.80E-03 1.99

2.50E-02 1.89E-03 2.17 1.72E-03 1.50 4.71E-04 1.94

1.25E-02 4.16E-04 2.19 5.88E-04 1.55 1.27E-04 1.89

6.25E-03 8.74E-05 2.25 1.94E-04 1.60 3.46E-05 1.88

case 4 k case 5 k case 6 k case 7 k

4.42E-02 0.00 1.44E-01 0.00 1.07E-01 0.00 2.57E-02 0.00

1.08E-02 2.03 3.31E-02 2.12 2.69E-02 1.99 6.31E-03 2.02

2.51E-03 2.10 6.78E-03 2.29 6.50E-03 2.05 1.48E-03 2.09

5.86E-04 2.10 1.25E-03 2.44 1.59E-03 2.03 3.48E-04 2.09

1.38E-04 2.09 1.91E-04 2.71 4.01E-04 1.99 8.28E-05 2.07

3.20E-05 2.11 1.39E-05 3.78 1.01E-04 1.98 1.96E-05 2.08

Table 17: The L2 errors for mDDM3
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ε case 1 k case 2 k case 3 k

2.00E-01 8.23E-02 0.00 2.58E-02 0.00 2.18E-02 0.00

1.00E-01 2.23E-02 1.88 8.98E-03 1.52 5.82E-03 1.91

5.00E-02 5.96E-03 1.91 3.14E-03 1.51 1.56E-03 1.90

2.50E-02 2.03E-03 1.55 1.10E-03 1.51 5.17E-04 1.59

1.25E-02 6.15E-04 1.72 3.76E-04 1.55 1.56E-04 1.73

6.25E-03 2.29E-04 1.42 1.24E-04 1.60 5.73E-05 1.44

case 4 k case 5 k case 6 k case 7 k

4.10E-02 0.00 8.94E-02 0.00 5.78E-02 0.00 2.29E-02 0.00

1.12E-02 1.88 2.40E-02 1.89 1.58E-02 1.88 6.22E-03 1.88

2.99E-03 1.90 6.39E-03 1.91 4.22E-03 1.90 1.67E-03 1.90

1.02E-03 1.56 2.21E-03 1.53 1.41E-03 1.58 5.64E-04 1.56

3.07E-04 1.72 6.72E-04 1.72 4.27E-04 1.73 1.71E-04 1.72

1.14E-04 1.43 2.52E-04 1.41 1.58E-04 1.43 6.35E-05 1.43

Table 18: The L∞ errors for mDDM3

C. Validation of the asymptotic analysis

Here we present validations of our asymptotic analysis using the numeri-

cal results for the seven cases. In Tab. 19, we present ū
(1)
1 (0) from DDM2

obtained from both our asymptotic analysis theory (Eq. (41)) and the numer-

ical results. In Tab. 20, we compare the slope of C(ε) computed numerically

(through an analogous linear fit as in Sec. 2.2.2) with that derived from our

asymptotic analysis theory (−A/6) for DDM1 and DDM3. In Tab. 21, we show

û
(1.5)
3 (0) from our asymptotic theory (−A/

√
2π for mDDM1 and −A/

√
6π for

mDDM3) together with those calculated from the numerical results for mDDM1

and mDDM3. in Tab. 22, ū
(1)
1 (0) and û(1)(0) from mDDM2 obtained from both

our asymptotic analysis theory (Eqs. (119) and (120)) and the numerical results

are presented. Clearly our theory is consistent with the numerical results.
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case Theory Numerics

case 1 -0.450 -0.450

case 2 0.000 0.000

case 3 0.180 0.183

case 4 0.363 0.368

case 5 -4.020 -4.072

case 6 -0.403 -0.408

case 7 -0.301 -0.305

Table 19: Comparisons between ū
(1)
1 from theory and that from numerical results.

