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Abstract

Due to the butterfly-effect, computer-generated chaotic simulations often deviate exponentially
from the true solution, so that it is very hard to obtain a reliable simulation of chaos in a
long-duration time. In this paper, a new strategy of the so-called Clean Numerical Simulation
(CNS) in physical space is proposed for spatio-temporal chaos, which is computationally much
more efficient than its predecessor (in spectral space). The strategy of the CNS is to reduce
both of the truncation and round-off errors to a specified level by implementing high-order
algorithms in multiple-precision arithmetic (with sufficient significant digits for all variables
and parameters) so as to guarantee that numerical noise is below such a critical level in a
temporal interval t ∈ [0, Tc] that corresponding numerical simulation remains reliable over the
whole interval. Without loss of generality, the complex Ginzburg-Landau equation (CGLE)
is used to illustrate its validity. As a result, a reliable long-duration numerical simulation of
the CGLE is achieved in the whole spatial domain over a long interval of time t ∈ [0, 3000],
which is used as a reliable benchmark solution to investigate the influence of numerical noise by
comparing it with the corresponding ones given by the 4th-order Runge-Kutta method in double
precision (RKwD). Our results demonstrate that the use of double precision in simulations of
chaos might lead to huge errors in the prediction of spatio-temporal trajectories and in statistics,
not only quantitatively but also qualitatively, particularly in a long interval of time.
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1. Introduction

In 1890 Poincaré [1] discovered that the trajectories of an N -body system (N ≥ 3), gov-
erned by Newtonian gravitational attraction, generally have sensitive dependance on the initial
condition (SDIC), i.e. a tiny difference in initial condition might lead to a completely different
trajectory. The so-called SDIC was rediscovered in 1963 by Lorenz [2] who numerically solved
an idealized model of weather prediction, nowadays called the Lorenz equation, by means of a
digital computer. The SDIC became popularized following the title of a talk in 1972 by Lorenz
to the American Association for the Advancement of Science as “Does the flap of a butterfly’s
wings in Brazil set off a tornado in Texas?”. In his seminal paper, Lorenz stated that “long-
term prediction of chaos is impossible” [2]. The discovery of Poincaré [1] and Lorenz [2] has
helped create a completely new field in science, called chaos theory.

Furthermore, Lorenz [3, 4] found that computer-generated simulations of a chaotic dynamic
system using the Runge-Kutta method in the double precision are sensitive not only to the initial
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condition but also to the numerical algorithms (including temporal/spatial discretization). For
the specific problem investigated, Lorenz [4] reported that the Lyapunov exponent, one of
the most important characteristics of a dynamic system, frequently varied its sign even when
the time-step became rather small. It is well-known that only a positive Lyapunov exponent
corresponds to chaos; a negative one does not! This is easy to understand from the viewpoint
of the so-called butterfly-effect, because numerical noise from truncation and round-off error is
unavoidable in any numerical simulation, and leads to some errors (or approximations) being
introduced to the solution at each time-step. For example, let us consider the high-order Taylor
expansion

f(t+ ∆t) ≈ f(t) +
M∑
m=1

f (m)(t)

m!
(∆t)m, (1)

where f(t) is a function of time t, ∆t is the time-step, M is the order of Taylor expansion
and f (m)(t) is the mth-order derivative of f(t). Given that M is finite in practice, we obtain a
truncation error as the difference between the results of the infinite and truncated Taylor series.
Moreover, because all variables and physical/numerical parameters, such as f(t), f (m)(t), ∆t
and so on, are expressed in a precision (usually double precision) limited by a finite number
of significant digits, a round-off error invariably arises. Logically, a chaotic system with the
butterfly-effect should also be rather sensitive to these man-made numerical errors. This kind of
sensitive dependence on numerical algorithm (SDNA) for a chaotic system has been confirmed
by many researchers [5–7], and has led to some intense arguments and serious doubts concerning
the reliability of numerical simulations of chaos. It has even been hypothesized that “all chaotic
responses are simply numerical noise and have nothing to do with the solutions of differential
equations” [8]. Note that the foregoing researchers [5–8] undoubtedly used data in double
precision for chaotic systems, although different types of numerical algorithm were tested. As
a consequence, it was not clear how numerical noise influenced the reliability of numerical
simulations of chaos.

Without doubt, the reliability of computer-generated simulation of chaotic systems is a
very important fundamental problem. Anosov [9] in 1967 and Bowen [10] in 1975 showed that
uniformly hyperbolic systems have the so-called shadowing property: a computer-generated (or
noisy) orbit will stay close to (shadow) true orbits with adjusted initial conditions for arbitrarily
long times. Let {pk}bk=a denote a δf -pseudo-orbit for f if |pk+1 − f(pk)| < δf for a < k < b,
where f is a D-dimensional map and p is a D-dimensional vector representing the dynamical
variables. Here the term pseudo-orbit is used to describe a computer-generated noisy orbit. The
true orbit {yk}bk=a δ-shadows {pk}bk=a on [a, b] if |yk − pk| < δ, where the true orbit {yk}bk=a
satisfies yk+1 = f(yk). For details of the shadowing theorems, please refer to [9–14].

However, hardly any chaotic systems are uniformly hyperbolic. Dawson et al. [15] pointed
out that the non-existence of such shadowing trajectories may be caused by finite-time Lya-
punov exponents of a system fluctuating about zero. For non-hyperbolic chaotic systems with
unstable dimension variability, no true trajectory of reasonable length can be found to exist near
any computer-generated trajectories, as reported by Do and Lai [16]. Using examples having
only two degrees of freedom, Sauer [17] showed that extremely small levels of numerical noise
might result in macroscopic errors even in simulation average statistics that are several orders
of magnitude larger than the noise level. Thus, the good promise from the Shadow Lemma
[9, 10] for a uniformly hyperbolic system does not work for many non-hyperbolic systems [18].
It seems that we had to be satisfied with finite-length shadows for non-hyperbolic systems
[19]. Note that most of investigations on shadows are based on low dimensional dynamic sys-
tems, although a shadowing algorithm for high dimensional systems (such as the motion of
one hundred stars) was proposed by Hayes and Jackson [19]. To the best of our knowledge,
neither rigorous shadowing theorems nor practical shadowing algorithms have been proposed
for spatio-temporal chaotic systems (such as turbulent flows), which are governed by nonlinear
PDEs and thus have an infinite number of dimensions. It seems that, although the shadowing
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concept is rigorous in mathematics, it is hardly used in practice for complicated systems such
as spatio-temporal chaos and turbulence that are non-hyperbolic in general and besides have
an infinite number of degrees of freedom.

Liao [20–22] suggested a numerical strategy called “Clean Numerical Simulation” (CNS)
that could provide reliable simulations of chaotic systems over a given finite interval of time.
The CNS is based on an arbitrary-order Taylor expansion method [23–27], multiple-precision
(MP) data [28] with arbitrary numbers of significant digits, and a solution verification check
[29, 30] (using another simulation for the same physical parameters but with even smaller
numerical noise). Here, the word “arbitrary” means a value which can be “as large as required”.
So, as long as the order M of the Taylor expansion (1) is sufficiently large and all data values
are expressed in multiple-precision with a sufficiently large number of significant digits (denoted
by Ns), both the truncation error and the round-off error can be held below specified thresholds
throughout a prescribed simulation time [0, Tc]. Here the so-called critical predictable time Tc is
determined through the solution verification check by comparing it to an additional simulation
with the same physical parameters but smaller numerical noise, such that the difference between
them remains negligible in the interval [0, Tc]. Thus, a basic task of the CNS is to determine the
relationship between Tc and numerical noise. This relationship needs clarification particularly
as it has been largely ignored by researchers working on chaotic dynamics.

The CNS is based on such a hypothesis that the level of numerical noise increases exponen-
tially (in an average meaning) within an interval of time t ∈ [0, Tc], say,

E(t) = E0 exp(µ t), t ∈ [0, Tc], (2)

where the constant µ > 0 is the so-called “noise-growing exponent” that is dependent upon
the physical parameters of the system, E0 denotes the level of initial noise (i.e. truncation and
round-off error), E(t) is the level of evolving noise of the computer-generated simulation at the
time t, respectively. The critical predictable time Tc is determined by a critical level of noise
Ec, say,

Ec = E0 exp(µ Tc), (3)

which gives

Tc =
(ln Ec − ln E0)

µ
. (4)

So, for a given critical level of noise Ec, the smaller the level of the initial noise E0, the larger
the critical predictable time of Tc.

