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Abstract

A new method is proposed to solve Ampere’s equation in an arbitrary
toroidal domain in which all currents are known, given proper boundary condi-
tions for the magnetic vector potential. The novelty of the approach lies in the
application of singular value decomposition (SVD) techniques to tackle the diffi-
culties caused by the kernel introduced by the curl operator. The physical origin
of the kernel is on the gauge associated with the magnetic field. To increase
the efficiency of the solver, the problem is represented by means of a dual finite
difference-spectral scheme in arbitrary generalized toroidal coordinates, which
permits to take advantage of the block structure exhibited by the matrices that
describe the discretized problem. The result is a fast and efficient solver, up to
three times faster than the double-curl method in some cases, that provides an
accurate solution of the differential form of Ampere law while guaranteeing a
zero divergence of the resulting magnetic field down to machine precision.

Keywords: Ampere’s law, singular value decomposition, SVD, spectral
method, finite differences, toroidal topology, magnetohydrodynamics, MHD

1. Introduction

There are many situations where the magnetic field created by a prescribed
set of currents needs to be calculated. For instance, this is the case in magneti-
cally confined, fusion toroidal plasmas such as those inside an stellarator, when
one often needs to calculate the magnetohydrodynamical (MHD) equilibrium of5

a plasma confined by a set of external coils [1]. Since the response of the plasma
is to generate its own currents, finding the magnetic field of the equilibrium
state is a non-linear problem that requires the use of sophisticated numerical
techniques. The resulting magnetic field may have a complicated topology that
could include not only closed toroidal magnetic surfaces, but magnetic islands10

and stochastic regions as well. In addition, the treatment of the boundary be-
tween the confined plasma and the empty region that separates it from the coils
is delicate. In the literature, several numerical codes can be found that address
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this problem such as PIES [2], HINT [3] or SIESTA [4], among others. Many of
these codes are often iterative in nature and thus require an initial guess for the15

magnetic field that needs to be sufficiently close to the solution to guarantee
convergence. From there, techniques such as the Newton or Picard methods
may be used to iterate until the nearest equilibrium state is found.

Each iterative code uses a different approach to find a suitable initial guess
for the magnetic field. Since one confides in the iterative scheme to refine the20

initial guess, these approaches are required to be fast, even at the expense of
not being terribly accurate. A path that is often followed is to calculate the
vacuum field created by the external coils by integrating Biot-Savart’s law over
the computational volume. To this vacuum field, a guess of the magnetic field
generated by the plasma currents must also be added. This is often provided25

by other codes that yield reasonably good estimates relatively fast at the price
of making some additional simplifying assumptions. An example is provided by
the widely used VMEC equilibrium code [5]. Since VMEC efficiently provides
the complete magnetic field inside of the plasma volume (i.e., the vacuum field
plus the one created by the plasma currents) by assuming that it must have a30

topology with closed toroidal magnetic surfaces (it might thus contain divergent
shielding current sheets that should open up to yield magnetic islands, if this
was not prevented by the fixed topology assumed), one only needs to estimate
the magnetic field created by the plasma currents in the vacuum region and
added to the one created by the coils. This can be easily done by applying35

the so-called casing principle [6, 7], or by applying Biot-Savart equation but
integrating over the plasma currents instead of the coils.

In fact, this second path could be followed from the start and be applied
to the whole computational volume. Indeed, one could start with a sufficiently
good guess for the plasma currents as obtained by a simpler code (for instance,40

with VMEC) and then obtain a guess for the total magnetic field everywhere
by integrating Biot-Savart equation including both the currents in the coils and
within the plasma [8]. This approach provides a smoother initial guess than the
one we sketched previously, since it does not patch together different solutions
over various domains. Integration is however neither optimal nor efficient. Al-45

though it is a linear operation in the currents that can be easily parallelized, it
is still very time consuming. In addition, numerical errors may also become an
issue, since the generalized toroidal coordinate systems in which most of these
codes internally operate require that the result of the integrations be trans-
formed to the local basis, which often distorts the value of the divergence of the50

field that may become significant. Clearly, one could fix this problem by moving
to a formulation in terms of the magnetic vector potential such as,

A(r) =
µ0

4π

∫
all currents

dl′
I(r′)

|r− r′|
, (1)

from which B = ∇ × A, but the large computational time required for the
integration and the inaccuracies introduced by the subsequent transformation
still remain.55
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Figure 1: Section of a typical domain where the plasma magnetic field has to be calculated.
The domain is limited by the vacuum chamber wall inside of which the plasma is confined
by the magnetic field. This geometry corresponds to the W7-X stellarator, in operation in
Greifswald (Germany) since 2016. It is always assumed that the coils that confine the plasma
are always out of the computational domain.

For all these reasons, we present a different approach in this paper that relies
on solving efficiently the differential form of Ampere’s law instead. That is, we
solve numerically the equation:

∇×∇×A(r) = µ0J(r), (2)

inside a toroidal volume that includes the plasma and extends into the vacuum
region that separates it from the coils that confine it, but that excludes the coils60

(see Fig. 1 for an example). Thus, only the current that flows within the plasma
is included in the right hand side. The effect of the coils is felt through the
boundary conditions of the problem, that must be chosen properly. In our case,
they correspond to the requirement that the value of the vector potential close
to the central axis and the outer boundary of the toroidal computational domain65

(see Fig. 2, where an example of the surfaces where the boundary conditions
are enforced is shown) be equal to that obtained by integrating Eq. 1 at those
locations including both the coil and plasma currents. Notice how the gauge
freedom allows to add any gradient ∇χ to the magnetic vector potential solution
of Eq. 2 and still be solution. For example, the Biot-Savart integration (Eq. 1)70

is associated with the Coulomb gauge ∇ ·A = 0. The existence of this freedom
makes challenging the numerical solution of the associated linear system. When
discretizing the differential problem, the free variables associated with the gauge
will show up as a large kernel of one third of the total number of variables on the
system to solve. It is one third because there is at least one free parameter on75

each position of the space (the value of χ on that position) and three unknowns
on the same position (the three components of the vector potential). Also notice
how, to keep consistency, the input current J(r) has to be adivergent or, in other
words, should not have any component in the kernel of the curl operator.

