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1 Introduction

In simulating real-world problems using quasi-static mechanics, one often models the material’s constitu-
tive response using a strain-rate dependent law. One naturally does this when the material possesses a
time dependent relaxation mechanism. But it is also common to introduce an artificial strain-rate depen-
dency to regularise numerical solutions of a rate-independent material, e.g. in (crystal) plasticity or damage
simulations.

In this setting, we most frequently solve the balance of linear momentum in the following form

∇ · σ (ε, ε̇, t, . . .) = 0 (1)

i.e. the divergence of the stress σ has to vanish everywhere in the domain (see Appendix A for our nomen-
clature). This problem is generally hard to solve because of the complexity of the stress response at the
material point level, as it often depends non-linearly on the strain ε, the strain rate ε̇, the time t, and the
loading history (carried in a number of internal variables). This partial differential equation thus has to be
solved numerically. To this end, one typically discretises space, resulting in a system of (non-)linear algebraic
equations

f {σ(ε, ε̇, t, . . .)} = 0 (2)

where f{•} is a linear or non-linear functional related to the discretisation in space, whereby • refers to a
discrete set of variables.

By and large, the most popular protocol for solving the system of non-linear equations in Eq. (2) is the
Newton-Raphson procedure. This procedure employs a first-order approximation of Eq. (2) in the neigh-
bourhood of an approximate solution εi, resulting in a linear system of the form

∂f

∂ε

∣∣∣∣
εi

δε = −f(εi, . . .) (3)

that can be solved for δε. The approximate solution is then updated according to

εi+1 = εi + δε (4)

These so-called iterations are repeated until Eq. (2) is satisfied with sufficient precision. In many cases σ
contains ordinary differential equations in time to describe the evolution of the internal variables. These
hidden ordinary differential equations are solved by discretising time, often by some finite difference scheme.
As a result, Eq. (3) is employed consecutively at different points in time.

The computational efficiency of such a scheme relies crucially on i) the accuracy of the first order approx-
imation in Eq. (3) [1] and ii) the accuracy of the initial guess ε0 that is iteratively refined using Eq. (4). i)
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requires a consistent tangent at the material point level and its derivation is usually well established [2–4].
For ii) the obvious choice is to take the last known converged state as the starting point ε0, however, we
show that for time-dependent problems a better choice can be made. It involves a subtle interaction between
the non-linear solver and the time dependence. This interaction becomes obvious in the derivation of i) by
properly linearising all terms that are part of the discrete time integration scheme. More specifically, we show
that a step along the discrete time axis will lead to a viscous flow, regardless of how the system is driven.
This is incorporated by an additional stress (or force) term present only in the first iteration after the time
increment amending to a logical choice for ii).

The purpose of this note is to present a derivation that naturally leads to the additional term for the first
iteration of a new time increment. Furthermore, we show that the additional term can be easily interpreted as
an initial guess for the Newton-Raphson protocol. We benchmark the improvement by solving the mechanical
response of a dual-phase steel microstructure using a modern numerical method based on the Fast Fourier
Transform (FFT) [5–7]. A reduction of the computation time of around 45% is observed in comparison to
taking the last known converged state as an initial guess. We emphasise that we present the procedure on a
relatively simple model, but that it applies to more complex models as well. We illustrate this by considering
also a more involved time integration scheme, and thereby show that the procedure is straightforward to
apply.

The remainder of this note is structured as follows: A visco-plastic (time-dependent) material model is
introduced together with its linearisation. We thereby distinguish two components: the classical consistent
tangent used in every iteration, and an additional driving force inserted during the first iteration. The
performance of the classical and improved schemes is examined lastly.

