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A R T I C L E I N F O A B S T R A C T

KNOSOS (KiNetic Orbit-averaging SOlver for Stellarators) is a freely avail-
able, open-source code (https://github.com/joseluisvelasco/KNOSOS) that cal-
culates neoclassical transport in low-collisionality plasmas of three-dimensional
magnetic confinement devices by solving the radially local drift-kinetic and
quasineutrality equations. The main feature of KNOSOS is that it relies on orbit-
averaging to solve the drift-kinetic equation very fast. KNOSOS treats rigorously
the effect of the component of the magnetic drift that is tangent to magnetic
surfaces, and of the component of the electrostatic potential that varies on
the flux surface, ϕ1. Furthermore, the equation solved is linear in ϕ1, which
permits an efficient solution of the quasineutrality equation. As long as the
radially local approach is valid, KNOSOS can be applied to the calculation of
neoclassical transport in stellarators (helias, heliotrons, heliacs, etc.) and toka-
maks with broken axisymmetry. In this paper, we show several calculations
for the stellarators W7-X, LHD, NCSX and TJ-II that provide benchmark with
standard local codes and demonstrate the advantages of this approach.

1. Introduction

Stellarators are non-axisymmetric devices in which the magnetic field is created basically by external magnets,
without the need of any mechanism to drive current within the plasma. This provides them with an inherent capa-
bility for steady state operation and makes them less prone to plasma magnetohydrodynamic instabilities, but it also
generally produces larger energy losses: at low collisionalities, the combination of magnetic geometry and particle
collisions leads to a variety of stellarator-specific neoclassical transport regimes, which usually give a large contribu-
tion to the radial energy and particle transport in the core of the device [1, 2]. Of special relevance are the 1/ν, the
√
ν and the superbanana-plateau regimes [3, 4, 5], in which the energy transport coefficients show a positive tempera-

ture dependence, much more unfavourable than the negative T−1/2 scaling of the banana regime of the axisymmetric
tokamak.

The fundamental reason for this behaviour is that in a generic stellarator, unlike in an axisymmetric tokamak,
trapped particle orbits have non-zero secular radial drifts. The exception are omnigenous stellarators: in these mag-
netic configurations, the secular radial drifts vanish [6, 7], and the level of neoclassical transport is low, similar to that
of the tokamak. Quasisymmetric stellarators [8] are a particular family of omnigenous stellarators, see e.g. [9].

The two world’s largest stellarators in operation, Wendelstein 7-X (W7-X) [10, 11] and the Large Helical Device
(LHD) [12], have relied on optimization of neoclassical transport for their design and operation. The magnetic config-
uration of W7-X has been designed to be close to omnigeneity with poloidally-closed contours of the magnetic field
strength; one of the goals of the project has been to prove the constructability and reliability of such designs [13].
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In LHD, the plasma column can be shifted inwards so that the minimum values of the magnetic field along the field
line have approximately the same value (see figure 2 of [4]), a well-known geometric property of some omnigenous
magnetic fields [14, 9]; discharges performed using this magnetic configuration consistently show better energy con-
finement [15]. Finally, a particular kind of quasisymmetry, quasiaxisymmetry, was the design criterion of the National
Compact Stellarator Experiment (NCSX) [16]. Power reactor designs exist for these three stellarator concepts [17].

It is then clear that optimization of neoclassical transport is a crucial issue for a stellarator reactor. One of the
most common goals of stellarator optimization efforts is the minimization of the so-called effective ripple, a figure of
merit that provides information of the level of transport in the 1/ν regime. While there is little doubt that minimization
of this quantity should be a design criterion in any future stellarator, it has important limitations. On the one hand,
empirical studies of the energy confinement time of several devices aimed at obtaining a unified International Stel-
larator Scaling law (ISS04) have not shown a very strong correlation between reduced effective ripple and improved
energy confinement [15, 18]; on the other hand, self-consistent neoclassical transport simulations performed in the
configuration space of W7-X, complemented with simplified anomalous modelling (accounting for non-negligible
turbulent contributions to transport), have shown mild increases of the energy confinement time for configurations of
significantly reduced effective ripple [19]. This points towards one of the obvious limitations of the effective ripple: it
is only an appropriate figure of merit for neoclassical transport if the plasma species are in the asymptotic 1/ν regime.
However, bulk particles are distributed close to a Maxwellian that typically spans across several transport regimes.
Even in cases in which the collisionality is low and the neoclassical predictions of the radial energy flux agree with the
experiment, the parameter dependence of the experimental energy flux does not follow the scaling expected for any
specific neoclassical transport regime, see e.g. [20], because the flux is caused by a combination of transport regimes.

The reason for choosing the effective ripple as a figure of merit is that the 1/ν regime is the low-collisionality
regime of stellarators in which the effect of the magnetic geometry on transport can be encapsulated in a straightfor-
ward manner in a single quantity that is independent of density, temperature and radial electric field. Furthermore,
this quantity can be efficiently calculated by solving the bounce-averaged drift-kinetic equation, e.g. with the NEO

code [21]. None of this has been possible so far for other low-collisionality regimes for arbitrary stellarator geometry.
Moreover, for other regimes such as the

√
ν and the superbanana-plateau regimes, the effect of the electric field

(radial and tangential to the flux surface, the latter associated to the variation of the electrostatic potential on the flux
surface, ϕ1) has to be considered [5], and this quantity is determined by imposing ambipolarity of the neoclassical
particle fluxes and quasineutrality, which in turn depend on the plasma profiles, and specifically on the gradients. In
order to address this issue, self-consistent neoclassical transport simulations have been performed in the last few years:
the neoclassical fluxes are calculated with the DKES code [22] and then the ambipolar and energy transport equations
are solved (the latter with a prescribed energy source) [23, 19]. Although we will see that DKES makes use of the
so-called monoenergetic approximation, which reduces the problem from five dimensions to three, using DKES to
self-consistently solve neoclassical energy transport is still computationally expensive at low collisionality. More-
over, DKES is inaccurate at sufficiently low collisionality: it uses an incompressible E × B drift [24] and does not
include the tangential magnetic drift or the radial E×B drift caused by the variation of the electrostatic potential
within the flux surface (the latter makes the fluxes depend non-linearly on the plasma gradients [25]). Some or all of
these approximations are absent in more recent codes such as SFINCS [26], EUTERPE [27, 28] or FORTEC-3D [29], but
at the expense of higher computational cost.

We have developed a new code, the KiNetic Orbit-averaging Solver for Optimizing Stellarators, KNOSOS, based
on the analytical techniques developed in a series of papers [30, 31, 32, 5, 25]. It solves local drift-kinetic equations
that will be summarized in the next section and that accurately describe neoclassical transport in the 1/ν,

√
ν and

superbanana-plateau regimes. The equations include the effect of the magnetic drift tangential to flux surfaces and
the radial E×B drift due to the variation of the electrostatic potential within the flux surface; the radial electric field
Er and ϕ1 are obtained by imposing ambipolarity and quasineutrality, respectively. Local drift kinetic equations are
valid for large-aspect-ratio stellarators or configurations close to omnigeneity (see the discussion before equation (23)
in §2). Unlike preliminary versions of KNOSOS [33, 25], this version does not require an explicit split of the magnetic
field magnitude into omnigeneous and non-omnigeneous pieces. The goal of this code is to be, at the same time,
accurate and fast, so that it allows one to perform comprehensive parameter scans and to provide input to other codes
or suites of codes. Generally speaking, the goal is to improve our confidence in neoclassical predictions, in light of
recent theory developments, and to be able to fully exploit these predictive capabilities. To facilitate this objective,
the code is freely-available and open-source.

The rest of this paper is organised as follows. §2 presents the drift-kinetic and quasineutrality equations solved
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by KNOSOS. Then, §3 summarises how the equations are solved: the drift-kinetic equation is written in terms of a
few integrals along the magnetic field lines in §3.1, and these integrals are discussed in §3.2; the parameter space
and discretization of the drift-kinetic equation is discussed in §3.3 and §3.4, and the consistent solution of the drift-
kinetic and quasineutrality equations is presented in §3.5. §4 shows several calculations for real magnetic confinement
devices and comparisons with widely benchmarked neoclassical codes: the monoenergetic transport coefficients are
compared with DKES in §4.1; the effect of the tangential magnetic drift on the energy flux is discussed in §4.2;
the variation of the electrostatic potential along the flux surface is compared with EUTERPE in §4.3. Finally, §5
summarizes the conclusions. Additionally, there are three appendixes: Appendix A discusses the collision operator,
and appendices Appendix B and Appendix C describe algorithms employed to accelerate the calculation of the
bounce integrals.

2. Equations

In this section, we briefly present the equations solved by KNOSOS. Their derivation and further details can be
found in previous work by [5, 25]. We first define the coordinate system that we will use. The flux surfaces are
labelled by the radial coordinate

ψ = |Ψt | , (1)

where 2πΨt is the toroidal magnetic flux. The magnetic field lines on the surface are labelled by an angular coordinate

α = θ − ιζ , (2)

where θ and ζ are poloidal and toroidal Boozer angles, respectively, and ι is the rotational transform. Finally, l is the
arc-length along the magnetic field line. In these coordinates, the magnetic field B can be written as

B = Ψ′t∇ψ × ∇α , (3)

where primes stand for derivatives with respect to ψ, and Ψ′t = ±1 depending on whether the magnetic field is parallel
or antiparallel to the direction of the Boozer toroidal angle (i.e. depending on the sign of B · ∇ζ).

