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Abstract

The isothermal Navier-Stokes-Korteweg system is a classical diffuse inter-

face model for compressible two-phase flow. However, the numerical solution

faces two major challenges: due to a third-order dispersion contribution in

the momentum equations, extended numerical stencils are required for the

flux calculation. Furthermore, the equation of state given by a Van-der-Waals

law, exhibits non-monotone behaviour in the two-phase state space leading

to imaginary eigenvalues of the Jacobian of the first-order fluxes.

In this work a lower-order parabolic relaxation model is used to approximate

solutions of the classical NSK equations. Whereas an additional parabolic

evolution equation for the relaxation variable has to be solved, the system

involves no differential operator of higher as second order. The use of a mod-

ified pressure function guarantees that the first-order fluxes remain hyper-

bolic. Altogether, the relaxation system is directly accessible for standard

compressible flow solvers.
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We use the higher-order Discontinuous Galerkin spectral element method as

realized in the open source code FLEXI . The relaxation model is validated

against solutions of the original NSK model for a variety of 1D and 2D test

cases. Three-dimensional simulations of head-on droplet collisions for a range

of different collision Weber numbers underline the capability of the approach.

Keywords:

Compressible flow with phase transition, diffuse interface model, isothermal

Navier-Stokes-Korteweg equations, Discontinuous Galerkin method

1. Introduction

In fluid dynamics, the Navier-Stokes Equations (NSE) are the widely ac-

cepted model to describe the viscous motion of a single-phase fluid. The

extension to two-phase flows is a difficult issue that requires additional mod-

elling of the phase interface. Two fundamentally different approaches to de-

scribe interface dynamics exist, sharp interface and diffuse interface concepts.

In the sharp interface approach [1], the computational domain is partitioned

by codimensional manifolds into distinct subdomains that contain only bulk

fluids, i.e. either in the vapour or the liquid phase. The flow dynamics in the

bulk domains is described by the NSE while the solution, e.g. the density,

is discontinuous across the phase boundary. Consequently, suitable trans-

mission conditions have to be applied to couple the subdomains across the

boundaries. Due to this coupling, the position and time evolution of the

phase interface is unknown a priori, rendering the overall approach to be a

free boundary value problem. Sharp interface methods are mainly applied to

simulate droplet dynamics or large scale phenomena like liquid jet injection
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or when the resolution of the phase interface is computationally not feasible.

Diffuse interface methods [2] consider a finite thickness of the phase interface.

The free boundary of the phase interface is replaced by a continuous varia-

tion of the solution in the bulk phases with an appropriate order parameter.

To ensure physically sound profiles in the interfacial region, capillary stresses

have to be modelled, accordingly. The main application of diffuse interface

methods are problems where the characteristic length scale of the problem is

comparable to the interface thickness. Examples include micro flows, topol-

ogy changes of the interface (e.g. coalescence or break up), or transcritical

flows in the vicinity of the critical point.

A well-known diffuse interface model is the Navier-Stokes-Korteweg (NSK)

model. It is based on the gradient theory of Van-der-Waals [3] for static equi-

libria. There, an additional term in the free energy functional that depends

on the density gradient accounts for capillary effects. In combination with

a non-convex bulk energy this ansatz allows for two-phase equilibria. From

this bulk energy the Van-der-Waals (VdW) equation of state (EoS) is derived

which gives a non-monotonous relation between pressure and density. The

modelling of dynamical two-phase flow can then be tracked back to Korteweg

[4] who introduced a class of models extending the NSE for one-phase flow.

Here we refer to the thermodynamically consistent form of the NSK model

as employed by Dunn and Serrin [5], see also [2]. The modelling of capil-

larity effects are inherently included in the NSK model but the consistency

with the gradient theory of Van-der-Waals enforces a third-order term in the

momentum equations.
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The NSK model has been studied extensively from the analytical point of

view, see e.g. [6, 7, 8, 9]. Likewise, there is a large variety of contributions on

the numerical discretization, e.g. [10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20]. Nu-

merical work on the NSK model has to face two fundamental issues which are

not present in the NSE. As outlined above, the momentum equations of the

NSK model become third-order diffusion-dispersion equations which require

some effort in discretizing. Furthermore, due to the non-monotonous pressure

function of the VdW EoS, the first-order part is of mixed hyperbolic-elliptic

type. Therefore, classical upwind based discretization schemes that rely on

the solution of a hyperbolic Riemann problem cannot be used straightfor-

wardly.

There are several ways to overcome these shortcomings. In [21] a relax-

ation system has been proposed that treats the capillarity effects by a local

and low-order differential operator. The system is of second order with an ad-

ditional relaxation parameter as unknown that has to fulfil a linear screened

Poisson equation. The system was further analyzed and solved numerically

by Neusser et al. [22] using a local Discontinuous Galerkin (LDG) method.

However, the elliptic constraint renders the overall system of mixed type

hindering a consistent numerical approach.

In this work, a numerically more convenient relaxation system is consid-

ered. Motivated by the work in [23, 24] on scalar model problems, a time

dependent operator is used for the additional relaxation equation replac-

ing the Poisson equation by a parabolic evolution. The relaxation model is

parametrized by the Korteweg parameter such that if it tends to infinity, the

original NSK model is formally recovered [21, 22, 24]. For a fixed parame-

4



ter, a modified pressure can be introduced that guarantees hyperbolicity of

the convective fluxes if the Korteweg parameter is large enough. Thus, the

straightforward use of upwind based numerical schemes is possible. We in-

troduce the new class of relaxation models in Section 2 which also contains

a review of the thermodynamic setting and the original NSK model.

As the next step we present in Section 3 a computational method for the

parabolic relaxation model of [21] using the open-source solver FLEXI 1 which

is able to handle general hyperbolic/parabolic systems. The solver is based on

the Discontinuous Galerkin (DG) spectral element method (DGSEM) [25],

complemented by a finite volume sub-cell shock capturing method [26, 27].

Turning to numerical experiments in Section 4 it is first shown that the

solution of the original NSK model can be recovered by the parabolic re-

laxation model for one- and two-dimensional problems if the Korteweg pa-

rameter tends to infinity. Thus the approach can be used in this way as an

approximation method for the original NSK model. The implemented nu-

merical method allows on the one hand for the fine resolution of the diffuse

interfacial layer by only a few mesh cells. On the other hand a robust captur-

ing of small interface widths is possible in case of underresolved meshes which

can be used for sharp interface computations when viscosity and capillarity

vanish. This is not possible using numerical methods for the original NSK

system. Both issues, on the Korteweg limit and on asymptotic robustness are

addressed in Section 4.1.

We proceed with multidimensional simulations. In Section 4.2 we analyze

1https://www.flexi-project.org/
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again the Korteweg limit and display the capability of the model to deal with

an ensemble of multiple droplets that might merge or vanish completely such

that time-asymptotically the equilibrium solution is recovered. The paper

concludes with three-dimensional simulations of head-on droplet collisions in

Section 4.3.

It is an important feature of the relaxation approach that we observe for all

test cases thermodynamically consistent discrete solutions. This means that

the (discrete) total energy of the system is non-increasing over time. Up to

our knowledge this has not been achieved for the classical NSK model except

when using special implicit approaches [28].

