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Abstract. Controlling large particle systems in collective dynamics by a few agents is a subject of
high practical importance, e.g., in evacuation dynamics. In this paper we study an instantaneous
control approach to steer an interacting particle system into a certain spatial region by repulsive
forces from a few external agents, which might be interpreted as shepherd dogs leading sheep to
their home. We introduce an appropriate mathematical model and the corresponding optimization
problem. In particular, we are interested in the interaction of numerous particles, which can be
approximated by a mean-field equation. Due to the high-dimensional phase space this will require
a tailored optimization strategy. The arising control problems are solved using adjoint information
to compute the descent directions. Numerical results on the microscopic and the macroscopic level
indicate the convergence of optimal controls and optimal states in the mean-field limit,i.e., for an
increasing number of particles.

1. Introduction

In the last decades, the behavior of large particle systems and their mean-field limits were
intensively investigated on both the theoretical and computational level [2,11,12,25]. Large groups
of individuals like flocks of birds and schools of fish, and their attractive and repulsive interaction
were considered, which lead to models of different types of collective behavior such as flocking
or milling, and a thorough study of their stability, see, e.g., [3, 20, 32, 36] or [12] for a detailed
overview. The models were refined using vision cones, self-propulsion and orientation alignment of
neighbors [12,22,42]. As the behavior of large particle groups of the same type was well understood,
the interest in self-organized systems interacting with few external agents arose. This concept and
its kinetic limit was first numerically investigated by Albi and Pareschi in [2]. Using interaction
potentials introduced by Cucker-Smale [18] or D’Orsogna et al [22], they showed numerically, that
the collective behavior of large groups coincides with the behavior of the kinetic model as the
number of individuals tends to infinity. While the models for the interaction of particles became
more and more realistic, the complexity was significantly increased. At first, interaction potentials
were chosen smooth in order to have well-defined derivatives [18,19,22]. Later, it was even shown
that special classes of singular interaction potentials allow passing to the mean-field limit [5, 26].
Nowadays, particle games are also employed in the field of global optimization [16,34].

The Model Predictive Control approach, in particular, instantaneous control was applied suc-
cessfully to traffic flow problems [27] and the Navier-Stokes Equations [28]. In the present work,
we use an instantaneous approach to control the interaction of a huge crowd of individuals with a
few external agents. The focus is here on the appropriate mathematical models and the tailored
numerical approaches to solve these large scale optimization problems. In particular, we are inter-
ested in the behavior of microscopic and macroscopic optimization problems in the corresponding
mean-field limit.The control parameters are the velocities of the external agents. The cost func-
tionals are designed in such a way that the external agents aim to lead the crowd to a predefined
destination while penalizing their kinetic energy. Exemplarily, one might consider a crowd of sheep
guided by dogs.

A similar sparse optimization problem was analytically investigated in [24], where the existence
of optimal controls on the microscopic level is shown and the concept of Γ-convergence is used to
perform the mean-field limit in a sparse optimal control setting.

Numerically, the computational effort of the state solutions alone is very challenging due to
the high-dimensional phase space. On the one hand, we have the pairwise interactions in the
microscopic system and on the other hand the mean-field equations are of Vlasov type, which yields
a four dimensional problem in two spatial dimensions. The complexity of the optimization problems
is even worse, since the state systems need to be solved several times and a huge amount of data
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needs to be stored. Hence, there is no hope of solving these problems using black-box optimization
approaches. Instead, tailored optimization algorithms are required, which are typically based on
derivative information [29].

Recently, many researchers have investigated related problems: in [1] an evacuation problem
using invisible agents in a crowd was studied and a similar scenario with visible agents in [39], [37]
considers a Fokker-Planck feedback control strategy for crowd motion and [23], where optimal
strategies for driving a mobile agent in a guidance by repulsion model are studied. Optimal
control problems for transport processes are discussed, e.g., in [6]. An extensive overview on the
actual mathematical approaches for behavioral social systems can be found in [4].

Here, we are going to construct appropriate numerical approaches which allow us to verify
computationally that the controls of the microscopic problem converge to the optimal control of
the kinetic problem as the number of individuals increases. The numerical algorithms are based
on first-order derivative information using the adjoint variables for interacting particle system and
the mean-field equation, respectively.

The manuscript is organized as follows. First, we describe the microscopic interacting particle
system and the corresponding kinetic mean-field equation in Section 2. The cost functionals for
the constrained optimization problems are introduced in Section 3, where we also specify the in-
stantaneous control approach we use for the numerical simulations. In Section 4 the associated
first-order optimality conditions are derived for both the microscopic and the macroscopic opti-
mization problems. The numerical schemes for the state and adjoint equations are presented in
Section 5, where also the instantaneous control algorithm is introduced. Numerical results under-
lining our approach and confirming the desired behavior in the mean-field limit are discussed in
Section 6. Concluding remarks are given in Section 7.

2. Microscopic and Mean-Field Optimal Control Problems

First, we describe the agent-based model and its corresponding mean-field limit, which are going
to be the respective state systems for the control problems considered later on.

2.1. Microscopic Model. Let D ≥ 1 denote the dimension of the spatial and the velocity space.
The considered particle system consists of N ∈ N particles of the same type and M external agents
with N � M . Let I = [0, T ] be the time interval of observation. Then, the particles and agents
are represented by state vectors

xi, vi, dm, um : I → RD, for i = 1, . . . N and m = 1, . . . ,M.

The vectors
x(t) = (xi(t))i=1,...,N and v(t) = (vi(t))i=1,...,N ,

denote the positions and velocities of the particles and

d(t) = (dm(t))m=1,...,M and u(t) = (um(t))m=1,...,M ,

the positions and velocities of the external agents, respectively (compare also [2]).

Remark 2.1. Since the time dependence is clear, we often write x or xi instead of x(t) and xi(t),
respectively. Note, that we write the vectors x and v in bold to make clear when denoting the
positions and the velocities of the individuals and when we refer to the position and velocity space
with variables x and v in the mean-field setting.

The interactions of the individuals and external agents are modeled using potentials Φj , j = 1, 2
which satisfy the following assumption

(A) The potentials Φj : RD → R are radially symmetric and continuously differentiable, with
∇Φj locally Lipschitz and globally bounded.

Remark 2.2. These rather strict assumptions allow for existence and uniqueness of solutions to the
adjoint and state systems. The latter are essential for defining the reduced cost functional needed
in the algorithms for numerical investigation.

To simplify the presentation, we denote for any x, y ∈ RD the interaction forces

Kj(x, y) = (∇Φj)(x− y), j = 1, 2.

