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Abstract

In this paper, we generalize the exponential energy-preserving integrator pro-
posed in the recent paper [SIAM J. Sci. Comput. 38(2016) A1876-A1895] for
conservative systems, which now becomes linearly implicit by further utilizing the
idea of the scalar auxiliary variable approach. Comparing with the original expo-
nential energy-preserving integrator which usually leads to a nonlinear algebraic sys-
tem, our new method only involve a linear system with constant coefficient matrix.
Taking the nonlinear Klein-Gordon equation for example, we derive the concrete
energy-preserving scheme and demonstrate its high efficiency through numerical
experiments.
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1 Introduction

It is well-known that exponential integrators permit larger step sizes and achieve
higher accuracy than nonexponential ones when the considered problem is a very stiff
differential equation such as highly oscillatory ODEs or semidiscrete time-dependent
PDEs. As to exponential integrators, the earlier attempts can date back to the original
paper by Hersch [20], whereas the term “exponential integrators” was coined in the
seminal paper by Hochbruck, Lubich, and Selhofer [22]. Readers are referred to Ref.
[23] for details about exponential integrators. Over the years, there has been growing
interest in structure-preserving exponential methods, which can preserve as much as
possible the physical/geromeric properties of the dynamic system under consideration
[18]. Due to the superior properties in the capability for the long-term computation,
symplectic exponential methods have attracted much attention (e.g., see Refs. [33,
39, 45] and references therein). On the other hand, the energy conservation law is
an important property of conservative systems and whether or not can preserve the
energy conservation law of the original systems is a criterion to judge the success of a
numerical method for their solution (e.g. see Refs. [14, 29, 47] and references therein).
Thus, how to design energy-preserving schemes for conservative systems attracts a lot
of interest in recent years. The noticeable ones include the discrete gradient (including
averaged vector filed (AVF) method) [5, 7, 28, 35, 32], discrete variational derivative
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method [10, 14], Hamiltonian Boundary Value Methods (HBVMs) [2], energy-preserving
continuous stage Runge-Kutta (CSRK) methods [17, 34, 42] and local energy-preserving
methods [3, 15, 25, 44], and so on. However, to our best knowledge, most existing works
on exponential integrators up to now focus on the construction of explicit schemes and
fail to be energy-preserving. In Ref. [6], Celledoni et al. proposed some implicit and
exponential integrators that preserver symmetric and energy of the cubic Schrödinger
equation by using the symmetric projection approach [18]. Recently, combining the
ideas of exponential integrators and discrete gradients, Li and Wu [30] proposed an
energy-preserving exponential scheme for conservative systems, which was revisited and
generalized more recently by Shen and Leok [39]. Unfortunately, such scheme is fully
implicit. At each time step, one needs to solve a fully nonlinear system and thus it
might be very time consuming. Compared with fully implicit schemes, linearly implicit
schemes only require to solve a linear system, which leads to considerably lower costs
than implicit ones [10]. As far as we know, there has been no reference considering
linearly implicit exponential schemes for conservative systems, which can inherit the
energy.

In this paper, taking the nonlinear Klein-Gordon equation as an example, we propose
a novel linearly implicit exponential scheme for conservative systems by combining the
ideas of the exponential integrator and the scalar auxiliary variable (SAV) approach
[37, 38]. The proposed scheme can inherit the energy and enjoy the same computational
advantages as the one (see [4]) provided by the classical SAV approach. The SAV
approach as well as the earlier invariant energy quadratization (IEQ) approach [46, 48]
is developed based on the idea of the energy quadratization, which can result linearly
implicit and energy stable schemes for gradient flows. To the best of our knowledge, there
has been no reference considering the combination of the ideas of the SAV approach and
the exponential integrator for developing linearly implicit energy-preserving schemes for
energy-conserving systems. Taking the nonlinear Klein-Gordon equation for example,
we first explore the feasibility.

The outline of this paper is organized as follows. In Section 2, based on idea of the
SAV approach, the NKGE (2.1) is reformulated into an equivalent system which inherits
a modified energy. In Section 3, a second-order centered difference method is applied to
the system and we show that the resulting semi-discrete system can preserve the semi-
discrete energy. In Section 4, a linearly implicit exponential scheme is presented by
combining the exponential integrator and the linearized Crank-Nicolson method, which
inherits the fully discrete energy. Several numerical examples are shown to illustrate the
power of our proposed scheme in Section 5. We draw some conclusions in Section 6.