2. Diffuse Interface Models

2.1. Thermodynamic Setting

Let Ω ⊂ Rd with d ∈ N be a bounded domain with boundary ∂Ω. The

domain is occupied by a homogeneous fluid with density ρ(x, t) > 0 at a

uniform temperature T ≡ Tref > 0. The fluid is assumed to appear in a

liquid and a vapour phase. The two-phase structure is modelled by the Van-

der-Waals (VdW) ansatz. Then, its Helmholtz free energy density is given

as

W (ρ) = ρRTref ln

(
ρ

1− bρ

)
− aρ2, (1)

where a, b, R > 0 are material parameters. It represents a thermodynamic

potential which can be used to derive other thermodynamic quantities by,
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e.g., the Clausius-Duhem relation. The pressure is consequently given by

p = ρW ′(ρ)−W (ρ) (2)

=
ρRTref

1− bρ
− aρ2. (3)

For the non-dimensional VdW EoS with reduced variables (i.e. non-dimensionalized

with the critical point quantities), the parameters are given by

a = 3, b =
1

3
, R =

8

3
, Tref = 0.85. (4)

This choice is kept throughout this work. The pressure law and the Helmholtz

free energy density are illustrated in Fig. 1. In the left panel, the coexistence
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Figure 1: Graphs of the pressure p (left) and Helmholtz free energy density W (ρ) and

its second derivative W ′′(ρ) (right).

curve (or binodal) is drawn. On this curve, the fluid may exist as saturated

liquid or saturated vapour, denoted by the Maxwellian densities ρsat
liq and ρsat

vap,

respectively. These states obtain similar values for pressure and temperature,

as indicated by the isothermal of the pressure law, Eq. (3) (red line). Between
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the saturated states, the pressure exhibits two extrema which are denoted

by ρsv, ρsl. They are called spinodal points and their locus is the spinodal

curve (dashed line). Inside the spinodal region, i.e. for density values in the

interval (ρsv, ρsl), the pressure function produces a so-called VdW loop that

allows to connect a vapour state to a liquid state. The loop coincides with a

non-convex region of the Helmholtz free energy density. In the right panel of

Fig. 1, the free energy density, W (ρ), and its second derivative, W ′′(ρ), are

shown, where the non-convex region between the spinodal densities ρsv, ρsl

exhibits a negative sign of the second derivative of W (ρ). It follows from

Eq. (2) that the derivative of the pressure is given by p′(ρ) = ρW ′′(ρ), hence,

the pressure is monotone decreasing in the interval (ρsv, ρsl). Due to the non-

convex region of the Helmholtz free energy density, the VdW fluid is capable

to describe a two-phase fluid as long as Tref < Tc, where Tc is the temperature

of the critical point.

Neglecting capillarity effects, a static equilibrium state of the liquid-

vapour mixture in Ω is obtained by a minimizer of the free energy functional,

E0[ρ] =

∫
Ω

W (ρ) d x. (5)

The minimizers for Eq. (5) are not unique, even for fixed total mass in Ω.

However, minimizers in the set of piecewise continuous functions take exactly

two values: the Maxwellian densities of full thermodynamic equilibrium, ρsat
liq

and ρsat
vap [29]. To include capillary effects in a diffuse interface setting, the

free energy functional is extended, i.e.

E [ρ] = E0[ρ] + EK
Γ [ρ]. (6)
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For the additional contribution, Van-der-Waals [3] proposed in his square

gradient theory for liquid-vapour phase interfaces,

EK
Γ [ρ] =

∫
Ω

γ

2
|∇ρ|2 d x, (7)

where the capillarity coefficient γ > 0 is a constant material parameter.

This functional penalizes the occurrence of phase interfaces by the density

gradient. Preserving total mass, the minimizers of Eq. (7) are smooth and

uniquely determined functions. A sequence of these diffuse interfaces selects,

in the limit γ → 0, physically relevant minimizers of Eq. (5).

2.2. Navier-Stokes-Korteweg Equations

Using the thermodynamic principles of rational mechanics under the con-

straint of mass and momentum conservation, a stress tensor for the dynamic

system can be derived, cf. [2, 21], resulting in the Navier-Stokes-Korteweg

(NSK) equations. In the isothermal case for T ≡ Tref they are

ρt +∇ · (ρv) = 0, (8)

(ρv)t +∇ · (ρv ⊗ v + pI) = ∇ · τ +∇ · τK, (9)

where v(x, t) = (v1(x, t), . . . , vd(x, t))
> is the velocity, τ ∈ Rd×d is the viscous

stress tensor and τK ∈ Rd×d is the Korteweg stress tensor derived from

Eq. (7). The stress tensors are given by

τ = µ

(
∇v + (∇v)> − 2

3
∇ · vI

)
, (10)

τK = γ

(
ρ4ρ+

1

2
|∇ρ|2

)
I− γ∇ρ⊗∇ρ, (11)
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with viscosity µ > 0, capillarity γ > 0 assumed to be constant, and the unit

tensor I. The divergence of the Korteweg stress tensor can also be expressed

in simplified, albeit non-conservative, form [12] as

∇ · τK = γρ∇4ρ. (12)

The closure relation for p is given by the isothermal VdW pressure law,

Eq. (3). An energy functional for the dynamic system, Eqs. (8) and (9), was

given by Anderson et al. [2] as an extension of Eq. (6) by adding the kinetic

energy contribution, i.e.

E [ρ] =

∫
Ω

(
1

2
ρ |v|2 +W (ρ) +

1

2
γ |∇ρ|2

)
d x. (13)

The NSK equations, Eqs. (8) and (9), are non-dimensionalized in terms

of reference values for density ρref , time tref , length Lref , and velocity vref =

Lref/tref [30, 12]. The variables are given in reduced form by

x = Lref x̂, t = tref t̂, v = vref v̂, ρ = ρref ρ̂, (14)

where the hat indicates non-dimensional variables. The non-dimensional NSK

equations read

ρ̂t̂ + ∇̂ · (ρ̂v̂) = 0, (15)

(ρ̂v̂)t̂ + ∇̂ · (ρ̂v̂ ⊗ v̂ + p̂I) = ∇̂ · τ̂ + ∇̂ · τ̂K, (16)

with the non-dimensional stress tensors expressed by

τ̂ =
1

Re
τ and τ̂K =

1

We
τK. (17)

The non-dimensional coefficients are the Reynolds number, Re, and the We-

ber number, We,

Re =
ρrefvrefLref

µ
and We =

ρrefv
2
refLref

γ
. (18)
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Following, e.g., Dreyer et al. [30], these numbers are scaled in terms of a small

parameter ε > 0, such that

1

Re
= ε,

1

We
= ε2γ̂, (19)

where γ̂ > 0 is a non-dimensional expression for the capillarity coefficient.

This scaling is similar to the choices made in [21, 22] and allows to recover

an appropriate asymptotic sharp interface limit for ε → 0. In the following,

the hat is omitted as only non-dimensionalized equations and variables are

considered. The momentum equation, Eq. (16), is a third-order convection-

diffusion-dispersion equation with mixed hyperbolic and parabolic fluxes. The

eigenvalues of the Jacobian of the first-order fluxes are given by

λ1 = v · n−
√
p′(ρ), λ2,...,d+1 = v · n, λd+2 = v · n +

√
p′(ρ), (20)

for an arbitrary normal vector n ∈ Rd. Due to the non-convexity of the

Helmholtz free energy density, Eq. (1), the pressure derivative becomes neg-

ative in the interval between the spinodal densities, (ρsv, ρsl) for T < Tc.

Hence, the eigenvalues of the convective flux Jacobian can be imaginary

numbers such that the first-order part is of mixed hyperbolic-elliptic type.

