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Abstract

In this paper, we apply a specifically designed dissipative spatial filter as sub-grid scale

model within the increasingly popular discontinuous Galerkin methods and the closely

related flux reconstruction high order methods for large eddy simulation. The param-

eters of the filter kernel are optimized with data obtained from direct numerical sim-

ulation, that is filtered and used as a ground truth to fit the overall kinetic energy and

dissipation rate over time. The optimization is carried out for polynomial degree 3 to

10. The optimal kernels are rigorously tested in the limit of infinite Reynolds number

flows (HIT and Taylor Green Vortex flow). Additionally, a brief extension to plane

turbulent channel flow is given.

Keywords: , Large Eddy Simulation, Turbulence, Discontinuous Galerkin Method,

kinetic energy preserving, optimized filter kernel, relaxation filter, filter-based LES

1. Introduction

Using discontinuous Galerkin (DG) methods and the closely related flux recon-

struction (FR) methods [24] for large eddy simulation (LES) has become increasingly

popular recently. This popularity mainly stems from the high computational efficiency
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of the method on modern highly parallel super computing clusters combined with ge-

ometrical flexibility provided by unstructured grids. Successful LES are reported e.g.

in [31, 9, 3, 4, 13, 32, 26]. Up to now, it is common practice to use the method without

any sub-grid scale models to account for the inevitable effects of under-resolution in

LES. This approach is referred to differently as implicit LES (iLES), no-model LES

or under-resolved direct numerical simulation (uDNS). In order to distinguish between

true iLES approaches, where the numerical scheme is modified to mimic SGS-model

behavior we refer to these schemes as no-model LES in this paper. All these methods

use the numerical viscosity introduced by the numerical flux function (for both viscous

and advective fluxes) that couples the inter-cell discontinuities as a surrogate for tur-

bulence closure. Recently it was shown in [14] that the applicability of this approach

is limited to comparably well resolved LES, where the molecular dissipation resolved

on the coarse grid accounts for at least ≈ 45% of the total dissipation resolved by di-

rect numerical simulation (DNS). For typical coarse LES, especially considering high

Reynolds numbers and realistic, engineering application scenarios, the resolved dissi-

pation drops below 1% rendering the above methods inaccurate. In [14] a method was

proposed to use a novel form of the DG operator [18] that guarantees consistency in

the discretization of kinetic energy as well as preservation (called KEP-flux) in com-

bination with a low dissipative Riemann solver (so called RoeL2) [28] and a simple

explicit Smagorinsky model [30]. It was shown that by using the KEP-flux, the LES

is stable without further need for de-aliasing or even interface dissipation, giving full

freedom to shape the introduced numerical viscosity based upon turbulence modeling

considerations. Thereby, numerical stability constraints and modeling considerations

are decoupled. With the proposed modeling, excellent results were obtained for typical

coarse LES, while the low dissipation Riemann solver suppressed density and pressure

oscillation arising due to interface discontinuities. The method was further extended

for transitional flows by using a high pass filtered variant of Smagorinskys model in

[23].

In this work the basic properties of KEP-flux described above are exploited again to

design a filter-based LES scheme, tailored specifically for the underlying numerical

method. As a baseline, the KEP-flux is used with the RoeL2 Riemann flux at inter-

2



faces. Then modal filter kernels are searched by non-linear optimization using the well

known Nelder-Mead algorithm, with the objective to minimize the mean square error

of integral kinetic energy and resolved dissipation over time. The optimization is run

for the test case of decaying isotropic turbulence already used in [14] (Reλ ≈ 162 to

Reλ ≈ 97). Parameters of the optimization are the diagonal coefficients of a modal fil-

ter matrix as well as a factor scaling the filter strength. The filter strength, motivated by

the spectral eddy viscosity method (SPEVM)[10], is scaled by the kinetic energy con-

tent of the highest polynomial mode. In contrast to most explicit turbulence closures

for LES, the proposed filtering approach does not require any computation of second

order derivatives. The computation of second order derivatives typically accounts for

more than 50% of the computational cost of the DG operator, while the effect of the

resolved molecular dissipation for high Reynolds, coarse grid LES is often negligible.

The optimization is shown to give excellent results for polynomials of degree N = 3

to N = 10. Afterwards the method is tested for infinite Reynolds number decaying

isotropic turbulence with a Kolmogorov spectrum and the inviscid Taylor-Green-Vortex

flow.