2 Reformation of the model equation through the SAV
approach

The Klein-Gordon equation is frequently used in mathematical models for problems
in many fields of science and engineering, particularly in quantum field theory and
relativistic quantum mechanics. Here, we consider the following nonlinear Klein-Gordon
equation (NKGE){

∂ttu(x, t)− ω2∆u(x, t) +G
′
(u(x, t)) = 0, x ∈ Rd, t > 0,

u(x, 0) = φ1(x), ∂tu(x, 0) = φ2(x), x ∈ Rd,
(2.1)

where t is time variable, x ∈ Rd is the spatial variable, u := u(x, t) is a real-valued
function, ω is a real parameter, ∆ is the usual Laplace operator, G(u) is a smooth
potential energy function with G(u) ≥ 0, and φ1 := φ1(x) and φ2 := φ2(x) are two
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given real-value initial data. The NKGE (2.1) conserves the Hamiltonian energy

E(t) =

∫
Rd

[1

2
|∂tu|2 +

ω2

2
|∇u|2 +G(u)

]
dx = E(0), t ≥ 0. (2.2)

In the last few decades, various structure-preserving methods have been developed for
solving the NKGE (2.1), including symplectic methods ( e.g., see Refs. [13, 31, 33]),
multisymplectic methods (e.g., see Refs. [24, 36, 41, 49]) and energy-preserving methods
(e.g., see Refs. [1, 9, 16, 43]), etc. However, there has been no reference considering
a linearly implicit structure-preserving exponential scheme for the NKGE (2.1) to our
knowledge.

Following the idea of the SAV approach, we introduce a scalar auxiliary variable, as
follows:

q := q(t) =
√

(G(u), 1) + C0.

Here (f, g) is the inner product defined by (f, g) =
∫
Rd fḡdx where ḡ denotes the con-

jugate of g, and C0 is a constant large enough to make q well-posed. The Hamiltonian
energy (2.2) is then rewritten as

E(t) =

∫
Rd

[1

2
|∂tu|2 +

ω2

2
|∇u|2

]
dx + q2 − C0. (2.3)

According to the energy variational formula, the NKGE (2.1) can be reformulated into
the following equivalent form

∂tu = v,

∂tv = ω2∆u− G
′
(u)√

(G(u), 1) + C0

q,

∂tq =
(G
′
(u), ∂tu)

2
√

(G(u), 1) + C0

,

u(x, 0) = φ1(x), ∂tu(x, 0) = φ2(x), q(0) =
√

(G(u(x, 0)), 1) + C0,

(2.4)

where x ∈ Rd and t > 0.

Theorem 2.1. The system (2.4) possesses the following modified energy.

E(t) =

∫
Rd

[1

2
|v|2 +

ω2

2
|∇u|2

]
dx + q2 − C0 = E(0), t ≥ 0. (2.5)

Proof. Taking the inner products with v of the second equality of (2.4), we have,
together with the first equality of (2.4)

d

dt

∫
Rd

[1

2
|v|2 +

ω2

2
|∇u|2

]
dx +

∫
Rd

G
′
(u)∂tu√

(G(u), 1) + C0

qdx = 0. (2.6)

Multiplying the third equality of (2.4) by q gives

d

dt
q2 =

∫
Rd

G
′
(u)∂tu√

(G(u), 1)
qdx. (2.7)

Combining (2.6) and (2.7), one obtains (2.5) immediately.

Remark 2.1. The SAV approach can also valid for a more general G(u). Actually, if
G(u) is unbounded from below, we can use the splitting strategy to divide G(u) into sev-
eral differences which are bounded from below. Then the energy can be transformed into
a quadratic form by introducing multiple scalar auxiliary variables and the corresponding
model reformulation can be obtained (see Ref. [26]).
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3 Energy-preserving spatial semi-discretization

For simplicity of notation, we shall introduce our scheme in one space dimension, i.e.
d = 1 in (2.4). Generalizations to d > 1 are straightforward for tensor product grids and
the results remain valid with modifications. For d = 1, the NKGE (2.4) is truncated on
a bounded interval (a, b) with the periodic boundary condition.

Choose the mesh size h = (b − a)/N with N an even positive integer, and de-
note the grid points by xj = jh for j = 0, 1, 2, · · · , N ; let uj and vj be the nu-
merical approximations of u(xj , t) and v(xj , t) for j = 0, 1, · · · , N , respectively, and
u := (u0, u1, · · · , uN−1)T , v := (v0, v1, · · · , vN−1)T be the solution vectors and define
the following finite difference operators as

δ+
x uj =

uj+1 − uj
h

, δ2
xuj =

uj+1 − 2uj + uj−1

h2
, 0 ≤ j ≤ N − 1.

In addition, for any u and v, we define the discrete inner product and notions as follows

〈u, v〉l2 = h
N−1∑
j=0

uj v̄j , ||v||2l2 = h
N−1∑
j=0

|vj |2, ||δ+
x u||2l2 = h

N−1∑
j=0

|δ+
x uj |2.

Then we apply the second-order centered difference scheme for spatial discretization

d

dt
u = v,

d

dt
v = ω2δ2

xu−
G
′
(u)√

〈G(u),1〉l2 + C0

q,

d

dt
q =

〈G′(u), ddtu〉l2
2
√
〈G(u),1〉l2 + C0

,

uj(0) = φ1(xj), vj(0) = φ2(xj), q(0) =
√
〈G(u(0)),1〉l2 + C0,

u0 = uN , u−1 = uN−1,

(3.1)

where G(u) = (G(u0, u1, · · · , uN−1))T and 0 ≤ j ≤ N .