Since Φj is symmetric, we have that Kj(x, y) = −Kj(y, x) for all x, y ∈ RD.
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Altogether, this leads to the particle system

d

dt
xi = vi,

d

dt
vi = − 1

N

∑
k 6=i

K1(xi, xk)− 1

M

M∑
m=1

K2(xi, dm)− αvi,(1a)

d

dt
dm = um.(1b)

In addition to the interaction terms, our model includes (linear) friction represented by the pa-
rameter α > 0. The individuals interact pairwise via K1 with each other and with the external
agents via K2. The latter do not interact among themselves nor are influenced by the others. Note
that such interactions can easily be considered by a simple transformation of the optimal control
variables analogously to the approach in [8]. For system (1) the velocities of the external agents u
are assumed to be given. Later, they serve as controls for the optimization problem.

For notational convenience we further define the state vector y := (x,v,d) ∈ RD(2N+M) and the
operators

S(y) = (Si(y))i=1,...,N , Si(y) = − 1

N

∑
j 6=i

K1(xi, xj)−
1

M

M∑
m=1

K2(xi, dm)− αvi.

Using this notation, the ODE system (1) may be written compactly as

(2a)
d

dt
y = (

d

dt
x,

d

dt
v,

d

dt
d) = (v,S(y),u) =: F (y,u),

with the mapping F : RD(2N+M) × RDM → RD(2N+M). The microscopic state system is supple-
mented with the initial conditions

(2b) x(0) = x0 ∈ RDN , v(0) = v0 ∈ RDN , d(0) = d0 ∈ RDM ,

shortly denoted by y(0) = y0.

2.1.1. Well-posedness. The well-posedness of (2) follows from standard theory. Here, we consider
the Hilbert space parameters, we use

U := L2(I,RMD)(3)

as the space of control, which is sufficient to prove the well-posedness of (1a). Indeed, d may be
explicitly expressed as

d(t) = d0 +

∫ t

0
u(s) ds,

which shows that d is absolutely continuous on I. Consequently, we obtain the existence and
uniqueness of a global solution due to the theorem of Picard and Lindelöf and we have d ∈
H1(I,RMD).

Altogether, we are able to define the corresponding control-to-state operator GN : U → Y , which
maps any control parameter u ∈ U to the unique solution y = GN (u) of (2) in the state space Y
defined by

Y := H1(I,RND)×H1(I,RND)×H1(I,RMD).(4)

Note, that the solution y ∈ C1(I,RND) × C1(I,RND) ×H1(I,RMD) ⊂ Y is indeed in a subspace
of Y .

2.2. Mean-Field Model. In order to define the limiting problem for an increasing number of
individuals N explicitly, we consider the empirical measure

µNt (x, v) =
1

N

N∑
i=1

δ0(xi(t)− x)⊗ δ0(vi(t)− v).

By definition, µNt ∈ P(R2D) is a Borel probability measure that assigns the probability µNt (A) of
finding particles with states within a Borel measurable set A ⊂ R2D in the phase space R2D at time
t ≥ 0. If a Borel probability measure µt ∈ Pac(R2D) is absolutely continuous w.r.t. the Lebesgue
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measure, we denote its density by ft ∈ L1(R2D). For later use we introduce the macroscopic
density ρt of a Borel probability measure µt ∈ P(R2D) as its first marginal, i.e.,

ρt(A) := µt(A× RD) =

∫∫
A×RD

ft(x, v) dx dv,

for any Borel measurable set A ⊂ RD. The last equality holds whenever µt ∈ Pac(R2D).
The link between the particle system and the mean-field equation is derived formally using ideas

from [7, 21, 33]. Let h ∈ C∞c (R2D) be an arbitrary smooth function on R2D with compact support
and zi = (xi, vi) ∈ R2D. Then, it holds

d

dt

〈
µNt , h

〉
:=

d

dt

1

N

N∑
i=1

h(zi) =
1

N

N∑
i=1

∇xh(zi) ·
d

dt
xi +∇vh(zi) ·

d

dt
vi,

which allows for the formal calculation

〈∂tµNt , h〉 =
1

N

N∑
i=1

∇xh(zi) · vi −∇vh(zi) ·

((
K1 ∗ ρNt

)
(xi) +

1

M

M∑
m=1

K2(xi, dm) + αvi

)

=

〈
µNt ,∇xh · v −∇vh ·

((
K1 ∗ ρNt

)
(x) +

1

M

M∑
m=1

K2(x, dm) + αv

)〉
,(5)

where (
K1 ∗ ρNt

)
(x) =

∫
R2D

K1(x, x̄) dµNt (z̄).

Passing to the limit N →∞ and integrating by parts, we arrive at the equation

0 = 〈∂tµt + v · ∇xµt +∇v · (S(µt)µt), h〉,
where we define

S(µt)(x, v, d) = −
(
K1 ∗ ρt

)
(x)− 1

M

M∑
m=1

K2(x, dm)− αv

analogous to the particle case. Since h ∈ C∞c (R2D) is arbitrary, we may use the variational lemma
to find that

(6) ∂tµt + v · ∇xµt +∇v · (S(µt)µt) = 0 in the sense of distributions,

which is the mean-field single particle distribution, supplemented with the initial condition µ(0) =
µ0.

Remark 2.3. Observe that µNt and µt satisfy exactly the same equation in the distributional sense.
The above limit exists for example in the Wasserstein metric (for a detailed discussion see [10]).
Note, that even though µt has unit mass by construction, we do not need to explicitly assume that
the condition is satisfied, since it is a naturally fulfilled. In particular, the control parameter does
not change this property.

Here, we only perform the mean-field limit N → ∞, while the number of external agents M
remains finite.

2.2.1. Well-posedness. Results on the existence and uniqueness of solutions for the Vlasov equation
(6) can be found, e.g., in [7,10,21,25], where the notion of solution is established in the Wasserstein
space of Borel probability measures.

Definition 2.4. Let P1(R2D) denote the space of Borel probability measures on R2D with finite
first moment. We say that µ ∈ C(I,P1(R2D)) is a weak measure solution of (6) with initial condition
µ0 ∈ P1(R2D) if for any test function h ∈ C∞c ((−∞, T ]× R2D) we have∫ T

0

∫
R2D

(
∂tht + v · ∇xht + S(µt) · ∇vht

)
dµt dt+

∫
R2D

h0 dµ0 = 0.