However, it is practically impossible to exactly calculate the level of evolving noise E(t),
because the true solution is unknown. So, we should propose a practical method with sufficiently
high accuracy to determine Tc. Let x ∈ Ω denote a vector of spatial coordinates and ψ(x, t) a
computer-generated simulation reliable in t ∈ [0, Tc] with the level of initial noise E0, ψ′(x, t)
is another computer-generated simulation reliable in t ∈ [0, T ′c] with a level of initial noise E ′0
that is several orders of magnitude smaller than E0. According to the hypothesis of exponential
growth in numerical noise of chaotic systems, it holds that T ′c > Tc and ψ′(x, t) in t ∈ [0, Tc]
should be much closer to the true solution than ψ(x, t) and thus can be regarded as a reference
to approximately calculate the level of numerical noise of ψ(x, t) in x ∈ Ω. Note that a
similar idea was used by Turchetti et al. [31] who compared a numerical map computed for a
given accuracy (single floating-point precision) with the same map evaluated numerically with
a higher accuracy (double or higher floating-point precision) that is regarded as the reference
map. In practice, the value of Tc can be determined by comparing ψ(x, t) with another better
simulation ψ′(x, t) having smaller initial noise E ′0. In this way, the level of numerical noise of
ψ(x, t) is not beyond the critical level Ec of noise in the temporal interval t ∈ [0, Tc] within the
whole spatial domain x ∈ Ω. In other words, ψ(x, t) is a “clean” numerical simulation (CNS)
in t ∈ [0, Tc] and x ∈ Ω. The above-mentioned can be regarded as a heuristic explanation of
the strategy of the CNS.
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Liao [20] successfully used this strategy of the CNS to gain reliable chaotic simulations of
the Lorenz equation and indeed found that the smaller the numerical noise, the larger the
value of Tc. Liao also found that when the data are of high multiple-precision, such that Ns

is sufficiently large for round-off errors to be ignored and the truncation error dominates, Tc is
linearly proportional to M , the order of Taylor expansion. Moreover, when M reaches such a
sufficiently high value that round-off error dominates, then Tc becomes linearly proportional to
Ns, the number of significant digits. Using these linear relationships, it is possible to determine
values for M and Ns that apply to any prescribed Tc. Here, Tc is finite due to computer
limitations, but can be quite large, depending on the computer resources available. For example,
Liao [20] applied CNS to obtain a reliable chaotic simulation of Lorenz equation until Tc=1000
Lorenz time unit (LTU) by means of ∆t = 0.01, M = 400 and Ns=800. Furthermore, Liao and
Wang [32] used the CNS to obtain, for the first time, a convergent/reliable chaotic simulation
of Lorenz equation up to Tc=10000 LTU by means of M = 3500 and Ns = 4180, using 1200
CPUs to the National Supercomputer TH-1A in Tianjin, China. Note that the reliability of
this long-term chaotic simulation was verified by means of another better simulation using
M = 3600 and Ns = 4515. These showed the validity of the CNS. Note that, exactly for the
same physical parameters and the same initial conditions of the Lorenz equation, by means of
the 4th-order Runge-Kutta’s method and many other algorithms in double precision, a reliable
chaotic simulation is often obtained over a rather small interval, approximately [0, 30] LTU,
which is only 0.3 % of the interval [0,10000]. This may be the underlying reason why there is
such controversy about the reliability of numerical simulations of chaos [8], noting that most
researchers neglect the influence of round-off error and use double precision in their computer-
generated simulations.

In CNS, numerical noise arising from truncation and round-off errors is much smaller than
the values of physical variables under consideration, provided t < Tc, where Tc is a specified pa-
rameter that can be as large as deemed necessary by the user. Consequently, many complicated
chaotic systems can be studied by means of the CNS, as illustrated in [33–39]. For example,
according to Poincaré [1], a three-body system can often be chaotic. In physics, the initial
positions of the three-bodies have inherent micro-level physical uncertainty, at scales below the
Planck length scale. Such micro-level uncertainty in the initial position is much smaller than
the round-off error caused by the use of double precision, and so its influence on macroscopic
trajectories cannot be investigated by traditional algorithms using double precision arithmetic.
However, using CNS, Liao and Li [35] investigated the propagation of micro-level physical un-
certainty in the initial condition for a chaotic three-body system, and found that the uncertainty
grows to become macroscopic, leading to random escape and symmetry-breaking behaviour of
the three-body system. This implies that micro-level physical uncertainty might be the origin of
macroscopic randomness in the three-body system. Besides, given that micro-level uncertainty
is physically inherent, the escape and symmetry-breaking behaviour of the chaotic three-body
system can happen even without any external forces present. In other words, such behaviour
is self-excited. This suggests that macroscopic randomness, self-excited random escape, and
self-excited symmetry-breaking of a chaotic three-body system are unavoidable. (Liao and Li
[35] provide further details.) Notably, although the three-body problem can be traced back to
Newton in 1680s, only three families of periodic orbits were found in the 300 years since then. In
1890 Poincaré [1] pointed out that a three-body system is chaotic in general and its closed-form
solution does not exist. This is why so few periodic orbits have been discovered. However, by
undertaking CNS on China’s national supercomputer, Li, Jing and Liao [36, 37, 39] successfully
found more than 2000 new periodic orbits of three-body system. The new periodic orbits were
profiled in New Scientists [40, 41]. All of these illustrated the usefulness of CNS as a powerful
tool for reliable and accurate investigation of chaotic systems in physics.

The Lorenz equation is a greatly simplified form of the Navier-Stokes equations that are
widely used to describe turbulent flows. In 2017 Lin et al [38] applied the CNS to study the
relationship between inherent micro-level thermal fluctuation and the macroscopic randomness
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of a two-dimensional Rayleigh-Bérnard convection turbulent flow in a long enough interval of
time, taking micro-level thermal fluctuation (expressed by Gaussian white noise) to be the
initial condition, with no external disturbances applied. Using CNS with numerical noise set
to be even smaller than the micro-level thermal fluctuations, Lin et al [38] proved theoretically
that inherent micro-level thermal fluctuations are the root source of macroscopic randomness
of Rayleigh-Bérnard turbulent convection flows. Unlike the Lorenz system and three-body
system, which are described mathematically by ordinary differential equations (ODEs), the
Rayleigh-Bérnard convection system is governed by partial differential equations (PDE) as
a spatio-temporal chaotic system. This case illustrated the validity of the CNS for reliable
simulation of spatio-temporal chaotic systems governed by nonlinear PDEs. However, Lin et al
[38] used a Galerkin-Fourier spectral method with CNS to solve the system in spectral space.
This involved mapping the original nonlinear PDE in physical space onto a huge system of
nonlinear ODEs in spectral space, proving to be rather time-consuming and impractical on
present-day computers for simulation for spatio-temporal chaotic systems.

In this paper, we propose a new strategy that greatly increases the computational efficiency
of CNS for spatio-temporal chaotic systems. Without loss of generality, we consider the one-
dimensional complex Ginzburg-Landau equation(CGLE) as an example of a spatio-temporal
chaotic system, to outline the basic features of the strategy and then illustrate its validity and
efficiency. Section 2 describes two CNS algorithms: one in spectral space using the Galerkin-
Fourier spectral method; the other in physical space. The performance of these algorithms is
compared in terms of computational efficiency, validity, etc. Section 3 discusses the influence
of numerical noise on spatio-temporal trajectories and statistics of the chaotic system. Section
4 summarizes the discussions and conclusions.

2. CNS algorithms for spatio-temporal chaos

Spatio-temporal chaos, characterized by irregular behaviour in both space and time, arises
when a spatially extended system is driven away from its equilibrium state [42]. The one-
dimension complex Ginzburg-Landau equation (CGLE), which describes oscillatory media near
the Hopf bifurcation, is commonly used in studies of spatio-temporal chaos [43–52], and is given
by

At = A+ (1 + i c1) Axx − (1− i c3) |A|2A, (5)

subject to the initial condition
A(x, 0) = f(x)

and the periodic boundary condition

A(x, t) = A(x+ L, t),

where i =
√
−1, A is an unknown complex function, the subscript denotes the partial deriva-

tive, t and x denote the temporal and spatial coordinates, c1 and c3 are physical parameters,
respectively. The CGLE has spatio-temporal chaotic solutions in cases when c1c3 ≥ 1, corre-
sponding to Benjamin-Feir unstability [53]. Depending upon the values of c1 and c3, the CGLE
exhibits two distinct chaotic phases, namely “phase chaos” when A is bounded away from zero,
and “defect chaos” for A = 0 when the phase exhibits singularities [43, 45, 47, 54]. As pointed
out by Shraiman et al [45], the crossover between phase and defect chaos is invertible only when
c1 > 1.9. Furthermore, the CGLE solution occupies a bichaos region when c1 < 1.9, where
phase chaos and defect chaos coexist. Chaté [55] examined the relation with spatio-temporal
intermittency, and defined an intermittency regime where defect chaos and stable plane waves
coexist. By considering modulated amplitude waves (MAWs), Brusch et al [47] found that the
crossover between phase and defect chaos take place when the periods of MAWs are driven
beyond their saddle-node bifurcation.
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Despite intensive numerical investigations into solutions of the CGLE [43, 45, 47, 55–58]
for values of c1 and c3 ranging from L = 500 to L = 4000, the sensitive dependence on ini-
tial conditions (SDIC) of the CGLE has made it impossible to obtain reliable, long duration
numerical simulations of the spatio-temporal chaotic solution by means of the traditional al-
gorithms using double precision arithmetic. Here, we use Clean Numerical Simulation (CNS)
to obtain reliable computer-generated simulations in a given specified finite interval of time.
Taking the one-dimension complex Ginzburg-Landau equation as an example, we outline two
different CNS algorithms for spatio-temporal chaotic systems: one in spectral space, the other
in physical space. We will demonstrate that the latter is computationally much more efficient
than the former.

First of all, we temporally expand the unknown complex function A in the CGLE by means
of the following high-order Taylor expansion

A(x, t+ ∆t) =
M∑
m=0

A[m](x, t) (∆t)m, (6)

where ∆t is the time step, the order M is a (sufficiently large) positive integer, and

A[m](x, t) =
1

m!

