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Mesh-free methods have significant potential for simulations in complex geometries, as the time
consuming process of mesh-generation is avoided. Smoothed Particle Hydrodynamics (SPH) is the
most widely used mesh-free method, but suffers from a lack of consistency. High order, consistent,
and local (using compact computational stencils) mesh-free methods are particularly desirable.

Here we present a novel framework for generating local high order difference operators for arbi-
trary node distributions, referred to as the Local Anisotropic Basis Function Method (LABFM).
Weights are constructed from linear sums of anisotropic basis functions (ABFs), chosen to ensure
exact reproduction of polynomial fields up to a given order. The ABFs are based on a fundamental
Radial Basis Function (RBF), and the choice of fundamental RBF has small effect on accuracy,
but influences stability. LABFM is able to generate high order difference operators with compact
computational stencils (4th order with N ≈ 25 nodes, 8th order with N ≈ 60 nodes in two dimen-
sions). At domain boundaries (with incomplete support) LABFM automatically provides one-sided
differences of the same order as the internal scheme, up to 4th order. We use the method to solve
elliptic, parabolic and mixed hyperbolic-parabolic partial differential equations (PDEs), showing up
to 8th order convergence. The inclusion of hyperviscosity is straightforward, and can effectively
provide stability when solving hyperbolic problems.

LABFM is a promising new mesh-free method for the numerical solution of PDEs in complex
geometries. The method is highly scalable, and for Eulerian schemes, the computational efficiency
is competitive with RBF-FD for a given accuracy. A particularly attractive feature is that in the low
order limit, LABFM collapses to Smoothed Particle Hydrodynamics (SPH), and there is potential
for Arbitrary Lagrangian-Eulerian schemes with natural adaptivity of resolution and accuracy.

I. INTRODUCTION

The numerical solution of partial differential equations (PDEs) is key to many branches of science, and the calcula-
tion of the spatial derivatives of a field, based on the knowledge of the value of that field at a discrete set of points, is
key. More accurate approximations lead to more accurate results. Approximations which converge at high order are
attractive, yielding equivalent accuracy at lower resolution, and hence lower computational cost. Mesh-based methods
have long dominated numerical simulations, and for simple problem geometries, can be made extremely accurate (e.g.
tenth order finite differences (FD) [1], or exponentially convergent spectral methods [2]). For complex geometries,
mesh-based methods suffer two main drawbacks. Firstly, the symmetries which enable efficient and highly accurate
approximations no longer apply. Global spectral methods are no longer possible, and high order finite differences
are only possible where an orthogonal mesh can be fitted to the problem. Secondly, the process of mesh generation
is complex and time-consuming, and accuracy can become highly dependent on the quality of the mesh. Mesh-free
methods have significant potential, as discretisation of the domain becomes extremely simple, and automation of the
process to create a node distribution with the desired properties (e.g. fitting the boundaries and satisfying resolution
criteria) is relatively straightforward. There is no need to generate and store information on inter-node connectivity.
In the context of computational fluid dynamics, mesh-free methods also have the advantage that topological changes
in the solution (i.e. wave overtopping) which would lead to singularities in mesh based methods, may be handled
easily, provided the method is based in an appropriate frame of reference. A number of mesh-free methods have
gained traction in recent decades, and for a broad overview of mesh-free methods, we refer the reader to [3, 4]. Below
we provide a brief review of the methods most relevant to the present work. In the following, we use h to denote
the characteristic length scale of a computational stencil, N to denote the typical number of nodes or particles in a
stencil, and N to denote the total number of computational nodes.

The Generalized Finite Difference Method (GFDM) [5] is a mesh-free extension of the finite difference method,
for arbitrary node distributions. A linear system is solved for each node to obtain a moving least squares (MLS)
approximation of a function and its derivatives, based on a compact stencil, from which weights for a local discrete
gradient operator are calculated. The condition of the linear systems has a dependence on the node distribution [6],
and generally the method is applied only up to second order [7, 8]. Recently Trask et al. [9] has developed a generalised

∗ jack.king@manchester.ac.uk

ar
X

iv
:1

91
2.

06
44

1v
3 

 [
ph

ys
ic

s.
co

m
p-

ph
] 

 1
5 

M
ay

 2
02

0

mailto:jack.king@manchester.ac.uk


2

moving least squares (GMLS) method, in which a polynomial reconstruction is used to obtain high order approximate
derivatives. The method has been extended to include variable resolution, and applied to Stokes flow in complex
geometries [10], demonstrating fourth order convergence.

Smoothed Particle Hydrodynamics is a meshfree method, originally developed for astrophysical simulations [11,
12], and adapted with substantial success to simulations of incompressible flows, free surface flows, fluid structure
interactions, and solid mechanics [13]. Fluid properties and their spatial derivatives are approximated based on
weighted sums of the properties at neighbouring particles, with weights determined from a smoothing kernel, and its
derivatives. In [11] smoothing kernels had a Gaussian form, although in modern SPH they are typically polynomials
with compact support [14]. The continuous form of SPH has a theoretical convergence rate of 2 (in h) [15], provided N
is held constant (for typical smoothing kernels), but in practice this drops to typically ∼ 1 due to particle disorder [16].
In fact, a simple error analysis of discrete SPH shows that derivative approximations are truly zero order in h (and
Laplacians even divergent, depending on the formulation), although there is generally a range of resolutions and
particle distributions for which convergence can be demonstrated [15]. The convergence rate of SPH is dependent on
N , and this dependence is influenced by the choice of smoothing kernel. For the widely used Wendland C2 kernel
(e.g. [17]), the method approaches the theoretical convergence rate (in h) of 2 with N−5/2 (i.e. the total error is
O
(
h2
)

+ O
(
N−5/2

)
). A number of corrections to SPH have been devised, including by Bonet and Lok [18], whose

relatively cheap correction (which requires inversion of a square matrix of rank µ, where µ is the number of spatial
dimensions) provides first order consistency.

Higher order consistency corrections for SPH have been devised, generally based on eliminating errors via the
solution of N small linear systems, and many of these corrections have become separate methods in their own right.
The Reproducing Kernel Particle Method (RKPM) [19, 20], and corrective SPH (CSPH) [3] improve the accuracy of
SPH approximations by introducing a polynomial factor in the kernel function chosen to ensure consistency. RKPM
has gained significant popularity in solid mechanics [3], and is most commonly employed in a Galerkin formulation.
Chen et al. [21] and Chen and Beraun [22] developed the Corrective Smoothed Particle Method (CSPM), in which a
Taylor series expansion of the unknown function was used to derive first order consistent interpolations and derivatives
approximations. Zhang and Batra [23] and Liu et al. [24] independently developed a correction to SPH interpolation,
termed the Finite Particle Method (FPM), in which higher order was achieved by including second and higher order
kernel derivatives, and solving a linear system to obtain approximations to a function and its gradient. Results were
presented for one- and two-dimensional problems, up to 3rd order, although the consistency of the approximation
deteriorated in the vicinity of boundaries. Liu and Liu [25] proposed a variation of CSPM, where a function and
all its derivatives (to a given order) are calculated simultaneously. This method provides consistency at boundaries,
where computational stencils lack complete support. Asprone et al. [26] developed a modified FPM, with the kernel
modified by multipication with a polynomial to eliminate certain moments, and in [27] extended the idea by replacing
the kernel and its derivatives with a series of monomials, demonstrating second order convergence in two dimensions.
Building on [25], Sibilla [28] presented a second order correction, involving the solution of a rank 5 (in two dimensions)
linear system, to eliminate low order errors. The method of Sibilla [28] provides a consistency correction for both
gradient and Laplacian operators, yielding convergence rates which do not deteriorate at very fine resolutions: the
order collapses only when machine precision errors start to dominate. Recent work by Lind and Stansby [29] has
shown that higher than second order in h may be achieved in SPH by modifying the SPH kernel to eliminate certain
moments (in the continuous form). Convergence up to sixth order has been demonstrated for Eulerian (with the
particles fixed in space) schemes with these high order kernels, and the approach has been succesfully extended to
semi-Eulerian schemes [30]. Whilst this approach is promising, zero-order (in h) error terms remain for disordered
particle distributions, although in practice there exists a range of resolutions for which high order convergence may
be observed. This range depends on how well the discrete sums over neighbour particles approximate continuous
integrals. Extending the range of resolutions for which high order is observed may be achieved either by enforcing
a certain degree of uniformity and isotropy on the particle distribution, or by use of a modified Gaussian kernel
combined with an extremely large computational stencil. With N ≈ 450 nodes in two dimensions, corresponding to
12 particles across the support radius, the discretisation error is < 10−16 for Gaussian kernels [31]. In practice, the
range of resolutions for which high order is observed is dependent on (for a 4th order kernel) the ratio of the third and
fifth discrete moments of the kernel, and the solution itself. The computational cost per particle per time-step is at
best O (N ) FLOPs (FLoating Point Operations), and so whilst the latter approach can yield convergence to machine
precision, it increases the cost over compactly supported kernels, which typically require N ≤ 50 in two dimensions.

