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Abstract. This paper introduces the auxiliary function method (AFM), a novel, fast

and simple approach for waveform based earthquake location. From any initial hypocen-

ter and origin time, we can construct the auxiliary function, whose zero set contains the

real earthquake hypocenter and the origin time. In most of situations, there are very

few elements in this set. The overall computational cost of the AFM is significantly less

than that of the iterative methods. According to our numerical tests, even for large

noise, the method can still achieve good location results. These allow us to determine

the earthquake hypocenter and the origin time extremely fast and accurate.

Keywords: Computational seismology, Inverse theory, Waveform inversion, Earthquake

location

1. Introduction

In this work, we present a novel approach to solve the inverse problem [26] to determine

the real earthquake hypocenter ξT and the origin time τT

(1.1) (ξT , τT ) = argmin
ξ,τ

∑
r∈R

χr(ξ, τ),

in which χr(ξ, τ) is the misfit function

(1.2) χr(ξ, τ) =

∫ T
0
|dr(t)− s(ηr, t)|

2 dt

2
∫ T

0
|dr(t)|2 dt

,

for the r−th receiver. The time-series dr(t) is the real earthquake signal which occurred at

(ξT , τT ) and was recorded at receiver r. The set R contains all of the receivers that we use

for inversion. And the synthetic earthquake signal s(x, t) is corresponding to the initial

hypocenter ξ and the initial origin time τ . For model simplicity, they can be regarded as

the solutions

(1.3) dr(t) = u(ηr, t; ξT , τT ), s(x, t) = u(x, t; ξ, τ),

of the following acoustic wave equation

(1.4)
∂2u(x, t; ξ, τ)

∂t2
= ∇ ·

(
c2(x)∇u(x, t; ξ, τ)

)
+ f(t− τ)δ(x− ξ), x, ξ ∈ Ω,

with initial-boundary conditions

u(x, 0; ξ, τ) = ∂tu(x, 0; ξ, τ) = 0, x ∈ Ω,(1.5)

n ·
(
c2(x)∇u(x, t; ξ, τ)

)
= 0, x ∈ ∂Ω.(1.6)
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Here ηr denotes the location of the r−th receiver and c(x) is the wave speed. The

simulated domain Ω ⊂ Rd, d is the dimension of the problem and n is the unit outer

normal vector to the boundary ∂Ω. The point source hypothesis δ(x − ξ) is considered

in (1.4) since we investigate the situation that the temporal and spatial scales of seismic

wave propagated is large enough compared to the scales of seismic rupture [1, 15]. The

source time function has the form of Ricker wavelet

(1.7) f(t) = A
(
1− 2π2f 2

0 t
2
)
e−π

2f20 t
2

,

in which f0 is the dominant frequency and A is the normalization factor. Since we focus

on the earthquake location problem on a large computational domain Ω, we can simply

consider the reflection boundary condition (1.6) rather than others, e.g. the perfectly

matched layer absorbing boundary condition [11].

The equations (1.1)-(1.7) provide a mathematical model to the waveform based earth-

quake location problem, which is a fundamental problem [20] with various applications in

seismology [12, 18, 24]. Traditionally, the earthquake location problem is solved within the

framework of the ray theory, see for example [4, 5, 6, 16, 19]. But the earthquake location

results are not satisfactory since the ray theory is low accuracy when the seismic wave

length is not small enough compared to the scale of wave propagation region [3, 8, 17, 27].

Thus, it is necessary to develop the waveform based earthquake location method. This

direction is becoming more and more popular in recent years [7, 9, 13, 14, 22, 26], together

with the fast increase of computational power.

In general, the optimization problem (1.1)-(1.4) can be solved by iterative methods

[23, 26]. This approach requires that the initial value should be close enough to the

global optimization solution. In particular, due to the highly singular nature of the delta

function δ(x−ξ) in the wave equation (1.4), the convergence domain could be very small.

Although this issue has been studied in [26], the convergence domain is still restricted. The

other important problem is the computational cost of the iterative method. To update

the value of hypocenter and origin time, the sensitivity kernel should be obtained for each

receiver. It costs several times wave equation computations to construct the sensitivity

kernel. Considering the number of iterations and the number of initial values, the total

computational cost could be very large. In practice, there are often two situations: the

real-time earthquake location and many earthquakes relocation. Both of them require an

accurate and efficient algorithm, which is the goal of this paper.