2. Numerical Methods

2.1. Discontinuous Galerkin Spectral Element Method

We consider the compressible Navier-Stokes equations (NSE) expressed in conser-

vation form

Ut +∇x · F(U,∇xU) = 0, (1)

where U denotes the vector of conserved quantities U = (ρ, ρu, ρv, ρw, ρe)T , the

subscript t the time derivative and∇x the gradient operator in physical space. The flux

is the difference of advection and viscous fluxes, F = Fa(U) − Fv(U,∇xU), with
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the entries

Fal (U) =



ρ vl

ρ uvl + δ1l p

ρ vvl + δ2l p

ρwvl + δ3l p

ρ evl + p vl


, Fvl (U,∇xU) =



0

τ1l

τ2l

τ3l

τljvj − ql


, (2)

where l = 1, 2, 3, denoting the Cartesian directions of the flux F1,F2,F3. We follow

the usual nomenclature for ρ,v = (u, v, w)T , p, e denoting the density, velocity vector,

pressure and specific total energy, respectively. With the viscousx flux we introduced

the viscous stress tensor τ and the heat flux q

τ := µ(∇u + (∇u)T − 2

3
(∇ · u)δ), (3)

q = −λ∇T, (4)

with λ =
cpµ
Pr . Fluid dependent variables are heat conductivity λ, dynamic viscosity µ,

Prandtl number Pr and the specific heats k, cp and cv ., and are assumed to be constant.

Using the adiabatic coefficient κ =
cp
cv

and the specific gas constant R = cp − cv , the

system of equations is closed by the perfect gas law

p = ρRT = (κ− 1)ρ(e− 1

2
v · v), e =

1

2
v · v + cvT. (5)

In this work, we use a special DG variant, namely the discontinuous Galerkin spec-

tral element collocation method (DGSEM) with Legendre Gauss-Lobatto (LGL) nodes.

The LGL nodes are essential, as this choice guarantees the so-called summation-by-

parts (SBP) property of the resulting DGSEM operator [16]. Up to now, split form

DG is only available for this specific variant, as the SBP property is fundamental. The

computational domain is subdivided into non-overlapping hexahedral elements which

are transformed to reference space ξ via a transfinite mapping. Within the reference

element, a tensor-product polynomial approximation is constructed: we use the tensor-

product of the 1D LGL nodes and the associated tensor-product of 1D Lagrange poly-

nomials, which gives (N + 1)3 DOF per element per unknown quantity. The method
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was described in [14], stemming from [18]. For details the interested reader may refer

to these original papers. In this work the split form DG is used. As introduced by

[12, 7] the cartesian flux derivative after transformation to reference space in split form

(exemplary for one reference direction ξ) at one LGL node (i, j, k) reads

1

∆x
Fa1(U)ξ

∣∣
ijk
≈ 1

Mii

(
δiN

[
Fa,∗1 − Fa1

]
Njk
− δi0

[
Fa,∗1 − Fa1

]
0jk

)
+

N∑
m=0

2DimFa,#1 (Uijk,Umjk),

(6)

where Fa,#1 (Uijk,Umjk) is a two-point numerical volume flux and Dij, Mij are the

polynomial derivative matrix and the (lumped) mass matrix respectively . In this work

the kinetic energy consistent flux as introduced in [18] is used, reproducing the well

known split form of Pirozzoli [29]

Fa,#1 (Uijk,Umjk) =



{{ρ}}{{u}}

{{ρ}}{{u}}2 + {{p}}

{{ρ}}{{u}}{{v}}

{{ρ}}{{u}}{{w}}

{{ρ}}{{u}}{{h}}


, (7)

with

{{α}} :=
1

2
(αijk + αmjk).

and the enthalpy h given by e+p/ρ. In [18], it was also shown that when choosing the

element interface flux Fa,∗1 equal to (7), the resulting split form DGSEM is kinetic en-

ergy preserving across the domain. Effectively, this means that the aliasing error in the

kinetic energy preservation due to the discretization of advective terms is eliminated.