The loss of hyperbolicity prevents the straightforward use of any kind of up-

wind schemes that use Riemann solvers, as used in FV and DG methods.

Furthermore, the third-order term of the Korteweg stress requires the cal-

culation of additional gradients, which is computationally expensive. Thus,

some standard approaches are restricted to the use of higher-order methods

complemented by simple numerical flux functions that are independent of

the local wave speeds, such as the global Lax-Friedrichs (LF) flux [20] and

11



the central flux [13, 14]. Furthermore, it is mentioned that any explicit time-

stepping method requires an estimate on the expected wave speeds which

becomes impossible for λ1,...,d being complex numbers.

2.3. The Parabolic Relaxation Model

To avoid these numerical challenges, Rohde [21] proposed a relaxation

system that treats the capillarity effects by a local and low-order differential

operator. Therefore, an additional scalar field c is introduced as a relaxation

variable which satisfies a linear screened Poisson equation. Additionally, a

model parameter, α > 0, describes the asymptotic approximation towards the

original equation system. The model was investigated numerically by Neusser

et al. [22], who showed that for α→∞ the solution of the relaxation system

converges to the solution of the original system. Furthermore, they showed

that the model is consistent with the first and second laws of thermodynamics

and performed numerical investigations in the sharp interface limit. Since the

relaxation model of [22, 21] adds an elliptical constraint of a screened Poisson

equation, the numerical solution requires different discretization techniques

for flow and constraint equations.

We propose an alternative form that is motivated by the analysis of some

scalar model, originally discussed by Corli et al. [23]. A time dependent op-

erator for the additional relaxation equation is added in the form of a linear

screened heat equation. The parabolic relaxation model then reads

ραt +∇ · (ραvα) = 0, (21)

(ραvα)t +∇ · (ραvα ⊗ vα + pαI) = ∇ · τα + αρα∇ (cα − ρα) , (22)

βcαt − ε2γ4cα = α (ρα − cα) . (23)
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The system is of mixed parabolic-hyperbolic type. For α → ∞ and β → 0,

the solution of the parabolic relaxation model approaches the solution of

the original NSK equations, i.e. (ρα,vα) → (ρ,v). Corli et al. [23] proposed

scalings for β by analyzing a simplified model equation. For fixed ε, the

parameter scales with

β = β (α) = O
(
α−1
)

for α→∞, (24)

and for fixed α, the parameter scales with

β = β (ε) = O (ε) for ε→ 0. (25)

The energy functional of the parabolic relaxation model has to be adjusted

to account for the relaxation variable. The correct choice of the capillary

energy is similar to [22, 21], given by

EK
Γ [ρ] =

∫
Ω

(
α

2
(ρ− c)2 +

γε2

2
|∇c|2

)
d x. (26)

The total energy then becomes

Eα[ρ] =

∫
Ω

(
1

2
ρ |v|2 +W (ρ) +

α

2
(ρ− c)2 +

γε2

2
|∇c|2

)
d x. (27)

Remark 2.1 (Korteweg limit). For d = 1, the parabolic relaxation model is

ρt + (ρv)x = 0, (28)

(ρv)t +
(
ρv2 + p

)
x

=
4

3
εvxx + αρ (c− ρ)x , (29)

βct − ε2γcxx = α (ρ− c) . (30)

Since α > 0, Eq. (30) can be written as

β

α
ct −

ε2γ

α
cxx = (ρ− c) . (31)
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For α→∞, the scaling parameter β is given by Eq. (25) such that β/α→ 0.

Formally, Eq. (31) then becomes

ε2γ

α
cxx = (c− ρ) . (32)

Inserting this equation in Eq. (29) yields

(ρv)t +
(
ρv2 + p

)
x

=
4

3
εvxx + ε2γρ (cxx)x . (33)

Assuming that (ρ − c) → 0 for α → ∞ and, since c is the solution of a

parabolic evolution equation, in a strong sense (ρxx − cxx)→ 0, it follows

(ρv)t +
(
ρv2 + p

)
x

=
4

3
εvxx + ε2γρρxxx, (34)

which is the original NSK momentum Eq. (9) with the non-conservative form

of the Korteweg stress.

Unlike the elliptically constrained model the new parabolic relaxation

model is in a form that is suitable for a monolithic approach by many com-

pressible flow solvers. To be precise, the model can be written as

Ut +∇ · F(U,∇U) = S(U,∇U), (35)

with the vector of unknowns U = (ρ, ρv, c)>. The flux vector, F(U,∇U) =

Fc (U)−Fv (U,∇U), is composed of the convective fluxes Fc = (Fc,1, . . . ,Fc,d)

and the viscous fluxes Fv = (Fv,1, . . . ,Fv,d). Together with the source S they
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are given explicitly for d = 3 by

Fc,i (α, β) =



ρvi

ρviv1 + δ1ip

ρviv2 + δ2ip

ρviv3 + δ3ip

0


, Fv,i (α, β) =



0

τ1i

τ2i

τ3i

ε2γ
β
cxi


,

S (α, β) =



0

αρ (c− ρ)x1

αρ (c− ρ)x2

αρ (c− ρ)x3
α
β

(ρ− c)


,

(36)

where δij is the Kronecker symbol. The eigenvalues of the Jacobian of the

hyperbolic flux Fc are those from Eq. (20). In the following the balance law,

Eq. (35), together with the fluxes Eq. (36), is referred to as relaxation model

I.

However, if we define

pα (ρ, α) = p (ρ) + α
ρ2

2
, (37)
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one can rewrite Eqs. (35) and (36) in an equivalent form with the choices

Fc,i (α, β) =



ρvi

ρviv1 + δ1ipα

ρviv2 + δ2ipα

ρviv3 + δ3ipα

0


, Fv,i (α, β) =



0

τ1i

τ2i

τ3i

ε2γ
β
cxi


,

S (α, β) =



0

αρcx1

αρcx2

αρcx3
α
β

(ρ− c)


.

(38)

We name this model accordingly, relaxation model II. The eigenvalues of the

Jacobian of the first-order flux are now

λ1 = v · n−
√
p′α(ρ), λ2,...,d+1 = v · n, λd+2 = v · n +

√
p′α(ρ), (39)

for an arbitrary normal vector n ∈ Rd. Even for densities where the Helmholtz

free energy density, Eq. (1), becomes non-convex, the flux Fc (α) remains

strictly hyperbolic for large enough values for the Korteweg parameter α

[22],

α > α∗ =
|min (W ′′(s) : s ∈ (ρsv, ρsl))|

2
. (40)

It was found that the relaxation model II performs very well in the Ko-

rteweg limit for α >> 0 and it therefore is the standard model used in this

work.
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3. Numerical Methods

The open source code FLEXI was designed on the basis of the Discon-

tinuous Galerkin (DG) method to enable efficient and reliable computations

of compressible flow problems. For a survey of the basic features we refer

to [25] and for sub-cell resolution as favoured shock-capturing technique to

[26, 27]. In this contribution, we extend the FLEXI code to cover the com-

pressible NSK systems Eqs. (8) and (9) and the relaxation model II, Eqs. (35)

and (38). The numerical methods are outlined in this section.