Theorem 3.1. The semi-discrete system (3.1) admits the semi-discrete modified energy

Eh(t) =
1

2
||v||2l2 +

ω2

2
||δ+
x u||2l2 + q2 − C0 = Eh(0), t ≥ 0. (3.2)

Proof. Taking the discrete inner products with v of the second equality of (3.1), we
have, together with the first equality of (3.1)

d

dt

[1

2
||v||2 +

ω2

2
||δ+
x u||2l2

]
+

〈G′(u), ddtu〉l2√
〈G(u),1〉l2 + C0

q = 0. (3.3)

Multiplying with the third equality of (3.1) by q reads

d

dt
q2 =

〈G′(u), ddtu〉l2√
〈G(u),1〉l2 + C0

q. (3.4)

Combining (3.3) and (3.4), one obtains (3.2) immediately.
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4 Construction of the linearly implicit energy-preserving
exponential scheme

Choose τ be the time step, and denote tn = nτ for n = 0, 1, 2 · · · ; let unj be the
numerical approximation of u(xj , tn) for j = 0, 1, · · · , N and n = 0, 1, 2, · · · ; denote un

as the solution vector at t = tn and define

δtu
n
j =

un+1
j − unj

τ
, u

n+ 1
2

j =
un+1
j + unj

2
, û

n+ 1
2

j =
3unj − u

n−1
j

2
, 0 ≤ j ≤ N − 1.

Definition 4.1. Throughout this paper, for a given sufficiently smooth function f in
the neighborhood of zero (f(0) := lim

x→0
f(x) when 0 is a removable singularity),

f(x) =
∞∑
k=0

f (k)(0)

k!
xk,

and for a matrix A, the matrix-valued function is defined by

f(A) =
∞∑
k=0

f (k)(0)

k!
Ak.

For more details about functions of matrices, please refer to Ref. [21].

Let z(t) = (u(t), v(t))T , f(u(t), q(t)) = ( G
′
(u(t))√

〈G(u(t)),1〉l2+C0
q(t), 0)T and

S =

(
O I
−I O

)
, M =

(
−ω2B2 O
O I

)
.

Here, matrix B2 represents the operator δ2
x under the periodic boundary condition. In

addition, it holds [19]

B2 = FHΛF, Λ = diag
[
λ0, λ1, · · · , λN−1

]
, λj = − 4

h2
sin2 jπ

N
, (4.1)

where F is the discrete Fourier matrix of order N and FH represents the conjugate
transpose of F .

Integrating the equation (3.1) from tn to tn+1, we then have

z(tn + τ) = exp(V )z(tn) + τ

∫ 1

0
exp((1− ξ)V )Sf(u(tn + ξτ), q(tn + ξτ))dξ, (4.2)

q(tn + τ) = q(tn) + τ

∫ 1

0

〈G′(u(tn + ξτ)), ddtu〉l2
2
√
〈G(u(tn + ξτ)),1〉l2 + C0

dξ, (4.3)

where V = τSM .

Replacing f(u(tn + ξτ), q(tn + ξτ)) and
〈G′ (u(tn+ξτ)), d

dt
u〉l2

2
√
〈G(u(tn+ξτ)),1〉l2+C0

with the linearized

Crank-Nicolson method f(ûn+ 1
2 , qn+ 1

2 ) and
〈G′ (ûn+1

2 ),δtun〉l2

2

√
〈G(ûn+1

2 ),1〉l2+C0

, respectively, and we ob-

tain the new scheme, as follows:

zn+1 = exp(V )zn + τφ(V )Sf(ûn+ 1
2 , qn+ 1

2 ), (4.4)

qn+1 = qn + τ
〈G′(ûn+ 1

2 ), δtu
n〉l2

2

√
〈G(ûn+ 1

2 ),1〉l2 + C0

, (4.5)
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where

φ(V ) =

∫ 1

0
exp((1− ξ)V )dξ, f(ûn+ 1

2 , qn+ 1
2 ) =

( G
′
(ûn+ 1

2 )T√
〈G(ûn+ 1

2 ),1〉l2 + C0

, 0
)T
,

and n = 1, 2, · · · . The initial and boundary conditions in (3.1) are discretized as

u0
j = φ1(xj), v

0
j = φ2(xj), q

0 =
√
〈G(u0),1〉l2 + C0, j = 0, 1, 2, · · · , N,

un0 = unN , u
n
−1 = unN−1, n ≥ 0.

Remark 4.1. Since the proposed scheme (4.4)-(4.5) is a three level scheme, we calculate

z1 and q1 by using u0 instead of û
1
2 for the first step.

Then, we show that the scheme (4.4)-(4.5) can preserve the fully discrete modified
energy. To begin with, we give the following preliminary Lemma presented in Ref. [30].

Lemma 4.1. For any symmetric matrix M , and scalar τ ≥ 0, the matrix

A = exp(V )TM exp(V )−M

is a nilpotent matrix, when S is skew symmetric.

We next have the result, as follows:

Theorem 4.1. The proposed scheme (4.4)-(4.5) can preserve the following discrete
modified energy

En+1
h = Enh , E

n
h =

1

2
||vn||2l2 +

ω2

2
||δ+
x u

n||2l2 + (qn)2 − C0, (4.6)

for n = 0, 1, 2, · · · .