Remark 2.5. Equation (6) may be equivalently expressed as a nonlinear flow

d

dt
Z = (

d

dt
x,

d

dt
v) =

(
v, S(µt)(Z, d)

)
, µt = law(Z(t)),(7)
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with the initial condition Z(0) = Z0 ∈ R2D, where Z0 is a random variable distributed according to
µ0 = law(Z0). Assuming the solvability of the nonlinear process (7), a weak measure solution of (6)
may be represented as the push-forward of the measure along the flow Z(t, Z0), i.e., µt = Z(t, ·)#µ0.
If we further assume that the initial measure µ0 ∈ P1(R2D) has density f0 ∈ L1(R2D), and that
the nonlinear flow given by (7) satisfies Z ∈ C(I,Diff(R2D)), i.e., Z(t, ·) is a diffeomorphism for all
t ≥ 0, then µt ∈ Pac

1 (R2D) has density ft ∈ L1(R2D) and f ∈ C(I, L1(R2D)).

In order to employ the standard L2-calculus we will require more regularity of the states and
assume additionally that

(B) µ0 ∈ P1(R2D) has density f0 ∈ L2(R2D) with compact support and the flow given by (7)
satisfies Z ∈ C1(I,Diff(R2D)) such that f ∈ H1(I, L2(R2D)).

Remark 2.6. Note, that the assumption on the nonlinear flow Z ∈ C1(I,Diff(R2D)) satisfying (7)
in (B) is not restrictive due to assumption (A). Indeed, µ ∈ C(I,P1(R2D)) implies that S(µt) is
continuous in t and locally Lipschitz in z. Therefore, standard ODE theory provides the required
regularity for the nonlinear flow.

Defining the state variable p := (f,d), the coupled system of (6) and the ODE (1b) that models
the movement of the external agents d with control w may be written as

(8a) ∂tp := (∂tft,
d

dt
d) = −

(
∇v · (S(ft)ft) + v · ∇xft,w

)
=: G(p,w).

The initial conditions for this system are

(8b) ft|t=0 = f0 ∈ L2(R2D), d(0) = d0 ∈ RMD.

In the following we shall refer to (8b) as p(0) = p0.

Remark 2.7. The problem is defined on the whole space R2D, such that no boundary conditions
are required. In fact, we expect from (A) and (B) that ft has a compact support which remains
within a bounded convex domain Ω ⊂ R2D with smooth boundary for all times t ∈ I (cf. [24, Thm
4.4]).

Finally, we define the corresponding control-to-state operator G∞ : U → Y, u 7→ p = G∞(u),
where p satisfies (8) and for the state space we choose

Y := H1(I, L2(Ω))×H1(I,RMD).(9)

Here, Ω ⊂ R2D is an a priori given bounded convex domain with smooth boundary which contains
the support of ft for all times t ∈ I.

3. Control Problems and Instantaneous Control Approach

Based on the previously introduced state systems we are now in the position to define the
respective control problems. The physical task at hand is to guide the crowd of individuals such
that it clusters around a certain position, while keeping its variance restricted and utilizing only
limited energy for the controlling agents.

Since the question arises on the microscopic and macroscopic level, we need to have complying
cost functionals modeling this issue. In fact, they need to be linked in the asymptotic limit.

In the following, we state one possible cost functional using the center of mass and the variance
of the crowd, which meets these requirements. Further, we are describing the instantaneous control
procedure that we are going to apply to control the crowd.

3.1. Cost Functional in the Microscopic Setting. Again, let x denote the particle positions.
Then, the center of mass EN and variance VN for the particles are given by

EN (x(t)) =
1

N

N∑
i=1

xi(t), VN (x(t)) =
1

N

N∑
i=1

|xi(t)− EN (x(t))|2,

and we define the cost functional

(10) JN (y(u),u) =

∫ T

0

σ1

4T
|VN (x(t))− V̄N |2 +

σ2

2T
|EN (x(t))− Edes|2 +

σ3

2M
‖u(t)‖2RMD dt,

where V̄N > 0 is a given desired variance value.
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The first part of the functional penalizes the spread of the particles from the desired variance
V̄N , while the second term measures the distance of the center of mass from the desired destination
Edes ∈ RD. The third term measures the control costs in terms of the kinetic energy of the agents.
Mathematically, it introduces more convexity in the cost functional. The positive parameters σi
allow to adjust the influence of the different parts of the cost functional.

3.2. Cost Functional in the Mean-Field Setting. As already discussed, the control problem
on the microscopic level has to match the one on the mean-field level as N →∞. Thus, we choose
the following cost functional

(11) J∞(p(w),w) =

∫ T

0

σ1

4T
|V∞(ft)− V̄∞|2 +

σ2

2T
|E∞(ft)− Edes|2 +

σ3

2M
‖wt‖2RMD dt,

in which the center of mass E∞ as well as the variance V∞ only depend on the macroscopic density
and are defined as

E∞(ft) =

∫∫
RD×RD

xft dx dv, V∞(ft) =

∫∫
RD×RD

|x− E∞(ft)|2ft dx dv.

Note that the microscopic cost functional can be derived from the mean-field cost functional by
using the empirical measure µN . In fact, it holds

E∞(fNt ) =

∫∫
RD×RD

xfNt dx dv =
1

N

N∑
i=1

xi(t),

and

V∞(fNt ) =

∫∫
RD×RD

|x− E∞(fNt )|2fNt dx dv =
1

N

N∑
i=1

(xi(t)− EN (x(t)))2.

3.3. Instantaneous Control. The idea of the instantaneous control approach is to split the time
interval of interest into several smaller time intervals and to solve the control problem sequentially
on these subintervals. Clearly this reduces the memory consumption of the algorithm significantly.
Moreover, it is in our setting more realistic than optimal control over the whole time horizon,
because we expect the agents to forecast the movement of the crowd only on short time intervals.

Hence, we split time interval of investigation into K+1 subintervals Ik = [tk−1, tk], where t0 = 0

and tK = T , k = 1, . . . ,K such that [0, T ] =
⋃K

k=1[tk−1, tk]. The corresponding spaces Y k,Yk and

Uk
ad are precisely defined below. Then, we study the family of optimization problems on each time

slice Ik on the microscopic level given by

Problem 1: For each subinterval Ik, k = 1, . . . ,K, find an optimal pair (y∗k,u
∗
k) ∈ Y × Uad

such that

(y∗k,u
∗
k) = argmin(y,u)∈Y k×Uk

ad
JN (y,u)

subject to

IVP (2) on Ik

and initial data yk(tk−1) = y∗k−1(tk−1), where

JN (y,u) =

∫
Ik

σ1

4T
|VN (x(t))− V̄N |2 +

σ2

2T
|EN (x(t))− Edes|2 +

σ3

2M
‖u(t)‖2RMD dt.