3.1. The Discontinuous Galerkin Spectral Element Method

The computational domain Ω is divided into non-overlapping hexahedral

grid cells, which are allowed to be organized fully unstructured in a conform-

ing way. Each grid cell is mapped onto a reference cube E = [−1, 1]3. The

mapping x(ξ) between reference space, ξ = (ξ1, ξ2, ξ3)>, and physical space,

x = (x1, x2, x3)>, transforms the balance equations, Eq. (35), into

JUt +∇ξ · F(U,∇U) = JS in E, (41)

where the transformed fluxes F are defined by

∇ · F =
1

J

3∑
i=1

∂J ai · F
∂ξi

=
1

J
∇ξ · F . (42)

The transformation is given in terms of covariant basis vectors ai and the

Jacobian of the transformation J as described by Kopriva [31, 32] such that

the mapping is free stream preserving. In Eqs. (41) and (42), the divergence

operator ∇ξ· indicates the derivative with respect to directions in reference

space.
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The solution and each component of the contravariant fluxes Fm in the

reference element are approximated by a polynomial tensor product basis of

degree N ,

Uh (ξ, t) :=
N∑

i,j,k=0

Ûijk(t)Ψijk(ξ), (43)

Fmh (U,∇U) :=
N∑

i,j,k=0

F̂mijkΨijk(ξ), m = 1, 2, 3, (44)

where the interpolation nodes, {ξi}Ni=0, are the Gauss-Legendre quadrature

points on the interval [−1, 1]. The polynomial basis is given as tensor products

of one-dimensional Lagrange polynomials ` of degree N ,

Ψijk = `i(ξ
1)`j(ξ

2)`k(ξ
3). (45)

The symbol Ûijk(t) denotes the nodal degrees of freedom and F̂mijk are the

corresponding nodal degrees of freedom in the m-th component of the flux

F .

The transformed balance law is multiplied by a test function, φ, and

integrated on the reference element E to yield the variational formulation,∫
E

JUtφ dξ +

∫
E

∇ξ · Fφ dξ =

∫
E

JSφ dξ. (46)

The weak form is obtained by integration by parts of the second integral,∫
E

JUtφ dξ −
∫
E

F · ∇ξφ dξ +

∫
∂E

(F · nE)∗ φdSξ =

∫
E

JSφdξ, (47)

where nE denotes the unit normal vector on the reference element face. To

obtain a DG formulation, the Galerkin method is applied to Eq. (47) and the

test functions are chosen identical to the polynomial basis functions of the
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solution approximation. Eq. (43) and (44) are inserted into the weak form,

Eq. (47), and the integrals are evaluated numerically using Gauss-Legendre

quadrature rules. Collocation is used by choosing the same points for inte-

gration as for interpolation. The Kronecker delta property of the Lagrange

polynomials, `i(ξi) = δij, is utilized to yield the semi-discrete form. Since

the solution is allowed to be discontinuous across element faces, it may be

double valued and the surface fluxes has to be obtained using numerical

flux functions (denoted by the asterisk). In this work, the local and global

Lax-Friedrichs (LF) method as well as the approximate Harten-Lax-van Leer-

contact (HLLC) Riemann solver are employed. For a detailed description, the

interested reader is referred to Toro [33].

The method described above is sufficient to discretize first-order balance

laws. In second- or third-order equations, fluxes and source terms depend on

the gradients of the solution. A common approach for DG methods is the use

of lifting procedures, such as the BR1 scheme of Bassi and Rebay [34]. For

example, a second-order system of equations is rewritten into a first-order

system by approximating the gradient as

Q1 = ∇U ⇔ Q1 −∇U = 0. (48)

Transformation into the reference element yields the conservation equation

Q1 −
1

J
∇ξ · U = 0, U =

(
J a1,J a2,J a3

)>
U. (49)

It is discretized by the DGSEM method as described by Hindenlang et

al. [25, 35]. As numerical flux function, the central flux is used. All neces-

sary gradients are calculated directly from their primitive state variables, e.g.

the velocity is lifted directly for the calculation of the viscous stresses. This
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method can be extended to third-order equations, e.g. the second gradient of

density of the original NSK equations is calculated by a second application

of the BR1 lifting procedure,

Q2 = ∇ (∇ρ) · I ⇔ Q2 −∇ (∇ρ) · I = 0. (50)

Transformation into the reference element yields the conservation equation

Q2 −
(

1

J
∇ξ · U2

)
· I = 0, U2 =

(
J a1,J a2,J a3

)>∇ρ, (51)

which can also be discretized by the DGSEM method.

Using the method of lines, the solution can be advanced in time using

either explicit third or fourth-order low storage Runge-Kutta (RK) methods

as described by Kennedy et al. [36] or implicitly by a fourth-order explicit

singly diagonally implicit Runge-Kutta (ESDIRK) scheme with six stages [37]

as proposed by Vangelatos and Munz [38]. The advantage of using implicit

schemes is their larger time step size due to their unconditional stability.

Explicit schemes on the other hand have to fulfil the parabolic time step

restriction [39],

∆t ≤ CFL βRK(N)
∆ξ2

λv(2N + 1)2
, (52)

where βRK(N) is the viscous scaling factor for RK time integration, and λv

is the maximum eigenvalue of the diffusion matrix,

λv = max

(
ε,
ε2γ

β

)
. (53)

For particularly small choices of β, the explicit time step size is dominated

by the screened heat equation for the relaxation variable. In numerical ex-

periments, we found that for CFL = 100, implicit time integration was faster

than explicit time integration while the solution remained similar.
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Note that the source term of the parabolic relaxation model for the NSK

equations, Eqs. (21) to (23), includes non-conservative products which de-

pend on the gradient of the solution. In this work, the straightforward im-

plementation of a point-wise source term using the lifted gradients proved to

be stable and a path-conservative discretization, as proposed in [22], is not

required.

3.2. Finite Volume Sub-Cell Approach

As a higher-order approach, DGSEM exhibits instabilities in resolving

steep gradients or even discontinuities in the solution. Due to the Gibbs

phenomenon, the approximate solution oscillates and in extreme cases, the

simulation breaks off. A shock capturing method was developed by Sonntag

and Munz [26, 27] which switches locally to a total variation diminishing

(TVD) second-order Finite Volume method on sub-cells in troubled elements.

Discontinuities or steep-gradient waves of interest in this work are shock

waves and in particular phase boundaries in the regime of large Reynolds

and large Weber numbers.

If an oscillation is detected in a DG element, (N + 1)3 equidistantly dis-

tributed sub-cells are introduced as shown in Fig. 2. The conversion from

DG polynomials to integral mean values in each sub-cell is done by numeri-

cal integration using Gauss quadratures using N + 1 nodes for each sub-cell,

hence integration is exact.

Each sub-cell is now a control volume where the FV method can be ex-

pressed by the weak form, Eq. (47), with test function φ = 1. The volume

integral vanishes while for the surface integral the midpoint rule is employed.
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Figure 2: Discretization in a 2D grid cell using equidistantly distributed FV sub-cells.

As numerical flux functions of the surface integral, LF and HLLC methods

are used.

In order to reduce numerical dissipation, a second-order TVD reconstruc-

tion is applied with the simple MinMod limiter. For diffusion fluxes, Green’s

identity is applied together with a continuous reconstruction of the gradient,

cf. [40]. Note that this particular approximation of gradients is restricted to

second-order systems and, hence, the FV shock-capturing as described here

cannot be applied to the original third-order NSK system.

The FV sub-cell method is only applied in elements that generate os-

cillations, caused by steep gradients or discontinuities. To identify troubled

elements, the indicator of Persson and Peraire [41] is used which compares

the polynomial coefficients of a representation of the solution with a hierar-

chical basis function. If the solution is smooth, the coefficients (or modes)

decay quickly. If steep gradients are present, polynomials tend to oscillate
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and the coefficients of the higher modes do not decrease. By user-specified

threshold values, the solution in the troubled element is switched to the FV

sub-cell representation.