case Theory Numerics (DDM1) Numerics (DDM3)

case 1 -0.185 -0.186 -0.188

case 2 0.000 0.000 0.000

case 3 0.074 0.075 0.075

case 4 0.149 0.150 0.152

case 5 -1.655 -1.667 -1.686

case 6 -0.166 -0.167 -0.168

case 7 -0.124 -0.125 -0.126

Table 20: Comparisons between the slope of C(ε) from theory and that from numerical results.
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mDDM1 mDDM3

case Theory Numerics Theory Numerics

case 1 -0.443 -0.442 -0.256 -0.257

case 2 0.000 0.001 0.000 -0.001

case 3 0.178 0.177 0.103 0.103

case 4 0.356 0.357 0.206 0.207

case 5 -3.961 -3.952 -2.287 -2.299

case 6 -0.397 -0.396 -0.229 -0.230

case 7 -0.297 -0.296 -0.171 -0.172

Table 21: Comparisons between û
(1.5)
3 (0) from asymptotic theory and from numerical simu-

lations of mDDM1 and mDDM3.

ū(1)(0) û(1)(0)

case Predictions Numerics Predictions Numerics

case 1 -0.381 -0.380 -0.391 -0.391

case 2 0.000 0.000 0.000 0.000

case 3 0.152 0.152 0.157 0.157

case 4 0.307 0.307 0.316 0.315

case 5 -3.401 -3.399 -3.496 -3.495

case 6 -0.341 -0.340 -0.350 -0.350

case 7 -0.255 -0.254 -0.262 -0.262

Table 22: Comparisons between the asymptotic theory and the numerical results for ū(1)(0)

and û(1)(0) from mDDM2.

D. Derivation of the solution to Eq. (108)

Recall the homogeneous ordinary differential equation from Eq. (108) in the

main text,

y′′ − e6x(y − xy′) = 0.
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Clearly, y1 = x is one of the linearly independent solutions. We derive the other

solution through a reduction of order. We assume y2(x) = v(x)y1(x) = xv(x)

and plug into the equation to get:

xv′′ + 2v′ + x2e6xv′ = 0, (146)

which gives v(x) =
∫
ee

6x(1−6x)/36

x2 dx for x 6= 0. Hence,

y2 = x

∫
ee

6x(1−6x)/36

x2
dx = −ee6x(1−6x)/36 − x

∫
h(x)dx for x 6= 0, (147)

where h(x) = ee
6x(1−6x)/36+6x. It is not hard to verify that y2 is a solution

to the equation for all x including 0. Although the anti-derivative of h(x) is

not an elementary function, h(x) ∈ L1(−∞,+∞) and
∫ +∞
−∞ h(x)dx ≈ 2.92. Let

H ′(x) = h(x), then y2 can be written as

y2 = −ee6x(1−6x)/36 − x
∫ x

0

h(t)dt−H(0)x. (148)

Note that H(0)x is linearly dependent with respect to y1, thus y2 can be sim-

plified as

y2 = −ee6x(1−6x)/36 − x
∫ x

0

h(t)dt. (149)

Hence, the general solution to Eq. (108) is

y = C1x+ C2(−ee6x(1−6x)/36 − x
∫ x

0

h(t)dt). (150)

E. Analysis of the truncation and analytic errors

In Sec. 3.2, we showed that the errors using mDDMt3 to solve time-

dependent problems could actually be smaller using h = ε/c when c is small

(e.g., c = 4) than when c is large (e.g., c = 128). Recall Fig. 6 and Tables 5

and 6. Here, we present an analysis of the numerical results to explain this sur-

prising behavior. Because the errors are dominated by the space discretization,

we consider, for simplicity, the analogous time-independent problem in case 1

using mDDM3 (see App. A for a definition of case 1; this is also the problem

considered in Sec. 2.1).
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In Fig. 13 below, we show that for the time-independent problem in case 1,

the solution using mDDM3 with c = 4 is also closer to the exact solution than

those with larger values of c. Indeed, the behavior of the solution and the errors

are very similar to the time-dependent case presented in the main text in Sec.