On the mean-field level we obtain the following optimization problem:
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Problem 2: For each subinterval Ik, k = 1, . . . ,K, find an optimal pair (p∗k,w
∗
k) ∈ Yk × Uk

ad
such that

(p∗k,w
∗
k) = argmin(p,w)∈Yk×Uk

ad
J∞(p,w)

subject to

system (8) on Ik and initial data pk(tk−1) = p∗k−1(tk−1), ,where

J∞(p,w) =

∫
Ik

σ1

4T
|V∞(ft)− V̄∞|2 +

σ2

2T
|E∞(ft)− Edes|2 +

σ3

2M
‖wt‖2RMD dt.

Remark 3.1. For the first iterate the initial data is given by y∗1(0) = y0 and p∗1(0) = p0, respectively.

Further, we restrict the velocities of the external agents and define the spaces of admissible
controls Uk

ad, for k = 1, . . . ,K, as

(12) Uk
ad :=

{
u ∈ L2(Ik,RMD) : |um(t)| ≤ umax, m = 1, . . . ,M

}
.

3.3.1. Existence of controls. An existence result for the optimization problem on each time slice
may be deduced in a straight-forward way from the results in [24]. Even though the results are
based on a sparse control setting, similar arguments may be applied in the present setting as well.

Theorem 3.2. Assume (A) and (B). Then, there exists on each time interval IK , k = 1, . . . ,K,
an optimal pair (y∗k,u

∗
k) ∈ Y × Uad for Problem 1 and an optimal pair (p∗k,w

∗
k) ∈ Yk × Uk

ad for
Problem 2, respectively.

Remark 3.3. The choice of initial conditions for each subinterval Ik indicates that we obtain a
sub-optimal solution for the problem on the interval [0, T ] by cluing the optimal solutions of the
subintervals together.

4. First Order Necessary Conditions

We are going to apply adjoint based descent methods to solve the control problems on each
time slice. Therefore, we formally derive the adjoints and the optimality conditions for the particle
and the mean-field optimal control problem with the help of the extended Lagrange functional.
Furthermore, we introduce the reduced cost functional and its gradient. Throughout this section
we consider an arbitrary time slice I and denote its right-end point IR.

4.1. Adjoint of the microscopic problem. Let the control space U and state space Y be the
Hilbert spaces

U = L2(Ik,RMD), Y = [H1(I,RND)]2 ×H1(I,RMD),

with Uad ⊂ U defined in (12). Further, we define X := [L2(I,RND)]2 × L2(I,RMD) and

Z := X ×
(
[RND]2 × RMD

)
,

as the space of Lagrange multipliers.
The state operator eN : Y × U → Z∗ of the microscopic problem is given by

eN (y,u) =

(
d
dty − F (y,u)
y(0)− y0

)
or in weak form

〈eN (y,u), (ξ, η)〉Z∗,Z =

∫
I
(

d

dt
y(t)− F (y(t),u(t))) · ξ(t) dt+ (y(0)− y0) · η.

Let (ξ, η) ∈ Z denote the Lagrange multiplier, which is in fact the adjoint state. Then, the
extended Lagrange functional corresponding to Problem 1 reads

LN (y,u, ξ, η) = JN (y,u) + 〈eN (y,u), (ξ, η)〉Z∗,Z .

As usual the first-order optimality condition of Problem 1 is derived by solving

dLN (y,u, ξ, η) = 0.

The derivative w.r.t. the adjoint state results in the state equation, while the derivative with
respect to the state y yields the adjoint system and the optimality condition is obtained by the
derivative w.r.t. the control (for details see, e.g., u [29]).
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For the calculations we denote the three parts of the cost functional by J i, i = 1, 2, 3, with

J1
N (y) =

σ1

4T

∫
I
|VN (x(t))− V̄N |2 dt, J2

N (y) =
σ2

2T

∫
I
‖EN (x(t))− Edes‖2RD dt,

J3
N (u) =

σ3

2M

∫
I
‖u(t)‖2RMD dt.

For any h = (hy = (hx, hv, hd), hu) ∈ Y × U , the following Gâteaux derivatives are obtained

dxJ
1
N (y)[hx] =

σ1

NT

∫
I
(V(x(t))− V̄N )(x(t)− E(x(t))) · hx(t) dt,

dxJ
2
N (y)[hx] =

σ2

NT

∫
I
(E(x(t))− Edes) · hx(t) dt,

duJ
3
N (u)[hu] =

σ3

M

∫
I
u(t) · hu(t) dt.

For the second part of the Lagrangian we derive

〈dxeN (y,u)[hx], (ξ, η)〉 =

∫
I

d

dt
hx(t) · ξ1(t)− dxS(y)[hx(t)] · ξ2(t) dt+ hx(0) · η1,

〈dveN (y,u)[hv], (ξ, η)〉 =

∫
I

(
d

dt
hv(t) + αhv(t)

)
· ξ2(t)− hv(t) · ξ1(t) dt+ hv(0) · η2,

〈ddeN (y,u)[hd], (ξ, η)〉 =

∫
I

d

dt
hd(t) · ξ3(t)− ddS(y)[hd(t)] · ξ2(t) dt+ hd(0) · η3,

〈dueN (y,u)[hu], (ξ, η)〉 = −
∫
I
hu(t) · ξ3(t) dt.

Assuming that ξ ∈ Y one may formally derive the strong formulation of the adjoint system.
Indeed, integrating by parts and using the fact that dxS(y) and ddS(y) are symmetric matrices,
we arrive at the following result.

Proposition 4.1. Let (y∗, u∗) be an optimal pair for Problem 1. Then, the first-order optimality
condition corresponding to Problem 1 reads

(13)

∫
I

(σ3

M
u∗(t)− ξ3(t)

)
· (u(t)− u∗(t)) dt ≥ 0 for all u ∈ Uad,

where ξ = (ξ1, ξ2, ξ3) ∈ Y satisfies the adjoint system given by

(14a)
d

dt
ξ1 = −dxS(y∗)[ξ2]− dxJN (t),

d

dt
ξ2 = ξ1 − αξ2,

d

dt
ξ3 = −ddS(y∗)[ξ2],

with

(14b) dxJN (t) =
σ1

NT

(
(V(x∗(t))− V̄N )(x∗(t)− EN (x∗(t)))

)
+

σ2

NT

(
EN (x∗(t))− Edes

)
,

supplemented with the terminal conditions ξ1(IR) = 0, ξ2(IR) = 0, ξ3(IR) = 0.