In this study, we introduce a set of auxiliary functions Ξr(ζ, ν). Define the solution set

of the system

T = {(ζ, ν) | Ξr(ζ, ν) = 0, ∀r ∈ R},

in which R ⊆ A, and A is the set of all receivers. We will prove that (ξT , τT ) ∈ T , i.e.

Ξr(ξT , τT ) = 0, ∀r ∈ R.

Therefore, the optimization problem (1.1) is transformed into a system of equations, which

can be solved in the least square sense. In the following sections, we will show that the
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computational cost of the AFM is significantly less than that of the iterative methods,

e.g. [14, 23, 26].

The paper is organized as follows. In Section 2, we prove the main theorem and propose

the algorithms. The numerical experiments are presented to illustrate the features and

highlights of AFM in Section 3. In Section 4, we make some conclusive remarks.

2. The auxiliary function method

2.1. The main theorem. We begin this section with the following theorem. In fact, all

the discussions in this paper depends on it.

Theorem 1. For any given initial hypocenter ξ and origin time τ , define the auxiliary

functions

(2.1) Ξr(ζ, ν) = 2χr(ξ, τ)−
∫ T

0

f(t− ν)wr(ζ, t)− f(t− τ)wr(ξ, t)dt, ∀r ∈ R,

in which χr(ξ, τ) has been given in (1.2) and wr(x, t) satisfies the adjoint equation with

terminal-boundary conditions

(2.2)


∂2wr(x,t)

∂t2
= ∇ · (c2(x)∇wr(x, t)) + dr(t)−s(ηr,t)∫ T

0 |dr(t)|
2dt
δ(x− ηr), x ∈ Ω,

wr(x, T ) = ∂wr(x,T )
∂t

= 0, x ∈ Ω,

n · (c2(x)∇wr(x, t)) = 0, x ∈ ∂Ω.

Then, for real earthquake hypocenter ξT and origin time τT , we have

(2.3) Ξr(ξT , τT ) = 0, ∀r ∈ R.

Proof: Let us first define the difference function

δs(x, t) = u(x, t; ξT , τT )− u(x, t; ξ, τ).

According to (1.3), it follows

δs(ηr, t) = dr(t)− s(ηr, t), ∀r ∈ R.

And the difference function δs(x, t) satisfies the wave equation with initial-boundary

conditions

(2.4)
∂2δs(x,t)

∂t2
= ∇ · (c2(x)∇δs(x, t)) + f(t− τT )δ(x− ξT )− f(t− τ)δ(x− ξ), x ∈ Ω,

δs(x, 0) = ∂δs(x,0)
∂t

= 0, x ∈ Ω,

n · (c2(x)∇δs(x, t)) = 0, x ∈ ∂Ω.

Multiply the wave function wr(x, t) given in (2.2), integrate it on Ω× [0, T ] and use the

integration by parts, we obtain

(2.5)

∫ T

0

∫
Ω

∂2wr
∂t2

δsdxdt =

∫ T

0

∫
Ω

δs∇ · (c2∇wr)dxdt

+

∫ T

0

f(t− τT )wr(ξT , t)− f(t− τ)wr(ξ, t)dt.
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On the other hand, the misfit function χr(ξ, τ) in (1.2) can be rewritten as

(2.6) χr(ξ, τ) =

∫ T
0

(dr(t)− s(ηr, t)) δs(ηr, t)dt
2
∫ T

0
|dr(t)|2 dt

=

∫ T
0

∫
Ω

(dr(t)− s(ηr, t)) δs(x, t)δ(x− ηr)dxdt

2
∫ T

0
|dr(t)|2 dt

.

Multiplying both sides of the above equation by 2, and adding equation (2.5), we get

2χr(ξ, τ) =

∫ T

0

f(t− τT )wr(ξT , t)− f(t− τ)wr(ξ, t)dt.

This completes the proof. �

This theorem holds for any initial hypocenter ξ and origin time τ . Assume that the

solution of the equations

(2.7) Ξr(ζ, ν) = 0, ∀r ∈ R,

is unique, we only need one round computation to get the real hypocenter ξT and origin

time τT . In this sense, the theorem leads to a non-iterative method. The theorem does

not require that the real hypocenter ξT and the initial hypocenter ξ are close. Thus, a

global method for the inverse problem (1.1) can be developed based on the theorem.