2 Material model

A relatively simple visco-plastic model, based on the small strain assumption, is used here. The employed
model is described in [3, chapter 11]. The stress is set by the elastic strain using Hooke’s law. Thereto, the
total strain ε is additively split into an elastic part εe and a plastic part εp as

ε ≡ εe + εp (5)

and thus
σ ≡ 4Ce : εe (6)

with
4Ce ≡ K II + 2G 4Id (7)

where the fourth-order tensor 4Id ≡ 4Is − II/3 projects an arbitrary tensor A onto its deviatoric part
Ad = A − tr(A)I/3. The elastic material parameters are the bulk modulus K and the shear modulus G,
which depend on Young’s modulus E and Poisson’s ratio ν in the usual way. The evolution of plastic strain
is given by the flow rule as

ε̇p ≡ γ̇N (8)

whereby the direction of the plastic flow is given by

N ≡ 3

2

σd

σeq
(9)

where σd is the deviatoric part of the stress (σd = 4Id : σ) and σeq is the Von Mises equivalent stress

(σeq ≡
√

3/2σd : σd). The magnitude of the plastic flow γ̇ is given by Norton’s rule as

γ̇ ≡ γ̇0

(
σeq
σs

)1/m

(10)

The material constants are: the reference strain rate γ̇0, the rate-sensitivity exponent m and the yield stress
of the material σs. Note that γ̇ is by construction nonnegative, and depends non-linearly on the stress σ,
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and therefore on the plastic strain εp, through the rate sensitivity exponent m. We, furthermore, let the
yield stress σs evolve with the accumulated plastic strain as follows:

σs ≡ σo + h εp (11)

where σ0 is the initial yield stress and h is the hardening modulus. If h = 0 then the model behaves perfectly
plastically, whereas it hardens when h > 0 and softens when h < 0. Finally, the accumulated plastic strain
εp is determined from

εp ≡
t∫

0

γ̇dt′ (12)

To illustrate the behaviour of the visco-plastic model introduced above, several normalised stress-strain curves
for a single material point are presented in Fig. 1. Fig. 1(a) shows the behaviour of the visco-plastic model
for several values of the rate sensitivity exponent m. A sharp transition from the elastic to the plastic regime,
as would be observed for rate-independent elasto-plastic behaviour, can be approximated by a small value
for the rate sensitivity exponent m. The different regimes of hardening, perfect plasticity and softening are
shown in Fig. 1(b).
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(a) Influence of the rate sensitivity exponent m.
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(b) Influence of the hardening modulus h.

Figure 1. Normalised stress-strain curves for an individual visco-plastic material point for σ0/E = 0.01 and an
applied strain rate of ε̇eq/γ̇0 = 10 in the normal direction. The equivalent strain rate is defined work conjugate to the
equivalent stress: εeq ≡

√
2/3 εd : εd.

3 Time discretisation

The numerical treatment proceeds by discretising the material model in time, for which several choices
exist. We employ the implicit Backward Euler protocol, known for its ease of implementation and robust
convergence. The procedure is however general, which we demonstrate using the more advanced generalised
trapezoidal integration scheme in C.

Using the Backward Euler protocol, the discrete version of the flow rule in Eq. (8) reads

∆εp = ∆γ N t+∆t (13)

where
∆γ = γt+∆t − γt = ∆t γ̇t+∆t (14)

To compute the unknowns γt+∆t and N t+∆t, we apply the common approach of performing a radial return
map. This involves formulating a trial state tr•, in which a strain increment is assumed fully elastic, from
which the plastic evolution is sought to end up in an admissible state. For a model like the one presented here,
this involves solving a single scalar, yet non-linear, equation, as it is easily shown that the stress directions
in the trial state are the same as that of the admissible state. We may therefore write N t+∆t = trN , see e.g.
[3] for details.
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4 Consistent linearisation of the stress update around an arbitrary reference
state

The consistent tangent relates, to the first order, a perturbation in the strain, δε, to the resulting perturbation
in the stress, δσ. In this section we derive this tangent from multivariable linearisation around a fully known
‘reference state’. The reference state is left undefined for the moment, but will be clarified below. This
approach allows us to clearly identify the terms that are proposed as improvement.