A featured shared by GFDM, GMLS and the above mentioned SPH-derived methods is that interpolation involves
summation over all N nodes in the computational stencil of a local kernel function. Radial Basis Function (RBF)
methods, which originated in the field of cartography as an interpolation method for multivariate scattered node
data [32], and were first applied to the solution of PDEs in [33, 34], provide a different approach. An RBF is located
at each computational node, with each RBF weighted such that the sum of all N RBFs provides exact interpolation
at the nodes. Early RBF methods were global, with weights obtained by the solution of a dense global linear system



3

(of size N ×N). Global RBF methods can achieve exponential convergence and spectral accuracy [35], although the
cost of the global approach is significant, at O

(
N2
)

FLOPs per time-step [36]. The linear systems in global RBF
methods also suffer from poor conditioning. To overcome these shortfalls a local version of the RBF method - the
RBF finite difference (RBF-FD) method - was developed independently by Shu et al. [37], Cecil et al. [38], Wright [39],
where each node only interacts with the nearest N nodes (and generally N � N). In RBF-FD, the approximations
of a function and its derivative are constructed from a set of weights obtained by solving a small linear system at
every node. The method is extremely fast, scalable and accurate, although the exponential convergence and spectral
accuracy of the global method is lost. Provided N � N , the cost is O (N) FLOPs per time-step, with the costs
of assembling and solving the local linear systems relegated to the preprocessing stage. In RBF-FD, the order of
convergence is dependent on the stencil size, and (in two-dimensions) approximately

√
N . Recent work has shown

that the addition of polynomials to the local linear systems in RBF-FD can control the order of convergence, and
improve the conditioning of the linear systems [40, 41]. A good review of both global RBF and RBF-FD methods is
given by Fornberg and Flyer [35].

In this paper we present a novel technique for calculating high order difference approximations, which we term the
Local Anisotropic Basis Function method (LABFM). Local discrete operators approximating the spatial derivatives
are constructed from a linear combination of anisotropic basis functions (ABFs). The weights for the linear sum of
ABFs are determined to enforce specific error terms to be zero, ensuring exact reproduction of polynomial fields up
to the desired order, on arbitrary node distributions. In this work we demonstrate up to 8th order convergence on
disordered node distributions.

The remainder of the paper is set out as follows. In Section II we introduce our notation, a general discrete operator,
and an expresion for the error therein. In Section III we present our method for calculating weights for high order
difference operators, based on a series of Anisotropic Basis Functions (ABFs), derived from a fundamental RBF. In
Section IV we present numerical results using our method focusing on the accuracy and stability. In Section V we
demonstrate the ability of our method to solve a range of prototype PDEs. Section VI is a summary of conclusions.
In Appendix A we provide details of the ABFs used in this work.

II. A GENERAL DISCRETE OPERATOR

Consider a set of N nodes distributed in a domain Ω, with ri = (xi, yi) the position vector of node i. Throughout
this paper we consider two dimensional problems for simplicity of exposition, although the method could be easily
extended to higher dimensional problems (at computational cost). Note that the analysis in this section is for arbitrary
node distributions. A characteristic length scale of the distribution is δr, where typically Nδr2 = VΩ, with VΩ the
volume of the domain. The value of some field (·) at node i is (·)i. When calculating derivatives, we use stencils
with finite size with characteristic width h (in the present work, all stencils have a radius of 2h). For any node
i, we refer to all nodes j within the stencil of i as neighbours of i. Ni is the number of neighbours of i. Sums
over j (e.g.

∑
j) are over all j ∈ Ni. In this paper, we consider the case where h/δr is uniform and constant, and

hence also Ni) is approximately uniform and constant. We use H as a characteristic length scale of the domain,
or of some scalar or vector field, and then h/H is a non-dimensional measure of the effective resolution. We denote
(·)ij = (·)i−(·)j = − (·)ji, and where the subscript ji appears after a function, the difference is applied to the function
arguments. We define a vector of monomials

X =
[
x, y, x2

2 , xy,
y2

2 ,
x3

6 ,
x2y
2 , xy2

2 , y3

6 ,
x4

24 , . . .
]T
, (1)

noting that Xji =
[
xji, yji, x

2
ji/2, . . .

]T
(i.e. Xji 6= Xj −Xi). We also define a vector operator of partial derivatives

as

D (·) =
[
∂(·)
∂x ,

∂(·)
∂y ,

∂2(·)
∂x2 ,

∂2(·)
∂x∂y ,

∂2(·)
∂y2 ,

∂3(·)
∂x3 ,

∂3(·)
∂x2∂y ,

∂3(·)
∂x∂y2 ,

∂3(·)
∂y3 ,

∂4(·)
∂x4 , . . .

]T
. (2)

With this notation, the multi-dimensional Taylor expansion of (·) about i may be expressed concisely as

(·)j = (·)i + Xji · D (·)|i , (3)

in which the subscript i in the final term on the RHS indicates D is evaluated at ri. We define a general discrete
operator, operating on node i:

Ld
i (·) =

∑
j

(·)ji w
d
ji (4)
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where d identifies the specific partial derivative(s) being approximated, and wd
ji are the set of weights that, at this

stage we require to be functions of rji (i.e. wd
ji = wd (rji)) and differentiable. Equation (4) approximates Cd ·D (·)

∣∣
i

where Cd is a vector pointing to the appropriate derivatives for a given d. Usually we are interested in estimating
the gradients and Laplacian of a function, for which cases we set d = x, d = y, and d = L, giving

Cd =



[
1, 0, 0, 0, 0, 0, 0, 0 . . .

]T
if d = x[

0, 1, 0, 0, 0, 0, 0, 0 . . .
]T

if d = y[
0, 0, 1, 0, 1, 0, 0, 0 . . .

]T
if d = L.

(5)

The choice to use (·)ji in (4) (as opposed to (·)j) allows inter-node weight functions with a singularity at wd
ii. We

analyse the error in Ld
i by substituting the Taylor expansion (3) into (4), obtaining

Ld
i (·) =

∑
j

Xji ·D (·)|i w
d
ji, (6)

which when expanded is

Ld
i (·) =

∂ (·)
∂x

∣∣∣∣
i

∑
j

xjiw
d
ji +

∂ (·)
∂y

∣∣∣∣
i

∑
j

yjiw
d
ji +

∂2 (·)
∂x2

∣∣∣∣
i

∑
j

x2
ji

2
wd

ji

+
∂2 (·)
∂x∂y

∣∣∣∣
i

∑
j

xjiyjiw
d
ji +

∂2 (·)
∂y2

∣∣∣∣
i

∑
j

y2
ji

2
wd

ji +
∂3 (·)
∂x3

∣∣∣∣
i

∑
j

x3
ji

6
wd

ji +
∂3 (·)
∂x2∂y

∣∣∣∣
i

∑
j

x2
jiyji

2
wd

ji

+
∂3 (·)
∂x∂y2

∣∣∣∣
i

∑
j

xjiy
2
ji

2
wd

ji +
∂3 (·)
∂y3

∣∣∣∣
i

∑
j

y3
ji

6
wd

ji +
∂4 (·)
∂x4

∣∣∣∣
i

∑
j

x4
ji

24
wd

ji + . . . . (7)

We refer to the sums on the RHS as the moments of wd. The m-th moments are denoted Bd,m, where m is the total
order of the monomials within the sum. There are two first moments, three second moments, four third moments,
and so on. The vector of moments is defined

Bd
i =

∑
j

Xjiw
d
ji. (8)

To ensure that Ld is non-divergent, we require the terms in (7) of order k to scale with hk−l, where l is the order of
the derivative being approximated. For first derivatives, this can be achieved by ensuring that wd scales with 1/h.
If this condition is satisfied, Bd,m ∝ hm−1, and Ld is zero-order in h for first derivatives. The equivalent condition
for second derivatives requires that wd scales with 1/h2, and that the first moments of wd are zero. Finite difference
schemes satisfy these conditions, as do first derivative approximations in SPH, which are obtained by setting (e.g. for
∂ (·) /∂x)

wx
ji =

∂Wij

∂x
δV, (9)

where W is the SPH smoothing kernel, and δV is a nominal node volume. The use of a normalized SPH kernel
(i.e.

∫
V
WdV = 1, where V is the support volume of the kernel) ensures that the approximation is zero order. A

zero-order (and non-zero error) operator is not particularly useful. By manipulation of the specific form of wd, the
magnitudes of moments corresponding to the desired derivative may be brought closer to unity, and the magnitude of
other moments may be reduced towards zero, such that the method shows higher (than zero) order convergence over
a range of resolutions. In the next section we present a method for doing this and achieving arbitrarily high order
difference operators.

III. THE LOCAL ANISTROPIC BASIS FUNCTION METHOD

A. The elimination of error terms

We now present a method of specifying wd such that the error in Ld is of arbitrarily high order. We set wd equal
to the weighted sum of a series of Anistropic Basis Functions (ABFs) Wji = W (rji/h), writing

wd
ji = Wji ·Ψd

i = W 1
jiΨ

d
i,1 +W 2

jiΨ
d
i,2 +W 3

jiΨ
d
i,3 +W 4

jiΨ
d
i,4 + . . . , (10)
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where the vector of basis functions is Wji =
[
W 1

ji,W
2
ji,W

3
ji . . .