Proof. We first note that the matrix M is singular, and assume that {Mε} is a series
of symmetric and nonsingular matrices, which converge to M when ε → 0. Let znε and
qnε satisfy the perturbed scheme

zn+1
ε = exp(Vε)z

n
ε + τφ(Vε)Sf(û

n+ 1
2

ε , q
n+ 1

2
ε ), (4.7)

qn+1
ε = qnε + τ

〈G′(ûn+ 1
2

ε ), δtu
n
ε 〉l2

2

√
〈G(û

n+ 1
2

ε ),1〉l2 + C0

, (4.8)

where Vε = τSMε and n = 1, 2, · · · . Denote f̃ε := M−1
ε fε = M−1

ε f(û
n+ 1

2
ε , q

n+ 1
2

ε ) and

Enε,h =
h

2
(znε )TMεz

n
ε + (qnε )2. (4.9)

Then we have

1

2
(zn+1
ε )TMεz

n+1
ε

=
1

2

[
(znε )T exp(Vε)

T + τfTε S
Tφ(Vε)

T
]
Mε

[
exp(Vε)z

n
ε + τφ(Vε)Sfε

]
=

1

2
(znε )T exp(Vε)

TMε exp(Vε)z
n
ε + (znε )T exp(Vε)

TMε

[
exp(Vε)− I

]
f̃ε

+
1

2
f̃Tε

[
exp(Vε)

T − I
]
Mε

[
exp(Vε)− I

]
f̃ε

6



=
1

2
(znε )T exp(Vε)

TMε exp(Vε)z
n
ε + (znε )T

[
exp(Vε)

TMε exp(Vε)− exp(Vε)
TMε

]
f̃ε

+
1

2
f̃Tε

[
exp(Vε)

TMε exp(Vε)− exp(Vε)
TMε −Mε exp(Vε) +Mε

]
f̃ε. (4.10)

On the other hand, it follows from (4.8) that

(qn+1
ε )2 − (qnε )2 =

〈G′(ûn+ 1
2

ε ), un+1
ε − unε 〉l2√

〈G(û
n+ 1

2
ε ), 1〉l2 + C0

q
n+ 1

2
ε

= h((zn+1
ε )T − (znε )T )fε

= h(znε )T
[

exp(Vε)
T − I

]
fε + τhfTε S

Tφ(Vε)
T fε

= h(znε )T
[

exp(Vε)
TMε −Mε

]
f̃ε + hf̃Tε V

T
ε φ(Vε)

TMεf̃ε

= h(znε )T
[

exp(Vε)
TMε −Mε

]
f̃ε + hf̃Tε

[
exp(Vε)

TMε −Mε

]
f̃ε.

(4.11)

Then, we can deduce from (4.10) and (4.11) that

En+1
ε,h − E

n
ε,h

=
h

2
(zn+1
ε )TMεz

n+1
ε − h

2
(znε )TMεz

n
ε + (qn+1

ε )2 − (qnε )2

=
h

2
(znε )T

[
exp(Vε)

TMε exp(Vε)−Mε

]
znε + h(znε )T

[
exp(Vε)

TMε exp(Vε)−Mε

]
f̃ε

+
h

2
f̃Tε

[
exp(Vε)

TMε exp(Vε)−Mε

]
f̃ε +

h

2
f̃Tε

[
exp(Vε)

TMε −Mε expVε

]
f̃ε

=
h

2
(znε + f̃ε)

TAε(z
n
ε + f̃ε) +

h

2
f̃Tε Cεf̃ε = 0,

where Aε = exp(Vε)
TMε exp(Vε) −Mε and Cε = exp(Vε)

TMε −Mε exp(Vε). The last
equality is from Lemma 4.1 and the skew symmetry of the matrix Cε. Thus, when
ε→ 0, znε → zn, qnε → qn and (4.9) lead to

En+1
h = Enh .

This completes the proof.

Corollary 4.1. Supposing φ1 ∈ H1(R) and φ2 ∈ L2(R), it then follows from (4.6) that

||vn||l2 ≤ C, ||δ+
x u

n||l2 ≤ C, |qn| ≤ C, n = 1, 2, · · · ,

which implies that the proposed scheme is unconditionally stable.

Remark 4.2. It should be remarked that there have been various works dedicated to
deriving energy stable schemes based on exponential time integrations for gradient flows
in recent years (e.g., see Refs. [8, 12, 27]). However, such schemes cannot be directly
extended to construct energy-preserving schemes for general conservative systems since
explicit approximations of the temporal integral of the nonlinear term do not satisfy a
discrete analog of the chain rule that ensures energy conservation.

Besides its energy-preserving property, a most remarkable thing about the above
scheme is that it can be solved efficiently. We rewrite (4.4) and (4.5) as

un+1 = exp11 u
n + exp12 v

n − τφ12
G
′
(ûn+ 1

2 )√
〈G(ûn+ 1

2 ),1〉l2 + C0

qn+ 1
2 , (4.12)
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vn+1 = exp21 u
n + exp22 v

n − τφ22
G
′
(ûn+ 1

2 )√
〈G(ûn+ 1

2 ),1〉l2 + C0

qn+ 1
2 , (4.13)

qn+1 = qn + τ
〈G′(ûn+ 1

2 ), δtu
n〉l2

2

√
〈G(ûn+ 1

2 ),1〉l2 + C0

, (4.14)

where exp(V ) and φ(V ) are partitioned into

exp(V ) =

(
exp11 exp12

exp21 exp22

)
, φ(V ) =

(
φ11 φ12

φ21 φ22

)
.