The implementation of the algorithm that will be discussed next assumes80

the use of the same generalized toroidal coordinates that the VMEC code uses,
since this solver was first developed to support the free-boundary extension of
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Figure 2: Inner and outer radial surfaces where the boundary conditions are implemented for
the domain previously shown in Fig. 1.

the SIESTA MHD code [8], that shares (almost) the same internal coordinates
than VMEC. However, this is not a necessary condition and the algorithm can be
easily converted to any other generalized toroidal coordinate system. The only85

thing required is that an spectral representation will be used for the poloidal and
toroidal directions and finite differences in the radial direction of the torus. The
reason is that these choices lead to a discretized form of the problem, Q ·x = b,
in which Q displays a block-tridiagonal structure. Singular value decomposition
(SVD) techniques can then be used to deal with the gauge related kernel of the Q90

matrix very efficiently. Under the SVD decomposition, the null singular values
of an operator discretization are associated with the kernel of that operator, for
example in the case of the curl, with any expression composed as a gradient.
This is the powerful mechanism that will be used to obtain projections of the
current or vector potential over the operators kernels, helping obtaining the95

solution in an efficient way.
It will be also shown that the proposed technique is faster, when many

problems have to be solved under the same geometry, to the simpler but effective
double-curl technique (see for example [9]). On this technique, the kernel can
be eliminated by using the identity:100

∇2A(r) = ∇ (∇ ·A(r))−∇×∇×A(r) (3)

Notice how, under the Coulomb gauge we can write

∇2A(r) = −µ0J(r), (4)

the kernel has vanished out. To help understand this affirmation, we can use
the Helmholtz decomposition A = ∇χ+∇×L and notice that the kernel of the
first operator on rhs of Eq. 3 is any curl and the kernel of the second operator
of rhs is any gradient. The resultant system, lacking kernel, can be directly105

inverted either with a direct solver for small systems or with an preconditioned
iterative solver for larger ones.
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Finally, it is worth saying that the approach is not restricted to fusion appli-
cations, although we focus on them to illustrate its performance in this paper.

The paper is thus organized as follows. Sec. 2.1 gives details about the110

coordinate system used for the implementation and the finite difference-spectral
representation of the quantities of interest. In Sec. 2.2, the result of discretizing
Ampere’s Law according to these prescriptions is described. Then, in Sec. 3,
the algorithm that we propose to solve the problem is presented, focusing on
the use of SVD to deal with the kernel of the problem. Sec. 4 illustrates its115

performance by applying it to a complicated toroidal geometry and compares
its performance to a direct integral implementation and to a double-curl method
implementation. Finally, in Sec. 5, several conclusions are drawn.

2. Discretization scheme

2.1. Numerical grid and quantities of interest120

Figure 1 shows a typical toroidal domain in which the magnetic field is to
be calculated. By introducing a set of curvilinear, toroidal coordinates (s, θ, φ),
the domain becomes a (dense) set of nested toroidal surfaces (which are not
necessarily magnetic surfaces, since s does not need to be a flux quantity!).
Here, s is a radial coordinate that defines the toroidal surface, and θ and φ are125

the two 2π-periodic angles that characterize the position of any point within each
toroidal surface. In the applications discussed in this paper, (s, θ, φ) are chosen
to be the same coordinates that the VMEC code uses, but this is clearly not
required. It is sufficient that the transformation between our toroidal coordinate
system of choice and the usual cylindrical coordinates be known.130

Since the two angles θ and φ are periodic, we assume a spectral represen-
tation for those directions which is completed by using finite-differences in the
radial direction. This choice is very important, since it endows the matrices that
will describe the problem with a block-diagonal structure that is essential for the
efficiency of the algorithm that we will propose later. For simplicity, we choose135

φ to coincide with the geometrical cylindrical angle, as VMEC does. We also
assume up-down symmetry at the φ = 0 plane (this is a common symmetry for
stellarators [10], but it can be easily removed by considering a complex Fourier
representation instead), which halves the size of the problem by endowing all
quantities with either a cosine or sine parity. Therefore, the aforementioned140

coordinate transformation to the usual cylindrical coordinates is given by:

R(s, θ, φ) =
M∑
m=0

N∑
n=−N

Rmn(s) · cos(mθ + nNpφ) (5)

Z(s, θ, φ) =
M∑
m=0

N∑
n=−N

Zmn(s) · sin(mθ + nNpφ)

where Np is the number of toroidal periods of the domain (if not known or
absent, one can simply set Np = 1). The harmonics Rmn(s) and Zmn(s) define
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the transformation and are assumed known. The number of harmonics included
in the representation is Nmodes = (M + 1) ∗ (2N + 1). For a typical stellarator145

calculation, M,N ∼ 20, so that Nmodes ∼ 1, 000. On the Appendix A can
be found details about the staggered finite difference scheme used in the radial
direction.