3.2. The actual relative errors ||uh,ε − u||∞/||u||∞ are given in Table 23. To

understand this behavior write the total error as

||uh,ε − u||∞ = || (uh,ε − uε) + (uε − u) ||∞,

where uε is the solution of the continuous modified equation. The first term

on the right hand side is the truncation error and the second term on the

right is the analytic error. The truncation error can be approximated using

the consecutive errors E∞h,h/2,ε = uh,ε − uh/2,ε evaluated at the point x∗h,h/2 =

argmax|uh,ε−uh/2,ε|. The consecutive errors with h = ε/c are shown in Table 24

below. Note that there is no norm in the evaluation of E∞h,h/2,ε and that all the

consecutive errors are positive. The truncation error can then be approximated

by uh,ε − uε ≈
∑∞
j=0E

∞
h/2j ,h/2j+1,ε, which is thus also positive. Next, as shown

in Sec. 2.3.1, the analytic error near the boundary of the physical domain D

can be approximated to leading order as uε − u ∼ −Aε
1.5
√

6π
< 0. where A is the

normal derivative of the analytic solution at the boundary (A = 1.111 for the

problem in case 1). The leading-order analytic relative errors uε−u
||u||∞ are shown

in the last row of Table 24 and are of a similar magnitude as the truncation

errors (at least for ε smaller than 0.1 and c is small) but have the opposite sign.

For moderate sizes of h and ε, the truncation and analytic errors partially cancel

one another. As h decreases, however, the analytic error tends to dominate and

the convergence rate decreases from close to 2 for larger h (smaller c) to 1.5 for

small h (large c). A careful analysis shows that when ε is small (e.g., 0.05, 0.025,

0.0125), the combination of truncation and leading-order asymptotic analytic

errors provides a good estimate of the total error. For larger ε, the estimate

is not as good because the leading-order asymptotic error does not provide as

good an estimate for the overall analytic error.
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Figure 13: Numerical solutions of mDDM3 near the boundary x=1.111 for the time-

independent problem in case 1 with different c such that c = ε/h. The green dashed line

shows the extension of the exact solution outside the domain (e.g., constant in the normal

direction). The vertical dotted line represents the boundary of the physical domain (x=1.111).

Observe that the mDDM3 solution with c=4 is closer to the exact solution than those with

larger c

ε c=4 k c=16 k c=128 k

0.2 8.19E-02 0.00 8.15E-02 0.00 8.29E-02 0.00

0.1 2.05E-02 2.00 2.22E-02 1.88 2.38E-02 1.80

0.05 4.26E-03 2.26 6.34E-03 1.81 7.12E-03 1.74

0.025 9.22E-04 2.21 2.17E-03 1.55 2.20E-03 1.69

0.0125 2.93E-04 1.66 6.55E-04 1.73 6.82E-04 1.69

0.00625 8.76E-05 1.74 1.77E-04 1.88 2.30E-04 1.57

Table 23: The total L∞ relative error
||uh,ε−u||∞
||u||∞

with h = ε/c, as labeled, for the time-

independent problem in case 1 using mDDM3.
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ε = 0.2 ε = 0.1 ε = 0.05 ε = 0.025 ε = 0.0125

c E∞,r
h,h/2,ε

k E∞,r
h,h/2,ε

k E∞,r
h,h/2,ε

k E∞,r
h,h/2,ε

k E∞,r
h,h/2,ε

k

4 2.90E-03 2.24E-03 1.41E-03 3.92E-04 3.29E-04

8 5.37E-04 2.43 4.14E-04 2.43 2.36E-04 2.58 1.54E-04 1.34 1.50E-04 1.13

16 1.15E-04 2.22 7.61E-05 2.44 6.09E-05 1.96 5.62E-05 1.46 4.13E-05 1.86

32 2.73E-05 2.07 1.87E-05 2.03 1.54E-05 1.98 1.60E-05 1.81 1.27E-05 1.7

64 6.73E-06 2.02 4.64E-06 2.01 4.23E-06 1.87 4.09E-06 1.97 3.29E-06 1.94

128 1.68E-06 2 1.16E-06 2.01 1.06E-06 2 1.03E-06 1.99 8.30E-07 1.99

256 4.24E-07 1.99 2.85E-07 2.02 2.63E-07 2.01 2.57E-07 2 2.11E-07 1.98

512 1.06E-07 1.99 6.71E-08 2.09 6.36E-08 2.05 6.46E-08 1.99 5.30E-08 1.99

Analytic error -4.58E-02 -1.62E-02 -5.7E-03 -2.02E-03 -7.16E-04

Table 24: The consecutive relative truncation errors E∞,r
h,h/2,ε

/||u||∞ with c = ε/h as labeled

for the time-independent problem in case 1 using mDDM3. The results show that for fixed ε,

the consecutive errors are positive and that the scheme converges with 2nd order accuracy in

h. The last row shows the leading-order asymptotic analytic relative error uε−u
||u||∞

∼ − 2ε1.5√
6π

.