]T
and the vector of weights is Ψd

i =
[
Ψd

i,1,Ψ
d
i,2,Ψ

d
i,3 . . .

]T
.

The basis functions are anisotropic, in that they depend on rji (as opposed to the dependence on |rji| of RBFs).
Substituting (10) into (8) gives

Bd
i =

∑
j

XjiWji ·Ψd
i , (11)

which may be easily reformulated as a linear system

MiΨ
d
i = Bd

i , (12)

in which

Mi =
∑
j

Xji ⊗Wji. (13)

We obtain the weights Ψd
i by specifying desired values of each moment, replacing Bi in (12) with Cd and solving the

resulting system

MiΨ
d
i = Cd. (14)

Having solved (14) we use (10) to obtain the weights wd
ji.

The above analysis imposes no constraint on the lengths of X, W , C, and the size of M , although for consistency
between (13) and (14), we require X, W and C to be of equal length, and M square. In practice they are finite, and
we use only the first p elements from X and W to construct and solve (14). We note here the useful relation between
the number of elements p, and the order k of the p-th element of X:

p =
k2 + 3k

2
= 2, 5, 9, 14, 20, 27 . . . for k = 1, 2, 3, 4, 5 . . . , (15)

which is valid for two-dimensional problems. If the method were applied to three-dimensional problems p would be
the sum of all triangular numbers from 2 to k + 1:

p =

m=k+1∑
m=2

m (m+ 1) /2 = 3, 9, 19, 34, 55 . . . for k = 1, 2, 3, 4, 5 . . . . (16)

When (14) is solved with Mi having size p× p, exact polynomial reconstruction of order k is ensured. That is to say,
the leading order (in h) error terms in Ld

i scale with hk−l+1, where l is the order of the derivative approximated by Ld
i .

For first derivatives, l = 1 and the leading order error scales with hk. For second derivatives, l = 2 and the leading
order error scales with hk−1. The matrices Mi and the resulting wd are dependent on the anisotropy of the node
distribution. However, in setting wd via (10) and the solution of (14), the accuracy of Ld

i is maintained, provided the
node distribution adequately samples the ABFs. We discuss this criteria further in the following sections. Throughout
this work we use k - the order of polynomial reconstruction - to identify the order of the scheme used. The matrix
Mi is the same for all operators (different d), and so we calculate each Mi once, then solve (14) for each d to obtain
the required operators. Once (14) has been solved, we calculate the weights wd

ji and store them. When the method is
used for solving PDEs in an Eulerian framework, the bulk of the cost is at startup, the cost of applying the operators
Ld
i is low - the run-time efficiency is comparable with finite difference methods - and the method is highly scalable.

B. Constructing appropriate ABFs

To obtain an appropriate set of ABFs, we start with the requirement that each ABF in Wji approximates a different
partial derivative, so that if wd

ji = Wji ·Cd

Ld
i (·) =

∑
j

(·)ji w
d
ji =

∑
j

(·)ji Wji ·Cd ≈ D (·)|i ·C
d, (17)

for any d. This approximation need not be very accurate. We define the inner product as

〈f (rji) , g (rji)〉 =
1

Vi

∫
Vi

f (rji) g (rji) dVj , (18)
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where f and g are any two functions of r. Note that the moments Bd
i in (8) are constructed from the discrete form

of
〈
Xji, w

d
ji

〉
. We denote the mth element of Xji as Xm

ji , and the nth ABF in Wji as Wn
ji.

If the ABFs are chosen such that 〈Wm, Xm〉 is independent of h for all m ≤ p, where p is the number of ABFs
used, the approximation requirement (17) will be satisfied. Given the elements of Xji scale with h, h2, h3, h4 and
so on for p ∈ [1, 2], p ∈ [3, 5], p ∈ [6, 9], and p ∈ [10, 14] respectively, the ABFs must scale with h−1, h−2, h−3, h−4

and so on. This ensures that the diagonal of M is independent of resolution. This requirement may be satisfied by
constructing the ABFs from the partial derivatives of some appropriately scaled fundamental RBF W 0 = W 0 (|rji|),
according to

Wji = D
(
W 0
)∣∣

rji
(19)

Taking W 0 as a very simple RBF - a cone - defined by

W 0 (q) =
3

4π

(
1− q

2

)
, (20)

where q = |rji| /h = rji/h, the radial derivative of W 0, dW 0/drj = −3/8πh, and higher radial derivatives are zero
(∂kW 0/∂rkj = 0, ∀k ≥ 2). We obtain the vector of ABFs by applying the operator D to W 0:

Wji = D
(
W 0
)∣∣

rji
=
−3

8πh

[
x

r
,
y

r
,
y2

r3
,
−xy
r3

,
x2

r3
,
−3xy2

r5
,

2x2y − y3

r5
,

2xy2 − x3

r5
,

−3x2y

r5
,

12x2y2 − 3y4

r7
,

9xy3 − 6x3y

r7
,

2x4 − 11x2y2 + 2y4

r7
,

9x3y − 6xy3

r7
,

12x2y2 − 3x4

r7
. . .

]T
, (21)

in which the subscripts ji have been dropped from xji, yji, and rji for ease of exposition. Figures 2, 3, and 4 show
the first, second, and third and fourth order ABFs respectively. We observe that because dW 0/drj

∣∣
q=0
6= 0 (i.e. the

fundamental RBF has a pointed peak), the ABFs generated from it have singularities at rji = 0. The first order
ABFs (Figure 2) have a removable singularity. The second order ABFs have a simple pole, the third order ABFs have
a second order pole, and the order k ABFs have a pole of order k − 1.

This approach may be used with an arbitrary fundamental RBF. In this work we investigate four choices of W 0:
the cone, as described above, a quadratic RBF, the Wendland C6 kernel [42], and the Gaussian, details of which are
provided in Appendix A. We note here that when we set W 0 to an SPH kernel with p = 5, the matrix on the LHS
of (14) is the transpose of the matrix obtained and solved in the method of Sibilla [28].

The statement in the previous section, that the node distribution must adequately sample the ABFs used is
analagous to stating that the sums from which the elements of Mi are constructed must adequately approximate
continuous integrals: ∑

j

Xm
jiW

n
ji ≈

〈
Xm

ji ,W
n
ji

〉
∀m,n ∈ [1, p] . (22)

In practice this requirement imposes a lower limit on h/δr. For each value of k, there is a critical value of h/δr (and
hence N ) below which one or more of the eigenvalues of Mi has magnitude of machine precision zero, and below
which the condition number of Mi increases significantly (typically by about 10 orders of magnitude). The critical
values for k = {2, 4, 6, 8} are h/δrcrit ≈ {0.75, 1.15, 1.6, 2.1} and in two dimensions Ncrit ≈ {8, 21, 37, 57}, and are (on
average) independent of disorder of the node distribution. We note that the optimal number of nodes required for
polynomial reconstruction of the same order is Npoly = {6, 15, 28, 45} in two dimensions. It is clear from Figures 2, 3,
and 4, that as the order of ABF increases (higher k), more nodes are required, due to the increasing complexity of
the ABFs (higher order poles, higher wavenumbers). When the ABFs in (21) are expressed in local polar coordinates
(rji and θji having origin at ri), the order k ABFs contain terms of cos kθ and sin kθ. For the stencil to adequately
sample the ABFs, the Nyquist sampling criteria must be satisfied. That is, if the domain of support is divided into
2k equal segments (each with angle π/k), there is a node in every segment. This is illustrated in Figure 1 for k = 4.
For h/δr = 1 (left, red stencil) there is a segment containing no nodes: the 4th order ABFs are undersampled by this
stencil. With h/δr = 1.25 (right, black stencil), all 8 segments contain at least one node, and the stencil satisfies
the Nyquist sampling criteria for the 4th order ABFs. This criteria provides a more accurate definition of the word
“adequately” use for (22), and the values of h/δrcrit and Ncrit correspond to the minimum values for which the
Nyquist criteria is satisfied. The effects of choosing h/δr < h/δrcrit can be seen in the numerical results in Section IV,
in particular in the horizontal contours in Figure 9.

Figure 5 illustrates an example of the matrix Mi for k = 8 with the quadratic ABFs, h/δr = 2.5, and a range of
values of distribution noise ε/δr. We see for the uniform Cartesian distribution, M has a clear structure. The entries
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FIG. 1. Two example computational stencils. The red stencil (left) corresponds to h/δr = 1, whilst the black stencil (right)
corresponds to h/δr = 1.25. The thin dashed lines divide the stencil into 2k equal segments for k = 4.
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FIG. 2. The first order ABFs, derived from a conic RBF.

coloured in dark blue are zero to within machine precision, due to the orthogonality of the odd order ABFs with the
even order monomials (and vice versa). The magnitude of elements in top right are small, and bottom left are large,
which is consistent with the scaling of Xji and Wji with h. For smaller k, the matrices Mi are just sub-matrices
of those illustrated here. We see as the noise is increased, the magnitude of the entries in the bottom left corner
increases (the brighter yellow patch), which is a consequence of the undersampling of the highest order ABFs. We
investigate the effect of stencil size (Ni and h/δr) further in Section IV B below.

IV. CONVERGENCE AND STABILITY

We now analyse the convergence properties of LABFM, and present a brief stability analysis.
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FIG. 3. The second order ABFs, derived from a conic RBF.