∂mA(x, t)

∂tm
. (7)

Note that |A|2 = A A, where A is the complex conjugate of A(x, t). From Eqs. (5) and (7), we
have

A[m](x, t) =
1

m
A[m−1](x, t) +

(1 + i c1)

m
A[m−1]
xx (x, t)

− (1− i c3)
m

m−1∑
j=0

m−1−j∑
n=0

A
[j]

(x, t) A[n](x, t) A[m−1−j−n](x, t). (8)

Note that A[m](x, t) is solely dependent upon A[n](x, t) and its spatial derivative A
[n]
xx(x, t), where

0 ≤ n ≤ m−1, and thus can be calculated consecutively, up to a high-enough order M ensuring
that the truncation error does not exceed a prescribed level. Hence, A(x + ∆t) is calculated

to a required precision, provided the spatial derivative term A
[n]
xx(x, t) is calculated to sufficient

accuracy. This is a key to using the CNS in problems involving spatio-temporal chaos.

2.1. The CNS algorithm in spectral space

In CNS combined with a Galerkin Fourier spectral method, the unknown complex function
A of Eq. (5) is expressed by Fourier series (see e.g. Finlayson et al and Isaacson et al. [59, 60]),
as follows

A(x, t) ≈
N
2
−1∑

k=−N
2

ak(t) ϕk(x), (9)

where N is the mode number of the spatial Fourier expansion with the base function

ϕk(x) =
1√
L
ei kαx. (10)

Here α = 2π/L, and L is the spatial period of the solution. Then, according to (7),

A[m](x, t) ≈
N/2−1∑
k=−N/2

a
[m]
k (t) ϕk(x). (11)
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After transformation, Eq. (8) becomes∫ L

0

A[m](x, t) ϕk(x)dx =
1

m

∫ L

0

A[m−1](x, t) ϕk(x)dx

+
(1 + i c1)

m

∫ L

0

A[m−1]
xx (x, t) ϕk(x)dx

− (1− i c3)
m

m−1∑
j=0

m−1−j∑
n=0

∫ L

0

A
[j]

(x, t) A[n](x, t) A[m−1−j−n](x, t) ϕk(x)dx, (12)

where ϕk(x) is the complex conjugate of the basis function ϕk(x). Substituting (11) into the
above equation, we have for m ≥ 1 that

a
[m]
k (t) =

1

m
a
[m−1]
k (t)− (1 + i c1)

m

(
2kπ

L

)2

a
[m−1]
k (t)

− (1− i c3)
mL

∑
−k1+k2+k3=k

m−1∑
j=0

m−1−j∑
n=0

a
[j]
k1

(t) a
[n]
k2

(t) a
[m−1−j−n]
k3

(t),

−N
2
≤ k, k1, k2, k3 ≤

N

2
− 1, (13)

where a
[n]
k (t) is the complex conjugate of a

[n]
k (t), with a

[0]
k (t) = ak(t) and a

[0]
k (t) = ak(t). The

initial condition of ak(t) is given by

ak(0) =

∫ L

0

A(x, 0) ϕk(x)dx, −N
2
≤ k ≤ N

2
− 1. (14)

In the frame of CNS, we apply the temporal high-order Taylor expansion

ak(t+ ∆t) ≈
M∑
m=0

a
[m]
k (t)(∆t)m, −N

2
≤ k ≤ N

2
− 1, (15)

subject to the initial condition (14), to decrease the truncation error to a required level. We
also ensure that calculations are performed in multiple-precision using a sufficient number Ns

of significant digits to limit the round-off error to below a specified level, and carry out a
verification check on the solution by considering results from an additional simulation with
even smaller numerical noise to determine the critical predictable time Tc. Here a

[m]
k (t) is

given by (13), ∆t is the time step, M is the order of the Taylor expansion, and N is the
mode number of the spatial Fourier expansion, respectively. So long as all values of ak(t) in
spectral space are known, the solution A(x, t) can be determined in physical space by means of
(9), as and when required. As mentioned in the Introduction, this CNS algorithm in spectral
space was successfully used by Lin et al. [38] to study the influence of inherent micro-level
thermal fluctuations on the macroscopic randomness of turbulent Rayleigh-Bérnard turbulent
convection. Lin et al. found that the accuracy of this Galerkin Fourier spectral method is very
high, provided N , M , and Ns are all sufficiently large. However, as reported by Lin et al. [38],
calculation of the nonlinear term in (13) is very time consuming when N is large.

2.2. The CNS algorithm in physical space

To overcome the shortcoming of the above-mentioned CNS algorithm in spectral space,
we propose the following CNS algorithm in physical space. Instead of mapping the original
governing equation and initial condition onto spectral space, via a collocation method [61, 62],
we directly solve the original equation in physical space by first dividing the spatial domain
[0, L] into a uniform grid, such that

xk =
kL

N
= k∆x, k = 0, 1, 2, 3, · · · , N,
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and then approximating A(x, t) by a set of discrete unknown variables

{A(x0, t), A(x1, t), A(x2, t), · · · , A(xN , t)} , (16)

where A(xN , t) = A(x0, t) in order to satisfy the periodic condition. Thus, we have only N
unknowns A(xk, t) (0 ≤ k ≤ N−1), whose temporal evolution is given by the high-order Taylor
expansion

A(xk, t+ ∆t) ≈
M∑
m=0

A[m](xk, t)(∆t)
m, k = 0, 1, 2, · · · , N − 1, (17)

where ∆t is the time step, and A[m](xk, t) defined by (7) is given by

A[m](xk, t) =
1

m
A[m−1](xk, t) +

(1 + i c1)

m
A[m−1]
xx (xk, t)

− (1− i c3)
m

m−1∑
j=0

m−1−j∑
n=0

A
[j]

(xk, t) A
[n](xk, t) A

[m−1−j−n](xk, t), (18)

with the specified initial condition A(xk, 0) = f(xk).

Note that there exists the spatial partial derivative A
[n]
xx(xk, t) in (18), where 0 ≤ n ≤ m− 1

and 0 ≤ k ≤ N − 1 are positive integers. To evaluate accurately this spatial partial derivative
term from the set of the known discrete variables A[n](xj, t), we first invoke the Fourier expansion
in space,

A[n](x, t) ≈
N
2
−1∑

k=−N
2

b
[n]
k (t) ei k α x, (19)

where α = 2π/L and

b
[n]
k (t) ≈ 1

N

N−1∑
j=0

A[n](xj, t) e
−i k α xj , −N

2
≤ k ≤ N

2
− 1. (20)

This is given by the set of the known variables A[n](xj, t) at discrete points xj (0 ≤ j ≤ N − 1).
Then, we have the spatial partial derivative term

A[n]
xx(xj, t) ≈ −α2

N
2
−1∑

k=−N
2

k2 b
[n]
k (t) ei k α xj , 0 ≤ j ≤ N − 1, (21)

where b
[n]
k (t) is given by (20). The Fast Fourier Transform (FFT) [63] is used to increase

computational efficiency, given that the discrete points xj are equidistant.
Obviously, the larger the order M of the Taylor expansion (17) in time and the mode

number N of the Fourier expansion (19) in space, the smaller the corresponding truncation
errors. To decrease the round-off error to a required level, all variables and physical parameters
are calculated in multiple-precision with Ns significant digits, where Ns is a sufficiently large
positive integer. In this way, both the truncation and round-off errors are reduced to a required
limiting level. Finally, an additional numerical simulation with smaller numerical noise is
carried out to determine the critical predictable time Tc (i.e. the maximum time of reliable
simulation) by comparing the results of both simulations; this ensures that the CNS result is
reliable within the temporal interval t ∈ [0, Tc] over the whole spatial domain.

Comparing (18) with (13), it is obvious that the CNS algorithm in physical space is nu-
merically much more efficient than the CNS algorithm in spectral space, especially for a large
mode number N of the spatial Fourier expansion. This is indeed true, as shown in §2.5.
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Note that the high order Taylor expansion method [23–27], the Fourier expansion method
[63], the multiple precision [28], and the solution verification check [29, 30] are widely used.
However, their combination may give reliable simulations of spatio-temporal chaotic systems,
which provide us benchmarks that can be used to study the influence of numerical noise on
chaotic simulations given by traditional algorithms in double precision.

2.3. The optimal time-step

In CNS, the temporal truncation error is determined by the order M of the Taylor expansion
(15) or (17), and the spatial truncation error is determined by the mode number N of the spatial
Fourier expansion (9) or (19). As long as both M and N are large enough, the temporal and
spatial truncation errors are reduced to below a target level. In addition, the round-off error
is reduced to a specified level by using multiple-precision with sufficiently large number Ns of
significant digits.