Next, by eliminating qn+ 1
2 in (4.12) , we have

un+1 + γ〈G′(ûn+ 1
2 ), un+1〉l2 = gn, (4.15)

where

γ =
τφ12G

′
(ûn+ 1

2 )

4〈G(ûn+ 1
2 ),1〉l2 + 4C0

,

and

gn = exp11 u
n + exp12 v

n − τφ12
G
′
(ûn+ 1

2 )√
〈G(ûn+ 1

2 ), 1〉l2 + C0

qn + γ〈G′(ûn+ 1
2 ), un〉l2 .

We take the discrete inner product of (4.15) with G
′
(ûn+ 1

2 ) and have(
1 + 〈G′(ûn+ 1

2 ), γ〉l2
)
〈G′(ûn+ 1

2 ), un+1〉l2 = 〈G′(ûn+ 1
2 ), gn〉l2 .

Notice 〈G′(ûn+ 1
2 ), γ〉l2 ≥ 0, since φ12 is a symmetrical positive semidefinite matrix. We

then obtain from the above that

〈G′(ûn+ 1
2 ), un+1〉l2 =

〈G′(ûn+ 1
2 ), gn〉l2

1 + 〈G′(ûn+ 1
2 ), γ〉l2

. (4.16)

After solving 〈G′(ûn+ 1
2 ), un+1〉l2 from the linear system (4.16), un+1 is then updated

from (4.15). Subsequently, qn+1 is obtained from (4.14). Finally, we get vn+1 from
(4.13).

Remark 4.3. On the one hand, exp(V ) and φ(V ) can be efficiently implemented via
fast Fourier transform since the calculation of exponentials is time-consuming in general.
Actually, according to Definition 4.1 and (4.1), we have

exp(V ) = I + V +
V 2

2!
+ · · ·+ V k

k!
+ · · ·

=

(
FH cosh(τωΛ

1
2 )F FH(ωΛ

1
2 )−1 sinh(τωΛ

1
2 )F

FHωΛ
1
2 sinh(τωΛ

1
2 )F FH cosh(τωΛ

1
2 )F

)
.

By the similar argument as above, we obtain

φ(V ) =

(
FHτ−1(ωΛ

1
2 )−1 sinh(τωΛ

1
2 )F FH(τω2Λ)−1(cosh(τωΛ

1
2 )− I)F

FHτ−1(cosh(τωΛ
1
2 )− I)F FHτ−1(ωΛ

1
2 )−1 sinh(τωΛ

1
2 )F

)
.
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Here, we should note that

Λ
1
2 = diag

[
λ

1
2
0 , λ

1
2
1 , · · · , λ

1
2
N−1

]
,

(ωΛ
1
2 )−1 sinh(τωΛ

1
2 ) = diag

[
τ,

sinh(τωλ
1
2
1 )

ωλ
1
2
1

, · · · ,
sinh(τωλ

1
2
N−1)

ωλ
1
2
N−1

]
,

(τω2Λ)−1(cosh(τωΛ
1
2 )− I) = diag

[τ
2
,
cosh(τωλ

1
2
1 )− 1

τω2λ1
, · · · ,

cosh(τωλ
1
2
N−1)− 1

τω2λN−1

]
.

On the other hand, small modifications would allow us to efficiently implement exp(V )
and φ(V ) in two dimensional case.

5 Numerical examples

In the previous sections, set the nonlinear Klein-Gordon equation as an example,
we present a novel linearly implicit energy-preserving exponential integrator (denoted
by ESAVS) for the conservative system. In this section, we report the numerical per-
formance in accuracy, CPU time and energy preservation of the energy-preserving ex-
ponential integrator scheme for the nonlinear Klein-Gordon equation and the nonlinear
Schrödinger equation, respectively. Furthermore, we compare the proposed scheme with
the exponential averaged vector filed scheme (denoted by EAVFS) proposed in Ref. [30].
All computations are carried out via Matlab 7.0 with AMD A8-7100 and RAM 4GB.
In addition, the standard fixed-point iteration is used for EAVFS and the iteration will
terminate when the infinity norm of the error between two adjacent iterative steps is
less than 10−14. In order to quantify the numerical solution, we use the L2- and L∞-
norms of the error between the numerical solution unj and the exact solution u(xj , tn),
respectively, as

eh,2(tn) =

(
h
N−1∑
j=0

|unj − u(xj , tn)|2
) 1

2

, eh,∞(tn) = max
0≤j≤N−1

|unj − u(xj , tn)|, n ≥ 0.

5.1 Nonlinear Klein-Gordon equation

We first consider the one dimensional nonlinear sine-Gordon equation as follows:

∂ttu− ∂xxu+ sin(u) = 0, x ∈ R, t > 0, (5.1)

with initial conditions

u(x, 0) = 0, ut(x, 0) = 4sech(x), x ∈ R.