As velocity coordinates, we choose the particle velocity

v = |v| , (4)

the pitch-angle coordinate

λ =
1
B

v2
⊥

v2 , (5)

and the sign of the parallel velocity
σ =

v‖
|v‖|

= ±1 , (6)

where, as usual,

v‖ = v · b = v ·
B
|B|

= v ·
B
B
,

v⊥ =

√
v2 − v2

‖
. (7)

For each species b (i will denote bulk ions and e electrons), we need to calculate the deviation of the distribution
function from a Maxwellian for trapped particles, that we denote by gb(ψ, α, l, v, λ, σ). The Maxwellian distribution
function reads

FM,b = nb

(
mb

2πTb

)3/2

exp
(
−

mbv2

2Tb

)
, (8)

where nb is the density, Tb the temperature and mb the mass. Trapped particles are those for which v‖ = 0 at some
point along their trajectories. For them, 1/Bmax ≤ λ ≤ 1/Bmin, where Bmax and Bmin are the maximum and minimum
values of the magnetic field strength on the flux surface, respectively.
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The equation for gb(ψ, α, v, λ) is∫ lb2

lb1

dl
|v‖|

vD,b · ∇α ∂αgb +

∫ lb2

lb1

dl
|v‖|

vD,b · ∇ψΥbFM,b =

∫ lb2

lb1

dl
|v‖|

Clin
b [gb] , (9)

complemented with the condition at the boundary between passing and trapped, λ = 1/Bmax (Bmax is the maximum
value of the magnetic field strength on the flux-surface),

gb(λ = 1/Bmax) = 0 , (10)

and the condition ∫ 2π

0
gb dα = 0 . (11)

The coefficients of equation (9) are integrals over the arc-length between the bounce points lb1 and lb2 , i.e., between
the points where the parallel velocity of the particle is zero (see a sketch in figure 1). On the right-hand side of
equation (9), Clin

b [gb] is the linearized pitch-angle-scattering collision operator:

Clin
b [gb] =

νλ,bv||
v2B

∂λ
(
v||λ∂λgb

)
. (12)

For the ions, since
√

me/mi � 1, this single-species collision operator is correct, but electron-ion collisions need to
be retained in the electron drift-kinetic equation. For both species, we follow the common practice (see e.g. [4]) of
using equation (12) with an effective collision frequency accounting for inter-species collisions. This is discussed in
more detail in Appendix A. On the left-hand-side of equation (9),

Υb =
∂ψnb

nb
+
∂ψTb

Tb

(
mbv2

2Tb
−

3
2

)
+

Zbe∂ψϕ0

Tb
(13)

is a combination of thermodynamical forces (Zb is the charge number and the elementary charge is denoted by e) and
the drift velocity,

vD,b = vM,b + vE , (14)

is the sum of the (low β) magnetic drift and the E × B drift:

vM,b =
mbv2

Zbe

(
1 −

λB
2

) B × ∇B
B3 ,

vE = −
∇ϕ × B

B2 . (15)

Here, ϕ is the electrostatic potential, that can be split as

ϕ(ψ, α, l) = ϕ0(ψ) + ϕ1(ψ, α, l) , (16)

with
|ϕ1| � |ϕ0| , (17)

which means that ϕ0 and ϕ1 will be the dominant contribution to the radial and tangential components of the electric
field, respectively (and in turn to the tangential and radial components of the E×B drift, respectively)1. The potentials
ϕ0 and ϕ1 can be determined by solving two additional equations.

The component of the electrostatic potential that varies on the flux surface, ϕ1, is obtained from the quasineutrality
equation, which for a pure plasma (i.e., composed of electrons and one ion species) reads(

Zi

Ti
+

1
Te

)
ϕ1 =

2π
ene

∑
b

Zb

∫ ∞

0
dv

∫ B−1

B−1
max

dλ
v3B
|v‖|

gb . (18)

1In Appendix B of [28], two different expansions are discussed, depending on whether exp (Zieϕ1/Tb) is absorbed or not in the zeroth-order
distribution function, and this leads to different expressions for the thermodynamical forces and the radial fluxes. For Zbeϕ1/Tb ∼ ϕ1/ϕ0 � 1,
these differences are vanishingly small.
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Fig. 1. Sketch of a particle trajectory at fixed α. The horizontal thick line represents a standard trajectory, and dot-dashed horizontal lines
depict trajectories (or parts of trajectories) with numerical divergencies (see text).

The sum is done over kinetic species. Here, we have used that, in terms of our coordinates, velocity space integrals
are of the form ∫

d3v(...) = π
∑
σ

∫ ∞

0
dv v2

∫ B−1

0
dλ

B
√

1 − λB
(...) , (19)

that gb is even in σ and that gb = 0 for λ < B−1
max. We note that, since ϕ1 and gb appear in equations (9) and (18), both

equations need to be solved consistently.
The radial electric field is given by the radial derivative of the piece of the electrostatic potential that is constant

on the flux surface,

Er = −∂rϕ0 = −
∂ψ

∂r
∂ψϕ0 , (20)

where r = a
√
ψ/ψLCFS , ψLCFS being the flux label at the last closed flux surface and a the minor radius of the device.

The radial electric field is set by the ambipolarity of the neoclassical radial particle fluxes,∑
b

ZbΓb(∂ψϕ0) = 0 . (21)

In our variables,

Γb ≡ 〈ΓΓΓb · ∇r〉 = 2
∂r
∂ψ

〈∫ ∞

0
dv

∫ B−1

B−1
max

dλ
v2B
√

1 − λB
gb vD,b · ∇ψ

〉
,

where 〈...〉 denotes flux-surface average. Finally, the radial energy flux is given by

Qb ≡ 〈Qb · ∇r〉 = 2
∂r
∂ψ

〈∫ ∞

0
dv

∫ B−1

B−1
max

dλ
v3B
√

1 − λB
gb

mbv2

2
vD,b · ∇ψ

〉
. (22)

KNOSOS solves equations (9) and (18), together with equation (21). These equations have been rigorously derived
in [25] under the hypotheses of low collisionality, large aspect ratio and closeness to omnigeneity (we note that
large aspect-ratio is a common characteristic of real stellarators [4] while, as noted in the introduction, closeness to
omnigeneity is a property sought in present and future devices). At low collisionalities, the motion of particles along
the magnetic field is much faster than collisions, and the distribution function does not depend on the arc length l.
Closeness to omnigeneity makes neoclassical transport describable by a radially-local equation for the deviation of
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the distribution function of trapped particles from a Maxwellian. In particular, it guarantees that the bounce-averaged
radial drift is small enough so that∣∣∣∣∣∣∣

∫ lb2

lb1

dl
|v‖|

vD,b · ∇ψ ∂ψgb

∣∣∣∣∣∣∣ �
∣∣∣∣∣∣∣
∫ lb2

lb1

dl
|v‖|

vD,b · ∇α ∂αgb

∣∣∣∣∣∣∣ (23)

even in situations of small E × B drift. Hence, for stellarators close to omnigenity, terms proportional to ∂ψg do not
appear in equation (9). Finally, the large-aspect ratio approximation allows us to neglect energy-scattering and use the
pitch-angle collision operator, equation (12) (the field particle part of the collision operator has negligible effect on
radial transport, which is determined by the part of the distribution function that is even in the parallel velocity [5]).

As we will see in detail in section 3, the bounce points lb1 and lb2 in equation (9) are determined along the field
line, even though trapped particles experience tangential drifts described by the first term of the right-hand-side of
said equation. This is not a contradiction, but is derived rigorously under the hypothesis of low collisionality, since
the drifts are much slower than the motion of the particles along the magnetic field line. The hypotheses discussed
in the previous paragraph also ensure that ϕ1 is small enough not to affect the orbits of main species via electrostatic
trapping (except for deeply trapped particles when the radial electric field is small, an effect that we briefly discuss in
section 3.

Let us finally discuss the neoclassical regimes that equations (9) and (18) can describe. The second term on
the left-hand side of equation (9) includes the radial magnetic and E × B drifts caused by the inhomogeneity of the
magnetic field strength and of the electrostatic potential on the flux surface, respectively. This means that equation (9)
can model the 1/ν regime and the transport caused by ϕ1. The first term of the left-hand side includes the precession
tangential to the flux surface caused by the radial variation of the electrostatic potential (i.e. the radial electric field
Er) and of the magnetic field strength. This implies that we can model the

√
ν and superbanana-plateau regimes. As

discussed previously, radially global effects are not accounted for.

3. Solution of the equations

In this section we provide an overview of how equations (9) and (18) are solved. We first give an explicit expres-
sion for equation (9) in §3.1 and we discuss how to calculate its bounce-averaged coefficients in §3.2. We then devote
§3.3 to build the grid in which we will evaluate the distribution function, and §3.4 to discuss the discretization of the
equation. Finally, the solution of quasineutrality, equation (18), is addressed in §3.5.

3.1. Final expression of the drift-kinetic equation

Using the expressions of the pitch-angle scattering collision operator described in equation (12) and of the mag-
netic and E × B drifts in right handed Boozer coordinates, equation (9) can be written in terms of a few bounce
integrals: (

IvM,α (α, λ) +
1

vd,b
IvE ,α(α, λ)

)
∂αgb +

(
IvM,ψ (α, λ) +

1
vd,b

IvE,ψ (α, λ)
)

FM,bΥb =
νλ,b

vd,b
∂λ

[
Iν(α, λ)∂λgb

]
, (24)
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with

vd,b ≡
mbv2

Zbe
,

IvE,α = Ψ′t∂ψϕ0

∫ lb2

lb1

dl
√

1 − λB
,

IvM,α =

∫ lb2

lb1

dl
√

1 − λB

(
1 −

λB
2

) [
Ψ′t
∂ψB

B
+

Bζ∂θB − Bθ∂ζB
B|Bζ + ιBθ|

ζ∂ψι

]
,

IvE,ψ =

∫ lb2

lb1

dl
√

1 − λB

Bθ∂ζϕ1 − Bζ∂θϕ1

|Bζ + ιBθ|
,

IvM,ψ =

∫ lb2

lb1

dl
√

1 − λB

(
1 −

λB
2

) Bθ∂ζB − Bζ∂θB
B|Bζ + ιBθ|

,

Iν =

∫ lb2

lb1

dl
λ
√

1 − λB
B

, (25)

where Bψ, Bθ and Bζ are the covariant components of B, and Bψ = 0 in the low-β approximation. We note that only
vd,b, νλ,b, FM,b and Υb depend on the species: the bounce-integrals are only determined by the magnetic configuration
and the electrostatic potential. The magnetic shear appears explicitly in IvM,α .