There are two issues we need to clarify about the solutions of equation (2.7):

1. In practice, we prefer to solve the equations (2.7) in the least square sense, i.e.

(2.8) (ξT , τT ) = argmin
ζ,ν

Γ(ζ, ν).

in which

Γ(ζ, ν) =
∑
r∈R

Ξ2
r(ζ, ν).

2. The theorem does not guarantee the uniqueness of the solution. This may lead to incor-

rect inversion result. Fortunately, more constraints r ∈ R may improve the uniqueness

of the solution. According to the numerical experiments, we are not suffering from the

problem of uniqueness. �

2.2. Algorithm and Discussions. Based on the above results, the detailed algorithm

is as follows:

Algorithm 1 (The auxiliary function method).

• Initialization. Given a searching domain Ωs and a searching time interval Is, we

wish that ξT ∈ Ωs and τT ∈ Is. Select a mesh size h > 0 and a time step σ > 0.

• Discretization. Select a uniform or quasi-uniform grid Ωh ⊂ Ωs of mesh size h.

Select a uniform or quasi-uniform time division Iσ ⊂ Is of time step σ.

• Forward and Backward evolution. Given the initial hypocenter ξ and origin time

τ , compute the wave equation (1.4)-(1.6) to get

s(ηr, t) = u(ηr, t; ξ, τ),
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and the misfit function χr(ξ, τ), ∀r ∈ R. Next, compute the individual adjoint

wave equation (2.2) to get wr(x, t) for r ∈ R.

• Construction. Evaluate all the values of the auxiliary functions Ξr(ζ, ν) on the

mesh size ζ ∈ Ωh, time division ν ∈ Iσ and r ∈ R. Thus, Γ(ζ, ν) for (ζ, ν) ∈
Ωh × Iσ is directly obtained.

• Output. Finally, we can easily get the approximated solution of the optimization

problem (2.8)

(ξ∗, τ∗) = argmin
ζ∈Ωh,ν∈Iσ

Γ(ζ, ν).

by direct search. Output (ξ∗, τ∗) and stop. �

Now, we get an estimate of the real hypocenter and origin time (ξ∗, τ∗). But we still

need to check whether this is valid. For the case where

ξT /∈ Ωs or τT /∈ Is,

it is obviously that the output (ξ∗, τ∗) is a wrong approximation. To avoid this situation,

we have to check that if

(2.9)
∑
r∈R

|χr(ξ∗, τ∗)| < ε1,

is satisfied. Here ε1 is the tolerance value. To obtain the values of the misfit function

χr(ξ∗, τ∗) for all r ∈ R, we only need to solve the forward wave equation for one time.

Once the criteria (2.9) is met, an accurate approximation of the real hypocenter and origin

time is obtained. Otherwise, we need to restart the algorithm with different searching

domain Ωs and searching time interval Is.

Remark 1. In fact, it is not expensive to satisfy the conditions

ξT ∈ Ωs and τT ∈ Is.

This only needs a large searching domain Ωs and searching time interval Is. According to

the above algorithm, we don’t need to solve extra wave equations for this. �

We now discuss the computational cost of Algorithm 1, which consists of four parts:

1. The simulation of the wave equation (1.4)-(1.6) and the adjoint wave equations (2.2).

It needs to solve the wave equation for #R + 1 times. Here #R denotes the number

of elements in the set R.

2. The computation of the misfit functions χr(ξ, τ). It needs to compute the 1-d integral

for 2#R times.

3. The computation of the auxiliary functions Ξr(ζ, ν). It needs to compute the 1-d

integral for #R · (#Ωh ·#Iσ + 1) times.

4. Computing the misfit function χr(ξ∗, τ∗) for all r ∈ R. It requires to solve the forward

wave equation once and calculate the 1-d integral 2#R times. �

Adding these four parts, the total computational cost is #R + 2 times wave equation

computations plus #R · (#Ωh ·#Iσ + 5) times 1-d integral calculations. Considering the

following facts: (i) the support of integrand function is small, (ii) the mesh size and the
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time step of the searching domain and the searching time interval can be coarser than

that of the wave field simulations, the overall cost does not exceed #R + 3 times wave

equation computations.

For iterative method, the overall computational cost is about (#R + 1) · Niter · Ninit

times wave equation computations. Here Niter denotes the average number of iterations

for each initial data and Ninit denotes the average number of initial data for each problem.