4.2. Adjoint of the Mean-Field Problem. Here, we assume that p = (f,d) lies within the
state space Y of the PDE optimization problem, where

Y = H1(I, L2(Ω))×H1(I,RMD).

Let X := H1(I, L2(Ω)) ∩ L2(I,H1(Ω))× L2(I,RMD) and set Z := X ×
(
L2(Ω)× RMD

)
to be the

space of adjoint states with dual Z∗. Note that the control space U is identical to the one of the
particle problem.

Now, we define the mapping e∞ : Y × U → Z∗ by

〈e∞(p,w), (ϕ, η)〉Z∗,Z = −
∫
I

∫
Ω

(
∂tgt + v · ∇xgt + S(ft) · ∇vgt

)
ft dz dt+

∫
I
(

d

dt
d−w) · ϕd dt

+

∫
Ω
g(T )f(T )− g(0)f(0) dz −

∫
Ω

(f(0)− f0)ηf dz + (d(0)− d0) · ηd,

with the adjoint state (ϕ, η) ∈ X ×
(
L2(Ω)× RMD

)
, ϕ = (g, ϕd) and η = (ηf , ηd).
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Similar to the microscopic case we define the extended Lagrangian corresponding to Problem 2
as

L∞(p,w, ϕ, η) = J∞(p,w) + 〈e∞(p,w), (ϕ, η)〉Z∗,Z ,

Again, we introduce the three parts of the cost functional by J i, i = 1, 2, 3, via

J1
∞(p) =

σ1

4T

∫
I
|V∞(ft)− V̄∞|2 dt, J2

∞(p) =
σ2

2T

∫
I
|E∞(ft)− Edes|2 dt,

J3
∞(w) =

σ3

2M

∫
I
‖w(t)‖2RMD dt.

Analogously to the microscopic case we derive the adjoint system and the optimality condition
by calculating the derivatives of L∞ w.r.t. the state variable p in direction hp = (hf , hd) ∈ Y, and
the control w in direction hw ∈ U . The standard L2-calculus yields

dfJ
1
∞(p)[hf ] =

σ1

T

∫
I

∫
Ω

(
V∞(ft)− V̄∞

)
|x− E∞(ft)|2 dhft dt,

dfJ
2
∞(p)[hf ] =

σ2

T

∫
I

∫
Ω
x · (E∞(ft)− Edes) dhft dt,

dwJ
3
∞(w)[hw] =

σ3

M

∫
I
w(t) · hw(t) dt.

Let ϕ = (g, ϕd) be the adjoint state corresponding to p = (f,d). Then, we obtain for the constraint
part in the extended Lagrange functional the following Gâteaux derivatives:

〈dfe∞(p,w)[hf ], (ϕ, η)〉 = −
∫
I

∫
Ω

(
∂tgt + v · ∇xgt + S(ft) · ∇vgt

)
hft dz dt,

−
∫
I

∫
Ω
dfS(ft)[h

f
t ] · ∇vgt ft dz dt

+

∫
Ω
g(T )hf (T )− hf (0)g(0)− hf (0)ηf dz,

〈dde∞(p,w)[hd], (ϕ, η)〉 =

∫
I

d

dt
hd(t) · ϕd(t) dt+ hd(0) · ηd,

−
∫
I

∫
Ω
ddS(ft)[h

d(t)] · ∇vgt ft dz dt,

〈dwe∞(p,w)[hw], (ϕ, η)〉 = −
∫
I
hw(t) · ϕd(t) dt.

Assuming again that the adjoint state ϕd is sufficiently regular, we may integrate by parts to
obtain a strong formulation of the adjoint system. For the terms involving derivatives of S(ft) we
calculate the following representations:∫

Ω
dfS(ft)[h

f
t ] · ∇vgt ft dz = −

∫
Ω

∫
Ω
K1(x, x̄)hft dz̄ · ∇vgt(z) ft dz

=

∫
Ω

(∫
Ω
K1(x̄, x) · ∇vgt(z) ft dz

)
hft dz̄

=:

∫
Ω
Df (ft)[gt](z)h

f
t dz,∫

Ω
ddS(ft)[h

d(t)] · ∇vgt ft dz =

∫
Ω

(
ddS(ft)[h

d(t)]
)
· ∇vgt(z) ft dz

=

(∫
Ω
ddS(ft)[∇vgt(z)] ft dz

)
· hd(t)

=: Dd(ft)[gt] · hd(t).(15)

This yields the following adjoint system and optimality condition.

Proposition 4.2. Let (p∗, w∗) be an optimal pair for Problem 2. Then, the optimality condition
corresponding to Problem 2 reads

(16)

∫
I

(σ3

M
w∗(t)− ϕd(t)

)
· (w(t)−w∗(t)) dt ≥ 0 for all w ∈ Uad,
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where ϕ = (g, ϕd) ∈ Y satisfies the adjoint system given by

∂tgt + v · ∇xgt = −S(ft,∗) · ∇vgt +Df (ft,∗)[gt]− dxJ∞(t),(17a)

d

dt
ϕd = −Dd(ft,∗)[gt],(17b)

where

(17c) dxJ∞(t) =
σ1

T

(
V(ft,∗)− V̄∞

)
|x− E∞(ft,∗)|2 +

σ2

T
(E∞(ft,∗)− Edes) · x on Ω.

The system is supplemented with the terminal conditions gIR = 0 and ϕd(IR) = 0.

Remark 4.1. Note, that the optimality conditions of Problem 1 and 2 coincide. This is due to the
fact that J3 and the set of admissible controls are identical in both problems. The mean-field limit
only affects the adjoint system, but formally they can be identified in the following way: along the
characteristics of the partial differential equation for g, ξ1 corresponds to 1

N∇xg and ξ2 to 1
N∇vg.

Finally, ϕd can be identified directly with ξ3. [9]

Remark 4.2. The variational inequalities (13) and (16) may be equivalently expressed as fixed
point problems in terms of a projection operator ProjU : U → Uad which is defined by (see [29])

ProjU (h) = argminu∈Uad ‖u− h‖U for any h ∈ U.
Consequently, the variational inequalities (13) and (16) may be expressed as

u∗ = ProjU (u∗ − γk) ∈ Uad,
where k(u) = σ3/Mu∗ − ξ3 for the microscopic case (13) and k(w) = σ3/Mw∗ − ϕd for the
mean-field case (16).