Equation (24) is a differential equation in two variables only, α and λ, which is the origin of the fast performance
of KNOSOS that will be demonstrated in §4. The radial coordinate ψ is a parameter, since we are solving radially
local equations; v is a parameter as well, since ϕ1 � ϕ0; and finally l has disappeared since the coefficients are
bounce-averages of certain quantities. The calculation of these coefficients is described in §3.2.

3.2. Calculation of the coefficients of the drift-kinetic equation
The integrals in l are done using an extended midpoint rule [see e.g. 34, subroutine midpnt]. This open formula

is appropriate for integrals that are improper in the sense that they have an integrable singularity at the integration
limits. This is our case, since by definition λB(lb1 ) = λB(lb2 ) = 1. The number of points that we use is not pre-defined:
starting from being one, it is tripled until the integral converges.

Let us now note that integrals such as those of equations (25) may be difficult to converge if the numerator does
not go to zero in the integration limits, or it does, but slower than the denominator. This may happen, first, if λ is such
that lb1 and/or lb2 are close to a point lT where B(l) has a local maximum B(lT ) for fixed α (e.g., the dot-dashed lines
at the top of figure 1; second, if the interval (lb1 , lb2 ) contains such point lT and λ is close to 1/B(lT ) (e.g. the bottom
dot-dashed line in figure 1). In such cases, the bounce integral may become very large; if the inverse of λ is equal to
the corresponding maximum of B, the integral diverges logarithmically. We can physically identify these situations in
the example of figure 1: divergences happen at bifurcations, where orbits go from being trapped in a particular region
in l to be trapped, for smaller λ, in a wider region (the boundary between passing and trapped particles is a particular
case of this).

One can ease the convergence, and thus make the calculation faster, by removing the divergence and solving it
analytically as explained in Appendix C of [5]. This is described more in detail in our Appendix B. Additionally,
in Appendix C we will discuss how the fact that field lines are straight in magnetic coordinates is used to accelerate
the evaluation of the magnetic field strength at each point (α, l) without loss of accuracy.

3.3. Spatial and velocity grid
In §3.2 we have seen how the integrals of equations (25) are calculated. These integrals will be evaluated at the

points (α, λ) in which we want to determine the distribution function gb. The selection of these points constitute the
subject of this subsection.

Let us start with the spatial grid. We have seen that ψ is a parameter, and l does not appear in the bounce-averaged
drift-kinetic equation, which leaves us with the field line label α. There are, however, two complications: first, at a
given α and λ, several wells may exist (in other words, several pairs of lb1 and lb2 ), which means that we need to use
an integer label w for them (as we will discuss more in detail in the following subsection). Second, even if gb does
not depend on l, its integrals over velocities (needed e.g. to compute ϕ1, see equation (18)) do, so we must define a
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two-dimensional angular grid. As a general rule, when doing so, we try to minimize the number of points at which gb

needs to be solved, in order to save computing resources. With this in mind, we make use of periodicity and align the
grid points with the field lines. The grid points are also aligned with ζ = 0.

We use figure 2 (top), which shows one example of stellarator flux surface (the W7-X case discussed in §4.1) to
describe how the angular grid is built. We follow several field lines until they have completed a full poloidal turn. For
a flux-surface characterized by ι and the number of toroidal periods N, this means that we follow these field lines until
they have traversed approximately N/ι toroidal periods, 6 in our example. The distance between two consecutive field
lines ∆α is taken to be an integer fraction of 2πι/N. This is how the green points are located, with uniform spacing
in the toroidal angle. Along the field lines, several maxima of the magnetic field are found, plotted with magenta
circles. It is observed that we are dealing with a relatively optimized configuration, in the sense that most trapped
particles are so in a major well that coincides with one field period (black continuous arrow). In other words, their
bounce points lb1 and lb2 are two consecutive magenta points, separated toroidally by a characteristic angular distance
∼ 2π/N (smaller for large values of λ, close to the bottom of the magnetic well). In the example, several ripple wells
are found (grey arrows). For small enough values of λ, trajectories trapped in more than one field-period exist. In
this example, there exist ripple-trapped particles and particles trapped in 1, 2, 3, 4, 5 and 6 periods whose trajectories
are all computed; the latter (black dashed arrow) may move between ζ = 0 and ζ = 6 2π

N . Trajectories with smaller λ
(that is, trapped in more than 6 toroidal periods) are ignored in this case; this procedure effectively sets the boundary
between passing and trapped particles. Following field lines until they have completed more than one poloidal turn
(i.e., more than N/ι toroidal periods) would allow us to describe trajectories with smaller λ, but this is not necessary
in the light of the good agreement with DKES shown in $4.1.

Periodicity allows us to project all these grid points onto the first period. The result is a bidimensional grid in α
and l, withNα andNl points in each direction. Nα is the integer quantity such thatNα <

2π
∆α
≤ Nα + 1. TheNl points

along the field line are distributed uniformly in the toroidal angle along a toroidal period, and Nl is the largest power
of 2 that is smaller than or equal to Nα. This will be useful for a fast computation of the Fourier transform, needed
when solving quasineutrality. Toroidal periodicity is also enforced at the corners of the grid: for instance, in figure 2
bottom, point α = αNα−4, ζ = 0, is not contained in the wells marked in magenta. Using periodicity, the value of
the distribution function at this point will be taken to be equal to the value at a point of the grid close to α = α1 and
ζ = 2π/N. The number of points where this has to be done can be minimized by putting one of the corners of the grid
close to the global maximum of B on the flux surface. For each of the nodes of this grid (and for each of the possible
values of λ) the points along the trajectory and the bounce points of particles trapped in one or several field-periods
are now clearly identified, and the integrals of equation (25) can be evaluated.

Let us turn our attention to the velocity grid, where we are using λ and v as coordinates. Since we have seen in
§2 that only trapped particles need to be calculated, an obvious choice for the former is a uniform grid2, with Nλ + 1
values between λ1 ≡ 1/Bmax and λNλ+1 ≡ 1/Bmin. The distribution function will not be evaluated at λNλ+1, which will
be ghost points employed for imposing the boundary conditions at the bottom of the well. Note that, since particles
trapped in more than (in the above example) 6 periods are considered passing, there exist values of λ close to λNλ+1
where the distribution function is not evaluated for some values of α either. When integrating in λ, we will use the
extended trapezoidal rule [34].

Finally, v is a parameter in our calculations: equation (24) will be solved for several values vi of the velocity and
the solution will be numerically integrated in v. Since the integrand of equations (19) contains an exponential coming
from the Maxwellian distribution, we will use Gauss-Laguerre of order 64 [34]:∫ ∞

0
d(v2/v2

th,b) f (v2/v2
th,b) exp (−v2/v2

th,b) ≈
n∑

i=1

ωi f (v2
i /v

2
th,b) , (26)

being vth,b the thermal velocity of species b, and ωi a set of tabulated real numbers. This procedure requires solving
the monoenergetic drift-kinetic equation for n = 64 values of v/vth,b, typically from ∼ 10−2 to ∼ 102. However, the
contribution of the largest vi to the integral can be usually neglected, and this allows for an important reduction of

2When the particles are in the 1/ν regime, special attention should be paid to bifurcations, where gb has discontinuous first λ-derivatives [21, 31],
and a non-uniform grid, adapted to the structure of maxima and minima at fixed α, is a more efficient choice [35]. The same applies to very
low collisionalities, when the contribution to the flux is concentrated on very thin λ layers. For the wide parameter range that will be studied
with KNOSOS, the uniform grid is considered appropriate.
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Fig. 2. Construction of the angular grid (see text) for a flux surface of W7-X (top); zoom (bottom).
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computing time. Let us finally note that this is a standard and well-tested choice in neoclassics and gyrokinetics [e.g.
36, 37], although other velocity-space discretization methods have been proposed in recent years [38] that could be
easily implemented in KNOSOS.

3.4. Discretization of the drift-kinetic equation
In §3.3 we have built a grid in variables α and λ. Three integers can be used to label any point (αi, λ j,w) of this

grid: i runs from 1 to Nα, j from 1 to Nλ and w = I, II... is an integer that labels wells for a given α and λ. At a
given point, we define gi, j,w ≡ gb(αi, λ j,w), Iν,i, j,w ≡ Iν(αi, λ j,w) and so on (in order to ease the notation, gi, j,w does
not contain a species index). The final step in the discretization of the drift-kinetic equation is how we approximate
the derivatives of gb of equation (24) at each point of this grid.

Let us start with the collision operator, which divided by νλ,b
vd,b

reads

∂λ
[
Iν∂λgb

]
, (27)

and can be expanded into two terms [
Iν∂2

λ + (∂λIν)∂λ
]

gb . (28)

We represent the λ grid at fixed α in figure 3. Here, λ1 is the boundary between passing and trapped particles. In this
example, only one complete well is plotted at λ2, labelled I. If one moves to larger λ, a bifurcation appears in the
vicinity of λ j0 , with two wells labelled I and II. At a larger value of λ, there are the bottoms of the wells, where the
wells have their minimum magnetic field (different in I than in II) and beyond which no orbits are allowed.