The procedure begins by writing all unknown variables at time t+ ∆t as a fully known reference state •∗
plus a small perturbation δ•. In terms of our model we have:

σt+∆t ≡ σ∗ + δσ (15)

εt+∆t ≡ ε∗ + δε (16)

εt+∆t
p ≡ ε∗p + δεp (17)

N t+∆t ≡N∗ + δN (18)

γt+∆t ≡ γ∗ + δγ (19)

γ̇t+∆t ≡ γ̇∗ + δγ̇ (20)

The next step is to linearise all the equations used in the calculation of the constitutive response around the
reference state •∗. The elastic law in Eq. (6) is already linear and hence gives

δσ = 4Ce : (δε− δεp) (21)

A first-order approximation of δεp is slightly more involved as it is non-linear and time-dependent. Its
derivation starts from Eq. (13) and eventually leads to

δεp = δγN∗ +
(
γ∗ − γ∗−∆t

)︸ ︷︷ ︸
∆γ∗

δN (22)

Note that ∆γ∗ and N∗ are known quantities. The derivation continues by developing expressions for δγ and
δN , to acquire a closed-form expression for the small variation of plastic strain δεp. To obtain δN we use
the result from the radial return map, so that δN = δ(trN). The latter can be entirely evaluated in the trial
state, and results in

δN =

[
3G
trσ∗eq

4Id − 2G
trσ∗eq

N∗N∗
]

: δε (23)

To find δγ, we combine the results of Eqs. (14), (19) and (20) into

γ∗ − γt −∆tγ̇∗ + δγ −∆tδγ̇ = 0 (24)

By linearising Eq. (10) around •∗, the small variation δγ̇ can be written as

δγ̇ =
∂γ̇

∂σeq
δσeq +

∂γ̇

∂σs
δσs =

α∗

∆t

(
2N∗ : δε− 3δγ −

σ∗eq h δγ

σ∗sG

)
, α∗ =

γ̇0G∆t

mσ∗s

(
σ∗eq
σ∗s

) 1
m−1

(25)

Thereby we have employed the results of Eqs. (21), (22) and (23).
A closed-form expression for δγ can now be established by substitution of Eq. (25) in Eq. (24). Substi-

tuting that expression for δγ in Eq. (22) and the resulting expression in Eq. (21) finally gives the consistent
linearisation of the stress update, as follows

δσ = 4C∗vp : δε− Gβ∗

α∗
(
∆tγ̇∗ − γ∗ + γt

)
N∗ (26)
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where the consistent tangent 4C∗vp for the visco-plastic model reads

4C∗vp = 4Ce − 2Gβ∗N∗N∗ − ∆γ∗4G2

trσ∗eq

[
3

2
4Id −N∗N∗

]
(27)

and

β∗ =
2α∗

1 + 3α∗ +
σ∗
eqh

σ∗
sG
α∗

(28)

which can be further reorganised1 to:

δσ = 4C∗vp :
[
δε−

(
∆tγ̇∗ − γ∗ + γt

)
κ∗N∗

]
(29)

with

κ∗ =
1(

1 +
σ∗
eqh

σ∗
sG
α∗
) (30)

Note how the choice of the reference state •∗ determines at which state the consistent tangent is evaluated
and that it does not affect the expression itself. It does, however, affect the relevance of the second term
between brackets in Eq. (29), as we will see next.

5 Reference state

5.1 Recovering the classic Newton-Raphson iteration

We now define the reference state denoted by •∗. We first consider ‘ordinary’ Newton-Raphson iterations
within one discrete time step •t+∆t as for example in Eq. (4). In this case, an iterative update of the
unknown(s) is obtained by linearising around the last known iterative state, denoted by the iteration counter
i. In this case, Eq. (29) reduces to the classical [2–4]:

δσ = 4Ci
vp : δε (31)

where the reference state •∗ ≡ •i at t + ∆t, the latter not being explicitly included in the notation. This
result follows from Eq. (29) as γ∗ ≡ γi and γ̇∗ ≡ γ̇i. Recognising the discretised strain rate (∆tγ̇i ≡ γi − γt)
we thus find the three rightmost terms in Eq. (29) to cancel.