4. Results

In this section, numerical experiments of the parabolic relaxation model

for the isothermal NSK equations are presented. First, the model is validated

against reference solutions from the original NSK model using 1D benchmark

problems. A one-dimensional multiphase shock tube Riemann problem is

simulated to drive the parabolic relaxation model towards the sharp interface

limit. In 2D, several simulations of up to 101 droplets that merge or evaporate

are presented. Then, 3D simulations of droplet collisions are shown.

4.1. 1D Test Cases

Numerical tests were performed to investigate the parabolic relaxation

model for the NSK equations in the Korteweg limit. First, static solutions

of quiescent phase interfaces with zero velocity were used to determine the

behaviour of the relaxation parameters α, β. A reference solution was pro-

duced by the original NSK model. Secondly, the model capabilities in the

sharp interface limit were studied.

4.1.1. Validation of the Relaxation Model in the Korteweg Limit

Static solutions. For v ≡ 0, static solutions, ρ = ρ(x), for the original NSK

equations can be derived. They are used for the validation of the parabolic
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relaxation model. An exact static solution is given by

ρ(x) =
ρsat

liq + ρsat
vap

2
+
ρsat

liq − ρsat
vap

2
tanh

(
x+ 0.4

2
√
γε2

)
, (54)

v(x) = (0, 0, 0)> , (55)

which was also used as initial condition. For T = 0.85, the Maxwellian den-
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Figure 3: Results for a static phase boundary in 1D for varying α at β = 0.01.

sities are ρsat
vap = 0.3197 and ρsat

liq = 1.8071. The capillarity parameter was
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γ = 1 and the viscosity ε = 0.01. The Korteweg parameter varied between

α = 1, 10, 100, 1000 while the parabolic relaxation parameter remained con-

stant at β = 0.01. The domain, Ω = (0, 1), was discretized into 200 elements

and periodic boundary conditions were employed. The polynomial degree

was N = 3, the numerical flux was computed by the HLLC method and

time integration was done implicitly with CFL = 100, using a fourth-order

ESDIRK scheme with six stages.

Figure 3 shows the solution for density at time instance t = 2.0, the L2

difference ρ− c, as well as the decay of total and kinetic energies. The results

show that for α > 10 the density profiles converge to the solution of the

original NSK model. For increasing values of α, the L2 difference between the

density and the relaxation variable c decrease, but for all cases, it converges to

a constant value. The total energy for all cases shows a monotone decrease

up to a constant value. The kinetic energy approaches values of O(10−7)

although it oscillates around a decreasing mean value. For α > 100 the total

and kinetic energies coincide. In addition, the total energy of the relaxation

model lies very close to the total energy of the original NSK model, hence,

α = 100 is a sufficient choice for the Korteweg limit.

Figure 4 shows the density at t = 2.0, as well as the total energy for

α = 100 and varying β = 0.1, 0.01, 0.001. Independently of β, the density

converges on the same solution and a monotone energy decay is established.

As discussed in Section 2.3, we expect to approach the original NSK model

for α→∞ and β → 0. In this case a small value of ct is obtained such that

convergence occurs also for moderate values of β.
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Figure 4: Results for a static phase boundary in 1D for varying β at α = 100.

Merging Bubbles (Ostwald Ripening). In another one-dimensional test case,

two bubbles were initialized in a saturated liquid phase. The initial conditions

were chosen such that the smaller bubble condensates and vanishes while

transferring its mass to the larger one without coalescing directly. They were

ρ(x, t = 0) =
(nρvap − (n− 2) ρliq)

2
+

n∑
i=1

ρliq − ρvap

2
tanh

(
di − ri
2
√
γε2

)
, (56)

v(x, t = 0) = (0, 0, 0)> , (57)

where n = 2 and d1 = x − 0.25, d2 = x − 0.75 and r1 = 0.15, r2 = 0.05.

The initial densities were ρliq = 1.8 and ρvap = 0.3, the viscosity and capil-

larity were ε = 0.01 and γ = 1, and the Korteweg parameter was α = 100.

The second relaxation parameter, β, was varied between 0.01 and 0.001 to

compare its influence on the time evolution towards the equilibrium state.

Therefore, the solution of the original NSK model serves as reference. The

domain, Ω = (−1, 2), was discretized into 400 elements with a polynomial
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degree of N = 3. For the relaxation model, time integration was implicit with

CFL = 100 using a fourth-order ESDIRK scheme with six stages, and the

numerical fluxes were computed by the HLLC method. For the original NSK

model, time integration was explicit using a fourth-order RK scheme with

five stages and the LF method as numerical flux function. The solution of

density at various time instances is shown in Fig. 5. All simulations converge
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Figure 5: Solutions of density of two merging bubbles in 1D at time instances t =

0, 2.7, 2.8, 3, 10, 20.

to the same equilibrium state with two phase boundaries only, but time evo-

lution at earlier times differs. Using a smaller value for β, the equilibrium
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state is reached faster, but the waves emitted from the vanishing smaller

bubble appear later than predicted by the original NSK model.

Travelling wave solution. A travelling wave solution was simulated where

a single phase boundary was propagated. The test case was adapted from

Diehl [12] who suggested an exact solution of the original NSK equations

using the Maxwellian densities at T = 0.85. The viscosity, the capillarity

coefficient, and the propagation velocity were ε = 0.01366, γ = 5.35918, and

v0 = −0.3214, respectively. The wave was initialized by

ρ(x, t = 0) =
ρsat

liq + ρsat
vap

2
+
ρsat

liq − ρsat
vap

2
tanh

(
x− 0.5

2
√
γε2

)
, (58)

v(x, t = 0) = (v0, 0, 0)> . (59)

The relaxation parameters were chosen to be α = 100 and β = 0.01, 0.001.

The domain, Ω = (−1, 1), was discretized into 400 elements with a polyno-

mial degree of N = 3. Time integration was implicitly with CFL = 100 using

a fourth-order ESDIRK scheme with six stages, and the numerical fluxes were

computed by the HLLC method. The reference solution of the original NSK

model was produced using the same spatial discretization and explicit time

integration with a fourth-order RK scheme with five stages. The numerical

fluxes were computed by the LF method.

Figure 6 shows the results of density at time instances t = 0, 1, 2, 3, 4

and relative velocity at t = 3 for the relaxation model compared to results

obtained from the original NSK model. Since the initial condition is not

equivalent to the travelling wave solution, for the relaxation model, pressure

waves emit to adjust the density profile in the interfacial region. This results
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Figure 6: Solutions of density and relative velocity for a travelling wave in 1D at time

instances t = 0, 1, 2, 3, 4.

in velocity fluctuations which decrease at later time instances. At t = 3, the

relaxation model with β = 0.001 produces a maximum of approximately 1%

velocity fluctuations while the original model hardly fluctuates at all. For

β = 0.01, the density profile propagates with a different wave speed and,

furthermore, the maximum velocity fluctuation reaches up to 10 % at t = 3.

For unsteady problems, it is preferable to choose a smaller value for β than

β = 1/α, as proposed by [23].