A Roe type matrix dissipation is added at element interfaces to recover an unwinding

type split form DG scheme. For the viscous numerical flux function the dissipation free

Bassi and Rebay scheme BR1 is used [1, 2, 17]. Finally, the semi discrete (split form)

DGSEM is integrated in time with an explicit fourth order low storage Runge-Kutta

method, [8].
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2.2. Modal filter implementation

The LES method in this work is based upon a specifically optimized filter shape in

modal polynomial space. This section describes how to generally construct and apply

modal filtering directly to nodal polynomial representations. We describe the filtering

in 1D for clarity, the extension to 2D/3D follows by tensor products extension (line by

line). For filtering we need the modal orthogonal Legendre basis ϕj(ξ)
N
j=0 evaluated

at the interpolation points ξi. The Legendre basis is given by the recursion formula:

ϕj+1(ξ) =
2j + 1

j + 1
ξϕj(ξ)−

j

j + 1
ϕj−1(ξ), j = 1, ..., N − 1 (8)

with the starting point ϕ0(ξ) = 1, ϕ1(ξ) = ξ. The Legendre basis functions are then

normalized by
√
j + 0.5 so that ϕj(1) = 1. The 1D Vandermonde matrix is defined

by Vij := ϕj(ξi), i, j = 0, ..., N . Thereby the 1D solution vector of a scalar quantity

in nodal space u is transformed to modal space by multiplying with the inverse of the

1D Vandermonde :

ũ = V−1u (9)

In modal space, the filter matrix is defined by

K̃ij = δijσi, i, j = 0, ..., N, (10)

with the modal filter coefficients σi ∈ [0, 1] free to be chosen to design a specific

dissipation behavior. Note that fixing σ0 = 1 results in a conservative filter. Applying

the filter matrix the filtered modal solution is:

ũ = K̃ũ. (11)

Finally the filtered modal solution vector is transformed back to nodal space and the

filtered solution vector in nodal space is:

u = Vũ = VKV−1︸ ︷︷ ︸
K

u (12)

The above steps can be efficiently implemented by a single matrix vector multiplica-

tion in which the filter matrix K defined in (12) is applied to u.

Our filter implementation differs in an important aspect from the usual approach in
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DG methods: applying the filter directly to the solution vector at each Runge-Kutta

(RK) stage results in a dissipative filter effect that is proportional to the inverse of the

time step (artificial dissipation added by the filter) [19]. This dependence makes the

common approach unsuitable for a filter-based LES. In order to obtain a filter whose

dissipative action is independent of the time step and can thus serve as a closure model,

the filter has to be applied within the time step update as follows:

ut∗ = ut + σF (ū− u), (13)

where ū is the filtered solution and σF is the scalar filter strength. For the first RK

stage for example this translates to

un+1 = un + b1(ut + σF (ū− u)) (14)

where b1 is the first stage RK time step size. Thus, the filter strength σF is multiplied

by the time step size, recovering independence of filter effect and time step size. Note

that the properties of the spatial operator are not affected by this filtering procedure, as

the filtering is not applied within it.

3. Sub-grid scale model: the optimized filter

It has previously been shown [14, 23] that for typical underresolved LES with

DGSEM an explicit LES model in combination with a low Mach Riemann solver gives

the best results. In this section a strategy is explained to design a LES model specif-

ically tailored to DGSEM. The aim now is to replace the Smagorinsky model, while

using the same baseline scheme (KEP-DG with low Mach/low dissipation Riemann

solver L2Roe). The advantage of DGSEM, compared e.g. to finite volume methods, is

its inner cell spectral representation of the solution, which provides a highly accurate

representation and inherently observes (a part of the ) non-local effects of turbulence.

These properties have already been successfully exploited in [13] to design a filter cri-

terion based on the modal kinetic energy distribution within a cell. In [14] it was shown

that the best results are obtained when specifically shaping a plateau-cusp like model

dissipation inspired by the spectral eddy viscosity model of Chollet et al. [10]. This is
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however computationally expensive, involving the Variational Multiscale methodology

with its many filter operations (filtering gradients and fluxes, see [3] for details).