At a generic point, we make use of equation (28) and then employ central finite differences with second-order
accuracy [

Iν∂2
λ + (∂λIν)∂λ

]
gb|i, j,w = Iν,i, j,w

gi, j+1,w + gi, j−1,w − 2gi, j,w

(∆λ)2 + ∂λIν|i, j,w
gi, j+1,w − gi, j−1,w

2∆λ
, (29)

with ∆λ = λ j+1 − λ j. Differentiation is done at fixed α and well-label w. At a bifurcation, such as the one near λ j0 in
figure 3, we use finite differences with second-order accuracy directly over equation (27) and summing over wells,

∂λ
[
Iν∂λgb

]
|i, j0,I =

[Iν∂λgb]|i, j0+1,I + [Iν∂λgb]|i, j0+1,II − [Iν∂λgb]|i, j0−1,I

2∆λ

= Iν,i, j0+1,I
gi, j0+2,I − gi, j0,I

4(∆λ)2 + Iν,i, j0+1,II
gi, j0+2,II − gi, j0,I

4(∆λ)2 − Iν,i, j0−1,I
gi, j0,I − gi, j0−2,I

4(∆λ)2 . (30)

This discretization is designed to obtain the expected relation between different values of ∂λg at the bifurcation for
the 1/ν regime [21, 31]. Finally, we have two kinds of boundary conditions: one at the boundary between passing and
trapped particles, corresponding to equation (10),

gi,1,w = 0 , (31)

and one at the bottom, corresponding to regularity [30],

∂λ
[
Iν∂λgb

]
|i,Nλ,w = −Iν,i,Nλ−1,w

gi,Nλ,w − gi,Nλ−2,w

4(∆λ)2 . (32)

Here we have employed a ghost point λNλ+1 at exactly the bottom of the well, where Iν,i,Nλ+1,w = 0. One precision
must be made: while in omnigenous magnetic fields the values of the maxima and minima of B are the same when
moving in α, and equation (32) can be used as such for all α, this ceases to be true in a generic stellarator. For instance,
the distance from λNλ

to the local bottom will be exactly ∆λ for one field line and smaller elsewhere (it may even
happen that the contour condition must not be applied to ∂λ

[
Iν∂λgb

]
|i,Nλ,w, but to ∂λ

[
Iν∂λgb

]
|i, j,w with a smaller j).

This requires introducing straightforward corrections to equations (29), (30), (31) and (32).
Let us now turn our attention to the terms with the first derivative in α in equation (24), which we multiply by vd,b:(

vd,bIvM,α + IvE ,α

)
∂αgb . (33)

We represent the α grid at fixed λ in figure 4 (top). In this example, there is only one well at α1, labelled I. If one
moves from smaller to larger α, a bifurcation appears in the vicinity of αi0 , with two wells labelled I and II. At a
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Fig. 3. Sketch of grid in λ space at fixed α. The collision operator is discretized as in equation (29) except at the top (λ1) or bottom (λNλ+1)
of the well and at bifurcations (e.g. λ j0 ); there, equations (32), (31) and (30), respectively are used instead.

larger value of α, the wells merge into a single region labelled again I. The last point of the grid, αNα
, is close to

α1 + 2π.
Non-centered finite differences with second-order accuracy are used. For a given flux surface, for each solution of

the drift-kinetic equation, the sign of the coefficient in front of ∂αgb (i.e. the direction of the flow in the α direction)
indicates whether forward

∂αgb|i, j,w =
−gi+2, j,w + 4gi+1, j,w − 3gi, j,w

2∆α
, (34)

or backward differences

∂αgb|i, j,w =
gi−2, j,w − 4gi−1, j,w + 3gi, j,w

2∆α
, (35)

should be used, with ∆α = αi+1 − αi. To construct the derivatives with respect to α without much computational cost,
we discretize separately the terms IvE ,α∂αg and vd,bIvM ,α∂αg using a total of four matrices for a given flux surface.
One corresponds to forward differences being used everywhere, and another one corresponds to backward differences
everywhere. When solving equation (24), one of these two matrices will describe the IvE ,α∂αg term, depending on the
sign of Er. The other two matrices correspond to two λ (and w)-dependent discretizations, in which forward (back-
ward) differences are used according to the sign of IvM,α . One of these two matrices will describe the vd,bIvM ,α∂αg term,
depending on the sign of vd,b. Any matrix appropriate for describing equation (33) will thus be a linear combination
of two of the four pre-calculated matrices, and a neoclassical simulation including ions and electrons and/or different
values of the radial electric field will generally make use of the four of them.

Periodicity in α is easily imposed by replacing equation (34) at i ≥ Nα − 1 with

∂αgb|Nα−1, j,w =
(gNα, j,w − gNα−1, j,w)(2π + α1 − αNα−1)

(2π + α1 − αNα
)∆α

−
(g1, j,w − gNα−1, j,w)∆α

(2π + α1 − αNα−1)(2π + α1 − αNα
)
, (36)

∂αgb|Nα, j,w =
(g1, j,w − gNα, j,w)(2π + α2 − αNα

)
(2π + α1 − αNα

)∆α
−

(g2, j,w − gNα, j,w)(2π + α1 − αNα
)

(2π + αi − αNα
)∆α

, (37)
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Fig. 4. Top: sketch of grid in α space at fixed λ. The tangential derivatives are discretized as in equations (34) and (35) except close to the
limits of the grid (α1 and αNα ) and to bifurcations (e.g. αi0 ); there, equations (36), (37), (38), (39) and (40) are used instead. Bottom: sketch
of grid in α space at larger λ (the grid at smaller λ is plotted for reference in dashed thin blue line). αi1 is a point where the backward
derivative is discretized as discussed in equation (41).
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respectively, and equation (35) at i ≤ 2 with

∂αgb|2, j,w = −
(g1, j,w − g2, j,w)(αNα

− α2 − 2π)
(αNα

− α1 − 2π)∆α
+

(gNα, j,w − g2, j,w)∆α
(αNα

− α2 − 2π)(αNα
− α1 − 2π)

, (38)

∂αgb|1, j,w = −
(gNα, j,w − g1, j,w)(αNα−1 − α1 − 2π)

(αNα
− α1 − 2π)∆α

+
(gNα−1, j,w − g1, j,w)(αNα

− α1 − 2π)
(αNα−1 − α1 − 2π)∆α

, (39)

respectively. We note that, since ι is generally irrational, 2π + α1 − αNα
will e.g. be slightly smaller than ∆α

We also note that bifurcations do not pose a problem for α-derivatives, due to gb being continuous in α. For
example, in the vicinity of αi0 in figure 4 (top) the forward derivative is discretized

∂αgb|i0−2, j,I =
−gi0, j,I + 4gi0−1, j,I − 3gi0−2, j,I

2∆α
=
−gi0, j,II + 4gi0−1, j,I − 3gi0−2, j,I

2∆α
,

∂αgb|i0−1, j,I =
−gi0+1, j,I + 4gi0, j,I − 3gi0−1, j,I

2∆α
=
−gi0+1, j,II + 4gi0, j,II − 3gi0−1, j,I

2∆α
,

∂αgb|i0, j,I =
−gi0+2, j,I + 4gi0+1, j,I − 3gi0, j,I

2∆α
,

∂αgb|i0, j,II =
−gi0+2, j,II + 4gi0+1, j,II − 3gi0, j,II

2∆α
,

∂αgb|i0+1, j,I =
−gi0+3, j,I + 4gi0+2, j,I − 3gi0+1, j,I

2∆α
,

∂αgb|i0+1, j,II =
−gi0+3, j,II + 4gi0+2, j,II − 3gi0+1, j,II

2∆α
,

∂αgb|i0+2, j,I =
−gi0+4, j,I + 4gi0+3, j,I − 3gi0+2, j,I

2∆α
,

∂αgb|i0+2, j,II =
−gi0+4, j,II + 4gi0+3, j,II − 3gi0+2, j,I

2∆α
,

∂αgb|i0+3, j,I =
−gi0+5, j,I + 4gi0+4, j,I − 3gi0+3, j,I

2∆α
,

∂αgb|i0+3, j,II =
−gi0+5, j,II + 4gi0+4, j,I − 3gi0+3, j,I

2∆α
(40)

We note that there exist two alternative discretizations in the first two expressions of equation (40). Continuity of
gb ensures that they give the same result for small ∆α. Equivalent expressions can be obtained for the backward
derivative.

One final caveat has to be made. In an omnigenous magnetic field, the contours of minimum B on a flux surface
must encircle the plasma (toroidally, poloidally, or helically). This is not true for a generic stellarator, in which local
minima of B exist on the flux surface. Close to these minima, moving in α at constant large λ is not always possible,
as these trajectories may not exist. This situation is illustrated in figure 4 (bottom), at αi1 . At, αi1 , instead of equation
(35), we use

∂αgb|i1, j,w =
gi1−2, j0,w − 4gi1−1, j,w + 3gi1, j,w

2∆α
. (41)

and we have implemented two models: in one, λ j0 is the value of λ closest to λ j in which trajectories exist for all α;
in the second model, λ j0 is the closest value of λ in which trajectories exist at αi0−2. The relative differences between
the two models are smaller than the error bars of DKES in figure 7. We note that (with different manifestations for
other choices of velocity coordinates) an incorrect treatment of this kind of particles is common to all existing radially
local codes. In general stellarators and in stellarators close to omnigeneity, both the tangential magnetic drift and the
trapping due to ϕ1 must be retained to reproduce the correct trajectories for these particles. This fact is usually ignored
in local codes, although there are notable exceptions that include either the trapping by ϕ1 [39] or several models of
tangential magnetic drift [40, 41]. Finally, in the limit of large aspect ratio stellarators with E × B drift much larger
than the magnetic drift, it is possible to construct local equations that treat these deeply trapped particles correctly.
The equations in DKES [22] are one such model, and an equivalent formulation for large aspect ratio stellarators is
being developed for KNOSOS [42].
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For each of the species b, we end up with an equation that is linear in gb and can be written as a linear problem in
matrix form. The matrix that represents (

IvM,α +
1

vd,b
IvE,α

)
∂α +

νλ,b

vd,b
∂λν∂λ (42)

is square with approximately Nλ × Nα elements per row, and sparse, with ∼ 6 non-zero elements per row: between 3
and 5 for the α derivatives, and typically 2 additional points for the collision operator. Although their relative weight
varies with νλ,b, vd,b and ∂ψϕ0, the non-zero elements are always at the same position for a given flux surface, which
can be used to save computing time, by using the four pre-computed matrices described above.