4.1.2. 1D Riemann Problem in the Sharp Interface Limit

The use of the parabolic relaxation model for the NSK diffuse interface

method enables numerical simulations in the sharp interface limit. Since the

relaxation model is a second-order system of PDEs, a simple FV shock cap-

turing method can be used to deal with strong gradients and discontinuities
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such as phase boundaries and shock waves. The sharp interface is achieved

as the asymptotic limit for ε→ 0.

Results were produced in 1D by solving a multiphase shock tube Riemann

problem. In this scenario, a stable liquid phase lies opposite of a stable vapour

phase at the initial discontinuity at x0. Due to the differences in density

and pressure, the solution structure of the isothermal multiphase Riemann

problem develops, cf. [24], where the density profile in the interfacial region

is resolved.

Simulation Setup. The domain was Ω = (0, 1) and the initial data were

(ρ, v)> =

(2, 0.0)> if x < 0.5,

(0.1, 0.0)> if x > 0.5.

(60)

The relaxation parameters were α = 100, β = 0.001, the capillary coefficient

was γ = 1, and the viscosity parameter varied, ε = 0.01, 0.001, 0.0001, 0.00001.

The domain was discretized into 200 elements and a polynomial degree of

N = 3. FV shock capturing was used to resolve steep gradients. Oscillations

were detected by a Persson indicator with the thresholds Indupper = −6 and

Indlower = −8. The numerical flux function was the HLLC method. The time

discretization method was explicit using a fourth-order RK method with five

stages and CFL = 0.1. At the domain boundaries, Dirichlet boundary con-

ditions were used.

Simulation Results. The density and velocity profiles of the solutions are

visualized in Fig. 7 at t = 0.11. A rarefaction wave propagates to the left

and expands the liquid phase. The liquid undergoes phase transition across

a phase boundary while on the far right, a shock wave propagates into the
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Figure 7: Density and velocity profiles of the multiphase shock tube problem at t = 0.11

using relaxation model II.

initial vapour phase. For the largest value of ε, the shock wave is completely

smeared out and smoothly connects to the phase boundary. For decreasing

values of ε, the phase boundary and shock wave sharpen until the solution

converges for ε < 0.0001. The thickness of the phase interface is determined

by the grid resolution in the interfacial region. Around shock, rarefaction

and phase boundary waves over and undershoots are visible for ε ≤ 0.001,

especially in the velocity. Nevertheless, the simulation remained stable in

time, even for extremely low values for ε. This is not possible when using

known numerical methods for the discretization of the classical NSK model

directly.

To further discuss the overshoots, relaxation model I was also used to

simulate the Riemann problem. The Lax-Friedrichs method was used as nu-

merical flux function to avoid imaginary numbers of the speed of sound.
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The results for density and velocity at t = 0.11 are shown in Fig. 8. The
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Figure 8: Density and velocity profiles of the multiphase shock tube problem at t = 0.11

using relaxation model I.

overshoot at the right moving shock wave vanishes but velocity oscillations

appear around the phase boundary. They increase in magnitude for smaller

values for ε. Furthermore, the plateau values of the inner states, left and

right of the phase boundary, change. In the case of a fully smeared phase

interface, where ε = 0.01, the simulation is identical to the one produced by

relaxation model II. We assume that difference between both models stem

from the different treatment of the non-conservative flux regarding model I

and model II. While model II provides a monotone pressure function, there is

an additional contribution of the density gradient to the surface fluxes which

was not considered using model I. We note that the use of a path-conservative

scheme did not resolve this issue.
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4.2. 2D Test Cases

For all 2D test cases, the following parameters were kept the same. The

relaxation parameters were α = 100, β = 0.001, the viscosity and the cap-

illarity were ε = 0.01 and γ = 1, respectively. The domain, Ω = (0, 1)2,

was discretized with 1002 elements and a polynomial degree of N = 3. The

numerical flux function was the HLLC solver and time integration was im-

plicit with CFL = 100 using the fourth-order ESDIRK with six stages, unless

otherwise noted.

Merging and evaporating droplets. Several test cases were conducted with

two or more droplets that merge or evaporate to a single drop in equilibrium.

For this, the average density must be between the Maxwellian densities. The

initial conditions for n droplets were

ρ(x, t = 0) =

(
nρsat

liq − (n− 2) ρsat
vap

)
2

+
n∑
i=1

ρsat
vap − ρsat

liq

2
tanh

(
di − ri
2
√
γε2

)
, (61)

v(x, t = 0) = (0, 0, 0)> , (62)

where di = ||x − x0
i || is the Euclidean distance to the centre x0

i of the i-th

droplet and ri is its radius.

The first test case involved two droplets with radii r1 = 0.2, r2 = 0.1 at

centres x0
1 = (0.4, 0.5, 0)>, x0

2 = (0.7, 0.5, 0)>, respectively. In a second test

case, four droplets were initialized at x0
1 = (0.3, 0.5, 0)>, x0

2 = (0.7, 0.3, 0)>,

x0
3 = (0.6, 0.7, 0)>, x0

4 = (0.5, 0.5, 0)> with radii r1 = 0.15, r2 = 0.05, r3 =

0.07, r4 = 0.03. The third test case initially contained 101 droplets. Their

positions and radii are listed in Table 1.

Figure 9 shows the density of the two droplets at different time instances.

Although they were initially at rest, they move towards each other and even-
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tually merge into a single, quiescent droplet. This result comes close to the
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Figure 9: Density of two merging droplets at different time instances.

solution produced by the original NSK model. The contour of the mean den-

sity, ρ = 1.0634, is presented in Fig. 10 for the relaxation model and the

NSK model. In addition, a simulation with β = 0.01 is presented. In the end,

all simulations reach the same equilibrium state, but their time evolution

differ. Similar to the unsteady 1D simulations discussed above, the choice of

β = 0.001 produces the best approximation of the original NSK model. For

the remainder of the simulations shown in this work, β = 0.001 was used.

In case of four initial droplets, shown in Fig. 11, the same behaviour

was observed for the largest and smallest droplets. Initially they were posi-

tioned such that they almost touch which triggers coalescence. The remaining
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Figure 10: Contour of mean density, ρ = 1.0634, of two merging droplets at different time

instances. Comparison between relaxation model and original NSK equations.

two smaller droplets were positioned further away from their neighbours. As

time progresses they start to evaporate and the mass transfers to the largest

droplet which in turn grows in size. Eventually, the smaller droplets vanish

and a single, large droplet remains.

Figure 12 shows the case of 101 droplets as initial state. Both coales-

cence and evaporation occurr depending on the distance of the droplets. The

smallest individual droplets evaporate and eventually droplet clusters merge

into larger droplets. These droplets are too far from each other to coalesce

and they evaporate slowly. The mass is eventually transferred to a finally

remaining droplet which is in equilibrium with the surrounding vapour.

Figure 13 shows the decay of total and kinetic energy of the merging

droplet cases. For each number of droplets, both energies found a minimum.
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Figure 11: Density of four merging and evaporating droplets at different time instances.

In the kinetic energy, each disappearance of a droplet is marked by a local

minimum of the energy, followed by a minor increase in flow movement.

4.3. 3D Test Cases: Head On Collisions

Binary head on collisions of droplets were simulated in 3D. Four different

cases were simulated with varying collision Weber and Reynolds numbers.

The simulation setup was adapted from Gelissen et al. [14]. They defined

numerical test cases based on collision Weber and Reynolds numbers that

lie in different collision regimes. The present simulations were carried out

in the vicinity of the critical point, hence, experimental comparisons are

not available. In contrast to Gelissen et al. [14], the present model is fully
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Figure 12: Density of 101 merging and evaporating droplets at different time instances.

isothermal which implies infinite heat conduction. Therefore, evaporation

effects become stronger since temperature is fixed to a constant value.
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Figure 13: Energy decay of 2, 4, and 101 merging and evaporating droplets.