Obviously, the AFM is much more efficient.

2.3. The auxiliary function preprocessor method. There is one problem with Algo-

rithm 1. In order to improve the location accuracy, we need to reduce the mesh size h and

time step σ. This will increase the computational cost of the Construction step. In the

extreme case, the computational cost of the Construction step could be far more than the

cost of wave equation computations. It is of course not worthwhile. An alternative way

to improve the location accuracy is to treat the auxiliary function method (Algorithm 1)

as a preprocessor. The sketch of the algorithm is as follows:

Algorithm 2 (The auxiliary function preprocessor method).

• Initialization. Given a searching domain Ωs and a searching time interval Is.

• Preprocessing. Execute Algorithm 1 on a coarse mesh grid Ωh ⊂ Ωs and time

division Iσ ⊂ Is to obtain (ξ∗, τ∗).

• Verifying. If the criterion (2.9) is not met, go back to the Preprocessing step with

different searching domain Ωs and searching time interval Is. Otherwise, go to the

Iteration step.

• Iteration. Execute the iterative method, see e.g. in [23, 26], for the inverse problem

(1.1)-(1.7) with initial hypocenter and origin time (ξ∗, τ∗) to get (ξA, τA). �

According to the above algorithm, we get an accurate estimation of the earthquake

hypocenter and origin time (ξA, τA). The total computational cost of this algorithm is

about (#R+3) ·NAFM +(#R+1) ·N ′iter times wave equation computations. Here NAFM

and N ′iter denote the number of execution times for AFM and the average number of

iterations of the iterative method. As discussed in Remark 1, it is not difficult to satisfy

the criterion (2.9). Thus NAFM can be considered as 1. Moreover, since the initial value

(ξ∗, τ∗) is close enough to optimization solution (ξT , τT ), the number of iterations N ′iter can

also be very small. Thus, the AFM preprocessor is still more efficient than the iterative

methods.

3. Numerical Experiments

In this section, two examples are presented to demonstrate the efficiency and effective-

ness of our method. In all the numerical examples, the finite difference schemes [2, 28]

are applied to solve the acoustic wave equation (1.4) with initial condition (1.5). On

the surface of the earth, we consider the reflection boundary condition (1.6). And the

perfectly matched layer boundary condition [11] is used for the other boundaries within



THE AUXILIARY FUNCTION METHOD 7

Figure 1. Illustration of two-layer velocity model. The black triangles

indicate the receivers.

the earth. The point source δ(x− ξ) is numerical discretized as follows [25]:

δ(x) =



1
h

(
1− 5

4

∣∣x
h

∣∣2 − 35
12

∣∣x
h

∣∣3 + 21
4

∣∣x
h

∣∣4 − 25
12

∣∣x
h

∣∣5) , |x| ≤ h,

1
h

(
−4 + 75

4

∣∣x
h

∣∣− 245
8

∣∣x
h

∣∣2 + 545
24

∣∣x
h

∣∣3 − 63
8

∣∣x
h

∣∣4 + 25
24

∣∣x
h

∣∣5) , h < |x| ≤ 2h,

1
h

(
18− 153

4

∣∣x
h

∣∣+ 255
8

∣∣x
h

∣∣2 − 313
24

∣∣x
h

∣∣3 + 21
8

∣∣x
h

∣∣4 − 5
24

∣∣x
h

∣∣5) , 2h < |x| ≤ 3h,

0, |x| > 3h.

Here h is a numerical parameter which is related to the mesh size.

3.1. The two-layer velocity model. Consider the two-layer model in the bounded

domain Ω = [−10 km, 110 km]× [0 km, 50 km], the wave speed is

c(x, z) =

{
5.2 + 0.05z + 0.2 sin πx

25
, 0 km ≤ z ≤ 20 km,

6.8 + 0.2 sin πx
25
, z > 20 km.

The unit is ‘km/s’. The computational time interval I = [0, 25 s]. The dominant frequency

of the earthquakes is f0 = 2Hz. There are 20 equidistant receivers on the surface

ηr = (xr, zr) = (5r − 2.5 km, 0), r = 1, 2, · · · , 20,

see Figure 1 for illustration.