To calculate the Mth-order Taylor expansion (15) or (17) in time dimension, we use an
optimal time-step [27]

∆t = min

(
g(tol,M − 1)∥∥A(M−1)(xk, t)

∥∥1/(M−1)
∞

,
g(tol,M)∥∥A(M)(xk, t)

∥∥1/M
∞

)
, (22)

where tol is an allowed tolerance at each time step,
∥∥A(M)(xk, t)

∥∥
∞ is the infinite norm of the

Mth-order Taylor expansion of the modules of A(xk, t), k = 0, 1, 2, 3, · · · , N − 1 and

g(tol,M) ≈ tol1/(M+1). (23)

To save computer resources and increase computational efficiency, it is reasonable to enforce
the allowed tolerance to be at the same level as the round-off error, say,

tol = 10−Ns , (24)

Thus, we have the optimal time-step as

∆t = min

(
10−Ns/M∥∥A(M−1)(xk, t)

∥∥1/(M−1)
∞

,
10−Ns/(M+1)∥∥A(M)(xk, t)

∥∥1/M
∞

)
. (25)

Therefore, for a given number Ns of significant digits in multiple-precision, one has the freedom
to choose the order M of temporal Taylor expansion. According to (25), raising the order of the
temporal Taylor expansion usually leads to an increased optimal time-step ∆t. So, in practice,
it makes sense to set M to higher order because it can also improve the speed-up ratio of the
parallelized algorithm.

In practice, we first choose a sufficiently large values for Ns and M to meet the error
requirements, from which the optimal time-step ∆t is evaluated by (25) at each time-step. In
this way, the temporal truncation error is kept to the same level of the round-off error.

For a spatio-temporal chaotic system (5), it is also necessary to limit the spatial trunca-
tion error, determined by the mode number N of the spatial Fourier expressions (9) or (19).
Obviously, the larger the value of N , the smaller the spatial truncation error. In theory, to
save computer resources and improve computational efficiency, it is better to let the the spa-
tial truncation error be equal to the temporal truncation error. Unfortunately, it is presently
unknown how to do this. In practice, we often choose reasonably large values for Ns and N in
order to guarantee that the round off error, temporal truncation error, and spatial truncation
error are all below a specified level. Finally, the solution verification check is implemented by
comparing the numerical result to that of an additional simulation with even smaller numerical
noise; this determines the finite time interval [0, Tc], over which the spatio-temporal chaotic
numerical results exhibit no distinct differences at all spatial grid-points and thus are reliable.
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2.4. Criteria of reliability and convergence

Due to the sensitivity dependence on initial conditions of chaotic systems, unavoidable
numerical noise from round-off and truncation errors can increase exponentially. To guarantee
the reliability of chaotic numerical simulations, we compare our CNS simulation of interest
against one using the same physical parameters and the same algorithm but with even smaller
numerical noise; this determines the finite time interval [0, Tc] over which the spatio-temporal
chaotic numerical results display no distinct differences at all spatial grid-points.

Take the one-dimensional CGLE as an example. Let A(x, t) denote a numerical simulation
of the one-dimensional CGLE, given by CNS using the Mth-order of Taylor expansion in the
time dimension, the mode number N of the Fourier expansion in the spatial dimension, the
number Ns of significant digits in the multiple precision scheme. Now, let A′(x, t) be another
CNS result with even smaller numerical noise, given by the M ′th-order of the temporal Taylor
expansion, the mode number N ′ of the spatial Fourier expansion, and number N ′s of significant
digits in the multiple precision scheme, where M ′ ≥ M , N ′ > N and N ′s ≥ Ns. Since the level
of numerical noise increases exponentially, A′(x, t) (with smaller numerical noises) should be
closer to the true solution than A(x, t) and thus can be used as a reference solution to check
the reliability of A(x, t).

If A(x, t) and A′(x, t) have the same spatial discretization, i.e. the same N , their deviation
can be measured by

δ(t) =

√
N−1∑
k=0

∣∣∣A(xk, t)− A′(xk, t)
∣∣∣2√

N−1∑
k=0

∣∣∣A′(xk, t)∣∣∣2
. (26)

However, A′(x, t) often has different values of N from A(x, t) in practice. In this case, it is
more convenient to compare their spatial spectrum. Rewrite A(x, t) and A′(x, t) in the spatial
Fourier expressions

A(x, t) ≈
N
2
−1∑

k=−N
2

Bk(t) e
i k α x, A′(x, t) ≈

N′
2
−1∑

k=−N′
2

B′k(t) e
i k α x. (27)

Note that

N′
2
−1∑

k=−N′
2

|B′k|2 has often physical meaning, such as the total energy of the system. So,

from a physical viewpoint, it is important for a numerical simulation of a spatio-temporal
chaos to have an accurate spatial spectrum at given time t. Thus, we define the so-called
“spectrum-deviation”

δs(t) =

N
2
−1∑

k=−N
2

∣∣∣|B′k|2 − |Bk|2
∣∣∣

N′
2
−1∑

k=−N′
2

|B′k|2
(28)

to quantify the difference between A(x, t) and A′(x, t) at a given time t. Obviously, the smaller
the spectrum-deviation δs, the better the two simulations agree with each other and the greater
their reliability. So, it is reasonable to define the reliability criterion as

δs < δcs, (29)

where δcs > 0 is a reasonably small number, called the “critical spectrum-deviation”. For
the problem under consideration, it is found that δcs = 0.01 is reasonable, which is used for
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all the remaining cases in this paper. Equation (29) provides a criterion of reliability, which
determines the so-called “critical predictable time” Tc and the temporal interval [0, Tc], in which
the reliability-criteria (29) is satisfied and the differences between the two simulations A(x, t)
and A′(x, t) at all spatial grid-points are negligible.

2.5. Computational efficiency of the two CNS algorithms

In theory the CNS algorithm in spectral space undertakes about O (M3N3) elementary
operations, whereas the CNS algorithm in physical space undertakes O (NM log2N + N M3)
elementary operations. This is partly due to the fewer nonlinear terms in the right-hand side of
(18) than (13), and partly due to the implementation of the FFT in evaluating (21). Obviously,
using the CNS algorithm in physical space can greatly improve the calculation speed at O (N2),
where N is the mode number of the spatial Fourier expansion. The resulting speed-up is huge
in practice, especially for large N . This is confirmed by the results listed in Table 1 which
compares the CPU times taken by the two CNS algorithms, for the same values of N , M , and
Ns. For the purposes of comparison, a fixed time-step ∆t = 0.01 is used. Table 1 shows that the
ratio T1/T2 of required CPU times for the 1st and 2nd CNS algorithms rises exponentially as
N increases. Notably, when N = 128, the required CPU time of the CNS algorithm in spectral
space is 6,000 times more than that of the CNS algorithm in physical space! This illustrates
that the CNS algorithm in physical space described in Section 2.2 is clearly much more efficient
than that in its counterpart spectral space, and so is used for all the cases considered in the
remainder of this paper (unless otherwise stated).

2.6. Validity of the CNS algorithm in physical space

The one-dimensional CGLE (5) is now used as an example to verify the validity of our CNS
algorithms in physical space. First, the one-dimensional CGLE has closed-form plane-wave
solutions [43, 45, 55, 64] given by

A(x, t) =
√

1− q2 ei (wq t+q x), (30)

where wq = c3 − (c3 + c1) q
2. Provided c1 c3 < 1 , these solutions are linearly stable. Along

the line c1 c3 = 1, the band of wave-vectors shrinks to zero corresponding to Benjamin-Feir
or modulation instability of the uniform oscillatory solution [42, 53]. Beyond Benjamin-Feir
instability, when c1 c3 > 1, the system enters the phase chaos and defect chaos regimes.

To verify the CNS algorithm in physical space, as mentioned in Section 2.2, let us first
consider the plane-wave solution (30) when c1 = 1.1 and c3 = 0.2, with the initial condition

A(x, 0) =
√

1− q2 ei q x, (31)

in which q = 8π/L and L = 256. Given that c1c3 < 1, the solution should be in the form of
(30) and linearly stable. We solve this problem by means of the two CNS algorithms using
the same values of N , M , and Ns. As shown in Fig. 1, the numerical simulations produced by

N T1 T2 T1/T2
(in seconds) (in seconds)

16 694 7.93 87
32 5530 12.8 432
64 44366 25 1774
128 346490 51 6793

Table 1: CPU times of CNS simulations of the one-dimension CGLE for c1 = 2, c3 = 1 and L = 256 in the
temporal interval t ∈ [0, 10], in spectral and physical spaces with the same Ns = 20, M = 14, a fixed time step
∆t = 0.01 and the same mode number N for the spatial Fourier expansion. T1 and T2 are the elapsed CPU
times for the CNS algorithms in the spectral space; and the physical space, respectively.
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Fig. 1: Numerical simulations of the real part of A(x, t) at t = 500 given by the two CNS algorithms using the
mode-number N = 64 for the spatial Fourier expansion, the order M = 8 of temporal Taylor expansion and
the number Ns = 24 of significant digits in multiple precision, compared against the exact plane-wave solution:
plane-wave solution (solid line); result from CNS algorithm in spectral space (red symbols); and result from
CNS algorithm in physical space (blue symbols).

the two CNS algorithms agree well with the exact plane-wave solution (30) at t = 500. This
verifies the validity of the two CNS algorithms in the spectral and physical spaces, described
in Section 2.1 and Section 2.2.

Next, let us again consider the one-dimensional CGLE, but for the case c1 = 2 and c3 = 1,
with the initial condition

A(x, 0) = cos

(
4πx

L

)
+ cos

(
8πx

L

)
+ i cos

(
4πx

L

)
. (32)

Here c1c3 > 1, and so the solution is unstable and becomes chaotic. The problem was solved
using both CNS algorithms for N = 128 and Ns = 24. The results shown in Fig. 2 obtained
using the two CNS algorithms are in close agreement with each other. This validates the CNS
algorithm in physical space for problems involving the chaos regime.