4.3.1. Simulation Setup

The initial conditions were

ρ(x, t = 0) = ρvap +
ρliq − ρvap

2

2∑
i=1

(
tanh

(
di − ri
2
√
γε2

))
, (63)

v1(x, t = 0) =


vrel
4

(
1− tanh

(
d1−rd
2
√
γε2

))
if x < 0.5,

−vrel
4

(
1− tanh

(
d2−rd
2
√
γε2

))
if x ≥ 0.5,

(64)

v2(x, t = 0) = v3(x, t = 0) = 0, (65)

with droplet radii r1 = r2 = 0.1 and distance di =‖ x − x0
i ‖. The initial

positions of the droplets were x0
1 = (0.3, 0.5, 0.5)> and x0

2 = (0.7, 0.5, 0.5)>.

The relaxation model parameters were α = 100 and β = 0.001. The cap-

illarity coefficient was calculated from a fixed Weber number in all cases,

We = 6000 = 1/(ε2γ). An additional non-dimensional number is the collision

Weber number,

Wecoll =
2rρcvrel

σ
, (66)
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where ρc = 1 is the critical density and vrel is the relative velocity of the

droplets. For given values of Wecoll and Re, the surface tension coefficient,

σ, is calculated. Together with the Young-Laplace law for spherical droplets,

the initial pressures of the liquid and vapour phases were obtained similar to

[14] as,

pliq = psat +
ρsat

liq

ρsat
liq − ρsat

vap

2σ

r
, and pvap = psat +

ρsat
vap

ρsat
liq − ρsat

vap

2σ

r
. (67)

Based on these pressures, the initial densities of the phases, ρliq and ρvap,

were calculated for the temperature Tref = 0.85.

All relevant parameters for the simulations are given in Table 2. Cases

HOC1, HOC2, and HOC3 use the same setup as in Gelissen et al. [14]. The

fourth test case, HOC2A, is a modification of HOC2 with a slightly increased

collision Weber number. The computational domain, Ω = (0, 1)3, was dis-

cretized by 643 elements and a polynomial degree of N = 3, resulting in 2563

DOFs. The numerical flux function was the HLLC solver and time integra-

tion was implicit with CFL = 100 using the fourth-order ESDIRK method

with six stages. The simulations were conducted on the Cray XC40 (Hazel

Hen) supercomputer at the High Performance Computing Center Stuttgart

(HLRS) using 200 computational nodes (i.e. 4800 processors).

4.3.2. Simulation Results

The cases under investigation differ in the collision velocity and the col-

lision Weber number. Consequently, a different behaviour during time evo-

lution was observed for each case. The results are visualized by the iso-

contour of the mean density, calculated from the initial densities, ρmean =

(ρliq + ρvap)/2.
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Figure 14 shows the time evolution of the first case with the smallest

velocity and collision Weber number. The two droplets move towards each

t = 0.00 t = 0.20 t = 0.40 t = 0.60

t = 0.80 t = 1.00 t = 1.20 t = 1.40

Figure 14: Mean density iso-contour for the HOC1 case at different time instances.

other and at a critical distance, a liquid bridge forms which connects both

droplets. Then, coalescence occurs and the joined droplet takes the form of

a flat disc. The initial momentum is conserved and begins to interact with

surface tension such that the disc starts to oscillate as a singular droplet.

This motion is damped due to viscous forces. In the end, the liquid phase

is completely evaporated since the average density of the domain lies in a

stable vapour phase.

Increasing both impact velocity and Weber number amplifies the effects,

as visualized in Fig. 15 for the case HOC2. The process evolves quicker and

the flat disc obtains a larger radius. A thin film is created in the centre of

the disc which remains intact. The surface tension forces cause the disc to

return to a droplet like shape but the momentum is large enough that, during

the first period of the oscillation, an elongated, round-ended cylinder shape
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t = 0.00 t = 0.20 t = 0.40 t = 0.60

t = 0.80 t = 1.00 t = 1.20 t = 1.40

t = 1.60 t = 1.80 t = 2.00 t = 2.20

Figure 15: Mean density iso-contour for the HOC2 case at different time instances.

forms. Viscous damping and surface tension is strong enough to keep the

droplet intact. It remains oscillating until the liquid phase evaporates com-

pletely. However, the results observed by Gelissen et al. [14] are different.

For this collision Weber number, they reported reflexive separation, i.e. the

elongated, cylindrical droplet split into two separate droplets. A small in-

crease in collision Weber number and impact velocity was simulated in case

HOC2A. The solution is visualized in Fig. 16. It shows that instead of reflex-

ive separation a liquid ring is produced that evaporates quickly while a centre

droplet remains oscillating. Further increase of the collision Weber number

does not produce any separation process. It is assumed that neglecting tem-
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t = 0.00 t = 0.20 t = 0.40 t = 0.60

t = 0.80 t = 1.00 t = 1.20 t = 1.40

t = 1.60 t = 1.80 t = 2.00 t = 2.20

Figure 16: Mean density iso-contour for the HOC2A case at different time instances.

perature variations in the isothermal model increases damping effects, e.g.

due to evaporation, such that the case of reflexive separation is suppressed.

An even higher velocity and collision Weber number is shown in Fig. 17.

The thin film of the flat disc becomes so thin that it breaks up and a liquid

ring and a small droplet in its centre remains. While the droplet in the do-

main centre starts to oscillate, the ring expands and increases its radius. In

proximity of the periodic domain boundary, the interaction with the periodic

boundary condition triggers Plateau-Rayleigh instabilities [14] and the ring

contracts and forms four small droplets. These are in non-equilibrium and

immediately evaporate. The droplet in the domain centre remains for a longer

time period until it evaporates as well. In contrast to the results presented

here, Gelissen et al. [14] reported for this collision Weber number that no cen-
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tre droplet remains and that the ring splits into eight droplets which appear

to remain stable. The differences between the results of Gelissen et al. [14]

t = 0.00 t = 0.20 t = 0.40 t = 0.60

t = 0.80 t = 1.00 t = 1.20 t = 1.40

Figure 17: Mean density iso-contour for the HOC3 case at different time instances.

and the present work can be caused by several aspects. First, the relaxation

model is an approximation of the original NSK equations and therefore it

may deal with interfacial instabilities differently during time advancement.

Furthermore, the present simulations were strictly isothermal which cause

the liquid phase to evaporate and become a stable vapour phase in thermo-

dynamic equilibrium. Gelissen et al. [14] on the other hand also discretized

the energy equation and considered finite heat conduction. Especially in the

interfacial region, temperature peaks are reported which were not resolved

in the present study.
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For completeness, the decay of total and kinetic energy is shown in Fig. 18

for all collision simulations. A monotone decrease in total energy is observed

Total Energy

0 1 2 3 4 5
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−1.015
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−1.005
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(t
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)|
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]

Kinetic Energy
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HOC2

HOC2A

HOC3

Figure 18: Decay of total and kinetic energy for the HOC1–HOC3 cases.

while the kinetic energy decreases non-monotonously.