Equation (5.1) possesses the analytical solution

u(x, t) = 4 arctan(tsech(x)), x ∈ R, t ≥ 0.

First of all, we present the time mesh refinement tests to show the order of accuracy
of the proposed scheme. We choose the parameter C0 = 1 and the computational domain
Ω = [−20, 20] with a periodic boundary condition.

The error and convergence order of EAVFS and ESAVS at time t = 1 are given in
Tab. 1, which can be observed that all schemes have second order accuracy in time
and space and the error provided by ESAVS has the same order of magnitude as the
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one provided by ESAVS. Besides, we carry out comparison on the computational cost
of the two schemes in Fig. 1 by refining the mesh size gradually, which shows that the
cost of ESAVS is cheaper. Moreover, as the refinement of mesh sizes, the advantage of
ESAVS emerges, which implies that our scheme shows the remarkable performance in
the efficiency. The long-term energy deviations are plotted in Fig. 2. It is clear that
ESAVS and EAVFS can exactly preserve the discrete energies.

Table. 1: Numerical error and convergence rate for the two schemes under different
grid steps at t = 1.

Scheme (h, τ) L2-error order L∞-error order

ESAVS

( 1
10
, 1
100

) 1.287e-03 - 1.367e-03 -

( 1
20
, 1
200

) 3.217e-04 2.00 3.413e-04 2.00

( 1
40
, 1
400

) 8.044e-05 2.00 8.531e-05 2.00

( 1
80
, 1
800

) 2.011e-05 2.00 2.133e-05 2.00

EAVFS

( 1
10
, 1
100

) 1.104e-03 - 1.050e-03 -

( 1
20
, 1
200

) 2.761e-04 2.00 2.621e-04 2.00

( 1
40
, 1
400

) 6.902e-05 2.00 6.551e-05 2.00

( 1
80
, 1
800

) 1.725e-05 2.00 1.638e-05 2.00
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Fig. 1: CPU time of the two schemes
for the soliton with different mesh sizes
till t = 10 under τ = 0.001.
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Fig. 2: The energy deviation with
h = τ = 0.1 over the time interval
t ∈ [0, 200].

Then, we apply the proposed scheme to solve the following two dimensional nonlinear
sine-Gordon equation

∂ttu− ∂xxu− ∂yyu+ sin(u) = 0, (x, y) ∈ R2, t > 0,

with initial conditions [11]

u(x, y, 0) = 4 tan−1

[
exp

(
4−

√
(x+ 3)2 + (y + 7)2

0.436

)]
,

ut(x, y, 0) =
4.13

cosh

(
4−
√

(x+3)2+(y+7)2

0.436

) , (x, y) ∈ R2.

We take computational domain Ω = [−30, 10]2 with a periodic boundary condition
and choose the parameter C0 = 0. In Fig. 3, we carry out comparison on the compu-
tational cost between two schemes by refining the mesh size gradually. It is clear to see
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that the cost of EAVFS is more expensive. Moreover, as the refinement of mesh sizes,
the advantage of ESAVS emerges, which implies that our scheme is more preferable for
large scale simulations than the EAVFS. Fig. 4 shows the collision precisely among four
expanding circular ring solitons which are in good agreement with those given in Refs.
[11, 40]. Here, we should note that, following Refs. [11, 40], the solution includes the
extension across x = −10 and y = −10 by symmetry properties of the problem, and the
numerical solution in terms of sin(u/2) instead of u is displayed. Moverover, we also
calculate the energy deviation for the two schemes over the time interval t ∈ [0, 100] and
plot it in Fig. 5. As is clear, our scheme is comparable with the EAVFS.
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Fig. 3: CPU time of the two schemes for the soliton with different mesh sizes till t = 1
under τ = 0.01.
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Fig. 4: Collision of four ring solitons (mesh plot (left) and contour plot (right)) in terms
of sin(u/2) at times t = 0, 2.5, 5, 7.5, 10 with h = 0.2 and τ = 0.1.
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Fig. 5: The energy deviation over the time interval t ∈ [0, 100] with h = 0.2 and τ = 0.1.

Finally, we consider the two dimensional nonlinear Klein-Gordon equation, as follows

∂ttu− ∂xxu− ∂yyu+ u3 = 0, (x, y) ∈ R2, t > 0,

with initial conditions

u(x, y, 0) = 2sech(cosh(x2 + y2)), ut(x, y, 0) = 0, (x, y) ∈ R2.
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Fig. 6: The Snapshots of numerical solution at times t = 0, 1, 3, 5, 7, 8 with h = τ = 0.1.
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Fig. 7: The energy deviation over the time interval t ∈ [0, 100] with h = τ = 0.1.

We set the computational domain Ω = [−10, 10]2 with a periodic boundary condition
and take the parameter C0 = 0. Fig. 6 presents the initial condition as well as numerical
solutions at different times, which shows the expansion and propagation of the initial
soliton to the whole domain until getting the boundary at t = 8. The long time energy
deviation of the two schemes is displayed in Fig. 7, which behaves similarly as that of
Fig. 5. Here, we omit the comparison of the two schemes for the CPU time. This is
because the obtained results behave similarly as that of Fig. 3.