A. Convergence

We consider a square domain defined by (x, y) ∈ [0, H]× [0, H]. We define the test function

φ (x̂, ŷ) = 1.0 + (x̂ŷ)
4

+

6∑
n=1

(x̂n + ŷn) , (23)

where x̂ = x− 0.1453H and ŷ = y − 0.16401H, and set H = 1. This offset is psuedo-random, and included to ensure
asymmetry in the function, to prevent the masking of errors which could cancel for a symmetric function. Nodes are
distributed uniformly (Cartesian grid) with spacing δr, and randomly peturbed. The maximum peturbation distance
is ε, and hence we take ε/δr as a measure of the irregularity or noise of the distribution. In terms of fill distance and
separation distance as used in the field of scattered data approximation, and defined in [43], ε/δr = 0 corresponds to

a separation distance of δr/2 and a fill distance of δr/
√

2. For ε/δr = 0.5, the separation distance is approximately
0.29δr, and the fill distance approximately 0.86δr. Initially we set h = 2δr which, with a support radius of 2h, yields
Ni ≈ 50 in two dimensions. An example node distribution and computational stencil is depicted in Figure 6. The
stencil indicated in black has full support, and the stencil indicated in red has incomplete support. At boundaries,
we create additional “ghost” nodes (not shown in Figure 6) with the same distribution properties in a strip of width
2h around the domain, ensuring that all computational nodes have fully supported stencils. We test our method by
calculating approximations of the gradients and Laplacian of φ for a range of resolutions. As a measure of the error
we take the normalised L2-norm:

L2-norm (·)d =

{
N∑
i=1

[
Ld
i (·)−Cd · D (·)|i

]2} 1
2

{
N∑
i=1

[
Cd · D (·)|i

]2} 1
2

(24)

Figure 7 shows the L2-norm of the error in gradient and Laplacian approximations for node distributions with
ε/δr = 0.5 (the distribution depicted in Figure 6), for a range of resolutions, and increasing numbers of ABFs
contributing to the discrete operator. For gradients, we observe orders of convergence increasing from second to sixth,
as we increase k from 2 to 6 (p = 5 and p = 27 respectively). The order of convergence for gradients is k. For the
Laplacian, the order of convergence is k− 1, ranging from first to fifth order. For k = 2 there is a range of resolutions
for which second order convergence is observed in the Laplacian approximation. However, this is because the second
order error terms are larger than the first order error terms at these coarse resolutions, and this effect is strongly
dependent on the choice of φ. For k > 6, we require h/δr > 2. Setting h/δr = 2.5, with k = 7 we find convergence
rates of 7 and 6 for gradients and Laplacian’s respectively. With k = 8 the errors in gradients are typically 10−14, and
do not converge. This is because the 8th order derivatives of φ (the highest non-zero derivatives) are constant. For
Laplacian’s with k = 8 the errors scale with h−1, but with magnitude 10−13 for the coarsest resolution. These errors
are machine precision errors, accumulated during the construction of M , and carried through the solution of (14).
For other test functions (e.g. a sinusoidally varying φ) with k = 8 the convergence rates of 8 and 7 for gradients and
Laplacians hold. For clarity, we only show results were obtained using the conic ABFs in Figure 7. Quadratic ABFs
would yield the same convergence rates, and error magnitudes approximately 32% lower.
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FIG. 4. The third and fourth order ABFs, derived from a conic RBF.

FIG. 5. Illustrations of the matrix Mi obtained with k = 8 (p = 44), and the quadratic ABFs, with h/δr = 2/5, for increasingly
noisy node distributions. Colour indicates the base 10 logarithm of the absolute value of each element log10 (|Mi|).

Figure 8 shows the variation of the L2-norm with resolution h/H and the degree of noise in the node distribution
ε/δr. For all k, we see a maintenence of convergence order (contours in Figure 8 are parallel) for levels of noise
below ε/δr = 0.5. For k = 2 the convergence is maintained up to ε/δr = 1 and beyond, whilst as k increases,
and convergence breaks down at lower ε/δr. The resilience of the method to noisy node distributions is greater for
first derivatives (top row in Figure 8) than for second derivatives (bottom row). For first derivatives, the magnitude
of the error is also independent of ε/δr as long as convergence is maintained (vertical contours), whilst for second
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FIG. 6. An example node distribution with ε/δr = 0.5, and h/δr = 2. The dashed circles with radius 2h indicate the support
domains of two nodes (indicated by filled circles). The computational stencil depicted in black has full support, and the
computational stencil depicted in red has incomplete support.
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FIG. 7. Error in gradient (left) and Laplacian (right) approximations of (23). The dashed lines represent machine precision
errors of 10−16/h and 10−16/h2 for gradients and Laplacians respectively. The dotted lines show convergence rates of 2 and 6
for gradients, and 1 and 5 for Laplacians.

derivatives, the magnitude of the error increases approximately linearly with increasing ε/δr (contours are diagonal,
and approximately straight). This result is intuitive, as all results in Figure 8 were obtained with the same h/δr, and
so the sampling of the ABFs by the node distribution is relatively better for k = 2 than k = 6.

Figure 9 shows the variation of the L2-norm with resolution h/H and stencil size h/δr ∝
√
N , as k is increased

from 2 to 6. We use h/δr as a measure of stencil size because stencils are calculated based on a support radius
(2h here) as opposed to the desired stencil number size N as in RBF methods. For reference, a value of h/δr = 2
corresponds to N ≈ 50 in two dimensions. For all values of k, we see convergence of the L2-norm with increasing
resolution at large h/δr (parallel contours in upper section of plots). However, there is a clear critical value of h/δr
below which the method is divergent. Below this value, the node distribution within the computational stencil does
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FIG. 8. L2-norm when approximating the gradient (upper row) and Laplacian (lower row) of (23), for a range of resolutions
and distribution noise, for k = 2, k = 4, and k = 6. The scale on the abscissa is log10 (h/H), and colour indicates the base 10
logarithm of the L2-norm. The conic ABFs are used, with h/δr = 2.
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not adequately sample the ABFs, leading to ill conditioned matrices Mi in (14). As discussed in the previous section,
this critical value is larger for larger k, because for higher k we include higher order ABFs which have a more complex
structure, requiring a greater number of nodes to adequately sample them. In the majority of the remainder of this
paper, we use h/δr = 2, which leads to convergence for k ≤ 6. However, we could, for low order schemes (e.g.
k = 2) use a significantly smaller stencils, with h/δr = 1, reducing computational costs. For k = 8, we observe
8th order convergence with h/δr = 2.5 (N ≈ 78 in two dimensions). For a domain with incomplete support at the
boundaries, we find the method yields accurate one sided derivatives and Laplacians, provided h/δr (and hence, the
computational stencil) is large enough at the domain boundaries. For nodes with incomplete support, the critical
h/δr is larger than in the fully supported case in Figure 9. With this in mind, a potential approach when applying the
method to practical problems is to have a region of higher resolution (smaller δr, maintiaining h/δr) in the vicinity
of boundaries, to preserve the global convergence properties.

B. Stability analysis

To analyse the stability of the discrete operators, we construct a global derivative matrix Ad (following the procedure
described in detail in Section V B). The eigenvalues of Ad provide information about the stability of the method. The
convective derivatives (e.g. d = x, y to approximate ∂ (·) /∂x or ∂ (·) /∂y) are purely dispersive - that is they contain
Fourier modes which correspond to a translation, with no growth or decay. Hence the eigenvalues λ of the discrete
convective operators Ax and Ay would (ideally) lie on imaginary axis (Re (λ) = 0 ∀λ) [44]. For stability in purely
convective problems, no modes should grow, and so Re (λ) ≤ 0 ∀λ. Figure 10 shows the eigenvalues of Ax (with
N = 121 computational nodes, h/δr = 2, and ghost nodes completing stencil support at boundaries) for Cartesian
node distributions with and without noise, for ABFs generated from the Conic, Quadratic, Wendland, and Gaussian
RBFs detailed in Appendix A. For ideal node distributions, the conic ABFs give Ax with substantial non-zero real
parts to the eigenvalues, whilst for the quadratic, Wendland and Gaussian ABFs, the eigenvalues lie very close to
the imaginary line, although the real parts of the eigenvalues using Gaussian ABFs are several orders of magnitude
greater than the quadratic and Wendland ABFs (note the scalings in the upper row of Figure 10). The scatter in
the eigenvalues appears random (machine precision errors) with quadratic and Wendland ABFs, whilst there is some
structure for the conic and Gaussian ABFs. Without proof, we postulate based on our numerical explorations that a
condition for the real parts of the eigenvalues of Ax to be zero is that dW 0/dr = 0 on the boundary of the support
domain. This condition is exactly satisfied by the quadratic and Wendland ABFs, but not by the conic ABFs, and
only approximately by the truncated Gaussian ABFs.

For noisy node distributions, the real parts of the eigenvalues of Ax become significant for all ABFs tested. We
see that the conic and quadratic ABFs lead to eigenvalues lying closer to the imaginary axis than the Wendland and
Gaussian ABFs, with the quadratic ABFs performing best, and Gaussian ABFs worst. For all distributions, and all
choices of ABF, the eigenvalues of Ax fall closer to the imaginary axis for smaller k (the blue dots in Figure 10 lie
closer to Im (λ) = 0 than the red and black dots.), suggesting that low order convective derivatives are likely to be
more stable.