In our particular case, ProjU has the explicit representation given by

(18) ProjU (h)(t) =

{
umax

hm(t)
|hm(t)| for |hm(t)| > umax,

hm(t) otherwise,
m = 1, . . . ,M, a.e. in I.

Due to the high dimensionality of the problem, it is not recommended solving the system
consisting of state equation, adjoint equation and optimality condition all at once. Therefore, we
employ a gradient descent method. In order to define this method we employ the gradient of the
reduced cost functional which is derived in the following for both the microscopic problem and its
mean-field counterpart.

4.3. Gradient of the Reduced Cost Functional. In this section we introduce the reduced cost
functionals ĴN (u) and Ĵ∞(w) and formally calculate their gradients ∇ĴN (u) and ∇Ĵ∞(w) which
we need for the descent algorithms.

By means of the control-to-state operators GN : U → Y and G∞ : U → Y introduced in Section 2,
we define the reduced cost functionals as

ĴN (u) := JN (GN (u),u), Ĵ∞(w) := J∞(G∞(w),w).

Assuming sufficient regularity for GN and G∞ we further derive the gradients of the reduced cost
functionals. Making use of the state equation eN (y,u) = 0 and e∞(p,w) = 0 we implicitly obtain
dGN (u) and dG∞(w) via

0 = dueN (GN (u),u) = dye(GN (u),u)[dGN (u)] + dueN (GN (u),u),

0 = dwe∞(G∞(w),w) = dpe(G∞(w),w)[dG∞(w)] + dwe∞(G∞(w),w),

With the help of the adjoint equations

(dye(y,u))∗[ξ] = −dyJN (y,u) and (dpe(p,w))∗[ϕ] = −dpJ∞(p,w)

we may calculate the Gâteaux derivative of Ĵ in the direction h ∈ U , which gives

dĴN (u)[h] = 〈dyJN (y,u), dGN (u)[h]〉Y ∗,Y + 〈duJN (y,u), h〉U = 〈σ3

M
u− ξ3, h〉U ,

dĴ∞(w)[h] = 〈dpJ∞(p,w), dG∞(w)[h]〉Y∗,Y + 〈dwJ∞(p,w), h〉U = 〈σ3

M
w − ϕd, h〉U .

Since U is a Hilbert space, we may use the Riesz representation theorem to identify the gradients

(19) ∇ĴN (u) =
σ3

M
u− ξ3 and ∇Ĵ∞(w) =

σ3

M
w − ϕd.
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5. Numerical Schemes and Instantaneous Control

For the numerical solution of the two control problems we use the instantaneous control al-
gorithm. In this case the time slices are equally sized and the size coincides with the time step
size of the numerical scheme, i.e., the gradient is based on the information of one time step only.
Further, we discuss the numerical schemes for the solution of the respective forward and backward
differential equations.

5.1. Numerics for the Forward and Adjoint IVP. We compute the state variable with one
step of the explicit fourth order Runge–Kutta solver for the IVP (2). For the mean-field limit
we need a numerical scheme which is independent of the number of particles involved. Hence, we
rescale the adjoint ODE by multiplying with N . This has the effect that the N -dependence of the
terms in (14b) emerging from the cost functional vanishes.

In fact, for i = 1, . . . , N , we set ri(t) = Nξ1
i (t) and si(t) = Nξ2

i (t), and obtain the rescaled
adjoint ODE system

d

dt
ri = − 1

N

∑
j 6=i

∇xiK1(xi, xj)(si − sj)−
1

M

∑
m

∇xiK2(xi, dm)si −
1

T
dxiJN (t),(20a)

d

dt
si = −ri − αsi,(20b)

d

dt
ϕi =

1

NM

N∑
i=1

∇xiK2(xi, dm)si,(20c)

where

(20d) dxiJN (t) = σ1(V(x(t))− V̄N )
(
xi(t)− EN (x(t))

)
+ σ2

(
EN (x(t))− Edes

)
,

with terminal conditions r(T ) = 0, s(T ) = 0 and ϕ(T ) = 0. We apply one step of the explicit
fourth order Runge-Kutta scheme to (20) for computing the adjoint.

Note, that the main computational effort for a large particle number N comes from the inter-
action potentials.

5.2. Numerics for the Mean-field Equation and its Adjoint. The forward and backward
solves for the mean-field optimization are realized using a Strang splitting scheme [17]. This scheme
applies a semi-Lagrangian solver in the spatial direction and a semi-implicit finite-volume scheme
in the velocity space. Using the following short hand notation for (8)

∂tf = −v · ∇xf −∇v · (S(f)f),

we define the splitting

∂tf
∗ = −1

2
∇v · (S(f∗)f∗), f∗(t) = f(t),(21a)

∂tf
∗∗ = −v · ∇xf

∗∗, f∗∗(t) = f∗(t+ τ),(21b)

∂tf = −1

2
∇v · (S(f)f), f(t) = f∗∗(t+ τ).(21c)

A Semi-Lagrangian method [30, 38] is used to solve (21b), that means the computations rely on
a fixed grid and yet we make use of the Lagrangian ansatz and consider the transport along
characteristics. To obtain the characteristic curves we solve ODEs using a second order Runge-
Kutta scheme. The inital point for each transport step is a grid point. Since we cannot ensure
that also the endpoint of each transport step is again grid point, we need to interpolate the data
to the grid. This interpolation is realized by a polynomial reconstruction based on cubic Bezier
curves, which is again of second order.

For the discretization in velocity space, (21a) and (21c), we adopt a second order finite volume
scheme where the advection is approximated by a Lax-Wendroff flux [31, 35]. Oscillations caused
by non-smooth solutions are intercepted with the help of a van-Leer limiter [41]. More details on
this second order scheme can be found in [14].

Basically the same code is used for the adjoint system: we rewrite

S(f) · ∇vg = −∇v · (S(f)g) + 2αg.
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Further, we need to add the term resulting from the linearization of the non-linear interaction and
the cost functional. Altogether we obtain the splitting for the adjoint system

∂tg
∗ = −dxJ∞ +

1

2
(−∇v · (S(f)g∗) + 2αg∗ +Df (ft)[gt]) , g∗(t) = g(t),

∂tg
∗∗ = −v · ∇xg

∗∗, g∗∗(t) = g∗(t+ τ),

∂tg =
1

2
(−∇v · (S(f)g) + 2αg +Df (ft)[gt]) , g(t) = g∗∗(t+ τ).

with Df (ft)[gt] as defined in (15) and dxJ∞ as in (17c).