The idea in this paper is to instead design a dissipative filter, which introduces suit-

able artificial viscosity through the modal distribution of its filter parameters. The filter

strength is an additional free parameter of the scheme. As this procedure is inspired by

SPEVM, the filter strength is chosen similar to the scaling of the eddy viscosity, see

e.g. [22] for an overview, to be proportional to (E(kc, t)/kc)
(1/2) as

σF = c

(
E(N, t)

Lref

)1/2
1

∆2
, (15)

with E(N, t) defined as the kinetic energy of the last polynomial mode represented

within a cell

E(N, t) :=

∫
Q

ṽ2dx ≈
N∑

p,q,r=0

ṽ2Jpqrω
N
p ω

N
q ω

N
r . (16)

Here ṽ is a high pass filtered velocity field obtained by low pass test filtering the ve-

locity within a cell and subtracting the result from the unfiltered velocity and Q denotes

the volume of a given element. For test filtering, a modal filter is applied according to

(12) with filter coefficients σ0→N−1 = 1, σN = 0. Test filtering is applied only once

per timestep for the sake of computational efficiency (instead of in each RK stage).

Jpqr denotes the Jacobian of the element transformation to reference space and ωN the

LGL quadrature weights. ∆ is the filter width as used for the Smagorinsky model [14]

(Q/(N + 1)3) and Lref = 2π is chosen as a reference length. The additional multi-

plication with 1/∆2 ensures consistent dimensional units, while c is a dimensionless

constant left for optimization.

3.1. Optimization procedure

The described sub-grid scale model has N + 1 free parameters for the filter matrix

diagonal entries and additionally the constant c. This parameter space is reduced by

setting the first entry K̃11 = σ0 = 1 and the last entry K̃NN = σN = 0 . The rational

behind the first choice is that it ensures the conservation of each filtered quantity, as it

leaves the first Legendre mode, i.e. the mean per element, unchanged. The last entry of
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the filter diagonal is set to zero to ensure a cusp-like behavior of the model, as required

in the SPEVM. Note that according to the filter described in Sec. 3, setting K̃ij = 0

does not eliminate the specific mode, rather this choice selects the highest possible

damping for a given filter strength σF . We found that the convergence rate of the

scheme remains unchanged, as the filter strength is scaled by the highest modes energy

content (decaying fastest as ∆x→ 0), and a full set of modes is always maintained by

the procedure. Finally, the parameter vector to be optimized is x = (c, σ1, ..., σN−1)

To find the optimal parameters, data from DNS is utilized. First, a DNS of a DHIT

was initialized as described in [14, 15], with integral length scale Lint ≈ 1.3 and

Reλ ≈ 162 . The random initial solution is interpolated onto a fine computational

grid consisting of 64 cells per direction and 8 interpolation LGL points. A DNS is

conducted with DGSEM and the solution is afterwards filtered to the LES grid. The

filtering procedure consists of a interpolation onto an 83 grid equipped with a suffi-

ciently fine inner cell interpolation grid with LGL nodes, and a subsequent projection

to the LES polynomial degree N = 7. Hence, the LES resolution is 64 DOF per direc-

tion. A similar resolution was used in [14] (48 DOF). This filtering procedure allows

for a direct evaluation of the filtered kinetic energy and other relevant quantities such

as the dissipation rate. The objective function is the sum of the L2-errors of the integral

kinetic energy and the resolved integral dissipation rate over 3 test points in time

x = argmin
∑
i

(E
kin,D̃NS

(ti)−Ekin,LES(ti))
2 + (κ

D̃NS
(ti)−κLES(ti))

2, (17)

for which we compute the resolved dissipation rate of filtered DNS and LES by κ =

2ν
∫

Ω
SijSijdΩ, where S = 0.5(∇v + (∇v)T ) is the strain rate tensor. We note that

this is rather a measure for the resolved gradient field than for the kinetic energy decay

of the LES as most of the kinetic energy decay stems from model terms. This function

was found to be more effective than using only the kinetic energy. Note that multiple

solutions may still exist for the given objective function to be minimized.

We optimize the objective function with the Nelder-Mead-method [27]. This method

is also known as the downhill simplex method, as it spans a simplex consisting of

n + 1 points in n−dimensional parameter space. The method was introduced in 1965

by Nelder and Mead and is since used as a simple, heuristic optimization procedure.

9



While there are more efficient optimization procedures, the method has the advantages

of being robust and does not require prior knowledge about the objective function or

the explicit computation of gradients. Also the requirements to the objective function

are low, allowing for discontinuous functions. The method is originally designed for

unbounded optimization and is thus augmented by a variable mapping

x̂ = −ln

(
1

( x−bL
bU−bL )− 1

)
, (18)

transforming the bounded variables x between upper and lower bound bU , bL, to an

unbounded interval, with the inverse mapping given by

x =
bU − bL
1 + ex̂

+ bL. (19)

To avoid getting stuck in local optima, the procedure is reinitialized every 30 iterations,

with a randomly varied simplex centered around the best solution at that iteration.