For the Laplacian, the eigenvalues of AL should be as close as possible to the negative real axis, corresponding
to decay of all modes. Figure 11 shows the eigenvalues of AL for three levels of distribution noise, and three values
of k, using the quadratic ABFs. For all k, the eigenvalues lie close to the real line, and the imaginary parts of the
eigenvalues increase with increasing ε/δr. As k is increased, the magnitude of the eigenvalues increases, and the
spread of eigenvalues moves further along the negative real line. These results show that the Laplacian operator
obtained with this method is stable, but that stability is conditional on the distribution noise. No modes grow in
time (i.e. there are no eigenvalues with Re (λ) > 0, and those modes which translate (Im (λ) 6= 0) have significantly
negative real parts to their eigenvalues, and so will be highly damped. The eigenvalue distribution when conic ABFs
are used is similar to that shown in Figure 11. For the Wendland and Gaussian ABFs, we find that Re (λ) > 0
for at lower values of ε/δr. For each k and h/δr, there is a certain noise level at which the Laplacian operator will
become unstable (Re (λ) > 0 for some λ). These values are listed in Table I. We see that for small k, the Laplacian
is stable for much greater noise levels than large k. For k = 2, the Laplacian is stable for all ε/δr tested. For large
k, the Laplacian is stable for a range of ε/δr, provided a large enough h/δr is chosen. Values of ε/δr of 0.5 or
greater represent relatively severe distribution noise, and correspond to levels which can be easily obtained in complex
geometries through iterative methods such as that described in Section V B 2. For Gaussian ABFs with k = 2, there
is an upper limit to h/δr above which the Laplacian is unstable for all noise levels. In general the Gaussian ABFs
have a smaller range of stable h/δr and ε/δr than the Wendland and quadratic ABFs, with the quadratic ABFs being
stable for the greatest range of ε/δr. The conic ABFs (not shown in Table I) exhibit similar maximum stable values
of ε/δr to the quadratic ABFs.

For purely convective problems, all choices of ABF will be unstable on noisy node distributions, given the non-zero
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FIG. 10. The eigenvalues of the discretisation matrix Ax on a 441 node Cartesian distribution, with boundaries providing
complete support, for four sets of ABFs, generated from conic, quadratic, Wendland and Gaussian RBFs, and for k = 2 (blue),
k = 4 (red), and k = 6 (black). The upper row is for ideal Cartesian node distributions, whilst the lower row is for noisy
Cartesian distributions, with ε/δr = 0.5. Note the scalings of the abscissa in the upper row. In the right-most upper panel,
the spread of the eigenvalues for k = 6 is not shown, being approximately 3 orders of magnitude greater than that for k = 4.

TABLE I. The maximum value of ε/δr for stable AL (i.e. Re (λ) < 0 ∀λ) with the quadratic generated ABFs, on a 441 node
noisy Cartesian distribution. Entries of > 3 indicate stability up the maximum value tested of ε/δr = 3. Entries of “none”
indicate there is no stable noise level.

Quadratic Gaussian Wendland
h/δr k = 2 k = 4 k = 6 k = 8 k = 2 k = 4 k = 6 k = 8 k = 2 k = 4 k = 6 k = 8

1.2 1.8 0.5 none none 0.5 0.25 none none 0.85 0.15 none none

1.6 > 3 0.9 0.25 none 0.55 0.35 none none 1.1 0.55 none none

2.0 > 3 1.0 0.75 none 0.2 0.5 0.1 none 1.5 0.7 0.35 none

2.4 > 3 1.1 0.75 0.4 none 0.55 0.2 none 2.9 0.75 0.45 0.1

2.8 > 3 1.1 0.8 0.4 none 0.6 0.35 none > 3 0.9 0.7 0.4

real parts to the eigenvalues of the convective derivative operators. A technique used to overcome this issue in RBF-
FD is to introduce some hyperviscosity into the governing equations [41, 44], which provides the required dissipation
to stabilise the solution. Hyperviscosity (i.e. −∇4 or ∇6), is preferred to standard second order viscosity, as it acts
more on shorter wavelength modes, which leaving long wavelength modes (relative to the node distribution) which
are of physical interest, relatively untouched. The addition of hyperviscosity in the present method is straightforward.
A discrete hyperviscosity operator Lhv may be constructed in the same manner as the Laplacian and convective
operators, by setting Chv used in the RHS of (14) appropriately. The coefficient of hyperviscosity α scales with hm,
where m is the order of the derivatives in the hyperviscosity operator, and is chosen large enough to ensure stability,
but as small as possible. For example, to generate an Lhv which approximates the biharmonic operator −α∇4 we set

Chv =
[
0, 0, . . . −α, 0, −2α, 0, −α, 0 . . .

]T
, (25)
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FIG. 11. The eigenvalues of the discretisation matrix AL on a 441 node noisy Cartesian distribution, with noise levels ε/δr = 0
(blue), ε/δr = 0.2 (red), and ε/δr = 0.5 (black), for three values of k. In all cases, results are obtained with the Quadratic
ABFs, and with h/δr = 2.

where the non-zero elements are the elements 10, 12, and 14. To include the triharmonic operator α∇6, we set elements
21, 23, 25, and 27 equal to α, 3α, 3α, and α respectively. Note that in LABFM we can only create hyperviscosity
operators up to ∇k. We test our hyperviscosity formulation in Section V C.

V. APPLICATION TO PARTIAL DIFFERENTIAL EQUATIONS

In this section we use LABFM to solve a range of PDEs. We have deliberately chosen prototype PDEs in unbounded
or simple geometries in order to demonstrate the potential of the method for application to broad range of practical
problems. Throughout this section we use ABFs generated from the quadratic RBF, unless otherwise specified. As
in the previous section, we use the relative L2-norm as a measure of error

L2-norm (·) =

{
N∑
i=1

[
(·)LABFM

i − (·)exacti

]2} 1
2

{
N∑
i=1

[
(·)exacti

]2} 1
2

, (26)

where superscripts LABFM and exact indicate the numerical and analytic solutions respectively.

A. Parabolic: Heat equation

We first test the method on the prototypical parabolic equation - the (homegeneous) unsteady heat equation - given
by

∂u

∂t
= κ∇2u, (27)

where κ is the coefficient of diffusivity. We solve (27) on a periodic square domain (x, y) ∈ [0, H] × [0, H]. With
periodic boundary conditions, all computational nodes have complete stencils. The initial conditions (at time t = 0)
and solution are given by

u (x, y, t) = sin

(
2πx

H

)
sin

(
2πy

H

)
exp

[
−8κπ2t

H2

]
. (28)

We discretise the domain with a noisy Cartesian distribution, with the noise having magnitude ε/δr = 0.5, where δr
is the noise-free node spacing. We set h/δr = 2, and use the classical fourth order Runge-Kutta (RK4) scheme for
time integration, and a time step of δt = 0.05h2/κ, setting κ = 1.
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FIG. 12. Variation of the L2-norm of the solution to the heat equation at t? = 1 with resolution, for different values of k (see
legend). Black lines correspond to the case with periodic boundaries, and red lines indicate Dirichlet conditions with incomplete
stencils near boundaries. The dotted lines correspond to convergence rates of 2, 4 and 6.

The L2-norm error of the numerical solution at non-dimensional time t? = 8π2κt/H2 = 1 is shown by the black
lines and symbols in Figure 12. We see convergence rates of approximately k, as k is varied between 2 and 6. Next,
we replace the periodic boundary conditions with homogeneous Dirichlet conditions (u = 0 on the boundary), so
that the stencils of nodes near and on the boundaries are incomplete. Dirichlet conditions (either homogeneous or
inhomogeneous) are imposed by prescribing u for all nodes on the boundary, and solving (27) only for internal nodes.
The results with Dirichlet conditions are shown in red in Figure 12. For k ≤ 4 the scheme is stable, and again we
see convergence rates close to k. For k > 4, the incomplete stencils near the boundaries (in particular the corners in
the present case) lead to non-negative real parts to the eigenvalues of AL, and hence the scheme becomes unstable.
We next replace the homogeneous Dirichlet boundary conditions with the inhomogeneous u (x, 0, t) = sin (πx) for
x ∈ [0, H], and u (x, y, t) = 0 on all other boundaries. Subject to these boundary conditions, the steady state solution
of (27) is given by

uss (x, y) = sinh (π [1− y]) sin (πx) / sinhπ. (29)

Table II shows the L2-norm and convergence rate of the steady state numerical solution (taken as the solution at
non-dimensional time t? = 100). We find the method converges with order between k and k + 1 (for k ≤ 4). The
ability to handle incomplete stencils accurately is a particularly attractive feature of LABFM. In effect, for k ≤ 4 the
method automatically generates one sided derivative approximations near boundaries, of order k. Indeed, for k > 4,
the gradient and Laplacian operators can still converge with order k, provided ε/δr is small enough near boundaries,
and h/δr is large enough. Typically the range of acceptable ε/δr and h/δr decreases near boundaries with incomplete
support. Obvious approaches to improving stability and accuracy near boundaries include increasing the resolution
near boundaries, or decreasing k to 4 near boundaries - which will be explored in a future study on adaptivity.