First, we test the auxiliary function preprocessor method (Algorithm 2) using 500

experiments. The searching domain is Ωs = [0, 100 km] × [0, 40 km], and the searching

time interval is Is = [0, 25 s]. The mesh sizes for the searching grid are hx = 0.5 km and

hz = 0.4 km. The time step for the searching time interval is σ = 0.1 s. As a comparison,

we also compute these experiments by the iterative method proposed in [26].

The experiments are designed as follows: the real and initial earthquake hypocenter

ξiT , ξ
i are both uniformly distributed over [0, 100 km] × [0, 40 km], the real and initial

original time τ iT , τ
i are both uniformly distributed over [5 s, 20 s]. Their spatial distribu-

tion and the histogram of the distance between the real and the initial hypocenter

di =
∥∥ξiT − ξi∥∥2

,

are presented in Fig 2.

In the auxiliary function preprocessor method, we randomly select five receivers for

inversion, e.g. r = 3, 5, 9, 14, 18. In Table 1, we can see the convergent results of

the two methods. From which, we can conclude that the auxiliary function preprocessor
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Figure 2. The two-layer velocity model. Left: the spatial distribution of

the real earthquake hypocenter ξiT ; Middle: the spatial distribution of the

initial earthquake hypocenter ξi; Right: the distance distribution histogram

between the real and the initial earthquake hypocenter di.

Table 1. The two-layer velocity model. Convergent results for the auxil-

iary function preprocessor method(AFPM) and the iterative method(IM).

Correct convergence Diverge Error convergence Total

AFPM 500 0 0 500

IM 117 355 28 500

method converges globally here. For the iterative method proposed in [26], only 23.4%

experiments converge. We have to remark that the range of convergence of the iterative

method has been enlarged by several tens of time. In contrast, the auxiliary function

preprocessor method has an absolute advantage in terms of convergence.

In Figure 3, we output the histogram of the iterations and computational time for the

two methods. The mean and standard deviation of iterations and computational time

for the two methods are also presented in Table 2. In particular, we present the mean

and standard deviation of the time consuming for the preprocessing step and the single

iteration step of the auxiliary function preprocessor method in Table 3. It is obviously that

the time consuming of the preprocessing step and the single iteration step are almost the

same. Thus, we consider the preprocessing step to be an iteration step. Taking account

of all the above issues, the total computational cost of the iterative method is about

500

117
× 1523

689
≈ 9.45 times

of the auxiliary function preprocessor method. Thus, we can concluded that the auxiliary

function preprocessor method is more efficient than the iterative method. This agrees

with the theoretical discussions in the previous section.

Next, two examples are specifically presented. The parameters are selected as follows:

(i) ξT = (90.36 km, 35.67 km), τT = 10 s, ξ = (18.23 km, 13.13 km), τ = 15.5 s;

(ii) ξT = (87.252 km, 8.842 km), τT = 10 s, ξ = (12.75 km, 32.87 km), τ = 17.4 s.

In Figure 4-5, we output the functions Γ(ζ, ν), from which we can see the global minimum

is unique in both cases. The convergent history of the auxiliary preprocessor method are
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Table 2. The two-layer velocity model. The Mean(M) and Standard De-

viation(SD) of iterations and computational time for the AFPM and IM.

Iterations Computational time

M SD M SD

AFPM 3.46 0.61 689 s 132.7 s

IM 8.33 2.35 1523 s 501.0 s

Table 3. The two-layer velocity model. The mean and standard deviation

of the time consuming for the preprocessing step and the single iteration

step of the auxiliary function preprocessor method.

Mean Standard Deviation

The preprocessing step 224.9 s 13.2 s

The single iteration step 222.7 s 11.8 s

Figure 3. The two-layer velocity model. The histogram of the iterations

and computational time for the two methods. Up: the histogram of iter-

ations; Down: the histogram of computational time; Left: the auxiliary

preprocessor method; Right: the iterative method.

also illustrated in Figure 6. Here, we randomly select five receivers for inversion, e.g.

r = 3, 5, 9, 14, 18. We can see that the global minimum of the function Γ(ζ, ν) is

very close to the optimization solution of (1.1). Thus, when the accuracy requirement is

not high, the solution of auxiliary function method is directly applicable. On the other

hand, when the accuracy requirement is high, the solution of auxiliary function method

can provide excellent initial values for the iterative methods.
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Figure 4. The two-layer velocity model, case (i). The ζx − ζz (Left, ν =

10 s), ν − ζx (Middle, ζz = 35.67 km) and ν − ζz (Right, ζx = 90.36 km)

cross section plan of function Γ(ζ, ν). Up for large image and Down for

zoom-in image.