3.2. Optimization results

The optimization is run in the regime of exponential decay of turbulence kinetic

energy for about 0.5 large eddy turn over times. On the super computer Cray-XC40

at the HLRS Stuttgart, one run took about 15 seconds on 256 cores (2 cells per core).

The optimizer reduced the error by about three orders of magnitude, see Fig. 1, starting

from an initial parameter set σ1→N−1 = (0.55, 0.55, 0.55, 0.55, 0.55, 0.55, 0.75) and

c = 1.25 with bounds for all σi ∈ [0.1, 1] and c ∈ [0.1, 2]. The limits of c are chosen

motivated by the SPEVM, where the theoretical constant is found for a Kolmogorov

spectrum to be ≈ 0.81.

The final shape of parameter found by the optimization procedure after 290 function

evaluations is

σ1→N−1 = (0.925, 1.00, 0.853, (20)

0.557, 0.889, 0.896)

c =0.2
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­1

Figure 1: Convergence of the optimization procedure, plotting the error of the objective function over total

function evaluations

Interestingly there is no monotonic decay of the filter matrix coefficients towards higher

polynomial modes as could be expected from the SPEVM analogy. As described

in [14] the interaction between numerical errors and model dissipation can be com-

plicated, which likely leads to the presented results. Fig. 2 shows the kinetic energy

spectra resulting from the filter-based approach with optimized parameters in compar-

ison to the reference filtered DNS and the best method found in [14]. The filter based

approach is found to give at least as good results.

Wavenumber k

E
k

in

5 10 15 20 25 30

0.02

0.04

0.06

DNS Fitered

OptFilter

RoeL2_Smago

Figure 2: Decaying homogeneous isotropic turbulence filtered DNS/LES kinetic energy spectra: LES with

Smagorinsky model and the optimized filter dissipation both with L2Roe Riemann solver. Three different

points in time from top to bottom: starting point t0, t0 + 0.2T ∗, t0 + 0.5T ∗

Further analyzing the obtained method, Fig. 3 shows the temporal evolution of the

kinetic energy and the dissipation rate κ. Note that the sum of these two was used as

the objective function. It can seen that the kinetic energy of both LES methods follows

closely the filtered DNS result, with a small advantage for the filter based method.

11



The dissipation rate of the filter based method is much closer to the reference than the

Smagorinsky LES result. This shows that the method was able to better resolve the

gradients of the flow field.

The described optimization procedure was repeated for polynomial degrees 3 to 10.

All meshes were chosen such as to obtain approximately 64 DOF per direction. The

resulting filter shapes and strengths are listed in Tbl. 1. Note that for the optimization

procedure, multiple parameter sets with similar errors may exist due to local minima in

the non-convex cost function, hence a clear trend for the filter shapes is not observed.

For all polynomial degrees the final spectra resulting from a computation with the

optimized filter are shown in Fig. 4 in comparison to the respective filtered DNS on

the same grid. All results give excellent spectra and can thus be considered a good

outcome of the optimization procedure. It is found that the optimization works slightly

better for higher polynomial degrees. This can be expected as the parameter space for

the optimization is larger.

4. Testing for Re → ∞

4.1. Decaying HIT

As reported in [14], for severely underresolved flow fields it is insufficient to use

only the Riemann solver dissipation as a model surrogate. In contrast using KEP-fluxes

with Smagorinsky’s model worked reasonably well. In the preceding section a model

based on an optimized dissipative filter shape for LES was introduced. In this section,

= σ0 σ1 σ2 σ3 σ4 σ5 σ6 σ7 σ8 σ9 σ10 c c∞ Error[E − 2]

N3 1 0.799 0.656 0 - - - - - - - 0.061 0.061 4.11

N4 1 1.00 0.01 1.00 0 - - - - - - 0.11 0.11 4.21

N5 1 1.00 0.623 0.991 1.00 0 - - - - - 0.202 0.2 4.5

N6 1 0.873 0.846 1.00 0.304 0.07 0 - - - - 0.132 0.31 3.27

N7 1 0.925 1.00 0.853 0.557 0.889 0.896 0 - - - 0.2 0.35 2.76

N8 1 0.939 0.973 1.00 0.915 0.903 0.157 0.985 0 - - 0.237 0.35 3.22

N9 1 0.958 1.00 1.00 0.629 0.832 1.00 1.00 0.01 0 - 0.250 0.35 2.93

N10 1 0.957 0.989 0.999 1.00 0.632 0.838 1.00 1.00 0.01 0 0.25 0.38 2.49

Table 1: Results of the optimization procedure: filter coefficients σi, c and c∞ is the filter strengths for