We solve the linear problem with a direct solver from the PETSc library [43, 44, 45] based on LU factorization.
The reason is that the matrix is not large enough to require iterative methods, and reusing the LU factorization greatly
accelerates the solution of the quasineutrality equation, as discussed in §3.5.

3.5. Solution of the quasineutrality equation

We will solve the quasineutrality equation by means of a response matrix approach (similar methods are used
in gyrokinetics for the calculation of the electrostatic potential fluctuations [46]). Let us first rewrite equations (24)
and (18) making explicit the dependence on ϕ1:

(
IvM,α +

IvE,α

vd,b

)
∂αgb −

νλ,b

vd,b
∂λIν∂λgb = −

IvM,ψ −

∫ lb2

lb1

dl
√

1 − λB

Bθ∂ζϕ1 − Bζ∂θϕ1

|Bζ + ιBθ|

 FM,bΥb , (43)(
Zi

Ti
+

1
Te

)
ϕ1 =

2π
ene

∑
b

Zb

∫ ∞

0
dv

∫ B−1

B−1
max

dλ
v3B
|v‖|

gb . (44)

It can be observed that equation (43) is linear in ϕ1, and therefore the response of the distribution function gb (and
of its velocity integral) of species b to certain ϕ1 can be calculated as a superposition of the responses to a complete
set of harmonics that parametrize ϕ1(θ, ζ). We can perform this parametrization efficiently thanks to the Fast Fourier
Transform, using N = 2(2Nn + 1)(Nm + 1) coefficients:

ϕ1(θ, ζ) =
∑

−Nn<n<Nn

∑
0<m<Nm

(
ϕ(c)

mn cos(mθ + Nnζ) + ϕ(s)
mn sin(mθ + Nnζ)

)
(45)

(the grid defined in §3.3 is not uniform in θ, so an interpolation is done before the Fourier transform). We can
now denote uk(θ, ζ) each of the N basis elements (e.g. cos(θ + 2Nζ)) and the combined system of drift-kinetic and
quasineutrality equation can be symbolically written as

ϕ1ϕ1ϕ1 = ϕ0
1ϕ
0
1ϕ
0
1 + Aϕ1ϕ1ϕ1 , (46)

where ϕ1ϕ1ϕ1 is a vector whose N components are the coefficients of the expansion of ϕ1 in equation (45) and A is a
generally denseN ×N matrix. In this linear, system, the right-hand side ϕ0

1ϕ
0
1ϕ
0
1 can be obtained by solving equation (43)

for all the kinetic species (and for several values of v) with ϕ1 = 0, inserting the solution into equation (44) and then
Fourier-transforming the result following equation (45). Next, we fill the matrix A: the kth row is obtained by solving
equation (43) with ϕ1 = uk, inserting the solution into equation (44), Fourier-transforming and then substracting ϕ0

1ϕ
0
1ϕ
0
1

from the result. Once ϕ0
1ϕ
0
1ϕ
0
1 and A have been filled, the new linear system can easily be solved, e.g. using a new LU

decomposition, to obtain ϕ1ϕ1ϕ1, i.e., the set of coefficients ϕ(c)
mn and ϕ(s)

mn that parametrize the solution to quasineutrality.
Finally, since the response of gb to every basis element has already been computed, a simple linear combination
yields the distribution function that is solution of the drift-kinetic and quasineutrality equations, without requiring an
additional solve of the former.

In summary, the drift-kinetic equation is solved a total of N + 1 times (for each species), but LU factorization is
done once (for each value of v). The linearity of the system of equations due to the smallness of ϕ1, together with
the method that we have chosen for solving the drift-kinetic equation, yields a large reduction of the computing time
needed to solve the system of equations: the code is roughlyN faster (withN ranging from 100 to 1000), with respect
to an equivalent code that allowed the particle orbits be modified by ϕ1.
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Fig. 5. Magnetic field strength for surface ψ/ψLCFS = 0.5 of the W7-X high-mirror configuration (top left), the LHD Rax = 3.75 m configu-
ration (top right), an NCSX equilibrium (bottom left) and the TJ-II standard configuration (bottom right).

4. Results

In this section, we show calculations for a variety of three-dimensional magnetic configurations in order to com-
pare KNOSOS with widely-benchmarked codes and to illustrate its performance. In §4.1, we will solve a simplified
drift-kinetic equation, without the magnetic drift and electric field components tangent to the flux surface, and we
will compare our results with bidimensional databases of DKES monoenergetic transport coefficients. The effect of the
tangential magnetic drift in the energy flux, calculated for realistic kinetic profiles, will be discussed in §4.2. Finally,
solutions of the quasineutrality equation will be compared with EUTERPE calculations in §4.3.

4.1. DKES-like monoenergetic transport coefficients

In this subsection, we will show that KNOSOS can be used for creating a DKES-like database of monoenergetic
transport coefficients at low collisionalities. We will compare our calculations with DKES, both in results and comput-
ing time. Let us first discuss the rationale behind the monoenergetic approach, which is not specific to DKES, and the
particular simplifications involved in DKES. More details can be found in the overview paper [4].

Predictive transport simulations solve the energy transport equation for every species:

3
2
∂nbTb

∂t
+

1
r
∂

∂r
(rQb) = 〈Pb〉 , (47)

where Pb is the net energy input to species b and the energy flux Qb contains a turbulent contribution, at least close to
the edge, that is currently provided by simplified models [23]. Calculating the time evolution of the energy, as in [47],
or finding the steady-sate solution as in [19], requires evaluating the neoclassical contribution to Qb a large number of
times. The monoenergetic approach, together with some simplifications to the drift-kinetic equation, provides a way
out of solving the drift-kinetic equation many times.
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Strictly speaking, monoenergetic transport coefficients can always be calculated if the velocity v is a parameter in
the drift-kinetic equation that is being solved, as in the case of equation (24): one can rewrite

Qb =

∫ ∞

0
dvD11,b

mbv2

2
FM,bΥb

∂ψ

∂r
(48)

as a convolution of monoenergetic transport coefficients

D11,b = 2
(
∂r
∂ψ

)2 〈∫ B−1

B−1
max

dλ
v3B
|v‖|

gb

FM,bΥb
vD,b · ∇ψ

〉
, (49)

where gb is the solution of equation (24). Up to this point, the reduction in computation time associated to the
monoenergetic approach stems from the fact that v is a parameter in equation (24), which is then easier to solve than
a drift-kinetic equation with energy diffusion in the collision operator.

Additionally, some fundamental simplifications are done by DKES: instead of Qb, it calculates

Q̂b =
〈
Q̂b · ∇r

〉
=

∫ ∞

0
dvD̂11,b

mbv2

2
FM,bΥb

∂ψ

∂r
, (50)

with

D̂11,b = 2
(
∂r
∂ψ

)2 〈∫ B−1

B−1
max

dλ
v3B
|v‖|

ĝb

FM,bΥb
vM,b · ∇ψ

〉
. (51)

Here, ĝb is the solution of a modified version of equation (24), simplified as

ÎvE ,α(α, λ)∂αĝb + IvM,ψ (α, λ)vd,bFM,bΥb = νλ,b∂λ
[
Iν(α, λ)∂λĝb

]
. (52)

With respect to equations (24) and (49), we have set

vE · ∇ψ = 0 ,
IvM,α = 0 ,
IvE,ψ = 0 , (53)

and replaced IvE,α with

ÎvE,α = Ψ′t∂ψϕ0

∫ lb2

lb1

B2〈
B2〉 dl
√

1 − λB
. (54)

In other words, the effect of the tangential electric field and the tangential magnetic drift is ignored, and an incom-
pressible E×B tangential drift is used (this last simplification is specific of DKES and is not used by other codes in [4]).
While it is well known [5] that these effects need to be kept in the drift-kinetic equation for an accurate computation
of the radial fluxes, there is a range of situations in which Q̂b ≈ Qb (this will be discussed in detail in §4.2) and this
inaccuracy allows for a very large reduction of the computing time. The reason is that, for a given flux surface, when
normalized by the plateau value

D̂∗11 ≡
D̂11,b

Dp
11,b

,

Dp
11,b =

πv2
d,bR0

4vι
, (55)

the transport coefficients D̂∗11 only depend on two v-dependent dimensionless parameters, the collisionality

ν∗ =
R0νλ
ιv

, (56)

and the normalized radial electric field
vE∗ =

Er

vB0,0
. (57)
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Fig. 6. Monoenergetic transport coefficients calculated with DKES (full squares) and KNOSOS (small open circles with lines) as a function of
the collisionality at ψ/ψLCFS = 0.5 surface of W7-X (top left), LHD (top right), NCSX (bottom left) and TJ-II (bottom right). The colour
code is: vE∗B0,0 = 0 (blue), 1 × 10−5 T (magenta), 3 × 10−5 T (green), 1 × 10−4 T (black), 3 × 10−4 T (cyan), 1 × 10−3 T (red), and 3 × 10−3 T
(grey).