2.2. Ampere’s equation

We will express Ampere’s equation in terms of the two coupled differential150

equations:

∇×A(r) = B(r) (6)

∇×B(r) = J(r)

which become, in our curvilinear system of coordinates (s, θ, φ),(
εαβγ

∂

∂xβ
Aγ

)
=
√
gBα (7)(

εαβγ
∂

∂xβ
Bγ

)
=
√
gJα,

where remember µ0 has been absorbed within the current and we have used
the usual Levi-Civita symbol, εijk, and assumed the repeated index summation
convention. The two sets of equations are connected via the local transformation155

from covariant to contravariant components, given by,

Bα = gαβBβ , α, β = s, θ, φ. (8)

that requires the use of the contravariant metric tensor, gαβ , that is easily
computed from the coordinate transformation (Eqs. 5).

By making the discretization scheme sketched in the previous subsection
and the Appendix A explicit, the equation for the magnetic potential vector160

becomes:

−m
2

(
[Aφ]

i−1
mn + [Aφ]

i
mn

)
+
nNp

2

(
[Aθ]

i−1
mn + [Aθ]

i
mn

)
= [

√
gBs]

i
mn (9)

nNp
2

(
[As]

i−1
mn + [As]

i
mn

)
− 1

∆s

(
[Aφ]

i
mn − [Aφ]

i−1
mn

)
=

[√
gBθ

]i
mn

1

∆s

(
[Aθ]

i
mn − [Aθ]

i−1
mn

)
− m

2

(
[As]

i−1
mn + [As]

i
mn

)
=

[√
gBφ

]i
mn

where i ∈ [2, Ns], since the magnetic field is defined on the half mesh.
Similarly, the discretized version of the equation for the magnetic field, is

given by:

−m
2

(
[Bφ]

i
mn + [Bφ]

i+1
mn

)
+
nNp

2

(
[Bθ]

i
mn + [Bθ]

i+1
mn

)
= [

√
gJs]

i
mn (10)

nNp
2

(
[Bs]

i
mn + [Bs]

i+1
mn

)
− 1

∆s

(
[Bφ]

i+1
mn − [Bφ]

i
mn

)
=

[√
gJθ

]i
mn

1

∆s

(
[Bθ]

i+1
mn − [Bθ]

i
mn

)
− m

2

(
[Bs]

i
mn + [Bs]

i+1
mn

)
=

[√
gJφ

]i
mn
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where again i ∈ [2, Ns − 1].165

Eqs. 9 – 10 can be easily cast into the matrix form Q · x = b, as will be
discussed in what follows. Before proceeding any further, it is however worth
noting that the divergence of the magnetic field, when calculated under this
discretization scheme, is given by:

[∇ ·B]
i
mn =

1

∆s

(
[
√
gBs]

i+1
mn − [

√
gBs]

i
mn

)
− (11)

−m
2

([√
gBθ

]i+1

mn
+
[√
gBθ

]i
mn

)
−

−nNp
2

([√
gBφ

]i+1

mn
+
[√
gBφ

]i
mn

)
= 0,

as can be shown by substituting Eqs. 9 into Eq. 11.170

3. Numerical solution

As with many other numerical problems, Eqs. 9 – 10 are ultimately reduced
to an algebraic problem of the type Q · x = b, where the vector x contains the
component of the desired magnetic vector potential. Due to the presence of the
double curl in the equation for the magnetic potential, Q becomes a singular175

matrix which makes the solution of the algebraic problem highly non-trivial.
Our approach to deal with it requires that Q is block-diagonal and symmetric.

3.1. Structure of the problem

In order to make sure that Q is block-diagonal and symmetric we choose
two boundary conditions in order to close the problem in the following way (see180

Fig. 2). The first one is imposed at a generic internal position, sfi0 (i0 � Ns),
where we require the magnetic potential to take the value computed by direct
integration of Eq. 1 including all currents; the second one, by requiring the value
of the magnetic potential at the boundary (i.e., sfNs

) to be also equal to the one
resulting from the direct integration. It is worth noting that, at first glance,185

it might appear that the influence of the external coils could be included using
just one boundary condition at the outer surface, and use a standard regularity
condition at the toroidal axis (i.e., requiring As = Aθ = 0 at s = 0). However,
to avoid dealing with the singularity at the axis, to keep the symmetry of Q and
for clarity in the exposition, we prefer to keep an additional internal boundary190

condition, which helps the numerical solution at the (small) price of having to
estimate the vector potential near the axis. That will not be a problem in our
case, as will be illustrated in section 4.

In Fig. 3 we illustrate the variables involved in the problem. The unknowns
vector x is composed by the components [Aα]

i
mn for i ∈ [i0 + 1, Ns − 1]. The195

sources vector b will contain the currents values
[√
gJα

]i
mn

for i ∈ [i0+1, Ns−1]
plus the effect on the source of the boundary condition associated with the values
[Aα]

i0
mn and [Aα]

Ns

mn. The number of modes is Nmodes = (M + 1) · (2N + 1) and
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Figure 3: Representation of the different variables and their interdependence in the radial
mesh. In black full mesh quantities and in red half mesh quantities.

the number of surfaces is Nsurf = Ns − i0 − 1. The total number of unknowns
is thus Ntot = 3NsurfNmodes.200

Next, we discuss the Q matrix. After inspecting carefully Eqs. 9 – 10, it is
possible to see that the matrix of the problem is obtained from the product of
three matrices:

Q = Rᵀ ·M ·R (12)

whose structures are shown in Fig. 4. The matrix M represents the multipli-
cation by the jacobian in real space plus the transformation from contravariant205

to covariant components of the magnetic field. Since this operation is done
separately at each surface, only angular modes and components are coupled.
As a result, M is a symmetric, square, block-diagonal matrix (see left frame of
Fig. 4). The matrix R, on the other hand, corresponds to the application of
the curl operator. Since this implies radial (and angular) derivatives, the use of210

finite differences implies the coupling of each radial node to the previous and
the next, but it does not couple different modes due to the spectral represen-
tation. It does however couple the same mode of different components (i.e.,
s, θ and φ), since their derivatives are combined to form the curl. Therefore,
R is block-banded in surfaces (see right frame of Fig. 4), but the blocks only215

contain a few diagonals that represent the coupling between components. In
addition, R is not a square matrix. Due to the features of both M and R, the
resulting matrix Q is block tridiagonal. This structure has an strong impact in
the solution process, allowing it to be accelerated considerably, as will be shown
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Figure 4: Structure of the M matrix (left) and R matrix (right). Observe that R is not
square.

in the next section.220

3.2. Solution of the system of equations

The matrix Q that represents the discrete problem is singular in the sense
that its kernel has a dimension larger than zero. This is a consequence of
the fact that the curl vanishes when applied to the gradient of any function.
Therefore, special care has to be taken in order to solve it, since the problem225

is ill-posed. In order to illustrate the difficulties in front of us, we will start by
describing a direct attempt to solve the problem by means of the eigenvalues
and eigenvectors of Q. Once the limitations are made apparent, we present our
proposed SVD-based scheme, whose performance will be illustrated in the next
section.230

3.2.1. Eigenvalue/eigenvector approach to the solution of the Q ·x = b system.

In order to find a solution to the problem, due to the presence of a non-
trivial kernel, one proceeds by finding first the decomposition of Q in terms of
its eigenvalues and eigenvectors. That is, we rewrite the system as

Q · x = Γ ·D · Γ−1 · x = b (13)

where D is a diagonal matrix containing the eigenvalues of Q, {λi, i = 1, · · · , NQ},235

and Γ is formed by its related eigenvectors ordered in column form. Here, NQ is
the linear dimension of Q. Since Q is symmetric, Γ−1 = Γᵀ. Thus, by project-
ing the vectors x and b onto the basis formed by all eigenvectors (i.e., x̄ = Γᵀ ·x
and b̄ = Γᵀ · b), the system of equations can be rewritten as:

D · x̄ = b̄ (14)

9



Since D is a diagonal matrix, each component of the solution satisfy a single,240

decoupled equation given by:

λi · x̄i = b̄i, i = 1, · · · , NQ. (15)

However, if the dimension of the kernel of Q, Nker
Q > 0, there are Nker

Q null
eigenvalues, that implies a non unique solution or even a non compatible system.
To work around this issue, one usually orders the eigenvalues so that the null
eigenvalues are placed at the last positions, i ∈ [NQ−Nker

Q +1, NQ]. The appro-245

priate solution of the problem is then found by considering the pseudoinverse of
the matrix [11], that gives as solution of Eq. 15:

x̄i =


b̄i/λi, for all i ∈ [1, NQ −Nker

Q ]

x̄i = 0, for all i ∈ [NQ −Nker
Q + 1, NQ]

(16)

The final solution is then built as x = Γ · x̄. It must be noted, however, that
this solution is exact if and only if:

b̄i = 0 for all i ∈ [NQ −Nker
Q + 1, NQ] (17)

or, in other words, if the source vector b of Eq. 13 is orthogonal to the kernel250

of Q. Otherwise, the obtained solution would be the most compatible one in
terms of the Frobenius norm. In the case of Ampere’s equation, b is given by
the currents flowing in the interior plasma and the kernel in Q is originated by
the curl operator. Therefore, the physical meaning of this restriction is that the
currents must be divergence free.255

There are however very important practical difficulties that prevent applying
the eigenvalue method just described. In particular, it requires to find the full
eigenvalue decomposition of Q. Since, in most problems of interest, Q has a
dimension of the order of hundreds of thousands (in a typical stellarator case,
NQ ∼ 100, 000 − 200, 000), this is a huge computational task. In addition, the260

eigenvector matrix Γ is a dense matrix, even if Q is block-tridiagonal, which
would also require an enormous amount of memory to store. Thus, a more
appropriate way to find and apply the pseudoinverse approach is needed. We
propose to use some well-established SVD techniques, in combination with a
proper factorization of the Q matrix, to achieve this. We discuss the details in265

the next subsection.

3.2.2. Proposed methodology

As discussed previously, the matrix Q that results from discretizing Am-
pere’s law following our prescription is symmetric and block-tridiagonal. By
writing it in terms of the R and M matrices, the problem to solve reads:270

Q · x = (Rᵀ ·M ·R) · x = b (18)

in which R is block-tridiagonal and M is block diagonal. M is never singular.
R, on the other hand, is always singular since it is a discretization of the curl
operator, that has a non-zero null space.
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Let us now discuss in detail, step by step, how our proposal takes advan-
tage of this representation to improve upon the eigenvalue decomposition we275

described earlier. The method goes as follows:

• The SVD decomposition [12] of the R matrix is found first:

R = UR · SR ·Vᵀ
R (19)

where SR is a diagonal matrix with real and positive values (the singular
values), UR

ᵀ ·UR = I and VR
ᵀ ·VR = I. Since R is a singular matrix,

the last Nker > 0 elements on the diagonal of SR will be zero, where we280

assume that the dimension of the kernel of R is Nker. Eq. 18 can then be
rewritten as:

VR · SR ·UR
ᵀ ·M ·UR · SR ·VR

ᵀ · x = b. (20)

observe that since SR is diagonal, Sᵀ
R = SR.