B. Elliptic: Poisson’s equation

Our next PDE is Poisson’s equation. Solving this elliptic PDE is in essence the inverse problem to the solution of
the heat equation in the previous section. The Poisson’s equation is given by

∇2φ = f (x, y) (30)
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TABLE II. The steady state L2-norm error in the numerical solution of the heat equation subject to inhomogeneous boundary
conditions (with analytical solution given by (29)). Figures in brackets show the convergence rate. Results were obtained using
quadratic generated ABFs with h/δr = 2 and ε/δr = 0.5.

h/H k = 2 k = 3 k = 4

0.2 3.9× 10−3 (-) 4.6× 10−4 (-) 1.4× 10−4 (-)

0.1 7.1× 10−4 (2.46) 5.4× 10−5 (3.08) 5.6× 10−6 (4.68)

0.05 1.1× 10−4 (2.73) 9.3× 10−6 (2.54) 2.2× 10−7 (4.67)

0.025 1.5× 10−5 (2.83) 2.0× 10−6 (2.20) 8.3× 10−9 (4.72)

0.0125 2.2× 10−6 (2.78) 4.7× 10−7 (2.10) 2.9× 10−10 (4.83)

in the domain Ω, with boundary conditions

φ =g1 (x, y) on ΓD (31a)

∂φ

∂n
=g2 (x, y) on ΓN , (31b)

where the boundary Γ = ΓD+ΓN . To solve (30) we construct a (linear) global discrete Laplacian operator Ad=L = AL

(an N × N matrix) from the local operators LL
i (where the superscript L indicates that the operator approximates

the Laplacian). The i-th row of AL is a rearrangment of the local operator LL
i , which is be achieved by setting the

elements of AL as

AL
i,j = wL

ji ∀j 6= i (32a)

AL
i,i = −

∑
j

wL
ji. (32b)

The discretised form of (30) is then

ALΦ = F , (33)

with solution vector

Φ =
[
φ1, φ2, . . . , φN

]T
(34)

and source vector

F =
[
f1, f2, . . . , fN

]T
. (35)

The linear system (33) may be solved using an iterative solver. In the present work, we use the stabilised bi-conjugate
gradient algorithm, with a Jacobi preconditioner. Given the implicit method of solution, boundary conditions (31a)
and (31b) must be incorporated into (33), and this is done by manipulation of the rows, columns and elements of AL

and F . On sections of the boundary ΓD, we satisfy (31a) (on an example boundary node b) by setting

AL
b,j = 0 ∀j 6= b (36a)

AL
b,b = 1 (36b)

Fb = g1,b, (36c)

which ensures that the solution to (33) yields φb = g1,b. On ΓN , where Neumann boundary conditions are specified,
we must satisfy both (30) and (31b) for each boundary node b. To do this, we use an approach which is consistent
with the order of the spatial discretisation as follows. For every boundary node b on ΓN , we introduce an additional

“ghost” node b̂, such that rb̂ = rb − nbδr, where nb = (nb,x, nb,y) is the unit normal pointing into the domain at
parent node b, and δr is the initial node spacing. We increase the size of the linear system (33) to include the ghost

nodes. The rows of AL corresponding to ghost nodes b̂ are used to enforce (31b), by ensuring the discrete boundary
normal derivative operator at node b satisfies (31b)

Ln
b =

∑
j

(·)jb
(
nb,xw

x,bj + nb,yw
y,bj
)

= g2,b. (37)
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FIG. 13. Variation of the L2-norm with resolution for the periodic Poisson’s equation case 1 (periodic), for k ∈ [2, 8]. The
left panel shows errors using ABFs obtained from the Quadratic RBF, and the right panel shows ABFs obtained from the
Wendland RBF. In all cases, ε/δr = 2. For k ≤ 6 we use h/δr = 2, and for k = 7, 8 we use h/δr = 3. The dotted lines show
convergence rates of 2 and 8.

We do this by setting, for every b̂ and its parent b

AL
b̂,j

= nb,xw
x,bj + nb,yw

y,bj ∀j 6= b (38a)

AL
b̂,b

= −
∑
j

(
nb,xw

x,bj + nb,yw
y,bj
)

(38b)

Fb̂ = g2,b, (38c)

where the sum is over all j which are neighbours of b. When the system (33) is solved with this modification, the

elements of the solution vector corresponding to the ghost nodes (Φb̂ ∀b̂) will take values which ensure that the
Neumann boundary condition (31b) is satisfied on ΓN . We note that this approach to Neumann boundary conditions
appears (coincidentally) similar to that described by Mishra et al. [45].

1. Periodic test case

Our first test case for Poisson’s equation uses a periodic square domain (x, y) ∈ [0, H] × [0, H], and sets f in (30)
such that φ = sin (2πx/H) sin (2πy/H). Figure 13 shows the L2-norm of the solution for a range of resolutions and
values of k. Using the Quadratic ABFs (left panel) we find convergence orders of 2 for k = 2, 3, 4 for k = 4, 5, 6
for k = 6, 7 and 8 for k = 8. For the k = 8 the linear solver fails to converge at the finest resolutions. With the
Wendland ABFs (right panel) the convergence rates follow the same pattern as with the Quadratic ABFs, although
but at higher k, the solution becomes dependent on the node distribution disorder. The linear solver fails to converge
at the finest resolution for k ≥ 5. This improved stability of the Quadratic over the Wendland ABFs is consistent
with the observation in IV B that the eigenvalues of AL obtained with Wendland ABFs contain positive real parts
for lower levels of distribution noise than when Quadratic ABFs are used.

2. Annular domain test case

Next we use an annular domain with inner diameter H/4 and outer diameter H, centred on the origin. The domain
is illustrated in the left panel of Figure 14. We solve (30) with the source term

f =

[
12π cos 4πr −

(
16π2r − 1

r

)
sin 4πr

]
cos 3θ − 9

r
cos 3θ sin 4πr, (39)
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FIG. 14. The domain and solution for Poisson problem 2 (left), with a close up of a typical node distribution (right).

with r nd θ being polar coordinates based at the origin, subject to the boundary conditions g1 = 0 on ΓD (the external
boundary) and g2 = cos 3θ on ΓN (the internal boundary). The solution is given by

φ = r sin 4πr cos 3θ, (40)

and shown in the left panel of Figure 14. The node distribution is generated by discretising the boundaries (placing
nodes at intervals δr along all boundaries, then filling the domain with a noisy Cartesian distribution, with ε/δr = 0.5.
Temporary ghost nodes are generated outside the domain to complete support, whilst an iterative procedure is used
to shift nodes according to:

rn+1
i = rni +

δr2

h

∑
j∈|rji|<h

(
|rji|
h
− 1

)
rji
|rji|

. (41)

We apply typically 10 iterations of (41) to obtain the final node distribution, an example of which is shown in
Figure 14 (right panel). The procedure given by (41) moves nodes from regions of high node density to low node
density, providing a more uniform distribution. The temporary ghost nodes prevent nodes from being shifted out of
the domain during the application of (41). After the shifting procedure, the temporary ghost nodes are discarded, and
a ghost node is added for every node on ΓN as described above. The procedure (41) is relatively unrefined, however
the resilience of LABFM to node distribution noise allows us to use this cheap procedure with only a few iterations,
and still obtain high order convergence rates.

Table III shows the variation of the L2-norm of the solution with resolution, for k = {2, 3, 4}. For k = 2, 3, we
observe second order convergence, whilst for k = 4 we observe fourth order convergence. As with the parabolic
problem in the previous section, for k > 4, the ABFs are inadequately sampled on nodes near the boundaries, where
computational stencils have incomplete support. For k ≤ 4, LABFM automatically generates one sided differences
as required. A similar result was found by Bayona et al. [46], who observed that when solving elliptic problems with
RBF-FD, the method could handle incomplete support provided large enough computational stencils were used near
boundaries. For k > 4, the linear solver used to solve (30) did not converge. Preliminary investigations in which we
set k = 4 near boundaries, and k > 4 on internal nodes were promising, yielding stable solutions, but for the present
problem, only a minor increase in accuracy. This adaptive accuracy approach will be explored further in a future
study.

C. Hyperbolic-Parabolic: Viscous Burgers’ equation

Next we test LABFM on the viscous Burgers’ equation, which is of mixed hyperbolic-parabolic type, and a proto-
typical shock-admitting conservation equation. The viscous Burgers’ equation is written

∂u

∂t
+ u · ∇u =

1

Re
∇2u (42)

where Re is the Reynolds number, and u = (u, v) is a velocity vector. We integrate (42) using the RK4 scheme, with
a time step of

δt = min
(
0.2h/max|u|, 0.05h2Re

)
. (43)
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TABLE III. The L2-norm error in the numerical solution of Poisson’s equation case 2 (annular), for different k. Figures in
brackets show the convergence rate. Results were obtained using quadratic generated ABFs with h/δr = 2.

h/H k = 2 k = 3 k = 4

2/13 0.655 (-) 0.539 (-) 1.05 (-)

2/25 0.136 (2.40) 0.146 (2.00) 0.101 (3.58)

2/49 3.5× 10−2 (2.01) 3.7× 10−2 (2.03) 2.9× 10−3 (5.28)

2/97 9.1× 10−3 (1.98) 9.5× 10−3 (2.01) 1.4× 10−4 (4.44)

2/193 2.3× 10−3 (1.98) 2.4× 10−3 (2.00) 6.5× 10−6 (4.47)

2/385 5.9× 10−4 (1.99) 6.0× 10−4 (2.00) 3.6× 10−7 (4.20)

FIG. 15. Numerical solution to the Burgers’ equation case 1 (travelling wave) at non-dimensional time t = 1 for Re = 100.
Left and right panels show u and v respectively.