5.2 Nonlinear Schrödinger equation

In this subsection, we focus on the nonlinear Schrödinger equation (NLSE) given as
follows{

i∂tu(x, t) + ∆u(x, t) + β|u(x, t)|2u(x, t) = 0, x ∈ Rd,
u(x, 0) = u0(x), x ∈ Rd,

(5.2)

where i =
√
−1 is the complex unit, t is time variable, x ∈ Rd is the spatial variable,

u := u(x, t) is the complex-valued wave function, ∆ is the usual Laplace operator, and
β is a given real constant. The NLSE (5.2) conserves Hamiltonian energy

E(t) :=

∫
Rd

(
− |∇u(x, t)|2 +

β

2
|u(x, t)|4

)
dx = E(0), t ≥ 0. (5.3)
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For simplicity, we take the one dimensional case i.e. d = 1 in (5.2) as example and
set the computational domain Ω = [a, b] with periodic condition boundary. We then let
q := q(t) =

√
(|u|4, 1) + C0, and rewrite the energy functional (5.3) as

E(t) :=

∫
Ω

(
− |∇u|2

)
dx+

β

2
q2 − β

2
C0 = E(0), t ≥ 0. (5.4)

According to the SAV reformulation, we obtain the following equivalent system
∂tu = i

(
∆u+ β

|u|2u√
(|u|4, 1) + C0

q
)
,

∂tq =
(|u|2u, ∂tu) + (∂tu, |u|2u)√

(|u|4, 1) + C0

,

(5.5)

with the consistent initial condition

u(x, t = 0) = u0(x), q(t = 0) =
√

(|u0(x)|4, 1) + C0, x ∈ Ω, (5.6)

and a periodic condition boundary.
Instead of the finite difference method for discretization of the spatial derivative

in (5.5), we use the standard Fourier pseudo-spectral method. Actually, the Laplace
operator ∆ is approximated by discrete Fourier transform (DFT) as

D2 = FHΛF,

where

Λ = −
( 2π

b− a

)2
diag

[
02, 12, · · · ,

( N
2

)2
,
(
− N

2
+ 1
)2
, · · · , (−2)2, (−1)2

]
.

We let unj be the numerical approximation of u(xj , tn) for j = 0, 1, · · · , N and n =
0, 1, 2, · · · ; denote un as the solution vector at t = tn. Then, by an argument similar to
the scheme (4.4)-(4.5) to system (5.5), we have


un+1 = exp(iτD2)un + iβτ

∫ 1

0
exp(iτD2(1− ξ))dξ |û

n+ 1
2 |2ûn+ 1

2 qn+ 1
2√

〈|ûn+ 1
2 |4,1〉l2 + C0

,

qn+1 = qn +
〈|ûn+ 1

2 |2ûn+ 1
2 , un+1 − un〉l2 + 〈un+1 − un, |ûn+ 1

2 |2ûn+ 1
2 〉l2√

〈|ûn+ 1
2 |4,1〉l2 + C0

,

(5.7)

for n = 1, 2, · · · . The initial condition (5.6) is discretized as

u0
j = u0(xj), q

0 =
√
〈|u0|4,1〉l2 + C0, j = 0, 1, 2, · · · , N.

Remark 5.1. Note that the proposed scheme (5.7) is a three level scheme and we obtain

u1 and q1 by using u0 instead of û
1
2 for the first step.

Theorem 5.1. The proposed scheme (5.7) preserves the following modified energy

En+1
h = Enh , E

n
h = 〈−D2u

n, un〉l2 −
β

2
(qn)2 − β

2
C0.

Proof. The proof is similar to Theorem 4.1, thus, for brevity, we omit it.
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Next, we show that the above scheme can be solved efficiently. Eqs. (5.7) can be
rewritten as

un+1 = exp(iτD2)un + φγnqn+ 1
2 , (5.8)

qn+ 1
2 =

1

2
〈γn, un+1〉l2 +

1

2
〈un+1, γn〉l2 + qn − 1

2
〈γn, un〉l2 −

1

2
〈un, γn〉l2 , (5.9)

where

φ = iβτ

∫ 1

0
exp(iτD2(1− ξ))dξ, γn =

|ûn+ 1
2 |2ûn+ 1

2√
〈|ûn+ 1

2 |4,1〉l2 + C0

.

Then, by eliminating qn+ 1
2 in (5.8), we have

un+1 =
1

2
φγn〈γn, un+1〉l2 +

1

2
φγn〈un+1, γn〉l2 + bn, (5.10)

where

bn = exp(iτD2)un + φγnqn − 1

2
φγn〈γn, un〉l2 −

1

2
φγn〈un, γn〉l2 .

We take the inner product of (5.10) with γn and have, respectively,(
1− 1

2
〈γn, φγn〉l2

)
〈γn, un+1〉l2 −

1

2
〈γn, φγn〉l2〈un+1, γn〉l2 = 〈γn, bn〉l2 , (5.11)

− 1

2
〈φγn, γn〉l2〈γn, un+1〉l2 +

(
1− 1

2
〈φγn, γn〉l2

)
〈un+1, γn〉l2 = 〈bn, γn〉l2 . (5.12)

Eqs. (5.11) and (5.12) form a 2×2 linear system for the unknowns
(
〈γn, un+1〉l2 , 〈un+1, γn〉l2

)T
.