• The system is then back-solved in several steps. However, instead of enu-
merating them in the order in which they are actually carried out, we285

discuss them first in a more pedagogical fashion.

– By defining the unknown vector x1 as:

x1 = SR ·UR
ᵀ ·M ·UR · SR ·VR

ᵀ · x (21)

Eq. 20 is rewritten as:
VR · x1 = b (22)

whose solution is,
x1 = VR

ᵀ · b. (23)

– By defining the unknown vector vector x2 as:290

x2 = UR
ᵀ ·M ·UR · SR ·VR

ᵀ · x, (24)

Eq. 21 is rewritten as:
SR · x2 = x1 (25)

where x1 is known from previous step. Since the last Nker singular
values present in the diagonal of SR are zero (the kernel of the curl
operator), we can find the solution by using the pseudoinverse of SR.
Since SR is diagonal, the pseudoinverse is the diagonal matrix:295

[
SR

+
]
ii

=


1

[SR]ii
, ii = 1, · · · , Ntot −Nker

0, ii = Ntot −Nker, · · · , Nker
(26)

where the superindex + denotes pseudoinverse. In Fig. 5 we represent
the magnitude of [SR]ii associated with a particular (m,n) mode for
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Figure 5: Singular values associated with a particular mode (m,n) mode for a realistic case.

a realistic case. These values corresponds with the singular values of
the curl operator which, as has being previously pointed out, should
have a kernel (any gradient quantity) of size one third of the total size300

of the matrix. Notice in the plot how no ambiguity exist in the cut-off
when deciding which singular values corresponds with the kernel.

The solution of Eq. 25 is then given by,

x2 = SR
+ · x1 + xfree2 (27)

where xfree2 is any vector that is contained in the kernel of SR, with
only its last Nker components different from zero. In physical terms,305

these components span the (discrete version of the) subspace of gra-
dients of any function on which the curl identically vanishes, that
can be used as free parameters to ensure the satisfaction of any ad-
ditional constrains that might be required by the problem at hand.
We will use them later. A second comment worth making is that x2310

provides an exact solution of Eq. 23 only if x1 is orthogonal to the
kernel. As we mentioned earlier, this should in theory be the case
if b comes from divergenceless currents. However, due to numerical
inaccuracies, it may not be in practice. The solution provided by x2

is then the nearest solution orthogonal to the kernel that can satisfy315

Eq. 23.

– By defining the unknown vector x3 as

x3 = SR ·VR
ᵀ · x (28)

Eq. 24 is rewritten as:

UR
ᵀ ·M ·UR · x3 = x2. (29)

We will ignore for now that the last Nker components of x2 are still
undetermined. The system is easily inverted as:320

x3 = UR
ᵀ ·M−1 ·UR · x2 (30)
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M−1 can be found easily, thanks to its block-diagonal character, by
inverting each block separately.

– By defining the unknown vector x4 as:

x4 = VR
ᵀ · x (31)

Eq. 28 is rewritten as:
SR · x4 = x3 (32)

This equation is inverted by invoking again the pseudoinverse of SR,325

yielding:
x4 = SR

+ · x3 + xfree4 (33)

where xfree4 is again an undetermined vector within the kernel of SR,
thus having its first Ntot − Nker components equal to zero, and the
final Nker components unknown. This is similar to the xfree2 vector
that we left undefined previously. In fact, it is here that we will330

choose the value of xfree2 by requiring that x3 be orthogonal to the
kernel of SR, that ensures that x4 is an exact solution to Eq. 32.
This is done by forcing the last Nker rows of Eq. 32 to be zero:

0 = Ūᵀ
R ·M

−1 ·UR · x2 (34)

where ŪR contains only the last Nker columns of UR (i.e., the eigen-
vectors associated with the kernel; in fact, we will use the overbar in335

what follows to denote vector and matrices that are restricted to the
kernel, thus having an Nker linear dimension). Introducing Eq. 27
into Eq. 34 one gets to:

0 = Ūᵀ
R ·M

−1 ·UR ·
(
SR

+ · x1 + xfree2

)
, (35)

that can be recast as:
D̄ · x̄free2 = c̄ (36)

for the in-kernel part of xfree2 , that we will denote as x̄free2 . The340

matrices and right-hand-side of Eq. 36 are defined as:

D̄ = Ūᵀ
R ·M

−1 · ŪR (37)

and
c̄ = −Ūᵀ

R ·M
−1 ·UR · SR

+ · x1 (38)

The direct inversion of D̄ is often too computationally intensive, since
it is usually a dense matrix of linear size ND̄ = Nsurf · Nker ≈
Nsurf ·Nmodes (for typical stellarator problems aroundND̄ ≈ 50, 000).345

This is around one third of the original matrix system size, but still
large for a direct solver. Instead we use an efficient iterative solver
that will be described in the next subsection. Note also that the
original system was singular and, thus, not invertible. However D̄ is
not singular because we have eliminated the kernel contributions.350
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– The order of application of the different steps becomes now clear.
First, one builds the SVD decomposition of R. Then, x̄free2 is com-
puted by solving Eq. 36. Eq. 30 is solved to obtain x3 and, sub-
sequently, Eq. 33 is solved to get x4. At this point, xfree4 is set to
zero (i.e., we choose the free gauge of the magnetic vector potential).355

Finally, the solution x is obtained as:

x = VR · x4. (39)

In summary, the ordered steps of the full algorithm are:

1. Carry out the SVD decomposition R = UR · SR ·Vᵀ
R

2. x1 = VR
ᵀ · b

3. c̄ = −Ūᵀ
R ·M−1 ·UR · SR

+ · x1360

4. Solve D̄ · x̄free2 = c̄ iteratively to get x̄free2

5. xfree2 is trivially built as a null vector with the last Nker components set

by x̄free2 .