Here, R0 is the major radius, and the main Fourier mode of B (see Appendix C) is B0,0 ∼ 1 T in all the simulations
presented in this paper. Since there is no species dependence, in the rest of the subsection we follow the common
practice of dropping the species index when discussing monoenergetic calculations. A predictive transport simulation
thus requires to precompute a so-called database of (DKES-like) monoenergetic coefficients D̂∗11(ν∗, vE∗). Once this is
done, the calculation of Q̂b for given nb, Tb and Er using equation (50) requires a few bidimensional interpolations
and an integral in v. The problem then lies in the computation of the database D̂∗11(ν∗, vE∗) for every new magnetic
configuration, which typically takes hours, due to the poor convergence of DKES (and most neoclassical codes [4])
at low collisionalities. We will show that the bounce-average technique greatly reduces the computing time by us-
ing in KNOSOS equation (52) and comparing the results with DKES. Calculations without the simplifications made
by DKES are left for §4.2.

In order to illustrate the performance of KNOSOS in a variety of three-dimensional configurations, we choose
four very different types of stellarators. Figure 5 shows the map of the magnetic field strength on the flux surface
ψ/ψLCFS = 0.3 of the high-mirror configuration of the helias W7-X (top left), the Rax = 3.75 m configuration of
the heliotron LHD (top right), an equilibrium of NCSX close to quasiaxisymmetry (bottom left) and the standard
configuration of the heliac TJ-II (bottom right)[48].

Figure 6 shows the first comparisons between KNOSOS and DKES, in which the normalized monoenergetic transport
coefficient D̂∗11 is calculated for several values of the collisionality and the normalized radial electric field. Figure 6
(top left) contains data for the W7-X high-mirror configuration, which we discuss in more detail. The expected 1/ν
dependence is observed at the highest collisionalities and, due only to the absence of tangential magnetic drift, for
small values of vE∗. There is

√
ν characteristic behaviour elsewhere, with smaller levels of transport for larger |Er |.

The comparison between KNOSOS and DKES is satisfactory, with agreement within the error bars of the DKES calcu-
lation (for a discussion on how the error bars of DKES are determined, see page 14 of [4]), and only at the highest
collisionalities, and for the largest values of Er, there are very small differences. The calculation for all the points
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Fig. 7. Radial profile of normalized monoenergetic transport coefficient calculated with DKES (full squares) and KNOSOS (small open circles
with lines) for W7-X (top left), LHD (top right), NCSX (bottom left) and TJ-II (bottom right). Cyan corresponds to the

√
ν regime

(vE∗B0,0 = 3 × 10−4 T) and blue to the 1/ν regime (vE∗ = 0).

of this case was made with Nα = 32 and Nλ = 64, and it took 2.0 seconds in a single standard CPU. Of this time,
around 0.7 seconds were used for setting the grid and performing the bounce-averages, and then it took less than
0.04 seconds to calculate each point. This number may be reduced even further using smaller Nλ for the cases of
largest collisionality and smallest radial electric field. In the

√
ν regime, transport is given by a small layer close to

the boundary between passing and trapped particles. The size in λ of this layer is proportional to
√
νλ/Er [5], and this

determines the required number of grid points Nλ in the low collisionality cases with radial electric field.
Similar results can be seen for LHD in figure 6 (top right). Nα = 32 and Nλ = 64 grid points were used, and the

total computation time was 2.1 seconds. For NCSX, figure 6 (bottom left), the agreement is good except for the higher
collisionalities, where the 1/ν regime should connect with a banana regime (see figure 15 of [4]). This regime, which
cannot be not described by a bounce-averaged drift-kinetic equation, could be easily added to KNOSOS following [9].
Nα = 32 and Nλ = 64 grid points were used, and the total computation time was 1.0 seconds. Finally, figure 6
(bottom right) contains the results for TJ-II, the hardest case due to its complicated magnetic geometry, see figure 5
(bottom right). Nα = 32 and Nλ = 128 were used, and the simulation took 157 seconds. The points corresponding to
vE∗B0,0 ≥ 10−3 T and ν∗ < 10−4 do not agree with DKES: this would have required a finer grid, and it is an indication
of how cases deeper in the

√
ν regime are more difficult to compute. The rest of the simulations agree with DKES and

reach even lower collisionalities than those typically required for describing a TJ-II plasma, whose ion temperature
never exceeds a few hundred eV.

Figure 7 contains, for each of the four configurations, radial profiles of the transport coefficient D̂∗11 for two cases,
vE∗ = 0 and vE∗B0,0 = 3 × 10−4 T, for a given collisionality. They are meant to represent the level of transport in the
1/ν regime (D̂∗11 is by definition proportional to ε3/2

e f f , being εe f f the effective ripple) and the
√
ν regime, respectively.

We choose ν∗ = 2×10−5 for W7-X (top left) and LHD (top right), ν∗ = 10−5 for NCSX (bottom left) and ν∗ = 3×10−5

for TJ-II (bottom right). It can be observed that the good agreement holds for all cases at all radial positions. The
comparison of the different parts of figure 7 provides additional information that may be relevant when devising a
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stellarator optimization strategy: in general, configurations with lower 1/ν transport show lower
√
ν transport as well.

This is not surprising considering that both quantities are connected to the bounce-averaged radial component of the
magnetic drift, which appears in the source of the drift-kinetic equation (9) in both regimes, and which is in turn
proportional to the variation of the second adiabatic invariant on the flux surface, ∂αJ. As long as the optimization
procedure actually reduces the size of ∂αJ, both the 1/ν and

√
ν (and superbanana-plateau) regimes will generally

be optimized. Nevertheless, using directly the effective ripple as figure of merit of neoclassical transport does not
automatically guarantee a reduction of ∂αJ, and the

√
ν transport may remain unoptimized. Figure 7 (top) may

represent an example of this situation: while this W7-X configuration is designed to have low level of 1/ν transport
at an intermediate radial position (where the plasma volume is relatively large and neoclassical transport is expected
to be at least comparable to anomalous transport), the

√
ν transport is smallest exactly at the magnetic axis. A fast

computation of the
√
ν and superbanana-plateau opens the possibility of a more efficient optimization with respect to

neoclassical transport. In the next subsection, we will see that the regimes of collisionality lower than the 1/ν play
a role in the transport of relevant plasmas. For this reason, their fast computation opens the possibility of a more
efficient stellarator optimization with respect to neoclassical transport.

4.2. Effect of the tangential magnetic drift on the radial transport of energy

In §4.1, we have shown solutions of equation (52), a simplified drift-kinetic equation that is not accurate when the
tangential components of the magnetic drift and of the electric field play a role. In this section, we will demonstrate
the importance of solving equation (24) instead of equation (52), i.e., of computing Qb and not Q̂b, when calculat-
ing the radial energy flux in real plasmas. It must be noted that the solution of equation (24) with KNOSOS is not
computationally more expensive than that of equation (52): in the superbanana-plateau regime, that may arise in the
presence of the tangential magnetic drift for certain values of Er, transport is dominated by a resonant layer whose
size decreases with (νλ/Er)1/3, i.e., slower than the boundary layer that determines the

√
ν transport [5]. Calculating

Qb instead of Q̂b does not require a larger value of Nλ in general.
In this section, we focus on characterizing the effect of the tangential magnetic drift for the particular case of

ϕ1 = 0. We advance one of the salient results: this effect will be non-negligible even at not very low collisionalities.
The reason is that the calculation of the energy flux for a given plasma, characterized by the kinetic profiles, requires
the solution of the drift-kinetic equation for several values of the velocity, see equation (26), with the normalized
particle energy (v/vth,b)2 spanning several orders of magnitude. This means that, even if the thermal particles are in
1/ν regime, there are particles with higher v that are in lower collisionality regimes.

Figure 8 contains simulations for the high-mirror configuration of W7-X at ψ/ψLCFS = 0.25, which corresponds
to r/a = 0.5. We choose a pure hydrogen plasma, with ne = 8.0 × 1019 m−3, ∂rne/ne = −2.0 m−1, Te = Ti = 4.0 keV,
∂rTe/Te = ∂rTi/Ti = −3.0 m−1. These are values comparable to those measured in high-performance OP1.2 plasmas
of W7-X [49] in the region of crossover between positive and negative radial electric field, corresponding to electron
and ion root solutions of the ambipolarity equation [50]. In these plasmas, neoclassical transport calculated neglecting
the tangential magnetic drift typically accounts for around half the total experimental transport. Figure 8 (top) contains
a plot, in logarithmic scale, of the ion and electron radial energy flux as a function of the radial electric field. Empty
and full blue boxes correspond to Q̂i and Qi respectively, both calculated with KNOSOS. We immediately see that Q̂i

overestimates the radial energy flux at small values of the radial electric field, specially at Er = 0 (strictly the only
point of the figure where Q̂i is proportional to ε3/2

e f f ). The tangential drifts make the ion flux decrease, differently in
the case of Q̂i and Qi, as we will discuss below. Finally, empty and full red boxes correspond to Q̂e and Qe calculated
with KNOSOS. In this plot, is difficult to notice any difference between the different electron calculations. Figure 8
(top) contains additional black lines that are the result of combining calculations with DKES and KNOSOS. We will
leave the discussion of these results for the end of the section.

Figure 8 (bottom) contains a blowup in linear scale of the most relevant range of the data in figure 8 (top). Here,
the effect of the tangential magnetic drift on the energy flux can be observed more clearly: the size of the peak at
small |Er | is reduced and displaced to positive (negative) values in the case of electrons (ions). The effect is larger
for the ions due to their larger normalized Larmor radius ρi∗, which makes them leave the 1/ν regimes at relatively
higher collisionalities. We have mentioned that these plasmas are close to the crossover between ion and electron root,
and this figure can help us discuss some features of transport in both situations. In electron root, the radial electric
field is expected to be positive and large, and the electrons are expected to give the largest contribution to energy
transport. According to figure 8 (bottom), Qe provides a minor, although systematic, correction to Q̂e, below 10%
for this plasma profiles and configuration. The situation is different in ion root, typically characterized by a negative
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radial electric field that is small in size, and dominant ion transport. Here, including the tangential magnetic drift can
lead to large corrections, above 50% in some cases.