We solve (42) for two cases.

1. Travelling wave test case

The first test comprises a travelling wave oriented diagonally along the xy−plane, in which steepening due to
non-linear advection is balanced by viscous diffusion. The steepness of the travelling wave increases with increasing
Reynolds number, and in the inviscid limit the wave becomes a discontinuity. We use a computational domain
(x, y) ∈ [0, 1] × [0, 1], discretised with a noisy Cartesian node distribution with ε/δr = 0.2. At the boundaries, we
continue the node distribution outwards to provide full support, and the analytic solution is prescribed on nodes
outside the boundary. The initial conditions and solution are

u (x, y, t) =
3

4
− 1

4
(
1 + eRe(−t−4x+4y)/32

) , (44a)

v (x, y, t) =
3

4
+

1

4
(
1 + eRe(−t−4x+4y)/32

) . (44b)

The numerical solution at t = 1 is shown in Figure 15. Figure 16 shows the convergence of errors for this problem
at t = 1, for increasing k, for three Reynolds numbers, Re = 10 (blue lines), Re = 100 (black lines), and Re = 500
(red lines). For the highest Reynolds number the shock is too steep to be resolved by the coarsest two resolutions
(not shown), and the simulations are unstable. The magnitude of the errors increase with increasing Re, due to the
increasingly steep gradients present in the solution. For all cases, the solution converges with order approximately k,
and convergence is within [k − 1/2, k + 1/2]. For Re = 10 and k = 6, the coarsest resolution shown corresponds to
only 10× 10 over the domain, and yet the relative error is less than 10−8.
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FIG. 16. L2-norm of the error in the solution of Burgers’ equation case 1 (travelling wave) at non-dimensional time t = 1, for
a range of resolutions, for various k (see symbols in legend), and different Reynolds numbers: Re = 10 (blue lines), Re = 100
(black lines) and Re = 500 (red lines). In all cases, h/δr = 2 and ε/δr = 0.2. The dotted lines show convergence rates of 2, 4
and 6.

2. Periodic test case

Next we solve (42) on a periodic square domain (x, y) ∈ [0, H]×[0, H], with sinusoidal initial conditions: u (x, y, 0) =
sin (2πx/H) and v (x, y, t) = 0. The advection terms contribute to the development of a shock (as the sinusoidal
solution tends to a sawtooth wave), which the viscous terms dissipate. The solution was first derived by Cole [47],
and has since been used as a benchmark for numerical methods by numerous authors, for example [28]. The solution
is given by

u (x, t) =
4π

HRe

∞∑
n=1

nAn sin

(
2nπx

H

)
e

(
−n2π2t

H2Re

)

A0 +

∞∑
n=1

An cos

(
2nπx

H

)
e

(
−n2π2t

H2Re

) (45)

where

A0 = exp

[
−ReH

4π

]
I0

(
ReH

4π

)
; An = 2 exp

[
−ReH

4π

]
In

(
ReH

4π

)
, (46)

and In are modified Bessel functions of the first kind. Note that v (x, y, t) = 0 for all t. We use Re = 100, and find
that only the first 30 terms are necessary, as An < 10−16 for n ≥ 30. Figure 17 shows the analytic (red lines) and
numerical solutions (black dots) at a range of times, from t = 0 to t = 1, with ε/δr = 0.5, k = 4, h/δr = 2 and
h/H = 2/81. Figure 18 shows the variation of the L2-norm with time, for a range of resolutions and k, with ε/δr = 0.2.
As with the previous case, we found convergence rates between k and k−1 as expected. These convergence rates held
when the disorder in the node distribution was increased to ε/δr = 0.5. The quadratic ABFs (red symbols) provide
slightly better accuracy than the conic ABFs (black). For all simulations which remain stable, the errors grow during
the advection dominated initial stages (as the sinusoidal profile steepens), and then decrease during the viscosity
dominated stages thereafter. For k = 2, the coarsest resolution is unstable for both conic and quadratic ABFs, and
the second coarest resolution is unstable for the conic ABFs (left panel of Figure 18). Generally we observed the
quadratic ABFs to be slightly more accurate, and slightly more stable (for this problem) than the conic ABFs.

Figure 19 (left panel) shows the solution at t = 0.4 with k = 4 as the resolution is varied. For the coarse resolution
of h/H = 2/41 (blue dots) there is significant noise in the solution, as the shock is under-resolved, although the
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FIG. 17. The analytic (red line) and numerical solutions (black dots) of the periodic Burgers’ problem with Re = 100, h/δr = 2,
and ε/δr = 0.5, at times t = 0, t = 0.1, t = 0.2, t = 0.4, t = 0.7 and t = 1, obtained with a resolution of h/H = 2/81.
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FIG. 18. Variation of the L2-norm of the solution to the periodic Burgers’ problem with time, for a range of resolutions
(identified in legend), for the conic ABFs (black) and quadratic ABFs (red). The node distribution is noisy Cartesian, with
ε/δr = 0.2.

simulation remains stable. The right panel of Figure 19 shows a single resolution h/H = 2/81, as k is increased. For
k = 2 (red dots) the solution contains overshoots around the shock. This is because the eigenvalues of the Laplacian
operator with k = 2 have smaller negative real part than those for higher k, and hence are less able to dissipate the
high order modes present in the solution. For k = 4 and k = 6 we see a close match with the analytic solution (thin
red line).

We increase the Reynolds number to Re = 250, and again run the simulation with ε/δr = 0.5, h/δr = 2, k = 6 and
h/H = 2/81. The simulation becomes unstable prior to t = 0.4. By adding hyperviscosity to the scheme as described
in Section IV B, we are able to stabilise the simulations, whilst retaining relatively good accuracy. Figure 20 shows
the solution at several times using a biharmonic hyperviscosity of −100h4∇4 (black dots). The inset shows detail of
the solution at t = 0.5 using the biharmonic hyperviscosity, and a triharmonic hyperviscosity of 8h6∇6 (blue dots).
The coefficients of hyperviscosity were chosen by numerical experiment as approximately the miminum values which
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FIG. 19. The analytic (red line) and numerical solutions (coloured dots) of the periodic Burgers’ problem for a range of
parameters, with Re = 100, h/δr = 2, and ε/δr = 0.5. Left panel: the effects of varying resolution on the solution at t = 0.4,
with k = 4. Right panel: The effects of varying k on the solution at t = 0.4, with h/H = 2/81.
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FIG. 20. The analytic (red line) and numerical solutions (coloured dots) of the periodic Burgers’ problem with Re = 250,
h/δr = 2, and ε/δr = 0.5, and k = 6. The solution is shownat times t = 0, t = 0.5, and t = 1, obtained with a resolution of
h/H = 2/81. Black dots indicate biharmonic hyperviscosity, and blue dots (inset) indicate triharmonic hyperviscosity.

stabilised the solution. Both forms of hyperviscosity are capable of stablising the solution, whilst retaining relatively
good accuracy. In the present case we see only minor differences between biharmonic and triharmonic hyperviscosity.

We now modify our initial conditions to the two-dimensional sinusoidal functions

u = sin

(
2πx

H

)
sin

(
2πy

H

)
; v = − cos

(
2πx

H

)
cos

(
2πy

H

)
(47)

and run the simulation for a range of Reynolds numbers, up to Re = 400. We do not have an analytic solution for
the two-dimensional initial conditions, although intuitively it can be seen that certain slices through the domain must
have an analytic solution which matches (or is a translation of) the solution for the one-dimensional initial conditions.
Figure 21 shows the solution at t = 0.4 for several values of Re, with a resolution of h/H = 2/41 corresponding to 6561
nodes in the domain. In cases, we set k = 6, h/δr = 2, and ε/δr = 0.5. In ordinary use, we found a limit of Re ≈ 150
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at this resolution (the limit increased with increasing resolution), due to the lack of upwinding in the LABFM. With
biharmonic hyperviscosity the simulations are stable up to Re = 400. For this Reynolds number (rightmost panel
of Figure 21), the width of the shock is approximately h, and despite this under-resolution, hyperviscosity provides
stability without significant smoothing of the solution.

FIG. 21. The velocity magnitude field of the periodic Burgers’ problem with two-dimensional initial conditions at t = 0.4 for
a range of Re. The solution is obtained with h/H = 2/41, ε/δr = 0.5, h/δr = 2 and k = 6.