Figure 5. The two-layer velocity model, case (ii). The ζx − ζz (Left,

ν = 10 s), ν−ζx (Middle, ζz = 8.842 km) and ν−ζz (Right, ζx = 87.252 km)

cross section plan of function Γ(ζ, ν). Up for large image and Down for

zoom-in image.

At last, we test the influence of the noise. The same parameters (i) and (ii) are selected

here. The real earthquake signal can be regarded as

dr(t) = u(ηr, t; ξT , τT ) +Nr(t),

with Nr(t) is subject to the normal distribution with mean µ = 0 and the standard

deviation

σ = R×max
t
|u(ηr, t; ξT , τT )| .

Here R denotes the ratio, which will be selected as 10%, 15%, 20% and 25% respectively.

The real earthquake signal with noise dr(t) and the noise free signal u(ηr, t; ξT , τT ) are

illustrated in Fig 7. In order to reduce the impact of noise, we can select a time window
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Figure 6. Convergence history of the two-layer velocity model. Up for

case (i), and Down for case (ii). Left (large image) and Middle (zoom-in

image): the convergent trajectories; Right: the absolute errors with re-

spect to iteration steps between the real and computed hypocenter of the

earthquake. The magenta square is the initial hypocenter, the magenta dia-

mond denotes the hypocenter obtained by AFM (algorithm 1), the magenta

pentagrams indicate the hypocenters in the iterative process of the AFPM

(algorithm 2), and the black pentagram is the real hypocenter.

that contains the main part of u(ηr, t; ξT , τT ). In Table 4, the mean and standard deviation

of the errors between the location results (ξ∗, τ∗) computed via the auxiliary function

method (Algorithm 1) and the true solution (ξT , τT ) are presented. The auxiliary function

preprocessor method (Algorithm 2) is not considered here since the iterative method may

fail even for small ratio R. For each parameter group and ratio R, we test the algorithm

with 10 different noise. We note that all the standard deviations are zero. This implies

that all the test converge to the same solution. They are

(i) ξ∗ = (90.40 km, 35.60 km), τ∗ = 10.01 s;

(ii) ξ∗ = (87.20 km, 8.80 km), τ∗ = 9.99 s.

This is because we are using the same mesh grid Ωh and time division Iσ in the program.

It should be noted that the numerical results may become better or worse as the mesh

grid and time division change. But the location errors are always in the same order of

magnitude, which is caused by the noise. We can also observe that the algorithm failed

when R = 25% in the parameter group (i). But the algorithm works for all the ratios

in the parameter group (ii). Thus, we tend to believe that the algorithm can be success

when R below 20% in this example. This is a huge advantage of the auxiliary function

method over the traditional iterative methods. In fact, accordingly to our numerical

tests, the traditional iterative methods fail when R reaches to 10% and above. Moreover,

the computational cost of the auxiliary function method is much less than that of the

conventional iterative methods.
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Figure 7. Illustration of signal with noise in the two-layer velocity

model. The signal with noise dr(t) (blue line) and the noise free signal

u(ηr, t; ξT , τT ) for receivers r = 9. The horizontal axis is the time t. Up:

parameters group (i); Down: parameters group (ii); From left to right, the

ratio R = 10%, 15%, 20%, 25% respectively.

Table 4. The two-layer velocity model. The Mean(M) and Standard De-

viation(SD) of of the errors between the location results (ξ∗, τ∗) and the

true solution (ξT , τT ).

Errors of AFM, case (i) Errors of AFM, case (ii)

R M SD M SD

10% 0.0812 0 0.0676 0

15% 0.0812 0 0.0676 0

20% 0.0812 0 0.0676 0

25% fail 0.0676 0

3.2. The practical velocity model. Let’s consider a more practical model, the com-

putational domain is [0 km, 200 km]× [0 km, 200 km], and the wave speed is

c(x, z) =



5.5, 0 < z ≤ 33 + 2.5 sin πx
40
,

7.8, 33 + 2.5 sin πx
40
< z ≤ 45 + 0.4x,

7.488, 45 + 0.4x < z ≤ 60 + 0.4x,

8.268, 60 + 0.4x < z ≤ 100 + 0.4x,

7.8, others.