Remark 5.1. Note, that the forward as well as the backward system are high-dimensional, since for
our example in R2 we need in fact to solve equations in R4. This yields an immense computational
effort and is also challenging for the data handling. The last is the essential bottleneck for an
optimal control approach, since then one needs to store the whole time evolution of the forward
problem to do one backward solve for the evaluation of the gradient. Nevertheless, numerical
results in the optimal control setting on a short time horizon can be found in [40].

5.3. Instantaneous Control Algorithm. We use the steepest descent steps to update the con-
trol once on every time slice, i.e.,

(22) c̃k+1 = ck − ωkqk,

where ck denotes the current control and qk = ∇Ĵ(uk). Due to the uniform bound on the velocity
we need to ensure that the computed the controls are feasible. Therefore, we project the controls
onto the feasible set in every iteration using the operator ProjU defined in (18). The step sizes ωk

are obtained with help of the projected Armijo step size rule [29] (see Algorithm 1).

Algorithm 1: Projected Armijo Stepsize Rule

Data: Current control ck, gradient qk, initial ω0, initial γ
Result: new control ck+1

initialization;

while Ĵ(ProjU [ck − ωkqk]) ≥ Ĵ(ck)− γωk‖qk‖2 do
ωk = ωk/2

end

The control on time slice k + 1 is initialized with

(23) ck+1 = 0.1ck,

which ensures that the cost term of the cost functional is initially non-zero. Hence, changing
the direction of the controls while fixing the speed does not increase the third part of the cost
functional. Therefore, it is easier to find descent directions.

We combine the solvers for the state system, the adjoint system and the gradient update to
obtain the Instantaneous Control algorithm, see Algorithm 2.

Remark 5.2. Note that we perform only one gradient step on each time slice. Numerical tests have
shown that more gradient steps would only marginally improve the results, but drastically increase
the computational effort. Further, we use the time slices of the instantaneous approach as time
discretization for the simulation. There are no intermediate steps computed on one time slice.
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Algorithm 2: Instantaneous Control Algorithm

Data: Initial data of y or p; parameter values
Result: Instantaneous control u or w; the corresponding states y(u) or p(w); optimal

functional values
initialization;

t = 0; dt = T/K;

while t < T do

0. solve state system (2) (or (8), resp.);

1. solve adjoint problem given in (20) (or (17), resp.);

2. compute gradient corresponding to (19);
3. compute step size using the Armijo rule (1)
4. update controls by steepest descent step (22);

5. project control onto the feasible set using (18);

6. initialize controls for the next time slice corresponding to (23);

t = t+dt
end

6. Numerical Results

The numerical simulations for the mean-field equation are performed on the computational
domain Ω = [−100, 100]2 × [−5, 5]2 ⊂ R4, i.e., we set D = 2. Further, we use the scaled CFL
condition

(24)
τ |V |T
Lh

≤ 0.5

with L = 200, |V | = 5, dt = 0.02 and thus K = T/dt = 500.
The grid parameter h is varied throughout the simulations to investigate the grid convergence

of the scheme. In fact, we use 25, 50 or 100 grid points in each of the two directions leading to
h = 0.04, 0.02 or 0.01.

Our particular choice of the interaction potentials are the Morse potentials as proposed in [15,22].
For fixed positive parameters Aj , aj , Rj , rj we have

(25) Φj(x− y) = Rj exp

(
−|x− y|

rj

)
−Aj exp

(
−|x− y|

aj

)
, j = 1, 2.

The parameters Aj , Rj denote the attraction and repulsion strengths and aj , rj the radii of inter-
action. The case j = 1 refers to the interaction of the individuals, the interaction of individuals
with external agents is denoted by j = 2. Inspired by [13], we use the values

A1 = 20, R1 = 50, a1 = 100, r1 = 2, A2 = 5, R2 = 100, a2 = 1000, r2 = 50.

Remark 6.1. Note, that the coefficients of the interaction potentials are scaled with respect to the
spatial size of the domain Ω. As mentioned in the introduction we had the model problem of dogs
herding sheep to the destination Edes in mind. The parameters for the sheep-sheep interaction have
long-range attraction and repulsion on a very short range. The parameters modeling the sheep-dog
interaction have a larger repulsive influence in order to reflect the guiding property correctly.

Further parameters are fixed as follows: the destination Edes = (−20,−20) is depicted in green.
The initial spatial support of the sheep is set to Ω0 = [−10, 55] × [−20, 55], i.e., f0(x, v) is the
uniform distribution and the initial positions and velocities of the sheep are chosen by realizations
of i.i.d. random variables with law(f0). In every figure, the sheep and dogs are represented by
blue markers and red triangles, respectively. The initial configurations of the microscopic and the
mean-field case are shown in Figure 1.

The parameters for the following calculations are set to

T = 10, V̄n = 0.9VN (x0), V̄∞ = 0.9V∞(f0) and σ3 = 10−7.

Thus, the desired variance is 10% less than the initial variance given by the initial distribution of
the crowd. The Armijo parameter is set to ω0 = 1 · 103.
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Figure 1. Initial configurations. Left: microscopic case with 8000 sheep repre-
sented by blue dots. Right: initial probability distribution f for the mean-field
case. In both cases the positions of the dogs d are marked by red triangles and the
destination Edes by a green dot.

Remark 6.2. Note, that in the given time interval [0, T ] the task of steering the crowd to the
destination Edes is impossible to realize. In fact, our focus lies on the comparison of the behavior
of the controls as N increases.

6.1. Numerical Results Using the IC Algorithm. In this section we discuss the results ob-
tained by the IC algorithm. First, we illustrate the influence of the cost functional parameters.
Therefore, we set up three test cases: S1 stresses the variance part J1 of the cost functional, we
expect the dogs to move towards the corners of the crowd in order to reduce the spread of the
crowd. In S2 the second part J2 is emphasized. Thus, the dogs would be more inclined to push
the crowd towards the destination. For test case S3 we choose the weights of the cost functional
such that the focus lies on steering the crowd to the destination Edes while the variance term has
minor influence but cannot be neglected. In particular, we use the following parameter values

σ1 = 9 · 10−2, σ2 = 10−3,(S1)

σ1 = 10−4, σ2 = 9 · 10−1,(S2)

σ1 = 5 · 10−3, σ2 = 5 · 10−1.(S3)

These choices assure that J1 of test case S1 has the same order of magnitude as J2 of test case S2
and the other way around. The following notation is used in the Figures:

J1 =
σ1

4

(
VN (xt)− V̄N

)2
and J2 =

σ2

2
‖EN (xt)− Edes‖22.