Solving
(
〈γn, un+1〉l2 , 〈un+1, γn〉l2

)T
from the 2× 2 linear system (5.11) and (5.12),

and un+1 is then updated from (5.10). Subsequently, qn+ 1
2 is obtained by (5.9). Finally,

we have qn+1 = 2qn+ 1
2 − qn.

Remark 5.2. In addition, by an argument similar to Remark 4.3, we can deduce that

exp(iτD2) = FH exp(iτΛ)F,

∫ 1

0
exp(iτD2(1− ξ))dξ = FHΣF,

where

Σ = diag
[
1,

exp(iτλ1)− 1

iτλ1
, · · · , exp(iτλN−1)− 1

iτλN−1

]
.

We repeat the time step refinement test first and choose the parameter C0 = 0 and
β = 2. The one dimensional Schrödinger equation (5.2) admits the analytical solution

u(x, t) = sech(x− 4t) exp(2ix− 3it), x ∈ R.

We choose the analytical solution at t = 0 as initial condition and set the computational
domain Ω = [−40, 40] with a periodic boundary. To test the temporal discretization
errors of the two numerical schemes, we fix the Fourier node 4096 such that the spatial
discretization errors are negligible.

The L2 errors and L∞ errors in numerical solution of u at t = 1 are calculated using
two numerical schemes with various time steps, and the results are displayed in Fig. 8.
In Fig. 9, we show the global L2 errors and L∞ errors of u versus the CPU time using
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the two different schemes at t = 1. From Figs. 8 and 9, we can draw the following
observations: (i) all schemes have second order accuracy in time; (ii) the error provided
by the EAVFS is smallest, and the one provided by the proposed scheme has the same
order of magnitude as the one of the ESAV scheme; (iii) for a given global error, the
cost of the EAVFS is more expensive than the proposed scheme.
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Fig. 8: Time step refinement tests using the two numerical schemes for the one dimen-
sional Schrödinger equation.
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Fig. 9: The numerical error versus the CPU time using the two numerical schemes for
the one dimensional Schrödinger equation.

To further investigate the energy-preservation of the proposed scheme, we provide
the energy errors using the two numerical schemes for the one dimensional Schrödinger
equation over the time interval t ∈ [0, 100] in Fig. 10, which shows that all two methods
can exactly preserve the discrete energies.
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Fig. 10: The energy deviation using the two numerical schemes with time step τ = 0.01
and spatial collocation point N = 512 for the one dimensional Schrödinger equation.
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Next, we apply the proposed scheme to solve the two dimensional nonlinear Schrödinger
equation which possesses the following analytical solution

u(x, y, t) = A exp(i(k1x+ k2y − ωt)), ω = k2
1 + k2

2 − β|A|2, (x, y) ∈ Ω.

We choose the computational domain Ω = [0, 2π]2 and take parameters A = 1, k1 =
k2 = 1, β = −1 and C0 = 0. We first test the temporal accuracy of the two numerical
schemes by fixing the Fourier node 64×64 such that the spatial discretization errors are
negligible. The L2 errors and L∞ errors in numerical solution of u at t = 1 calculated
by using two numerical schemes with various time steps are shown in Fig. 11. Also,
the global L2 errors and L∞ errors of u versus the CPU time using the two different
schemes at t = 1 are investigated in Fig. 12. Again, the numerical results indicate
that two numerical schemes are second order in time and the proposed scheme is much
cheaper than EAVFS.

Second, we present the discrete energies for the numerical solutions given by the
ESAVS and EAVFS, respectively in Fig. 13. The numerical results show that the
discrete energies can be exactly preserved, which are consistent with our theoretical
result in Theorem 5.1.
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Fig. 11: Time step refinement tests using the two numerical schemes for the two di-
mensional Schrödinger equation.
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Fig. 12: The numerical error versus the CPU time using the two numerical schemes for
the two dimensional Schrödinger equation.
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Fig. 13: The energy deviation using the two numerical schemes with time step τ = 0.01
and spatial collocation point 32× 32 for the two dimensional Schrödinger equation.

6 Concluding remarks

In this paper, we design a novel linearly implicit energy-preserving exponential
scheme for the nonlinear Klein-Gordon equation and the nonlinear Schrödinger equa-
tion, respectively. The schemes were developed based on the exponential integrator in
combination with the scalar auxiliary variable (SAV) technique and proved to preserve
the discrete energy. Various numerical examples are carried out to illustrate theoretical
analysis. Comparing with the exponential averaged vector filed scheme, the proposed
scheme shows remarkable efficiency. Here, we should note that, compared with existing
energy-preserving exponential schemes (e.g., see Refs. [30, 39]), the proposed method
cannot preserve the discrete Hamiltonian energy. Thus, such trade-offs among meth-
ods should be more carefully investigated. In addition, to the best of our knowledge,
the construction of higher order linearly implicit energy-preserving exponential schemes
is still not available for conservative systems, which is an interesting topic for future
studies.
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