F. Numerical results for mDDMt3 for 1D time-dependent problems

on moving domains

In Tables 25 and 26 below, we present the L2 and L∞ errors for the problem

considered in Sec. 3.2 and order of convergence k with h = ε/c.

ε c = 4 k c = 16 k c = 128 k

0.2 3.07E-02 0.00 3.07E-02 0.00 3.07E-02 0.00

0.1 7.92E-03 1.95 8.05E-03 1.93 8.06E-03 1.93

0.05 1.90E-03 2.06 1.96E-03 2.04 1.96E-03 2.04

0.025 4.74E-04 2.00 4.79E-04 2.03 4.79E-04 2.03

0.0125 1.18E-04 2.01 1.21E-04 1.99 1.21E-04 1.99

0.00625 2.97E-05 1.99 3.12E-05 1.96 3.13E-05 1.95

Table 25: The L2 errors for simulating the time-dependent (diffusion) equation using mDDMt3

with h = ε/c on a moving domain.
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ε c = 4 k c = 16 k c = 128 k

0.2 4.38E-02 0.00 4.35E-02 0.00 4.51E-02 0.00

0.1 1.16E-02 1.92 1.25E-02 1.80 1.35E-02 1.74

0.05 2.57E-03 2.17 3.62E-03 1.79 4.05E-03 1.74

0.025 6.36E-04 2.01 1.23E-03 1.56 1.25E-03 1.70

0.0125 2.01E-04 1.66 3.69E-04 1.74 3.85E-04 1.70

0.00625 5.01E-05 2.00 1.00E-04 1.88 1.29E-04 1.58

Table 26: The L∞ errors for simulating the time-dependent (diffusion) equation using mD-

DMt3 with h = ε/c on a moving domain.

G. Numerical results for mDDMt3 in a moving domain in 2D

Table 27 below shows the number of multigrid iterations needed to solve a

time-independent version of the problem considered in Sec. 4 using mDDM3,

where the time derivative in the diffusion equation is dropped and the corre-

sponding Poisson problem is solved in the t = 0 domain. The number of multi-

grid iterations needed to achieve a tolerance of 10−10 is independent of minimum

grid size hfine and weakly dependent on ε. Fewer iterations are required for the

time-dependent problem using mDDMt3 (e.g., number of iterations decreases as

the time step decreases) but the dependence on h and ε is very similar. The re-

sults presented in Sec. 4 correspond to using h and ε along the diagonal entries in

the table, e.g., (ε, h) = (0.2, 1/32), (0.1, 1/64), (0.05, 1/128), (0.025, 1/256), (0.0125, 1/512).
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ε hfine=1/32 hfine = 1/64 hfine = 1/128 hfine = 1/256 hfine = 1/512

0.2 9 9 9 9 9

0.1 10 10 10 10 10

0.05 12 13 13 13 13

0.025 13 14 15 15 15

0.0125 14 15 16 16 17

Table 27: The number of multigrid iterations needed to achieve a tolerance of 10−10 for a

time-independent problem analogous to that presented in Sec. 4. See text. The number of

iterations is independent of h and weakly dependent on ε.

Table 28 below shows the values of the L2 and L∞ errors and the order of

convergence k with hfine = ε/6.4 for mDDMt3 applied to the 2D problem in a

moving domain described in Sec. 4.

ε L2 error k L∞ error k

0.2 8.89E-02 0.00 1.01E-01 0.00

0.1 2.18E-02 2.03 2.91E-02 1.80

0.05 4.91E-03 2.15 8.35E-03 1.80

0.025 1.13E-03 2.12 2.37E-03 1.82

0.0125 2.90E-04 1.96 6.78E-04 1.81

Table 28: The L2 and L∞ errors for simulating the 2D time-dependent diffusion equation at

t=0.1 using mDDMt3 on the moving domain D(t).
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