Let Ã(x, t) denote the numerical simulation for c1 = 2, c3 = 1 with the initial condition
(32), given by the CNS algorithm in physical space with much smaller numerical noise by
setting N = 2048. Hence, Ã(x, t) can be regarded as much more accurate than the numerical
simulations given by the two CNS algorithms in the spectral/physical space with N = 128. So,
Ã(x, t) can be used as a benchmark (or a reference solution). According to (26),

δ(t) =

√
N−1∑
k=0

( ∣∣∣Ã(x16k, t)
∣∣∣− |A(xk, t)|

)2
√

N−1∑
k=0

∣∣∣Ã(x16k, t)
∣∣∣2 (33)

is the deviation of |A(xk, t)| (given by the CNS algorithm using N = 128) from the much more
accurate simulation |Ã(x, t)| (given by the same CNS algorithm using N = 2048). As shown
in Fig. 3, the deviation δ(t) defined by (33) and the spectrum-deviation δs(t) defined by (28)
of the numerical simulation |A(x, t)| given by the CNS algorithm in physical space grow in a
similar fashion to those given by the CNS algorithm in spectral space; in both cases, N = 128
and Ns = 24, with the reliability check using N = 2048 and Ns = 24.

12



|A
|

0 50 100 150 200 2500.7

0.8

0.9

1

1.1

1.2
the CNS algorithm in physical space N=128
the CNS algorithm in spectral space N=128

Fig. 2: Comparison of |A(x, t)| profiles (at t = 25) obtained by the two CNS algorithms using the mode number
N = 128 for the spatial Fourier expansion and the number Ns = 20 of significant digits in multiple-precision:
converged results from the CNS algorithm in spectral space (solid line); and corresponding results from the
CNS algorithm in physical space (red symbols).

The foregoing has shown that the CNS algorithm in physical space not only can greatly
improve computational efficiency (see Section 2.5), but also can attain the same “critical pre-
dictable time” Tc as that of the CNS algorithm in the spectral space.

2.7. Relationship between Tc and the level of numerical noises

In summary, the basic idea of the CNS is to reduce the temporal/spatial truncation error
and round-off error to such a required level that the computer-generated simulations are reliable
throughout the entire spatial domain over a specified finite time interval [0, Tc], where Tc is the
critical predictable time. It is found that Tc is often dependent upon the level of numerical
noises, dominated by the order M of temporal Taylor expansion, the mode number N of
spatial Fourier expansion, and number Ns of significant digits in multiple-precision data for
all variables and parameters. Thus, for a given critical predictable time Tc, we should choose
sufficiently large values of M , N and Ns to guarantee such a reliable simulation in the whole
spatial domain within t ∈ [0, Tc]. Given that a universal relationship between Tc and M , N ,
and Ns is unknown, it is often necessary to have to carry out an additional CNS simulation
with even smaller noise in order to determine Tc in practice. Furthermore, because we have
the freedom to choose the order M of the temporal Taylor expansion according to (25) for the
optimal time-step, we need determine the relationship between Tc and N,Ns only. Here, let
us again consider the one-dimensional CGLE for a chaotic case when c1 = 2, c3 = 1 with the
initial condition (32) as an example to illustrate how to evaluate such kind of relationships.

To investigate the relationship between Tc and N , we first set Ns = 105 to guarantee that
the round-off and temporal truncation errors are below a given threshold, noting that both
errors are at the same level in the present CNS algorithm, whereby tol = 10−Ns (see Section
2.3). In this case, the spatial truncation error should be larger than other errors and thus make
up the bulk of the numerical noise. Then, for the same problem, we alter N ( N = 2n with n
being a positive integer, in order to implement the FFT) from 32 to 2048 to obtain a series of
CNS results at different levels of spatial truncation error, and then determine the corresponding
critical predictable time Tc of each CNS result by comparing it with another CNS result using a
larger N (and hence smaller spatial truncation error). Fig. 4 shows that the critical predictable
time Tc in this case is almost directly proportional to N , such that

Tc ≈ 1.643 N − 154. (34)
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Fig. 3: Left: Comparison of the deviation δ(t) of |A(x, t)| obtained by the two CNS algorithms using the mode
number N = 128 for the spatial Fourier expansion and the number Ns = 24 of significant digits in multiple-
precision, with reliability check using N = 2048 and the same Ns. Right: Comparison of the corresponding

spectrum-deviation δ
|A|
s (t) of |A(x, t)|. Results given by the CNS algorithm in spectral space (black solid line);

and by the CNS algorithm in physical space (red dashed line).
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Fig. 4: Critical predictable time Tc versus the mode number N of the spatial Fourier expansion in a chaotic
case of c1 = 2 and c3 = 1 with the initial condition (32), obtained by the CNS algorithm in physical space using
the number Ns = 105 of significant digits in multiple-precision and different values of mode number N (from
32 to 2048). Tc given by the CNS (symbols); and analytic approximation formula (34) (solid line).
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In addition, to investigate the relationship between Tc and Ns, we set mode number N =
4096 for the spatial Fourier expansion and the tolerance tol = 10−105 for the temporal Taylor
expansion and vary the number Ns of significant digits in multiple-precision from 16 to 70 with
10−Ns > tol in order to ensure that the round-off error is the major source of numerical noise.
In this way, for the same problem, we obtain a series of simulations given by the CNS, from
which the corresponding critical predictable time Tc of each simulation is gained by comparing
it against others with a larger Ns. Fig. 5 shows that the critical predictable time Tc is almost
directly proportional to Ns in this case, such that

Tc ≈ 45 Ns − 140. (35)

Notably, when Ns = 16, corresponding to double precision, one has Tc ≈ 580, say, using double
precision, one can gain a reliable computer-generated simulation at most in t ≤ 580, even if
truncation error is very small by using a rather high order of temporal Taylor expansion and a
rather large mode number N for the spatial Fourier expansion. This is exactly the same reason
why high-order algorithms in double precision are useless for modifying convergence of chaotic
computer-generated results, as previously mentioned by many researchers [2–5, 7].

20 40 60 800

1000

2000

3000

Fig. 5: Critical predictable time Tc versus the number Ns of significant digits in multiple precision in a chaotic
case of c1 = 2 and c3 = 1 with the initial condition (32), given by the CNS algorithm in physical space using
the mode number N = 4096 for the spatial Fourier expansion, the tolerance tol = 10−105 for the temporal
Taylor expansion and different values of Ns ranging from 16 to 70: Tc given by the CNS (symbols); and analytic
approximation formula (34) (solid line).

From (34) and (35), we have the linear relationship

Tc ≈ min {1.643 N − 154, 45 Ns − 140} . (36)

Note that (36) provides an approximate relationship between Tc and N,Ns, which is important,
although valid only for the case under consideration. Fortunately, it has been found that Tc
is always directly proportional to Ns or N , approximately. Note that a similar linearity was
reported by Turchetti et al. [31] about a chaotic map. So, this kind of linearity between Tc and
N,Ns should exist in general. In practice, we can first gain such kind of linear relationship by
means of relatively small values of N and Ns (corresponding to small values of Tc), and then
further use this relationship to estimate the required (large) values of N and Ns for a given
large value of Tc. In this way, the reliability check of the CNS simulation in a large interval of
time may be avoidable, so that much CPU times is cut down.

According to (34) and (35), for the same Tc, the required value for the mode number N of
spatial Fourier expansion grows faster than the required value for the number Ns of significant
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digits in multiple-precision. Thus, it is much more expensive and thus more challenging to
obtain a reliable numerical simulation of a spatio-temporal chaotic system (governed by a
nonlinear PDE) than a temporal chaotic one (by a set of nonlinear ODEs).

3. Influence of numerical noise on trajectories and statistics

It has been widely conjectured that long-term reliable computer-generated simulation of a
chaotic system is impossible [2] even when the initial condition is exactly specified, because
numerical noise from truncation and round-off errors inevitably occurs during each time-step
of numerical simulation, and increases exponentially due to the butterfly-effect. Moreover,
although double precision is widely used in computer-generated simulations, the influence of
round-off error on reliable simulation of chaotic systems has been grossly underestimated. As
several researchers have previously mentioned [3–5, 7, 20, 21, 33], it is impossible to achieve
reliable, long-duration numerical simulations of chaotic systems by means of high-order algo-
rithms in double precision. The importance of verification and validation (V & V) of computer-
generated simulations is well known, and established techniques exist by which to determine the
reliability of a numerical simulation (see e.g. [29, 30]). The key point of the CNS is to ensure
the reliability of computer-generated simulations: unlike traditional algorithms, CNS acts to
decrease both the truncation and round-off errors to a required level for reliable simulations
of chaotic systems over a specified, large but finite interval of time, as illustrated by Liao and
Wang [20, 65] for the Lorenz equation. Therefore, the CNS can provide us reliable, convergent
simulations of chaotic systems as benchmarks that make it possible to investigate the influence
of numerical noise over a given interval of time by comparing these benchmarks with those
produced by traditional algorithms in the double precision.