For the sake of completeness, figure 9 contains two more cases. In figure 9 (top) we repeat the calculation for a
W7-X plasma of much higher collisionality, choosing ne = 1.6 × 1020 m−3, ∂rne/ne = −2.0 m−1, Te = Ti = 2.5 keV,
∂rTe/Te = ∂rTi/Ti = −3.0 m−1. We first note that the electrons are deep in the 1/ν regime, since νe∗ = 3.4 × 10−2 and
ρe∗ = 1.4 × 10−5. Nevertheless, Qe(Er) does not show the linear dependence expected when the 1/ν dominates. This
is an indication of what we advanced at the beginning of this section: even in plasmas nominally in the 1/ν regime,
the contribution of the

√
ν regime is not negligible, and should not be neglected in the optimization procedure. For the

ions, even at these higher collisionalities and low temperatures, νi∗ = 1.6×10−2 is not much larger than ρi∗ = 6.0×10−4

divided by the inverse aspect ratio. This means that, for ions slightly more energetic than the thermal ions, the
tangential magnetic drift is relevant at small values of |Er | [25]. Figure 9 (top) shows indeed systematic differences
between Q̂i and Qi.

Finally, figure 9 (bottom) contains a calculation with the same kinetic profiles of figure 8 (top) for the inward-
shifted configuration of LHD. It can be observed that the effects discussed in figure 9 (top) are even more pronounced,
to the extent of changing qualitatively the Qb(Er) dependence (and making it more similar to that reported in [41]):
while practically any increase of |Er | causes a reduction of Qi in W7-X, this is not the case for LHD. For finite ion-root
values of Er, Qi(Er) has a peak whose height is determined by superbanana-plateau transport.

In light of these results, two comments related to stellarator optimization can be made. First, the fact that the
monoenergetic transport coefficients respond to small tangential E × B drifts differently in the inward-shifted LHD,
with respect to other configurations, was already discussed in [4], and it can be observed more clearly when calculating
the energy flux including the tangential magnetic drift. We also note that part of the neoclassical optimization of
W7-X comes from its large aspect-ratio, which tends to make the tangential magnetic drift smaller, when compared
with the E × B drift. It is then clear than a systematic study of the different low-collisionality regimes, and their
different configuration dependence, should be addressed when devising an stellarator optimization strategy. Second,
a comprehensive optimization strategy will involve, at least, solving energy transport consistently with ambipolarity
and quasineutrality. Along this subsection, we have compared Q and Q̂ at fixed Er, but a more systematic study
applied to real discharges of W7-X, including the experimental validation of Er predictions, is ongoing [51].

Let us finally discuss the black lines of figures 8 and 9, which correspond to combining simulations of DKES and KNOSOS.
As we have argued at the beginning of this section, calculating the radial energy flux requires solving the drift-kinetic
equation for velocities (v/vth,b)2 spanning from ∼ 10−2 to ∼ 102, typically. Similarly to what we discussed for
v � vth,b, this means that particles with v � vth,b could be in the plateau regime, and they would not be described by
equation (24). In order to quantify this effect, and to show that it is negligible for the high-performance plasmas of
W7-X, we perform calculations of Qi(Er) and Qe(Er) combining KNOSOS with DKES. This can be done by rewriting
equation (22) as

Qb = Dp
11,b

∫ ∞

0
dv

[
H(v0 − v)D̂∗11(v) + H(v − v0)D∗11(v)

] mbv2

2
FM,bΥb , (58)

where H is the Heaviside function, v0 is a cut-off velocity, D̂∗11(v) comes from DKES in this case and

D∗11(v) =
D11,b

Dp
11,b

(59)

from KNOSOS. The latter is calculated according to equation (49) solving the drift-kinetic equation that is correct at low
collisionalities with ϕ1 set to zero. In other words, monoenergetic transport coefficients D̂∗11 coming from DKES are
used above certain collisionality when performing the velocity integral and monoenergetic transport coefficients D∗11
coming from KNOSOS are used below that collisionality. The cut-off velocity v0 must correspond to particles in the
1/ν regime, which is correctly described by the two codes, in order to guarantee that both codes are employed in
the parameter region where they are accurate (and fast). Here, v0 is a value of v for which D∗11 shows a clear 1/ν
dependence for non-zero Er and lies above the plateau value provided by DKES.

In figures 8 and 9 (bottom), the black lines corresponding to using equation (58) barely separate from the solution
of equation (24). This means that the contribution of the plateau regime to the energy flux is negligible. Only for
ions in the presence of very negative values of the radial electric field, in the high-density W7-X calculation, starts the
black line to separate from the blue signs. This is to be expected: the contribution of low collisionalities to transport
is reduced for very large values of the tangential magnetic drift (something that happens for smaller values of |Er | if
Er is negative), and therefore the contribution of the plateau becomes non-negligible.
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4.3. Tangential electric field

Neoclassical physics gives rise to ϕ1, and the associated tangential electric field produces radial drifts in all species.
This is the reason why we need to solve consistently the drift-kinetic equations of the bulk species and quasineutral-
ity [5], but the effect is more relevant for impurities, due to their larger charge number, changing even qualitatively
transport (e.g. making it depend on the radial electric field in the so-called mixed collisionality regime [52, 53]). With
impurity transport in mind, simulations of ϕ1 for the stellarators W7-X, LHD and TJ-II have been performed in the
last years with three codes, EUTERPE, SFINCS and recently FORTEC-3D [27, 28, 54, 39, 55]. Nevertheless, the number
of simulations remains small because they are computationally very demanding, specially at low collisionalities. A
more comprehensive study, including dependence on the configuration, collisionality, and bulk plasma profiles thus
remains to be done. In this section, we will show that KNOSOS can reproduce the results of EUTERPE (with adiabatic
electrons and no tangential magnetic drift) and, by accounting for the effect of the tangential magnetic drift, describe
stellarator regimes only simulated before for simplified geometries [25, 33]. Since it can do so while keeping the
computing time low, this opens the door to a number of new impurity transport studies.

We start by reproducing the results of [28], specifically of two low-collisionality plasmas of LHD and W7-X.
These are expected to be the plasma conditions of largest eϕ1/Ti so that, even in optimized magnetic configurations,
the effect on the radial transport of impurities may be large. It will be confirmed (as advanced in a previous work [33]
in a simplified calculation) that the inclusion of the tangential magnetic field leads to qualitative changes in ϕ1, making
it larger. Figure 10 shows the variation of the electrostatic potential on several flux surfaces of the inward-shifted
configuration of LHD for a low-collisionality plasma (described in [28]), termed AIII, and characterized by a small
negative Er). Each row corresponds to a different flux surface, and each column to a different calculation method. Let
us start by comparing the left column, calculated with EUTERPE, with the center column, calculated with KNOSOS using
equation (52). The two methods should give the same results, and it can be observed that, although there are some
differences (note the slightly different color scale), reasonable agreement between the two codes is obtained. It
should be emphasized that differences in calculated values of ϕ1 similar but smaller to those reported here, have been
shown to produce negligible differences in impurity transport [33]. If we now focus on the right column, we observe,
as discussed in detail in [33], that the inclusion of the tangential magnetic drift produces relevant differences (in
particular, more important than those between the left and center columns): the amplitude becomes larger, and the
phase changes, with the angular dependence of ϕ1 turning from being stellarator-symmetric (as expected for ions in
the
√
ν regime), to not having definite symmetry (as corresponds to the superbanana-plateau regime [25]).

Figure 11 contains a similar calculation performed for a low-collisionality plasma of W7-X (described in [28],
termed IV, and characterized by a larger negative Er). Again, each row corresponds to a different flux surface, and
each column to a different calculation method. The agreement between EUTERPE and KNOSOS solving the same
equation (left and center) is fair close to the core, since both show a similar angular dependence and a slightly
different amplitude, but it becomes worse closer to the edge, where KNOSOS clearly underestimates the amplitude
of ϕ1. When the tangential magnetic drift is included (right), the results change very slightly in the core and do not
change elsewhere. This feature is likely caused by the large radial electric field, which leaves the ions in the

√
ν regime

(instead of the superbanana-plateau). As in subsection 4.2, the large radial electric field, together with the lower level
of ϕ1 characteristic of optimized stellarators [25, 28], may be behind the disagreement between EUTERPE and KNOSOS,
since the former includes the contribution of the plateau regime.

The computing time for each of these KNOSOS simulations is of the order of a minute in a single processor. We
note that including kinetic electrons (which may be necessary for high electron temperature) would roughly double the
computing time. This is to be compared with the (mi/me)1/2 ≈ 43 factor in Monte Carlo codes such as EUTERPE and
FORTEC-3D.

Let us finally mention that the experimental validation of ϕ1 predictions has drawn much attention in the last
years: experimental measurements of ϕ1 were first obtained at the edge of the TJ-II stellarator [56], and very recently
in its core region [57]. The validation of KNOSOS predictions, including finer scans in the magnetic configuration, is
left for a forthcoming work.

5. Conclusions

KNOSOS is a freely-available open-source code that provides a fast computation of neoclassical transport at low col-
lisionality in three-dimensional magnetic confinement devices, thanks to a rigorous application of the orbit-averaging
technique to the drift-kinetic equation and an efficient solution of the quasineutrality equation. We have shown that,
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(center) and including (right) the tangential magnetic drift. The four rows correspond to radial positions r/a = 0.2, 0.4, 0.6 and 0.8.
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Fig. 11. Electrostatic potential variation on the flux surface calculated fort the W7X plasma with EUTERPE (left) and KNOSOS neglecting
(center) and including (right) the tangential magnetic drift. The four rows correspond to radial positions r/a = 0.2, 0.4, 0.6 and 0.8.
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when solving equivalent equations, KNOSOS reproduces the calculations of DKES and EUTERPE in simulations that
can be orders of magnitude faster. This makes it a tool that can be used for a variety of physics problems, that we
summarize next.