6. x2 = SR
+ · x1 + xfree2

7. x3 = UR
ᵀ ·M−1 ·UR · x2365

8. x4 = SR
+ · x3

9. x = VR · x4

3.3. Computational cost of the algorithm

The procedure we have just described is computationally intensive, but it
is very efficient. We analyze here qualitatively the computational cost of the370

whole procedure. First, we will consider the SVD decomposition of the matrix
R. Since R is block diagonal, the decomposition consists of Nmodes independent
SVD decompositions, one for each of the sub-matrices of size 3 · Nsurf . This
process can be trivially parallelized. Secondly, x1 is obtained by applying VR

ᵀ,
that is a block diagonal matrix. The computational cost of multiplying by a375

block diagonal matrix is very low. Next, in order to obtain x̄free2 one needs to
build the c̄ vector, which requires the application of several matrices over b (see
Eq. 38 and Eq. 23). Since all these matrices are also block diagonal, either in
modes or in surfaces, this step is computationally inexpensive.

The most expensive part of the algorithm is the inversion of Eq. 36. In380

our implementation, this is done by solving it iteratively using the BiCGSTAB
iterative algorithm [13] as implemented in the standard library PetSC [14]. A
simple preconditioning is applied consisting on taking the diagonal part of D̄
associated with the poloidal/toroidal modes but keeping the radial structure.
This is equivalent to solve a set of decoupled small systems of dimension the385

number of radial grid points, each of the systems associated with the mode
(m,n). For all the stellarator cases tested in Sec. 4, that contain about a hun-
dred radial points and a few hundred of modes, 60 to 80 iterations are required
to reach convergence up to machine precision. The number of iterations seems
pretty insensitive to the resolution, as can be checked on table 1 for a typical390
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Ns M N Nmodes Niter

80 5 5 66 46
80 5 10 121 45
80 10 10 231 47
80 10 15 336 51
20 16 20 693 45
40 16 20 693 52
80 16 20 693 57

Table 1: Number of iterations as a function of the radial resolution Ns, poloidal modes M
and toroidal modes N for a typical case.

case. At each iteration there are several applications of the preconditioner and
the dense matrix D̄. The preconditioner is block diagonal, and the application
of D̄ is done in three steps – applying first UR, then M̄−1 and finally Ūᵀ

R–, each
of them implying the multiplication by a block diagonal matrix. The inversion
of the block diagonal matrix M can be done separately at each surface with a395

computational cost of Nsurf systems of size 3Nmodes. Each block inversion is
done by the LAPACK library [15] as a dense matrix inversion. The inversion is
done before applying the iterative method and the result is stored in memory
so that, at each iteration, the cost is just that of a matrix-vector product.

Once x̄free2 is found, the remaining steps are not computationally intensive.400

First, x3 is obtained applying Eq. 30; then, x4 is found using Eq. 33; finally,
x is found from Eq. 39. All of these steps only require multiplications by block
diagonal matrices previously obtained, which can be done very efficiently.

In summary, the algorithm is very efficient, being able to solve complicated
geometries (our stellarator cases have a matrix Q with a linear dimension NQ ∼405

150, 000) in a few minutes using just one core of a processor, as will be shown
in next section. Since the algorithm is trivially parallelizable, due to the block
structure of the matrices, we expect it to be very competitive for much larger
problems. This suggests that it might be very useful for plasma real time control
in experiments that require very fast equilibrium evaluations under changing410

plasma conditions, or for many other problems outside the realm of fusion that
may require a fast solution of Ampere’s equation for a given set of currents.

4. Illustration of the method. Comparison with integral and double-
curl methods.

We have chosen the toroidal geometry of the W7-X stellarator [16], which415

started operation in 2016 in the Institute for Plasma Physics (IPP) at the Max-
Planck-Institute in Greifswald (Germany), to illustrate the performance of our
Ampere solver. W7-X is one of the biggest devices of its kind. It relies on
a series of modular coils to confine a plasma within a volume with a toroidal
topology, although extremely convoluted (see Fig. 1). Two different tests will be420
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Figure 6: Relative error as a function of the Bicg-Stab iteration for the case of vacuum
magnetic field in log-lin scale.

carried out in this geometry. First, we will calculate the vacuum magnetic field
created by the W7-X coil set inside of the vacuum vessel, assuming a certain
value of the currents flowing in the coils. In the second test, the magnetic field
created by the equilibrium currents flowing in the confined plasma for that W7-
X configuration, as obtained by the VMEC code, will be calculated. Although425

the total magnetic field will naturally be the sum of both contributions, we will
carry out the calculations separately since the former problem lacks any current
in the calculation domain (the influence of the coils enters through the boundary
conditions), whilst in the second one the magnetic field is completely generated
by currents flowing inside of the calculation domain. In both cases, the results430

will be compared with the magnetic fields obtained through a direct integration
of Biot-Savart’s law.