Without loss of generality, let us consider the one-dimensional CGLE within the chaotic
regime when c1 = 2 and c3 = 1 for the same initial condition (32). In this case, the solution
exhibits periodicity and symmetry in space. The reliable numerical simulations obtained by the
CNS algorithm in physical space (marked as “CNS”) using Ns = 105 are used as benchmarks,
which are compared with the corresponding results obtained by the temporal 4th-order Runge-
Kutta method with double precision (marked as “RKwD”). Both the CNS and RKwD results
have the same mode number N = 4096 for spatial Fourier expansion so that they have the
same spatial truncation error. For time evolution, the CNS algorithm in physical space uses a
high-order Taylor expansion with tolerance tol = 10−105, whereas the RKwD utilises a time-
step ∆t = 10−4 with associated temporal truncation error of order O(10−16) (which is at the
same level of the round-off error of the RKwD due to the use of double precision). According
to (36), the CNS result (with Ns = 105 and N = 4096) has critical predictable time Tc > 4500,
which is much larger than Tc ≈ 580 for the RKwD simulation (with Ns = 16 and N = 4096).
Notably, the CNS result is reliable over an interval of time about 7.7 times longer than that
of the RKwD one. To guarantee the reliability, we use the CNS result in a smaller interval of
time, say, t ∈ [0, 3000], which therefore can be certainly used as a benchmark for comparisons
described below.

Note that the initial condition (32) has a kind of spatial symmetry, which, according to the
governing equation, should be retained by the solution (if evaluated correctly). As shown in
Fig. 6, this is indeed true for the CNS result in the whole spatial domain x ∈ [0, L] throughout
the entire interval t ∈ [0, 3000]. However, the numerical simulation given by the RKwD loses
the spatial symmetry at t ≈ 580. For t < 580, the result given by the RKwD agrees quite well
with that by the CNS. However, thereafter, the deviation between the two simulations becomes
larger and larger, and the spatial symmetry in the RKwD result even breaks. This occurs
mainly because, due to the butterfly-effect, numerical noise in the RKwD result increases expo-
nentially. For t > 580, the RKwD result appears to become a mixture of the true solution and
numerical noise at the same level of magnitude: as the numerical noise increases exponentially,
the randomness in the noise first creates a distinct difference in the spatio-temporal trajectories
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Figure 6: Spatio-temporal plot of |A(x, t)| using grey level representation from |A| = 1.25 (white) to |A| = 0
(black): (a) 0 ≤ t ≤ 400; (b) 400 ≤ t ≤ 800; (c) 1200 ≤ t ≤ 1600; and (d) 2000 ≤ t ≤ 2400. CNS results (left
panels); and RKwD results (right panels).
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Figure 7: Time histories of total spectrum-energy of the real and imaginary parts of the numerical simulations
obtained by CNS and RKwD in the chaotic case of c1 = 2 and c3 = 1 with the initial condition (32): (a) real
part, with maximum relative error 417.14%; and (b) imaginary part, with maximum relative error 465.80%.
CNS results (red line); and RKwD results (black dashed line).
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Figure 8: Time histories of spectrum-deviation of the real and imaginary parts of the RKwD simulation in the
chaotic case of c1 = 2 and c3 = 1 with the initial condition (32), compared with the benchmark given by CNS:
(a) real part with maximum value δRe

s = 551.23%; and (b) imaginary part with maximum value δIms = 603.83%.
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Figure 9: Comparison of the spatial Fourier energy spectra of the real part of the computer-generated simulation
obtained by the CNS and RKwD in the chaotic case of c1 = 2 and c3 = 1 with the initial condition (32): (a)
t = 20; (b) t = 600; (c) t = 1000; and (d) t = 1600. CNS results (solid triangles); and RKwD results (open
circles).
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Figure 10: Comparison of the spatial Fourier energy spectra of the imaginary part of the computer-generated
simulations obtained by the CNS and RKwD in the chaotic case of c1 = 2 and c3 = 1 with the initial condition
(32): (a) t = 20; (b) t = 600; (c) t = 1000; and (d) t = 1600. CNS results (solid triangles); and RKwD results
(open circles).
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and then causes a spatial symmetry-breaking. This indicates that numerical noise in the RKwD
solvers might generate not only quantitative differences in the spatio-temporal trajectories but
also some qualitative deviations in computer-generated simulation of chaotic system.

We now investigate the influence of numerical noise on the real and imaginary parts of the
RKwD result, separately. At any given time, the result for each part can be expressed as a
spatial Fourier expansion. Note that a spatial energy-spectrum of a spatio-temporal chaos at
a given time often has important physical meanings. With this in mind, Fig. 7 depicts the
comparison of the total spectrum-energy of the real and imaginary parts of the two simulations
given by the CNS (in physical space) and RKwD, respectively. The two methods give almost
the same total spectrum-energy when t ≤ 580. However, thereafter, the deviation becomes
increasingly distinct, with the maximum relative error reaching 417.14% for the real part and
465.80% for the imaginary part. The corresponding spectrum-deviation of the RKwD result
(compared with the CNS one), defined by (28), becomes distinct after t > 580, with a maximum
value of 551.23% for the real part and 603.83% for the imaginary part, as shown in Fig. 8. These
results demonstrate that numerical noise can lead to great deviations not only in the spatio-
temporal trajectories but also in the total spatial spectrum-energy of a chaotic system!

Why does numerical noise have such a huge influence on the total spectrum-energy of the
real and imaginary parts of the RKwD simulation? To answer this question, let us compare
the spatial Fourier spectra of the real part of the CNS and RKwD results at different times,
as shown in Fig. 9. Note that, the odd wave numbers, i.e. k = 1, 3, 5, · · · , of the spatial
Fourier spectra of the CNS result do not contain any energy at any stage throughout the whole
interval of time 0 ≤ t ≤ 3000. In other words, the odd wave number components of the spatial
Fourier spectrum of the CNS result always remain zero. This is exactly the reason why the
CNS results invariably retain the spatial symmetry over the entire time interval 0 ≤ t ≤ 3000.
However, this property of the true solution does not hold for the RKwD simulation. For small
time, such as t = 20, the two spectra agree quite well. When t = 600, tiny differences can
be discerned between the two spectra, and some odd wave number components in the spatial
Fourier spectrum of the RKwD simulation have become energetic. Furthermore, Fig. 9 (c) and
(d) show that as time increases, the deviation between the two spectra grows, and the odd
wave number components in the spatial Fourier spectrum of the RKwD simulation contain
an increasing amount of energy. At a sufficiently large time, such as t = 1600, the odd wave
number components in the spatial Fourier spectrum of the RKwD simulation reach the same
level of energy as the even components, as shown in Fig. 9 (d). This reveals a fundamental
mistake in the RKwD simulation methodology. By comparing the spatial Fourier spectra
(Fig. 10) of the imaginary part of the RKwD simulation with that of the CNS one, we reach
the same conclusion. These results demonstrate that the random numerical noise of a chaotic
system can rapidly increase to the same level (in both the real and imaginary parts) of the
true solution and besides could transfer to all wave numbers of the spatial Fourier spectrum!
The foregoing comparisons explain why the RKwD simulation might not only lose the spatial
symmetry but also lead to great deviations in total spectrum-energy, and why numerical noise
can lead to huge deviations in the spatio-temporal trajectories, the total spectrum-energy, and
certain fundamental properties (such as spatial symmetry) of a chaotic system.

Fig. 11 presents a comparison between the spatial Fourier spectra of |A(x, t)| obtained using
the CNS and RKwD at different times. Again, the odd wave number components in the CNS
spectrum contain no energy throughout the entire time interval, corresponding to the spatial
symmetry of the true chaotic solution. At small times, such as t = 20, the two spectra are
in close agreement. However, as time further increases, the odd wave number components in
the spatial Fourier spectrum of |A| obtained using RKwD amplify to the point at which they
could reach the same energy level as the even components (Fig. 11 (b), (c) and (d)) at t = 600,
t = 1000 and t = 1600. Again, this is incorrect, and is an artefact of numerical noise as it grows
in the system as predicted by RKwD.

However, Fig. 12 indicates that |A(x, t)| of the RKwD simulation has a maximum relative
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Figure 11: Comparison of the spatial Fourier energy spectra of the computer-generated simulation |A(x, t)|
obtained by CNS and RKwD in the chaotic case of c1 = 2 and c3 = 1 with the initial condition (32): (a) t = 20;
(b) t = 600; (c) t = 1000; and (d) t = 1600. CNS results (solid triangles); and RKwD results (open circles).

23



1000 2000 30000.92

0.96

1

CNS
RKwD

maximum relative error = 3.35%

δ

1000 2000 30000

0.1

0.2

maximum value δs
|A| = 20.99%

Figure 12: Left: Time histories of total spectrum-energy of the computer-generated simulations |A(x, t)|
obtained by CNS and RKwD in the chaotic case of c1 = 2 and c3 = 1 with the initial condition (32): CNS result
(red line); and RKwD result (black dashed line). Right: Time histories of corresponding spectrum-deviation

δ
|A|
s , with a maximum value of 20.99%.

error 3.35% of the total spatial spectrum-energy with a maximum spectrum-deviation 20.99%,
which are much smaller than those obtained above for the real and imaginary parts of A(x, t).
Note that |A(x, t)| is a function of the real and imaginary parts of A(x, t). It seems that the
numerical errors of the real and imaginary parts of A(x, t) might counteract each other for
|A(x, t)| in the case under consideration.