The spatial and the velocity grid are discretized with the same number of grid points (25, 50 or 100)
in each of the two directions. The graphs corresponding to mean-field solutions are labeled M#
where # denotes the number of grid points. The graphs corresponding to microscopic simulations
are denoted by their respective number of particles. In Figure 2 the influence of the cost functional
parameters is illustrated.

Considering the application we expect that S3 is the most realistic setting, since the focus lies
on J2 which measures the distance to the destination, while the influence of J1 is not negligible.
In Figure 3(left) the trajectories of the dogs and the crowd at T = 10 are shown. Note, that the
dogs are not splitting the crowd as much as in test case S1.

Comparing the values of J , J1 and J2 in Figure 3(right) and Figure 4 we conclude that the part
measuring the crowd’s distance to the destination is dominating the others.

Remark 6.3. Note, that the graphs of the cost functional values are given with respect to time, i.e.,
it may happen that the values increase. Since the initial positions of the dogs is chosen arbitrarily,
they move to appropriate positions first, causing a slight increase of the cost functional. Afterwards
the cost functional is decreasing as expected.

The simulation on the coarse mean-field discretization M25 overestimates the variance term
significantly as can be seen in Figure 4(left). The evolution of J1 is in good resemblance for all
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Figure 2. Influence of the cost functional parameters. Left: Setting ICS1 - the
dogs positioned on the left side and the bottom of the crowd clear the way to the
destination. The others push the crowd from behind towards the destination. Right:
Setting ICS2 - the dogs keep distance and orient towards to corners to reduce the
variance of the crowd. These observations perfectly agree with the intention we had
when modeling the cost functional.

Figure 3. Setting ICS3 - Trajectories of the dogs and evolution of the cost func-
tional. Left: the dogs positioned on the left side and at the bottom of the crowd
clear the way to the destination. The others push from behind. Note that the dogs
on the left to not enter the crowd as deep as in setting ICS1. Right: Evolution of
the cost functional values.

other discretizations. Similarly, there is a good agreement in the graphs showing the evolution of
J2. Furthermore, we see the convergence of the graphs to the solution for M100 as N increases
and the convergence of the mean-field simulations as the grid is refined.

In Table 1 we illustrate the convergence for N →∞ by the relative errors of

‖u− uref‖ =

∫ T

0
‖u(t)− uref(t)‖R4 dt,(26a)

|J − Jref| =
∫ T

0
|J(t)− Jref(t)|dt,(26b)

|ρN − ρref| =
∫
‖ρ(t, x, y)− ρref(t, x, y)‖ dx dy dt.(26c)

The reference values are the results of the simulation M100. To compute the norms the empirical
density ρN of the microscopic simulations is approximated by a histogram which is based on the
grid of the corresponding mean-field simulation.

In the first two columns we see the convergence of the mean-field scheme, as expected the values
are decreasing as the grid is refined. The four columns on the right illustrate the behavior as N
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Figure 4. Setting ICS3 - Evolution of the cost functional parts. Left: values of
J1. The simulation M25 overestimates the variance significantly. All other graphs
are in good agreement. Right: values of J2. All graphs show similar behavior. We
see convergence as N →∞ and as h→ 0.

increases. All norm values are decreasing for increasing number of particles from N = 1000 to
N = 8000.

Remark 6.4. Since mean-field quantities are averaged it is very common to compare integral values
like J and ρN in this setting. Note that the velocities and the trajectories of the agents are no
such quantities. This explains why the convergence is more transparent for the integral quantities
than for the velocities.

ICS1 M25 M50 1000 2000 4000 8000
|J − Jref|/|Jref| 1.2 0.2 0.9 1.1 0.8 0.75
‖u− uref‖/‖uref‖ 4.21 1.51 1.33 1.33 1.32 1.32

|ρN − ρref|/|ρref| - - 0.1 0.1 0.1 0.1
ICS2

|J − Jref|/|Jref| 0.84 0.1 0.1 0.04 0.05 0.05
‖u− uref‖/‖uref‖ 3.43 1.04 1.29 1.35 1.3 1.32

|ρN − ρref|/|ρref| - - 0.01 0.01 0.1 0.01
ICS3

|J − Jref|/|Jref| 0.68 0.12 0.14 0.29 0.13 0.09
‖u− uref‖/‖uref‖ 2.8 1.01 1.21 1.21 1.22 1.21

|ρN − ρref|/|ρref| - - 0.01 0.01 0.01 0.01

Table 1. Illustration of convergence as N →∞ using the norms in (26) with the
respective values of M100 as reference. All values are given in %.

In Figure 5 the evolution of the crowd and the dogs is illustrated for the mean-field case M50
on the time interval I = [0, 55] with V̄∞ = 0.1V∞(f0). The red lines show the trajectories of the
dogs as above. Additionally, to the information in Figure 3, the red markers indicate the current
positions of the dogs at different times. We see that the variance of the crowd is reduced first and
then the center of mass is transported to the destination.
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t = 3 t = 9

t = 12 t = 20

t = 40 T = 55

Figure 5. Mean-field optimization for a long time horizon T = 55 with 9 dogs.
The destination is marked in green. The trajectories of the dogs are depicted in
red. The current position of each dog is marked by a red triangle. The dogs are
guiding the crowd. First the variance of the crowd is reduced, then the center of
mass is pushed towards the destination.

In Table 2 we compare the relative computation times and memory needed to compute 10 time
steps of the optimization procedure. Replacing the 8000 particle simulation with the mean-field
simulation with 50 grid points in each direction reduces the computational time by factor 10.
Similar savings can be expected regarding the memory consumption.
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computation time M25 M100 1000 2000 4000 8000
t/tref 0.15 13 0.16 0.64 2.74 10.75

memory M25 M100 1000 2000 4000 8000
m/mref 0.08 15.84 0.15 0.56 2.20 9.26

Table 2. Illustration of relative computational times and memory consumption
for 10 time steps of the optimization algorithm. The reference values are the values
of M50, respectively.

7. Conclusions

Altogether, the numerical tests with different cost functional parameters show that the cost
functional yields in the optimization the expected behaviour. Further, the results underline the
convergence of the states and the convergence of the controls as N tends to infinity. The conver-
gence will be investigated from an analytical point of view in future work. Finally, comparing the
first order necessary conditions, one realizes that there appear derivatives of S on the microscopic
level but not in the corresponding the mean-field equations. This relation will be discussed in some
upcoming work as well.
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