with unit ‘km/s’. The model consists of the crust, the mantle and the undulating Moho

discontinuity. In the mantle, there is a subduction zone with a thin low velocity layer

atop a fast velocity layer [23, 26], see Figure 8 for illustration. This model is a typical

seismogenic zone [21]. Taking account into the complexity of the velocity structure, it is

much more difficult to locate the earthquake hypocenter. The computational time interval

I = [0, 55 s] and the dominant frequency is f0 = 2Hz. Consider 12 randomly distributed
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Figure 8. The practical velocity model. The red triangles indicate the receivers.

Table 5. The practical velocity model: the horizontal positions of re-

ceivers, with unit ‘km’.

r 1 2 3 4 5 6 7 8 9 10 11 12

xr 21 33 39 58 68 74 86 98 126 132 158 197

receivers ηr = (xr, zr) on the surface zr = 0 km, there horizontal positions are given in

Table 5.

We firstly investigate the noise free situation. Consider the following four cases: (i)

An earthquake occurs in the subduction zone, but the initial hypocenter is chosen in the

mantle

ξT = (168.352 km, 142.849 km), τT = 10 s,

ξ = (53.494 km, 47.113 km), τ = 13.79 s;

(ii) The contrary case of (i)

ξT = (53.494 km, 47.113 km), τT = 10 s,

ξ = (168.352 km, 142.849 km), τ = 13.79 s;

(iii) An earthquake occurs in the crust and close to the Moho discontinuity, but the initial

hypocenter is chosen in the subduction zone

ξT = (163.326 km, 32.877 km), τT = 10 s,

ξ = (26.497 km, 69.235 km), τ = 15.32 s;

(iv) The contrary case of (iii)

ξT = (26.497 km, 69.235 km), τT = 10 s,

ξ = (163.326 km, 32.877 km), τ = 15.32 s;
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Table 6. The practical velocity model, case (i). The location results

(ξ∗, τ∗) and the errors.

R ξ∗ (km) τ∗ (s) ‖ξT − ξ∗‖2 (km) |ξ∗z − ξTz| /ξTz
10% (168.2, 142.6) 10.04 0.292 0.17%

15% (168.2, 142.2) 10.09 0.667 0.45%

20% fail

The searching domain is Ωs = [0, 200 km] × [0, 200 km], and the searching time interval

is Is = [τ − 10 s, τ + 10 s]. The mesh sizes for the searching grid are hx = 0.2 km and

hz = 0.2 km. The time step for the searching time interval is σ = 0.05 s.

The functions Γ(ζ, ν) are output in Figure 9-12. In these figures, it is easy to observe

the uniqueness of the global minimum. We also present the convergent history of the

auxiliary preprocessor method in Figure 13. We can see that the global minimum of the

function Γ(ζ, ν) is very close to the optimization solution of (1.1). From which, we can

draw the same conclusion as in Subsection 3.1.

Finally, the noise is taken into consideration. We test the cases (i)-(iv). The noise is

added in the same way as in Subsection 3.1. The real earthquake signal with noise dr(t)

and the noise free signal u(ηr, t; ξT , τT ) are illustrated in Fig 14. We also select a time

window that contains the main part of u(ηr, t; ξT , τT ) to reduce the impact of noise. In

Figure 14 (iii), two waveforms are observed, where the first is the surface wave and the

latter is the direct wave. In Figure 14 (iv), only one waveform is observed. In fact, since

the source location is very close to the discontinuity between the low velocity layer and

the fast velocity layer in the subduction zone, the direct wave and the reflected wave

arrive almost at the same time. The preceding two cases are very typical.

In Table 6-9, the location results (ξ∗, τ∗) computed via the auxiliary function method

(Algorithm 1) and their errors with respected to different ratio R are presented. From

which, we can see that the method can obtain satisfactory location results for R = 10%

and 15%For R = 20%, the error results are obtained for case (i) and (iii). This is because

the simulation domain is very large and there are many discontinuities. Nevertheless,

the auxiliary function method is still much better than the iterative methods, which is

only valid for R ≤ 5% according to our numerical tests. Taking into account that the

computational cost of the auxiliary function method is almost the same to the single

iteration step of the iterative method. The computation efficiency of our method is also

obvious.