Note that the constant term in the spatial Fourier spectrum has the wave number zero, i.e.
k = 0, corresponding to the overall spatial average of the simulation, and thus does not contain
any information about the structure of the solution. In fact, it is the spatial Fourier spectrum
without k = 0 that contains information on the solution structure. The spatial energy-spectrum
without the wave number k = 0 of |A(x, t)| obtained by the RKwD has a maximum relative
error that is 735.99% of the total spatial spectrum-energy and a maximum relative error that
is 803.54% of the spatial spectrum-deviation, as shown in Fig. 13. This reveals that numerical
noise has a huge influence on the solution structure of |A(x, t)| (as may be not evident in
Fig. 12).

It is often assumed that numerical simulations of chaotic systems are sufficiently accurate
in terms of their statistics even if their spatio-temporal trajectories are completely different.
We now examine whether this is really true. First, let us compare the spatial mean value

µ|A|(t) =
1

L

∫ L

0

|A(x, t)|dx

of |A(x, t)| and the corresponding spatial standard deviation

σ|A|(t) =

√
1

L

∫ L

0

[
|A(x, t)| − µ|A|(t)

]2
dx ,

of the CNS and RKwD results (using N = 4096) in the chaotic case of c1 = 2 and c3 = 1,
subject to the initial condition (32). Fig. 14 shows that, for t > 580, the results given by RKwD
are obviously different from those given by CNS, with a maximum relative error of 4.70% in
the spatial mean µ|A|(t) and 189.13% in the corresponding spatial standard deviation σ|A|(t).
The differences grow considerably after t > 1200. This again confirms the deleterious effect of
the contamination by numerical noise of computer-generated simulations of chaos even on the
statistics, especially for long-duration simulations.
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Figure 13: Left: Time histories of spatial spectrum-energy Ek>0 of |A(x, t)| except the zero wave number
component, obtained by CNS and RKwD in the chaotic case of c1 = 2 and c3 = 1 with the initial condition
(32), with a maximum relative error of 735.99%. CNS results (red line); and RKwD results (black dashed line).
Right: Time histories of corresponding spectrum-deviation δk>0
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Fig. 14: Time histories of (a) spatial mean value µ|A|(t) and (b) spatial standard deviation σ|A|(t) of |A(x, t)|
obtained by CNS and RKwD in the chaotic case of c1 = 2 and c3 = 1 with initial condition (32), with maximum
relative errors of 4.70% for µ|A|(t) and 189.13% for σ|A|(t), respectively: CNS results (red line); and RKwD
results (black dashed line).
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Figure 15: Comparison of spatial profiles of (a) temporal mean µ|A|(x) and (b) corresponding spatial standard
deviation σ|A|(x) of |A(x, t)|, obtained by CNS and RKwD in the chaotic case of c1 = 2 and c3 = 1 with the
initial condition (32), with maximum relative errors of 9.88% for µ|A|(x) and 536.05% for σ|A|(x), respectively.
CNS results (red line); and RKwD results (black dashed line).
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Fig. 16: Time histories of (a) spatial mean value µϕ(t) and (b) spatial standard deviation σϕ(t) of phase of
A(x, t), obtained by CNS and RKwD in the chaotic case of c1 = 2 and c3 = 1 with the initial condition (32):
CNS results (red line); and RKwD results (black dashed line).
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Figure 17: Comparison of spatial profiles of (a) temporal mean µϕ(x) and (b) corresponding standard deviation
σϕ(x) of the phase of A(x, t), obtained by CNS and RKwD in the chaotic case of c1 = 2 and c3 = 1 with the
initial condition (32): CNS results (red line); and RKwD results (black dashed line).
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Fig. 18: Time histories of the spatial minimum of |A(x, t)| obtained by CNS and RKwD over t ∈ [0, 3000] in
the chaotic case of c1 = 2 and c3 = 1 with the initial condition (32): CNS results (red line); and RKwD results
(black dashed line).
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Secondly, let us examine the temporal mean

µ|A|(x) =
1

T

∫ T

0

|A(x, t)|dt

and the corresponding temporal standard deviation

σ|A|(x) =

√
1

T

∫ T

0

[
|A(x, t)| − µ|A|(x)

]2
dt

of |A(x, t)| given by the CNS and RKwD, where T = 3000. The temporal statistic results given
by the RKwD exhibit obvious differences from those by the CNS, with a maximum relative
error 9.88% in µ|A|(x) and 536.05% in σ|A|(x), as can be seen in Fig. 15. Notably, although
the temporal mean µ|A|(x) and standard deviation σ|A|(x) obtained by the CNS have a kind of
spatial symmetry, this fundamental statistical property of the true solution is lost in the RKwD
simulation.

Turning thirdly to the spatial mean value

µϕ(t) =
1

L

∫ L

0

ϕ(x, t)dx

of the phase ϕ(x, t) of A(x, t) and its corresponding spatial standard deviation

σϕ(t) =

√
1

L

∫ L

0

[
ϕ(x, t)− µϕ(t)

]2
dx ,

obtained by the CNS and RKwD results in the chaotic case of c1 = 2 and c3 = 1 with the
initial condition (32). For t > 580, the results given by RKwD differ considerably from those
given by CNS, with a maximum relative error of 1597139% and the maximum absolute error
of 17.18 for the spatial mean µϕ(t), maximum relative error of 1084.6% for the corresponding
spatial standard deviation σϕ(t) (Fig. 16). The results continue to diverge for t > 1200. This
again confirms the great impact of numerical noise on computer-generated simulations of chaos
even in terms of the statistics, particularly for long-duration simulations.

Next, we examine the temporal mean

µϕ(x) =
1

T

∫ T

0

ϕ(x, t)dt

of the phase ϕ(x, t) of A(x, t) and its corresponding temporal standard deviation

σϕ(x) =

√
1

T

∫ T

0

[
ϕ(x, t)| − µϕ(x)

]2
dt,

where T = 3000. In Fig. 17 these temporal statistics of the RKwD numerical predictions
display obvious differences from those by CNS, with maximum relative error of 857737% and
maximum absolute error of 0.67 for µϕ(x) and maximum relative error 166.53% for σϕ(x). The
temporal mean µϕ(x) and standard deviation σϕ(x) obtained by CNS again demonstrate a kind
of spatial symmetry correctly, unlike the corresponding results from the RKwD simulations.

Fig. 16 shows that the spatial mean µϕ(t) and the spatial standard deviation σϕ(t) of
the CNS result remain similar throughout the entire interval t ∈ [0, 3000]. However, the
corresponding RKwD results are highly non-stationary, with considerable changes between
the values of spatial mean µϕ(t) and spatial standard deviation σϕ(t) before and after t ≈
1200. Similar behaviour is exhibited by the spatial mean µ|A|(t) and the spatial standard
deviation σ|A|(t) shown in Fig. 14, the spatial spectrum energy of |A| except the constant term
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Figure 19: Spatial profiles of |A(x, t)| obtained by CNS and RKwD in the chaotic case of c1 = 2 and c3 = 1
with the initial condition (32): (a) t = 1528; and (b) t = 2599. Left: CNS results (red line); Right: RKwD
results (black line).
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Figure 20: Spatial profiles of the phase of A(x, t) obtained by CNS and RKwD in the chaotic case of c1 = 2
and c3 = 1 with the initial condition (32): (a) t = 1528; and (b) t = 2599. Left: CNS results (red line); Right:
RKwD results (black line).
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Figure 21: Time histories of spectrum-deviation of the real part of the RKwD simulations in the chaotic case
of c1 = 2 and c3 = 1 with the initial condition (32) using different values of time-step, with the CNS result as
the benchmark: ∆t = 1× 10−4 (red solid line); and ∆t = 1× 10−5 (black dashed line).

(corresponding to the wave number k = 0) in Fig. 13, the total spectrum energy of |A| in
Fig. 12, and the total spectrum energy of the real and imaginary parts of A(x, t) in Fig. 7.

The one-dimensional CGLE exhibits two distinct chaotic phases, namely “phase chaos”
whenA is bounded away from zero, and “defect chaos” when the phase ofA exhibits singularities
where A ≈ 0, respectively [43, 45, 47]. Shraiman et al [45] pointed out that the crossover
between phase and defect chaos is invertible when c1 > 1.9 (we consider c1 = 2 in this section).
Let

|A|min(t) = min
{
|A(x, t)|

∣∣∣ x ∈ [0, L]
}

denote the spatial minimum of |A(x, t)| at a given time t. Fig. 18 compares time histories of
|A|min(t) given by CNS and RKwD. It can be seen that the CNS result of |A| is invariably
bounded away from zero, implying that the solution is in the so-called phase chaos regime
throughout the entire duration of the simulation, i.e. t ∈ [0, 3000]. However, the |A|min(t)
given by RKwD often exhibits a sudden drop to a value very close to zero after t > 1200
(Fig. 18), corresponding to the so-called defect chaos displayed in Fig. 19 for |A| and Fig. 20
for the phase ϕ with occasional jumps in phase indicating the presence of singularities. The
RKwD simulation therefore incorrectly predicts a crossover between phase and defect chaos in
the interval [0, 3000], which does not occur in the reliable CNS result. This illustrates the risk
posed by numerical noise in computer-generated simulation of chaotic systems.