DHIT and infinite Reynolds number test case (see Sec. 4) respectively and Error is the final value of the

objective function after optimization.
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OptFilter
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Figure 3: Decaying homogeneous isotropic turbulence filtered DNS/LES, kinetic energy and dissipation over

time: LES with Smagorinsky model and the optimized filter dissipation both with L2Roe Riemann solver.

Open symbols are dissipation curves.

the described approaches will be tested against decaying HIT in the limit of vanishing

viscosity. The simulation is initialized as described in [14], but with a constant k−5/3

distribution of kinetic energy up to kc = 16. The test setup is simulated with 6 cells per

direction and polynomial degree N = 7, leading to a grid Nyquist wavenumber of 24,

and a resolution limit considering 3 points per wavelength of kc = 16. The test case is

particularly interesting as it constitutes the highest degree of under-resolution possible.

Also, if a model is found that needs no computation of the gradients for this test case,

gradient computation can be skipped altogether, leading to a much cheaper numerical

method (about 50% of DGSEM is used for second order terms). The filter-based model

has that property, not needing any computation of gradients for introducing the artifi-

cial dissipation.

In contrast to the DHIT test case in Sec. 3.2, the exact solution cannot be computed by

means of DNS as the required resolution goes towards infinity. Instead, the results are

compared to theoretical findings. First the kinetic energy spectra are examined. The ki-

netic energy in this test case is considered to decay self similarly, i.e. the spectra should

all have a k−5/3 slope as is the case for the initial solution. Secondly, the compensated

kinetic energy spectra normalized by ε(t)(−2/3)k(5/3) (here ε(t) = −dEkin(t)/dt )

should collapse to a constant in an ideal setup, known as the Kolmogorov constant. Val-

ues for the Kolmogorov constant vary in literature but are usually found to be around

1.6, an overview is found in [33]. The normalized spectra have the advantage that
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Figure 4: Decaying homogeneous isotropic turbulence filtered DNS/LES kinetic energy spectra, t0+0.6T ∗
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the decay rate in time and the spectral shape of kinetic energy can be analyzed in one

function. Fig. 5 shows the results for the no-model LES using Roe’s Riemann solver,

confirming the previous findings of its inability to give accurate results for high levels

of under-resolution [14]. As already observable through the upward bend of the spectra,

the Kolmogorov normalized spectra clearly show that the method leads to non-physical

behavior, failing to obtain a plateau.

Fig. 6 shows the results for the superior method found in [14], but with a Smagorin-

sky constant adjusted to 0.15 as to obtain optimal results for the selected test case. The

need for a case by case adjustment of the Smagorinsky constant is a well known draw-

back of the model, which can be circumvented by using the dynamic model variant.

Fig. 6 confirms the results also in the limit of infinite Reynolds number. After an initial

phase, where the random field adjusts to NS dynamics, the spectra decay self similarly,

maintaining a k−5/3 slope up to the highest wavenumbers. The Kolmogorov function

exhibits a plateau around 1.4, in good accordance with theoretical predictions.

The results for the filter-based LES found in this section are shown in Fig. 7. Sim-

ilar to the Smagorinsky model, the constant of the filter strength had to be adjusted

for the best results to 0.35. Assuming that the constant is universal, this means that

the model reference length for this flow is smaller by a factor of 0.566. The reference

length withing the optimization was chosen somewhat arbitrarily. Based on the integral

length scale of the flow with a ratio of about π\(2π) = 0.5 the change of the constant

can be further motivated. The spectra show the best parallel, self similar decay of the

three methods under investigation. The Kolmogorov function plateaus at around 1.2,

which is still in agreement with values reported in literature.

In summary, for decaying homogeneous isotropic turbulence at infinite Reynolds

number, the approach of no-model LES is not suitable. Smagorinsky’s model and the

filter based approach both with the low Mach L2Roe Riemann solver give excellent

results.