D. Navier-Stokes equations

Finally, we test the ability of our method to solve the incompressible Navier-Stokes equations. This test incorporates
aspects of the previous PDEs, with the momentum equation being a non-linear hyperbolic-parabolic equation, and the
incompressibility constraint being manifest as an elliptic PDE. Expressed in terms of the vorticity, the Navier-Stokes
equations may be written

∂ω

∂t
+ u · ∇ω =

1

Re
∇2ω (48)

where ω is the vorticity and u is the velocity. Incompressibility is enforced by obtaining the velocity from a stream-
function ψ, such that u = ∇ × ψ. The stream-function is obtained from the vorticity by solution of a Poisson’s
equation:

∇2ψ = −ω. (49)

We integrate (48) using RK4, and after each substep, solve (49) to obtain ψ, then calculate gradients of ψ to obtain
u for use in the next substep. We set the time step using (43). In the present study, we consider the Navier-Stokes
equations in unbounded domains. The vorticity-streamfunction formulation is chosen for its ease of implementation
in high-order explicit time-stepping schemes. The case we study here is that of Taylor-Green vortices. The initial
conditions and solution are given by

ω (x, y, t) =
4π

H
sin (2πx/H) sin (2πy/H) exp

(
−8π2t

ReH2

)
. (50)

The velocity field is orthogonal to the gradient of the vorticity field, and so the advection term in (48) is zero for the
analytic solution, and the vorticity field decays exponentially. Figure 22 shows the solution at times t = 0 and t = 1.
For Re = 100, the maximum vorticity decays from 4π (approximately 12.6) to 5.7. Figure 23 shows the variation of
the L2-norm with resolution at time t = 1 with Re = 100, for different values of k. The coarsest resolution shown
in Figure 23 is twice as coarse as the results shown in Figure 22. For k = {2, 4, 6} we use h/δr = 2 and ε/δr = 0.5,
whilst for k = 8 we use h/δr = 2.5 and ε/δr = 0.2 (for stability). The errors converge with approximately order k,
as expected. The clear error limit of approximately 10−8 is due to the accumulation of errors in the time stepping
scheme. The dominant errors contributing to this limit are those originating in the approximate solution of (49),
where the tolerance of the linear solver is set to 10−10. We find the rates of convergence remain when the Reynolds
number is reduced to Re = 10 or increased to Re = 1000.

Whilst in the present study we have considered the Navier-Stokes equations only in unbounded domains, these
results clearly demonstrate the potential of LABFM as a viable mesh-free method for computational fluid dynam-
ics simulations. In complex geometries the vorticity-stream function formulation chosen here requires careful (and
computationally expensive) boundary treatment [48], and for three-dimensional flows becomes more expensive still,
as a Poisson equation must be solved for each component of the stream function vector field. Due to the collocated
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FIG. 22. The numerical solution to Taylor-Green vortices at times t = 0 (left) and t = 1 (right) for Re = 100, on a node
distribution with h/H = 2/11 and ε/δr = 0.5. Colour indicates vorticity, and arrows indicate velocity.
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FIG. 23. Variation of the L2-norm with resolution for the Taylor-Green vortices problem at time t = 1, for different values of
k. For k = {2, 4, 6} we use h/δr = 2 and ε/δr = 0.5. For k = 8 we use h/δr = 2.5 and ε/δr = 0.2. Simulations were run with
Re = 100, and using quadratic ABFs. The dotted lines show convergence rates of 2 and 8.

nature of this method, a primitive variable formulation is unstable, as the LBB condition [49] is not satisfied. The
development of a robust primitive variable formulation for LABFM is an ongoing area of research: a further study
is planned involving the development of the LABFM framework for the solution of the Navier-Stokes equations in
bounded complex geometries, with adaptivity in resolution and accuracy. The pairwise symmetry which leads to the
conservation properties of SPH is necessarily broken (wd

ji 6= wd
ij) in LABFM, as the node distribution is accounted for

to yield consistency. Hence, the method does not exhibit exact conservation: global conservation errors are determined
by the order of the spatial discretisations k, the time integration scheme, and any boundary conditions. Based on
finite volume concepts, a number of authors have developed consistent mesh-free methods which also exhibit exact
conservation [50, 51, 52]), though these have been limited to first or second order convergence rates. Such methods
have significant potential for the accurate, efficient and robust simulation of flows in complex geometries, and an
implementation of LABFM such that both exact conservation and high order consistency are retained is the subject
of ongoing research.
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VI. CONCLUSIONS

In this work we have presented a novel framework for the calculation of high order finite differences on disordered
node distributions. We have shown the ability of our method, referred to as the Local Anisotropic Basis Function
method (LABFM), to generate up to eighth order discrete operators with compact computational stencils, which we
have used to solve a range of prototype PDEs. Our method has several attractive characteristics:

1. The accuracy of the approximations holds even for node distributions with significant local anisotropy, provided
the ABFs contributing to the discrete operator are adequately sampled over the computational stencil. In
practice, in two dimensions we can obtain 4th order with N ≈ 25, and 6th order with N ≈ 48, and 8th-order
with N ≈ 60 on severely disordered distributions. This characteristic will allow the method to remain extremely
accurate even in complex geometries where non-uniformity in the node distribution is unavoidable. In this regard
the method has similarities with RBF-FD, although a benefit of LABFM is our ability to exactly prescribe the
order or accuracy level. Furthermore, in the limiting low order case, our method collapses to SPH. Hence there
is significant scope for a naturally adaptive (in resolution, accuracy and frame of reference) ALE scheme.

2. In LABFM we solve a linear system to obtain weights for a discrete operator, rather than to directly obtain
derivative approximations as in FPM and CSPM. Therefore for Eulerian schemes the method is extremely fast,
matching the O (N) FLOPs per time-step of RBF-FD, and for fourth order and higher, allowing smaller N . In
certain conditions LABFM is equivalent (in terms of errors) to certain forms of CSPM, but the generalisation
to an arbitrary set of ABFs yields increased stability and resilience to node disorder as the order of the scheme
is increased.

3. As with RBF-FD, one-sided discrete operators are automatically generated at truncated domain boundaries,
with the same order as the internal scheme, provided the node distribution adequately samples the set of ABFs
used. Hyperviscosity, which effectively filters out unphysical short wavelength disturbances, can also be easily
included in the discrete operators in LABFM, providing a simple means to increase stability for hyperbolic
problems.

4. The notation describing the construction of LABFM is concise and easy to follow, and the implementation of
the method into existing mesh-free codes should be straightforward.

These characteristics give the method significant potential to be a powerful tool for the solution of PDEs in complex
geometries. By virtue of its local nature, we expect LABFM to be highly scalable and computationally efficient,
properties which will be explored in a further study. Whilst we have demonstrated up to eighth order schemes in the
present study, this need not be the limit, provided computational stencils are increased as required. A further study,
applying LABFM to solve the Navier Stokes equations in complex geometries is ongoing, and future work will involve
the extension of the framework to include adaptivity in resolution and accuracy.
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Appendix A: Details of ABFs used

Here we provide details of the ABFs investigated in this study, which are based on the following fundamental RBFs:
conic, quadratic, Wendland C6, and Gaussian. Complete details of the ABFs based on the conic RBF are provided
in the main body of the paper, in Section III B. All fundamental RBFs except the Gaussian have been normalised to
yield W 0 (2) = 0, and

2π

∫ 2

0

qW 0 (q) dq = 1. (A1)
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The series of ABFs generated from W 0 are given by

Wji =
dW 0

dr
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+

d3W 0

dr3

[
0, 0, 0, 0, 0,

x3

r3
,
x2y

r3
,
xy2

r3
,
y3

r3
, . . .

]T
+
d4W 0
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[. . . ]

T
+ . . . (A2)

In practice we omit the terms in d2W 0/dr2 and higher derivatives for all k ≥ 4 (i.e. for elements 10 and onwards of
Wji), regardless of whether d2W 0/dr2 and higher derivatives are zero. We do this because: a) it is computationally
simpler, b) it yields a scheme which is more resilient to node distribution disorder.

1. Convex Quadratic

The fundamental RBF is set as W 0 = WQ, where

WQ (q) =
3

16π
(q − 2)

2
0 ≤ q ≤ 2. (A3)

The design of WQ is such that dWQ/dq
∣∣
q=2

= 0, which appears from our stability analysis to be a necessary

condition for stability of the convective operator on a uniform node distribution. WQ is convex, with positive
curvature everywhere and discontinuous gradient (i.e. a sharp peak) at the origin. Note that WQ is only valid for
q ∈ [0, 2].

2. Wendland C6

The fundamental RBF is set as W 0 = WW , where

WW (q) =
78

28π

(
1− q

2

)8 (
4q3 + 6.25q2 + 4q + 1

)
0 ≤ q ≤ 2, (A4)

which is the Wendland C6 kernel, (see Dehnen and Aly [17]) commonly used in SPH. Note that WW is only valid for
q ∈ [0, 2].

3. Gaussian

The fundamental RBF is set as W 0 = WG, where

WG (q) =
9

π
e−9q2 , (A5)

which is the classical Gaussian kernel, similar to that shown in [11, 29]. Note that for WG, satisfaction of (A1) is not
exact, but is approximate to within 2× 10−16, and WG (2) ≈ 6.6× 10−16.
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