4.1. Calculation of the vacuum magnetic field

In the absence of plasma, there are no currents inside of the domain, so
that b = 0 in Eq. 18. Since the W7-X coils are outside of our simulation435

domain, their influence appears via the boundary conditions that we impose at
the inner and outer surfaces shown in Fig. 2. The value of the vector magnetic
potential at those surfaces are provided by IPP’s own MAG3D Biot-Savart code
[17]. The spatial resolution we have used in this test is Nsurf = 79, M = 20
and N = 16, which leads to Nmodes = 693, and a linear dimension of the Q440

matrix equal to NQ = 164, 241. Using a single core of a 2, 4 GHz Intel Xeon
E5-2630v3 processor, the amount of time required to solve Ampere’s equation
with the proposed method is about 255 seconds, of which 60 seconds are spent
in the iterative determination of xfree2 (i.e., in solving Eq. 36). As shown
in Fig. 6, we needed 85 iterations of the Bicg-Stab to reach the requested445

relative error of 10−15. As shown in the left frame of Fig. 7, the figure-of-
merit |∇ ×B− J| ≈ 10−9 throughout the calculation domain. In addition, the
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Figure 7: Left: Figure-of-merit |∇ ×B− J| at φ = 0 toroidal plane. Since this is a vacuum
case, J is zero, and the residual of the solution reduces to |∇ ×B|. Right: Divergence of the
solution, ∇·B at φ = 0 plane. The cross section of the mesh is also represented, for illustration
purposes. Both figures are normalized to Bavg/L, where Bavg is the average magnetic field
and L the minor radius of the plasma.

divergence of the resulting magnetic field is of the order of machine precision
all throughout the computational box (see right frame of Fig. 7), as previously
advertised. A cross section of the mesh is also shown on the same figure.450

We have also benchmarked our solution with that obtained from a direct
integration of Biot-Savart law. In the left panel of Fig. 8, the magnitude of
the vacuum magnetic field at the φ = 0 toroidal cross-section can be seen, as
computed with our algorithm. In the right panel of the same figure, the relative
difference between our algorithm, that needs a little under ten minutes and IPP’s455

MAG3D code, that needs about several hours to integrate the coil currents over
the whole computational domain, showing a maximum discrepancy in the order
of ±0.5%.

4.2. Magnetic field created by plasma currents

Now we proceed to calculate the magnetic field generated by the equilibrium460

plasma currents, obtained by the VMEC code, for a plasma confined by the vac-
uum fields previously calculated. The analysed equilibrium corresponds to the
so called standard configuration of the W7-X with a small bootstrap current on
the axis and has a β = 0.86% (this figure-of-merit is defined as β =

〈
2µ0p/B

2
〉
).

For this configuration, the island chain corresponding to a rotational transform465

ι- = dΨ/dΦ = 5/5, being Ψ and Φ the poloidal and toroidal magnetic fluxes
respectively, is located just at the boundary of the plasma, ensuring a proper
divertor operation [18]. We have used the same radial resolution and number of
modes as in the vacuum calculation. The boundary conditions have now been
obtained by integrating Biot-Savart law at the two boundaries considering only470

the plasma currents.
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Figure 8: Left: Magnitude of the vacuum magnetic field (in Teslas) at φ = 0 toroidal plane
by using the algorithm proposed in this paper; Right: relative difference of the proposed
algorithm and the integral solver solutions.

Figure 9: Profiles of pressure (left), iota (center) and toroidal current (right) corresponding
to the studied equilibrium, all of them in VMEC units.

The solution of Ampere equation is obtained in 237 seconds (using the same
hardware as the one in the vacuum case), with 57 seconds expend in the 69
iterations required by the solver. The magnitude of the plasma magnetic field
is shown in the left panel of Fig. 10. As we did earlier, the right panel of the475

figure shows the relative difference between the magnetic fields obtained by our
solver (less than five minutes in one core) and integrating Biot-Savart directly
(ten hours in sixteen cores), which is in good agreement, showing discrepancies
in the order of ±5%. The larger discrepancy when compared with the vacuum
case is probably due to the approximation as linear elements when integrating480

Biot-Savart on the plasma current. Even if the discrepancy is slightly larger,
the vacuum magnetic field is near one hundred times larger than the plasma
magnetic field, so the absolute discrepancy remains small.

As a final but important test, the vacuum and plasma magnetic field are
added up and a Poincare plot is obtained by following the field lines. This test485

reveals if the topology of the magnetic structure is maintained (closed magnetic
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surfaces and islands). As shown in Fig. 11, little difference can be found between
the solutions, indicating that the topological structure is properly resolved.

4.3. Computational cost against the double-curl method

The proposed method, based on SVD decomposition, can be also compared490

with an efficient implementation of the double-curl (DC) method. An optimized
version of the DC method has been implemented where the tridiagonal block
system associated with the vector laplacian operator is solved with a precondi-
tioned iterative Bicg-Stab solver, equivalent to that used on the SVD method,
what is faster than solving the tridiagonal matrix system using a direct method.495

Thus, both versions of the solvers (the SVD method proposed here and the DC
method) where implemented as efficient as we where able, and using the same
libraries and programming language. This allows us to do a very confident com-
paration of the computational times. In the vacuum case, 255 seconds and 85
iterations where required for the SVD method while the DC method requires500

328 seconds and 124 iterations. Thus, the SVD method is 1.29 times faster.
This is a modest speedup but, if many problems are required to be solved under
the same mesh geometry, the SVD method shows its real advantage. If we split
the computational cost of the method as:

• costA: the computational time associated with intermediate matrices that505

can be calculated only once and reused for many plasma current cases, if
the mesh geometry does not vary.

• costB: the computational time required for the inversion of the system,
that will be specific to each plasma current case.