4. Conclusion and Discussion

The first conclusion to be drawn from the numerical evidence presented earlier is that

the auxiliary function preprocessor method (Algorithm 2) can determine the earthquake

hypocenter and the origin time very efficient and accurate when the seismic signals are

noise-free. Secondly, the auxiliary function method (Algorithm 1) can locate the earth-

quake hypocenter and the origin time with reasonable accuracy in the situation of noise.
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Figure 9. The practical velocity model, case (i). The ζx − ζz (Left, ν =

10 s), ν−ζx (Middle, ζz = 142.849 km) and ν−ζz (Right, ζx = 168.352 km)

cross section plan of function Γ(ζ, ν). Up for large image and Down for

zoom-in image.

Figure 10. The practical velocity model, case (ii). The ζx− ζz (Left, ν =

10 s), ν − ζx (Middle, ζz = 47.113 km) and ν − ζz (Right, ζx = 53.494 km)

cross section plan of function Γ(ζ, ν). Up for large image and Down for

zoom-in image.

Table 7. The practical velocity model, case (ii). The location results

(ξ∗, τ∗) and the errors.

R ξ∗ (km) τ∗ (s) ‖ξT − ξ∗‖2 (km) |ξ∗z − ξTz| /ξTz
10% (53.4, 47.2) 9.99 0.128 0.18%

15% (53.4, 47.2) 9.99 0.128 0.18%

20% (53.4, 47.2) 9.99 0.128 0.18%
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Figure 11. The practical velocity model, case (iii). The ζx− ζz (Left, ν =

10 s), ν− ζx (Middle, ζz = 32.877 km) and ν− ζz (Right, ζx = 163.326 km)

cross section plan of function Γ(ζ, ν). Up for large image and Down for

zoom-in image.

Figure 12. The practical velocity model, case (iv). The ζx− ζz (Left, ν =

10 s), ν − ζx (Middle, ζz = 69.235 km) and ν − ζz (Right, ζx = 26.497 km)

cross section plan of function Γ(ζ, ν). Up for large image and Down for

zoom-in image.

Table 8. The practical velocity model, case (iii). The location results

(ξ∗, τ∗) and the errors.

R ξ∗ (km) τ∗ (s) ‖ξT − ξ∗‖2 (km) |ξ∗z − ξTz| /ξTz
10% (163.2, 32.6) 10.02 0.304 0.84%

15% (163.2, 32.6) 10.02 0.304 0.84%

20% fail
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Figure 13. Convergence history of the practical velocity model. From Up

to Down corresponding the cases (i)-(iv). Left (large image) and Middle

(zoom-in image): the convergent trajectories; Right: the absolute errors

with respect to iteration steps between the real and computed hypocen-

ter of the earthquake. The magenta square is the initial hypocenter, the

magenta diamond denotes the hypocenter obtained by AFM (algorithm 1),

the magenta pentagrams indicate the hypocenters in the iterative process

of the AFPM (algorithm 2), and the black pentagram is the real hypocenter.

Table 9. The practical velocity model, case (iv). The location results

(ξ∗, τ∗) and the errors.

R ξ∗ (km) τ∗ (s) ‖ξT − ξ∗‖2 (km) |ξ∗z − ξTz| /ξTz
10% (26.4, 69.4) 9.97 0.191 0.24%

15% (26.4, 69.4) 9.97 0.191 0.24%

20% (26.4, 69.4) 9.97 0.191 0.24%

The above advantages are based on the fact that the real hypocenter and origin time is

the root of the new constructed auxiliary functions. And the total computational cost

of constructing these functions is comparable to the single iteration step of the iterative

method.
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Figure 14. Illustration of signal with noise in the practical velocity

model. The signal with noise dr(t) (blue line) and the noise free signal

u(ηr, t; ξT , τT ) for receivers r = 5. The horizontal axis is the time t. From

Up to Down corresponding the cases (i)-(iv). From left to right, the ratio

R = 10%, 15%, 20% respectively.

It should be noted that there are still many issues need to be further investigated:

(a) Currently, the uniqueness of the solution can not be proved, but we have observed

the uniqueness of the solution numerically. If is of course very interesting to present

an intuitive study. (b) We are currently working on the 2-D problem and the accurate

velocity model. For 3-D problem and the inaccurate velocity model, the situations may

be more complicated. These all require much more effort.
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