4.2. Inviscid Taylor- Green Vortex

The inviscid Taylor Green Vortex flow (TGV, see e.g. [11],[5],[21],[6]) test case is

chosen to show the behavior of the simulations for flows that involve strong turbulent

15



Wavenumber k

E
K

in

5 10 15

10
­2

10
­1

(a)

Wavenumber k

ε(
t)

(­
2

/3
) k

(5
/3

) E
K

in
(k

)

0 5 10 15
­1

0

1

2

3

4

(b)

Figure 5: Left: kinetic energy spectra at different points in time. Right: Kolmogorov constant. No-model

LES using Roe’s Riemann solver
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Figure 6: Left: kinetic energy spectra at different points in time. Right: Kolmogorov constant. LES using

Smagorinsky’s model (CS = 0.15) and L2Roe Riemann solver
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Figure 7: Left: kinetic energy spectra at different points in time. Right: Kolmogorov constant. LES using

the described filter based model.

production and transition mechanisms. The flow is calculated forward in time from

its “laminar” initial state, up to the point where dissipation peaks and scale separation

is maximum followed by a subsequent self-similar decay ideally maintaining a k−5/3

slope in the kinetic energy spectra. For this inviscid case, the peak and decay are the

direct result of the numerical (model) viscosity of the method. Thus, the behavior

induced by the model in this regime is a suitable metric of model quality. The test case

is also easy to set up and compute and is therefore widely used.

In this work it is used to show the ability of some LES methods investigated to not

introduce dissipation for well resolved flows, specifically during the initial transition

phase. As such it was also used recently in [23]. The decay of turbulence after the

dissipation peak is investigated by means of kinetic energy spectra and normalized

spectra as defined in the previous section. Fig. 8 shows the resulting spectra (up to 3

PPW) at t = 14 for all polynomial degrees used for optimization (left) and separately

for N = 7 (right), note that the constant c used is the one for infinite Reynolds number

as denoted in Tbl.1. It is found that for all polynomial degrees the filter based LES is

able to nicely maintain a k−5/3 slope in the spectra.

More information than in the usually shown kinetic energy spectra is contained in

normalized spectra, as discussed above. This is especially important for the TGV test-
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Figure 8: Left: kinetic energy spectra at t = 14 for different polynomial degrees denoted by symbols. Right:

as left but only N = 7 shown.

case, as for infinite Reynolds number no DNS reference can be provided. Fig 9 shows

the normalized spectra for all polynomial degrees (right) and again for N = 7 sepa-

rately (left). All normalized spectra show a plateau over a wide range of wavenumbers.

The Kolmogorov constant is approximate 1.4 in excellent accordance with theoretical

predictions.

Finally the dissipation rate calculated as −dEkin/dt is shown in Fig 10, exemplary

for N = 7 while all other polynomial degrees show similar behavior. It is found that

the filter procedure does not add considerable damping at the beginning of the compu-

tation where the flow field is essentially laminar and hence no model viscosity should

be added. The dissipation rate shows the typical rapid onset of dissipation once the tur-

bulence production started (t ≈ 3). It can thus be concluded that the filter based LES

allows for clean turbulent transition, while maintaining the expected behavior of self

similar decay. The reason it does so is that the filter strength is scaled by the kinetic

energy content of the last polynomial mode. This energy content decays spectrally

whenever the flow is well resolved.
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Figure 9: Left: normalized kinetic energy spectra at t = 14 for different polynomial degrees denoted by

symbols. Right: as left but only N = 7 shown.
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5. Channel flow at Reτ = 590

So far all numerical experiments focused on DHIT or TGV, both with periodic

boundary conditions. For the evaluation of LES model performance, these are the test

cases of choice as they offer insights into the dissipation behavior of the model. To

analyze wall-bounded flows with strong an isotropy of turbulence stresses at the wall,

plane turbulent channel flow provides a simple setup. For this case, there is usually one

direction, the wall normal one, which is significantly better resolved than the other two.