5. Conclusion

A lower-order parabolic relaxation model for the isothermal Navier-Stokes-

Korteweg equations was investigated. It adds a parabolic evolution equation

for a relaxation variable, parametrized by the Korteweg parameter. By use

of a modified pressure function that takes into account the Korteweg pa-

rameter, a fully hyperbolic diffuse interface model can be constructed which

allows for the straightforward implementation into the open source higher-

order Discontinuous Galerkin solver FLEXI . Simulations in the Korteweg

limit as well as in the sharp interface limit become possible when utilizing

a sub-cell shock capturing method. The use of this stabilization approach

applies also for extremely small values of the interfacial width parameter. In

the Korteweg limit, implicit time integration is preferred.
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The model was validated against solutions of the original NSK model. The

test cases included static and travelling wave solutions in 1D and merging and

evaporation of multiple droplets in 2D. In the Korteweg limit, 3D simulations

of binary head-on droplet collisions were simulated. For low Weber numbers,

the results are similar to findings from literature while for higher Weber

number, the results differed since reflexive separation has not occurred. This

was attributed to the neglecting of temperature variations in the isothermal

model. Notably, in all cases, the free energy functional remains non-increasing

in time rendering the discrete solutions to be thermodynamically admissible.

Future work aims to extend the diffuse interface method to include heat

transfer such that more realistic results can be obtained for simulations of,

e.g., head-on collisions. In the sharp interface limit, 2D and 3D problems, such

as shock-droplet interactions, are of interest. This requires a revisit of the

FV shock capturing method in FLEXI in terms of well-balanced and path-

conservative schemes. Alternatively, an adaptive mesh refinement method

may be beneficial to locally refine the mesh only in the interfacial region

while maintaining a coarse mesh where the solution remains near constant.
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variations de densité considérables mais connues et sur la théorie de
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Table 1: Initial data for 101 droplets

ID ri [−] x0
i [−] ID ri [−] x0

i [−]

1 0.0124 (0.54698, 0.71747)> 52 0.0119 (0.38085, 0.61939)>

2 0.014 (0.40297, 0.13343)> 53 0.0122 (0.63458, 0.61533)>

3 0.015 (0.10704, 0.44579)> 54 0.0113 (0.36323, 0.12262)>

4 0.0111 (0.72417, 0.50879)> 55 0.0126 (0.40762, 0.12379)>

5 0.0126 (0.61368, 0.53049)> 56 0.0128 (0.3687, 0.28446)>

6 0.0118 (0.78297, 0.85972)> 57 0.0123 (0.4684, 0.73573)>

7 0.0118 (0.56662, 0.67772)> 58 0.019 (0.50341, 0.41131)>

8 0.0128 (0.81132, 0.80584)> 59 0.0124 (0.91054, 0.82898)>

9 0.0118 (0.57678, 0.53124)> 60 0.015 (0.20643, 0.93511)>

10 0.011 (0.94403, 0.9559)> 61 0.0116 (0.3386, 0.39907)>

11 0.0125 (0.87145, 0.066677)> 62 0.0119 (0.57413, 0.052211)>

12 0.0119 (0.5076, 0.54152)> 63 0.0122 (0.48693, 0.57119)>

13 0.0115 (0.78882, 0.28166)> 64 0.0112 (0.26222, 0.74767)>

14 0.019 (0.47303, 0.4809)> 65 0.0122 (0.57959, 0.32024)>

15 0.018 (0.8288, 0.68486)> 66 0.0127 (0.87833, 0.49293)>

16 0.0115 (0.32248, 0.20826)> 67 0.012 (0.06095, 0.22165)>

17 0.017 (0.97615, 0.60816)> 68 0.015 (0.44088, 0.93927)>

18 0.012 (0.27821, 0.32618)> 69 0.0126 (0.084258, 0.48231)>

19 0.016 (0.072831, 0.88085)> 70 0.0113 (0.56324, 0.54)>

20 0.018 (0.75122, 0.13339)> 71 0.0113 (0.53931, 0.22106)>

21 0.016 (0.83119, 0.10241)> 72 0.0129 (0.76806, 0.095945)>

22 0.0119 (0.92234, 0.95912)> 73 0.0123 (0.23309, 0.060165)>

23 0.0125 (0.32702, 0.1529)> 74 0.0130 (0.58736, 0.81951)>

24 0.0125 (0.80407, 0.15254)> 75 0.018 (0.45897, 0.77148)>

25 0.0125 (0.53825, 0.15555)> 76 0.013 (0.86098, 0.1957)>

26 0.0122 (0.46329, 0.089569)> 77 0.0112 (0.66084, 0.89512)>

27 0.0126 (0.82075, 0.45442)> 78 0.0116 (0.35388, 0.6843)>

28 0.0124 (0.95191, 0.6689)> 79 0.0118 (0.34719, 0.65685)>

29 0.017 (0.076273, 0.8313)> 80 0.013 (0.25372, 0.99038)>

30 0.013 (0.70867, 0.79024)> 81 0.0115 (0.95253, 0.033692)>

31 0.013 (0.23493, 0.71271)> 82 0.0113 (0.2982, 0.42425)>

32 0.012 (0.3989, 0.4726)> 83 0.013 (0.15841, 0.48998)>

33 0.017 (0.26812, 0.70859)> 84 0.018 (0.3613, 0.5835)>

34 0.018 (0.83251, 0.95806)> 85 0.012 (0.74163, 0.08327)>

35 0.0111 (0.99537, 0.50578)> 86 0.0129 (0.7059, 0.66015)>

36 0.016 (0.64975, 0.30505)> 87 0.0121 (0.70089, 0.052305)>

37 0.0116 (0.70395, 0.78981)> 88 0.019 (0.006226, 0.55683)>

38 0.0129 (0.9323, 0.23639)> 89 0.0116 (0.37435, 0.71203)>

39 0.0112 (0.68765, 0.2343)> 90 0.011 (0.9015, 0.48791)>

40 0.0118 (0.56835, 0.4647)> 91 0.0127 (0.31834, 0.6176)>

41 0.0127 (0.31834, 0.6176)> 92 0.0113 (0.59708, 0.21378)>

42 0.0110 (0.2978, 0.64566)> 93 0.0129 (0.12501, 0.38064)>

43 0.0114 (0.38836, 0.10371)> 94 0.019 (0.81769, 0.37751)>

44 0.013 (0.98118, 0.26286)> 95 0.0118 (0.86199, 0.24129)>

45 0.015 (0.083821, 0.62292)> 96 0.013 (0.33771, 0.52293)>

46 0.0118 (0.23613, 0.41324)> 97 0.019 (0.31781, 0.21779)>

47 0.0111 (0.98445, 0.85855)> 98 0.0122 (0.54825, 0.86101)>

48 0.0126 (0.74925, 0.28394)> 99 0.0111 (0.84185, 0.61539)>

49 0.0129 (0.16689, 0.77949)> 100 0.0129 (0.9031, 0.95485)>

50 0.017 (0.10512, 0.9196)> 101 0.0124 (0.74509, 0.38482)>

51 0.0119 (0.72937, 0.16264)>
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Table 2: Parameters for HOC cases. All numbers are non-dimensionalized.

Re Wecoll ε γ vrel ρliq ρvap

HOC1 300 75 3.33 · 10−3 15 1.5 1.8450 0.3496

HOC2 1250 140 8.00 · 10−4 260.417 2.2 1.8502 0.3545

HOC2A 1250 200 8.00 · 10−4 260.417 2.8 1.8553 0.3596

HOC3 1000 520 1.00 · 10−3 166.667 4.0 1.8459 0.3504
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