Note that both of CNS and RKwD use the same number of modes, N = 4096, in the
spatial Fourier expansion in space and thus have the same spatial truncation error. Given that
CNS utilizes the temporal high-order Taylor series in multiple precision, the CNS algorithm
should have a much smaller truncation error in time dimension than the 4th-order Runge-
Kutta method in double precision (RKwD). It is found that using a smaller time-step (such as
∆t = 1 × 10−5) can not improve the spectrum-deviations of the real part of A(x, t) given by
the RKwD, as evident in Fig. 21. This means that the temporal truncation error of RKwD
is not the dominant source of its numerical noise. Instead, the numerical noise of the RKwD
result primarily arises from the round-off error due to the use of double precision. So, all of the
above-mentioned comparisons illustrate the risk of using double precision in computer-generated
simulation of spatio-temporal chaotic systems, particularly for a long-duration simulation.
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4. Concluding remarks and discussions

Due to the famous butterfly-effect, numerical noise caused by the truncation and round-
off errors increases exponentially for chaotic system so that it is hard to obtain a reliable
computer-generated simulation in a long-duration time. The shadowing method [9–14] works
for a uniformly hyperbolic system, but hardly any chaotic systems are uniformly hyperbolic
[15, 16]. Particularly, there is no practical method to efficiently gain reliable computer-generated
simulations in a long-duration time for spatio-temporal chaotic systems governed by nonlinear
PDEs, to the best of our knowledge.

Unlike the shadowing method, the strategy of the Clean Numerical Simulation (CNS) is
to greatly reduce numerical noises (caused by both of temporal/spatial truncation error and
round-off error) to such a tiny level that is required for a reliable simulation in a given interval
of time t ∈ [0, Tc]. Based on such a hypothesis that numerical noise of chaotic system increases
exponentially, the so-called “critical predictable time” Tc is determined by comparing a simula-
tion with an additional new one given by the same initial condition and physical parameters but
smaller numerical noise. In this way, we gain a “clean” numerical simulation in [0, Tc], whose
noise is below a given criterion of noise. This kind of “clean” numerical simulation should be
close to the true solution and thus can be used as a benchmark solution for many purposes, for
example, verifying numerical results given by a developing code, studying the propagation of
physical micro-level uncertainty of a chaotic dynamic system [21, 35, 38], finding new periodic
orbits of the three-body problem [36, 37, 39], investigating the influence of numerical noise on
chaotic simulations given by the traditional algorithms in double precision (as illustrated in
this paper), and so on.

In this paper, a new CNS algorithm in physical space is proposed for spatio-temporal
chaos, which is computationally much more efficient than its predecessor in spectral space
[38]. To verify its computational performance, the new CNS algorithm was used to solve the
one-dimensional complex Ginzburg-Landau equation (CGLE), a well known example of spatio-
temporal chaos. In the case of c1 = 2, c3 = 1 with the initial condition (32), the CNS result
(using the spatial Fourier mode number N = 4096 and the number Ns = 105 of significant dig-
its in multiple precision) remained convergent over considerably long time interval t ∈ [0, 3000]
throughout the whole spatial domain x ∈ [0, L], where L = 256. This CNS result was considered
reliable, and was therefore used as a benchmark.

By comparing this benchmark solution with that obtained using the 4th-order Runge-Kutta
integration in double precision (RKwD), it was found that the two simulations only exhibited
agreement over a small interval of time t ∈ [0, 580]. The CNS solution retained a kind of spatial
symmetry and the phase chaos over the entire time interval t ∈ [0, 3000], unlike the RKwD
simulation which lost the spatial symmetry when t > 580 and degenerated into a mixture of
phase and defect chaos after t > 1200. Moreover, the odd wave number components in the
spatial spectrum of the CNS benchmark solution invariably remained zero, i.e. did not attract
energy, unlike the RKwD simulation where the odd wave number components progressively
gained energy after t > 580. This energy transfer in the RKwD simulation has arisen as a
consequence of the double precision arithmetic where random information at the level of the
last significant figure has grown exponentially to the macroscopic level, contaminating all wave
numbers in the spatial spectrum. Particularly, the RKwD simulation in a long-duration interval
t ∈ [0, 3000] is obviously different from the CNS result even in statistics! The overall message
of this paper, based on the foregoing findings, is that numerical noise from truncation and
round-off errors in double precision arithmetic could lead to huge quantitative and statistical
discrepancies in predictions on spatio-temporal chaos.

It again should be noted that the Lorenz equation essentially derives from a greatly simplified
form of the Navier-Stokes equations that are commonly used to describe turbulent flows. Given
that chaos inherently has a close relationship to turbulence, it is important to check the risk
posed by the use of double precision for numerical simulations of turbulent flows, particularly
in a rather long interval of time.

31



Currently, the deep learning [66] has been widely used to many complicated problems in-
cluding the turbulent flows [67, 68] and the three-body problems [69]. What will happen when
the deep learning is applied to solve spatio-temporal chaos whose statistic results are sensitive
to numerical noises (as mentioned in this article) ? This is an interesting but open question.

Since rather small truncation error is required in time dimension, a low order temporal
algorithm is unacceptable in the frame of the CNS. For example, it is found that the standard
low order method such as the third-order exponential time differencing (ETD) method [70, 71],
which is a straightforward extension of the 4th-order Runge-Kutta integration and can provide
a rather long time step-size for stiff systems, requires a quite small time-step ∆t ≈ 10−25 to
obtain the reliable simulation in the time interval t ∈ [0, 3000] for the considered problem. Its
corresponding CPU time cost is too expansive.

Therefore, high order temporal algorithms must be considered in the frame of the CNS.
Although the exponential time differencing (ETD) method also have high-order scheme of multi-
step type [70, 71], the high-order Taylor series method still has some irreplaceable advantages
in practice. First, using the high-order Taylor series method is very convenient, because only
initial condition is required for it. But using the multi-step type ETD is not easy, because a
kth-order multi-step ETD requires k previous time step values. However, sufficiently accurate
previous time step values are difficult to obtain, especially when the order k is high. In addition,
this might bring additional numerical noise. Secondly, for the high-order Taylor series method,
the code is the same for arbitrary order M . However, using the multi-step type ETD, one
had to modify the code for a different order. This is rather inconvenient, especially when the
required order is very high, as illustrated in [32]. Furthermore, according to our experience, the
high-order Taylor series method seems more stable than the multi-step type ETD, especially
when the order is rather high.

In this paper, a new CNS algorithm is proposed, which is based on the discretization of
unknown variables in physical space, as illustrated in (16). The Fourier collocation method
with the FFT is used to calculate the spatial partial derivatives only. As shown in §2.5, the new
CNS algorithm in physical space is computationally much more efficient than its predecessor
in spectral space described in §2.1. Besides, it gives as accurate simulation as its predecessor,
as shown in §2.6. Since the new CNS algorithm directly solves problems in physical space, it
is unnecessary for us to use the Fourier pseudo-spectral method [72, 73], which is equivalent to
the Fourier collocation method, as pointed by Peyret [61, 62]. This also explains why the two
CNS algorithms can give the simulations at the same level of accuracy, as shown in §2.6.

The CGLE has stiff solutions such as Bekki-Nozaki holes [74], and there exist isolated non-
analyticities when defect chaos occur. Note that the so-called Bekki-Nozaki holes [74] has a
closed-form solution, which is certainly not chaotic. However, in the case of c1 = 2, c3 = 1
with the initial condition (32), the CNS benchmark solution in t ∈ [0, 3000] retains the “phase
chaos”, because |A| is always bounded away from zero, as shown in Figs. 18 and 19, and
besides its phase has no jumps at all, as shown in Fig. 20. This is quite different from the
RKwD simulation, whose |A| often exhibits a sudden drop to a value very close to zero after
t > 1200 (see Fig. 18), corresponding to the defect chaos displayed in Fig. 19 for |A| and Fig. 20
for the phase ϕ with occasional jumps indicating the presence of singularities. Obviously, the
singularity (related to the defect chaos) of the RKwD simulation is a kind of artefact, caused
by the numerical noises and the butterfly-effect of chaos. Generally speaking, any singularities
are difficult to solve numerically. So, it is worth investigating whether the CNS can handle such
kind of singularities in spatio-temporal chaos, when they indeed exist.

According to our experience of the CNS on the Lorenz equation [20, 32], the three-body
problem [34–37, 39], the Rayleigh-Bénard turbulent flows (governed by the Navier-Stokes equa-
tion) [38] and so on, a computer-generated simulation of a chaotic system often has a finite
value of the critical predictable time Tc, which seems to be dependent upon values of physical
parameters and level of numerical noises. From the viewpoint of the CNS, this is easy to un-
derstand, since numerical noise at a specfied level needs, more or less, some time to propagate
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to a critical level, below which the simulation is clean and thus reliable. Obviously, the lower
the specified level of the numerical noise, the larger the value of Tc, and besides, the lower the
critical level of the noise, the more accurate and the more reliable is the CNS result. Here, Tc
is determined by comparing two simulations, using the butterfly-effect of chaos (although it is
traditionally often regarded to be negative). The CNS is generally valid for most of chaotic
systems, even if they are not hyperbolic. So, compared to the shadowing lemma [9, 10], the
strategy of the CNS is more practical, though it loses somewhat mathematical rigour. Note
that, using a simple model, Yuan and Yorke [75] showed that a numerical artifact may persist
even for an arbitrary high numerical precision. Indeed, there is a long way to go to reach a
reliable computer-generated simulation for any spatio-temporal chaotic systems in a reasonably
long interval of time within a complicated spatial domain.
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