For wall resolved LES that is necessary to resolve the wall gradient. However, that is by

design a contrast to the usual requirements of LES models, which require the resolution

of energy containing scales only. Most LES models therefore use an ad-hoc adjustment

to turn off the model effect nearing the wall. Nevertheless most engineering flows are

wall bounded, and it is thus necessary to check the model behavior for such cases. In

this section the three models of the previous section are tested for a wall-resolved LES

against a plane turbulent channel flow at friction Reynolds number Reτ = 590. The

no-model LES needs no adjustment, as the increased wall-normal resolution reduces

the discretization influence. The Smagorinsky model is used in its dynamic variant as

described in [14] and with a Van-Driest damping modifying the model mixing length

towards the wall as

l = (CS∆)2(1− ey
+/A)m, (21)

where |+ denotes quantities in wall units and the constants A and m where chosen as

50 and 3 respectively, which we found to obtain best results with . For the filter-based

approach the filter shape found for DHIT is used, but the integration of kinetic energy

to determine the filter strength was done only in the wall parallel directions as to obtain

a artificial dissipation varying with wall distance also within one cell. The constant was

set to c = 0.3, these two measures where found sufficient to obtain proper wall scaling.

Note that unlike the Smagorinsky model, where the viscosity is computed from the

shear strain and thus plateaus towards the wall, the filter strength goes to zero naturally

towards the wall with vanishing velocities (proportional to y).

The computational setup consists of a stretched grid in wall normal direction with a

bell shape stretching and a ratio of 4 from smallest to largest cell and a constant grid
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size in wall parallel direction with 8 cells. The dimension are set as in Moser [25]

to [2π, 2, π] for [x, y, z], with periodic boundaries in wall parallel directions. With

N = 7, grid spacings are ∆x+ ≈ 58, ∆z+ ≈ 29 and ∆y+
min/max ≈ 7/28, based

on an equidistant inner cell point distribution. The resolution is chosen coarser than

is usually done to obtain visible differences in between the models, as done also eg.

by [20]. The flow is driven by a constant pressure gradient volume source, fixing

the friction Reynolds number. Fig. 11 shows the result for the discussed methods.

Besides the very coarse resolution, all methods accurately predict the mean velocity

profile of the flow. The no-model LES slightly under-estimates the mean velocity in

the channel center, indicating that it lacks some dissipation. This result shows that as

discussed above, the overall resolution w.r.t. turbulence resolution is still high. Some

differences are seen in the Reynolds stress profiles, mainly in (u′u′)+. The no-model

LES overestimates the Reynold stress peak and underestimates the stress in the center,

this is commonly observed for this method also eg. in [32]. The best prediction of

the Reynolds stresses for this very coarse resolution gives the filter based approach.

Overall, all methods are capable of giving acceptable results for wall resolved LES.

6. Summary

Discontinuous Galerkin and related methods pose an attractive compromise be-

tween accuracy through local high order approximations and geometric flexibility through

the support of unstructured meshes. These properties make them good baseline schemes

for LES in non-trivial domains. The recent development of kinetic energy preserving

DG schemes provides a robust discretization and thus opens the possibilities of tun-

ing the numerical dissipation (both for surface and volume terms) as a surrogate LES

model. In this work, we have presented such an approach based on specifically de-

signed dissipative solution filters. This is further motivated by the potential of the

method to be used in very high Reynolds number regimes where the computation

of gradients could then potentially be skipped all together, as indicated by the test

cases. The filter kernel and scaling of filter strength are selected based on considera-

tions from turbulence theory, while the filter coefficients themselves are found through
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a non-linear optimization in which the kinetic energy and dissipation rate for a de-

caying homogeneous isotropic turbulence serve as a cost function. We show that the

optimized kernels perform very well for the decaying homogeneous isotropic turbu-

lence and Taylor-Green-Vortex cases and yield comparable to better results than an

explicit Smagorinsky model for all polynomial degrees considered. By scaling the fil-

ter strength with the high mode kinetic energy content, the model preserves laminar

flows and allows for smooth transition to turbulence. We found that the filter strength

is not independent of the flow case. We recommend using the higher values of the

filter strength constant established for infinite Reynolds number flow. For the case of

the plane channel flow, the filter procedure observes the near-wall behavior through

a scaling of the filter strength. As this modification is cell local and the wall normal

direction in a hexahedral cell is easily identified, this method ports easily to more com-

plex geometries including unstructured meshes. In summary, the presented, optimized

filter-based LES approach takes full advantage of the local polynomial spectrum of

the high order solution to construct discretization-aware filter kernels. The proposed

approach does not require the computation of solution gradients, nor does it introduce

additional time step constraints.
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