For the SVD vacuum case we found costASV D = 195 seconds and costBSV D =510

60 seconds. On the other hand, for the DC method we find costADC = 142
seconds and costBDC = 186 seconds. This clearly indicates that, in the limit of
many plasma current cases (where costB dominates the computational effort),
the SVD method can be up to three times faster than the DC method. The
underlying reason is clear: as previously described, the dimensionality of the515

problem to be solved is reduced to one third in the case of the SVD method.
The double-curl method is simpler to implement, but it cannot take advantage
of the dimensionality reduction. This speedup can be useful in codes where
the magnetic field is required to be calculated many times from the plasma
currents inside of an iterative loop, may be for time advance or for equilibrium520

convergence. A particular example can be the solution of the non-linear MHD
equibrium equation solved by SIESTA or PIES codes. There, the same grid
(i.e. the same discretization) is used along the iterative process where, on each
iteration, a linear problem has to be solved. Thus, the solver for obtaining the
magnetic field or the magnetic vector potential from the currents will be used525

many times, at least one for each iteration, with the same initialization matrices
along the whole process, taking advantage of the 3x speedup.
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Figure 10: Left: Magnitude of the plasma magnetic field (in Teslas) at φ = 0 toroidal plane
by using the algorithm proposed in this paper; Right: relative difference of the proposed
algorithm and the integral solver solutions.

5. Conclusions

In this paper, a novel technique has been presented that provides a very effi-
cient way to calculate the magnetic field created by an arbitrary set of currents530

and coils in general toroidal geometry. The approach is differential instead of
integral, and combines a dual finite-difference/spectral discretization and SVD
techniques to deal with the sizeable non-trivial kernel of the matrix represen-
tation of Ampere’s equation. It also deals with the magnetic potential, instead
of the magnetic field, which guarantees a divergence-free solution down to ma-535

chine precision. The resulting solver is between one and two orders of magnitude
faster than any direct integral approaches, at least in terms of total computa-
tional time. Although it is true that the integral method could be parallelized
with an almost perfect linear scaling, the differential approach proposed here
also admits an easy parallelization, since the most computationally expensive540

part of the algorithm is the inverse of a block diagonal matrix, which could be
done in parallel for the different blocks.

We have tested the performance of the algorithm by calculating the solution
of Ampere’s equation for a distribution of currents from a configuration of the
W7-X stellarator, which requires a complex and convoluted toroidal domain545

with very good results. The solution is obtained much faster and it compares
very well with the results obtained by the direct integral method. Also, it is
computationally more advantageous than the double-curl method, up to three
times faster when many applications of the solver are required under the same
geometry. It must be noted, however, that although the code has been illus-550

trated with an application within magnetic-confinement fusion, its possible uses
are much broader. Indeed, it could certainly be used to provide magnetic fields
in any application that requires a fast solution of Ampere’s law in a toroidal
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Figure 11: Poincare plots corresponding to the proposed algorithm (left) and the integral
method (right). In green the domain boundary, corresponding with the vacuum chamber.

domain, as might be the case in accelerator physics or other areas where toroidal
fields are of interest.555

6. Acknowledgments

This research has been sponsored in part by Spanish National Research
Project No. ENE2015-68265. Use have also been made of Uranus, a supercom-
puter cluster located at Universidad Carlos III de Madrid (Spain) funded jointly
by EU FEDER funds and by the Spanish Government via the National Research560

Project Nos. UNC313- 4E-2361, ENE2009-12213-C03-03, ENE2012-33219, and
ENE2012-31753.

Appendix A. Discretization details

In the radial direction, two staggered radial grids are introduced (see Fig.
A.12). The first one, referred to as the full mesh, has nodes at the radial565

positions defined as sfi = (i−1) ·∆s where i ∈ [1, Ns]; the second one, known as
the half mesh, has nodes at the intermediate radial positions: shi = ∆s/2 + (i−
2) ·∆s where i ∈ [2, Ns]. ∆s is the spacing of the grid. The number of surfaces
considered for a typical stellarator problem is Ns ∼ 100− 200.

The harmonics of all quantities of interest will be defined on either the full or570

half grid, depending on numerical considerations. The harmonics Rmn(s) and
Zmn(s) are both defined on the full grid. Regarding the remaining quantities
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Figure A.12: full mesh nodes (black) and half mesh nodes (red) in the radial coordinate s.

of interest for solving Ampere’s equation, their parities and the radial mesh on
which they are defined are the covariant components of the magnetic vector
potential:575

As(s
f
i , θ, φ) =

M∑
m=0

N∑
n=−N

[As]
i
mn sin(mθ + nNpφ) (A.1)

Aθ(s
f
i , θ, φ) =

M∑
m=0

N∑
n=−N

[Aθ]
i
mn cos(mθ + nNpφ)

Aφ(sfi , θ, φ) =
M∑
m=0

N∑
n=−N

[Aφ]
i
mn cos(mθ + nNpφ)

and similarly discretized, the covariant components of the magnetic field:

Bs(s
h
i , θ, φ), Bθ(s

h
i , θ, φ), Bφ(shi , θ, φ) (A.2)

the contravariant components of the magnetic field:

√
gBs(shi , θ, φ),

√
gBθ(shi , θ, φ),

√
gBφ(shi , θ, φ) (A.3)

and the contravariant components of the current:

√
gJs(sfi , θ, φ),

√
gJθ(sfi , θ, φ),

√
gJφ(sfi , θ, φ) (A.4)

where
√
g is the Jacobian of the transformation defined by Eqs. 5.
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