As a first obvious application, it can provide a fast calculation of the level of transport of a magnetic config-
uration for low-collisionality transport regimes not usually considered in stellarator optimization, such as the

√
ν

and superbanana-plateau regimes. Optimization programmes are slowly starting to provide a more accurate charac-
terization of transport by performing predictive simulations with prescribed sources and turbulent transport models.
KNOSOS can also contribute to overcome two of the main limitations of this approach: the large computing time needed
to create a database of monoenergetic neoclassical transport coefficients and/or the lack of accuracy involved in the
monoenergetic approach itself.

But a fast neoclassical code can have uses beyond stellarator optimization. For instance, the transport of impurities
caused by their interaction with the bulk ions (via ϕ1 or through inter-species collisions) has drawn much attention
in the last years; however, a systematic study of its dependence on the magnetic configuration, collisionality, and
bulk plasma profiles remains to be done, due to the large computing resources needed for the combined solution of
the quasineutrality and drift-kinetic equations of the bulk species. This will be addressed in forthcoming papers, in
combination with analytical formulas for the radial flux of impurities in a variety of neoclassical regimes [52, 58].

Finally even in situations in which turbulence is dominant, a fast neoclassical code may be required. Its output
(the radial electric field, the tangential electric field or the complete distribution function of the bulk species) can be
read by gyrokinetic codes when studying the effect of neoclassical transport on turbulence. This effect is expected
to be largest in those low-collisionality regimes in which the specificities of KNOSOS (very small computing time and
inclusion of the tangential magnetic drift) are most relevant.
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Appendix A. Details of the collision operator

In §2, the pitch-angle-scattering collision operator has been employed, and its explicit expression has been pro-
vided in equation (12). As it has been discussed, this is a single-species collision operator, which is accurate for
calculating ion transport, due to

√
me/mi � 1. For electrons, however, electron-ion collisions need to be retained in

the electron drift-kinetic equation. In order to overcome this limitation, an effective pitch-angle-scattering collision
frequency νλ,b is employed in order to account for inter-species collisions. This is done for both species, although its
effect will be negligible for the ions.

In this appendix, we provide the explicit expression of the pitch angle scattering frequency, given by the sum3

νλ,b =
∑

b′
νb/b′

0

[
erf

( √
mb′v2/(2Tb′ )

)
− χ

( √
mb′v2/(2Tb′ )

)]
, (A.1)

with

νb/b′

0 =
8πnb′Zb

2Zb′
2e4 ln Λb/b′

m2
bv3

. (A.2)

Here, ln Λb/b′ is the Coulomb logarithm,

χ(x) =
erf(x) − (2x/

√
π) exp(−x2)

2x2 , (A.3)

3We note that νλ,b = 2νb, with the definition of νb of page 3 of [4].
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and

erf(x) =
2
√
π

∫ x

0
exp(−t2) dt (A.4)

is the error function.

Appendix B. Analytical calculation of the divergences of equations (25)

In this section, we discuss how integrals such as those in equations (25),

I(λ) =

∫ lb2

lb1

dl
f (λ, l)

√
1 − λB(l)

, (B.1)

can be computed efficiently by removing the component that diverges close to bifurcations and solving it analytically.
Since integration is done at fixed α, we ease the notation by not making it explicit that B, f , and I generally depend
on the angular coordinate.

We first expand the magnetic field around the bounce point:

B(l) = B(lb1 ) + ∂lB|lb1
(l − lb1 ) +

1
2
∂2

l B|lb1
(l − lb1 )2 . (B.2)

Close to the bounce point, we have

f (l)
√

1 − λB(l)
≈

f (lb1 )√
−λ(l − lb1 )[∂lB|lb1

+ 1
2∂

2
l B|lb1

(l − lb1 )]
(B.3)

since λB(lb1 ) = 1. We can proceed exactly in the same way close to lb2 , and similarly close to λB: there, λB(lB) < 1
and the first derivative ∂lB|lB is zero, and we have

f (l)
√

1 − λB(l)
≈

f (lB)√
−(λ − λB)B(lB) − λB

1
2∂

2
l B|lB (l − lB)2

. (B.4)

We can then split the integral in three contributions:

I = I0 + I1 + I2 + IB , (B.5)

with

I0 =

∫ lb2

lb1

dl

 f (l)
√

1 − λB(l)
−

f (lb1 )√
−λ(l − lb1 )[∂lB|lb1

+ 1
2∂

2
l B|lb1

(l − lb1 )]

−
f (lb2 )√

−λ(l − lb2 )[∂lB|lb2
+ 1

2∂
2
l B|lb2

(l − lb2 )]
−

f (lB)√
−(λ − λB)B(lB) − λB

1
2∂

2
l B|lB (l − lB)2

 , (B.6)

whose integrand does not diverge anywhere and

I1 =

∫ lb2

lb1

dl
f (lb1 )√

−λ(l − lb1 )[∂lB|lb1
+ 1

2∂
2
l B|lb1

(l − lb1 )]
,

I2 =

∫ lb2

lb1

dl
f (lb2 )√

−λ(l − lb2 )[∂lB|lb2
+ 1

2∂
2
l B|lb2

(l − lb2 )]
,

IB =

∫ lb2

lb1

dl
f (lB)√

−(λ − λB)B(lB) − λB
1
2∂

2
l B|lB (l − lB)2

, (B.7)
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which can be solved analytically. The integral close to the bottom is

IB = f (lB)

√
−2

λB∂
2
l B|lB

ln
x +

√
x2 +

2(λ − λB)B(lB)
λB∂

2
l B|lB




lB−lb1

0

+

√
−2

λB∂
2
l B|lB

ln
x +

√
x2 +

2(λ − λB)B(lB)
λB∂

2
l B|lB




lb2−lB

0

.

(B.8)

For the other two integrals, if ∂2
l B|lb1

< 0 and ∂2
l B|lb2

< 0, the solution is

I1 = f (lb1 )

√
−2

λ∂2
l B|lb1

ln
2λ

√
∂2

l B|lb1

−2

√
−∂lB|lb1

x −
1
2
∂2

l B|lb1
x2 − λ∂2

l B|lb1
x − λ∂lB|lb1




lb2−lb1

0

,

I2 = f (lb2 )

√
−2

λ∂2
l B|lb2

ln
2λ

√
∂2

l B|lb2

−2

√
−∂lB|lb2

x −
1
2
∂2

l B|lb2
x2 − λ∂2

l B|lb2
x − λ∂lB|lb2




0

lb1−lb2

. (B.9)

These expressions are useful (in the sense of removing large analytical contributions to I) close enough to a bifur-
cation, where they can significantly accelerate the convergence of equations (25), but they are in principle valid for
any λ (far from bifurcations, when ∂2

l B|lb1
is positive, the expression within the square-root may become negative and

cannot be used).

Appendix C. Evaluation of the magnetic field strength along a field line

The fact that field lines are straight in magnetic coordinates can also be used to speed up the calculation of the
coefficients of the drift-kinetic equation. We describe how in this appendix.

The bounce-integrals are done, using the algorithm mentioned in §3.2, by following field lines using a fixed step
in the Boozer angles given by ∆ζ and ∆θ = ι∆ζ. After each step, the magnetic field can be calculated without loss of
accuracy from its Fourier components

B(θ, ζ) =
∑
m,n

Bm,n cos[mθ + nNζ] ,

B(θ + ∆θ, ζ + ∆ζ) =
∑
m,n

Bm,n cos[m(θ + ∆θ) + nN(ζ + ∆ζ)] ,

B(θ + 2∆θ, ζ + 2∆ζ) =
∑
m,n

Bm,n cos[m(θ + 2∆θ) + nN(ζ + 2∆ζ)] ,

... (C.1)

Instead of calculating the cosines at every angular position, we can precalculate a few sines and cosines, cos(mθ+nNζ),
sin(mθ + nNζ), cos(m∆θ + nN∆ζ) and sin(m∆θ + nN∆ζ), and use well-known trigonometric identities to iterate:

cos[m(θ + ∆θ) + nN(ζ + ∆ζ)] = cos(mθ + nNζ) cos(m∆θ + nN∆ζ)
− sin(mθ + nNζ) sin(m∆θ + nN∆ζ) ,

sin[m(θ + ∆θ) + nN(ζ + ∆ζ)] = cos(mθ + nNζ) sin(m∆θ + nN∆ζ)
+ sin(mθ + nNζ) cos(m∆θ + nN∆ζ) , (C.2)

and

cos[m(θ + 2∆θ) + nN(ζ + 2∆ζ)] = cos[m(θ + ∆θ) + nN(ζ + ∆ζ)] cos(m∆θ + nN∆ζ)
− sin[m(θ + ∆θ) + nN(ζ + ∆ζ)] sin(m∆θ + nN∆ζ) ,

sin[m(θ + 2∆θ) + nN(ζ + 2∆ζ)] = cos[m(θ + ∆θ) + nN(ζ + ∆ζ)] sin(m∆θ + nN∆ζ)
+ sin[m(θ + ∆θ) + nN(ζ + ∆ζ)] cos(m∆θ + nN∆ζ)

(C.3)

and so on.
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M. Ochando, S. Ohshima, J. Olivares, E. Oyarzábal, J. de Pablos, L. Pacios, N. Panadero, F. Parra, I. Pastor, A. de la Peña, A. Pereira,
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