5.2 Obtaining the improved initial guess

For the first iteration of every new time increment, we have to be careful. Commonly, one simply uses the
last available tangent as in Eq. (31). This would amend to taking the tangent of the last iteration i of the
previous time step (at time t), that resulted in a converged state. We argue that when taking this converged
state as our reference state for linearisation (•∗ ≡ •t), an extra term appears in the stress update:

δσ = 4Ct
vp :

[
δε−∆t γ̇tκtN t

]
(32)

where 4Ct
vp is the consistent tangent according to Eq. (27) evaluated at the converged state at time t. Note

that this result trivially follows from Eq. (29) as γ∗ ≡ γt and the two rightmost terms cancel. The extra
term in Eq. (32) (cf. Eq. (31)) can be interpreted as the increase in plastic strain εp over the time step ∆t
as caused by the stress σ at time t. Note that the magnitude of this plastic strain increase computed from
∆t γ̇t is scaled with the variable κt, which takes into account the effect of the plastic strain increase on the
yield stress, i.e. κt > 1 for hardening, κt = 1 for perfect plasticity and κt < 1 for softening. Naturally, this
expected increase in plastic strain, based on variables at time t, is only an estimate. As a result, δσ is only
a prediction of the incremental change in stress. This prediction thereby effectively sets an initial guess from
which to start the regular Newton-Raphson iterations.

1 It may be helpful to realise that the following identity holds: Gβ∗

α∗ = κ∗ (2G− 3Gβ∗)
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The avid reader may wonder if for the first iteration after a time increment, i.e. the situation described
above, it would not simply suffice to use an explicit increment to yield the same result. It is emphasised that
interchanging Eq. (14) with an explicit substitute (e.g. Forward Euler) yields: i) a different expression for
the consistent tangent 4Ct

vp in Eq. (32) and ii) no compensation for the change in yield stress as the variable
κt does not appear.

To conclude, it is emphasised that the extra term in Eq. (32) is a result of the load increment and the
time-dependent material model. It is therefore only included in the first iteration after a time increment. In
the regime where the plastic flow is negligible (γ̇t ≈ 0) or for rate-independent material models, there is no
contribution of the improved initial guess.

6 Case study

To show its relevance, we employ the improved initial guess in a case study. Thereby we make use of a modern
numerical solution procedure for micro-mechanical problems, that is based on the Fast Fourier Transform
(FFT). As extensively described in [5], like in the Finite Element Method, Eq. (1) is solved in a weak sense.
The resulting volume integral is evaluated numerically by introducing nodal unknowns that are distributed on
a regular grid (i.e. pixels or voxels). Owing to this choice, they can be interpolated using globally supported
trigonometric polynomials. Numerical quadrature then proceeds by evaluating equally weighted quadrature
points that coincide with the nodes. The result is a scheme in which essentially local equilibrium equations
are coupled by the application of the Fourier transform and its inverse, which can be done using efficient and
mature FFT libraries. The details of how the improved initial guess appears in the algorithm proposed by
[5] are given in B.

We study the efficiency of our improvement based on a realistic example in which we compute the mi-
croscopic response of a microstructure that is subjected to a macroscopic shear strain. The microstructure
is taken from a micrograph of a commercial dual-phase steel sample (DP600), acquired using a scanning
electron microscope (SEM), as shown in Fig. 2(a). Dual-phase steel consists of two main constituents: i)
ferrite, a soft and ductile phase, which shows up in dark in the micrograph in Fig. 2(a) and ii) martensite, a
hard and brittle phase, which shows up bright in Fig. 2(a) and has a volume fraction of about 17% in this
image of 801x801 pixels. For our case study we assume that the microstructure is continuous and consists
only of these two phases, which we both assume to obey the visco-plastic model presented above. To this
end the micrograph in Fig. 2(a) is thresholded2 to obtain a binary image. Each pixel then corresponds to a
nodal point for the FFT-solver, whereby the material parameters are different depending on the phase, see
Table 1. Note that we consider three cases: hardening, perfect plasticity, and softening. The parameters for
these cases are loosely based on [9] and [10].

In the simulations, the specimen is subject to periodic boundary conditions (as so required by our solver,
but common in this type of homogenisation problems). An average strain ε̄ is prescribed which induces a
pure shear strain according to

ε̄ =

√
3

2
εappl (~ex~ex − ~ey~ey) (33)

where εappl is the applied strain and ~ex and ~ey are the unit vectors, respectively in the horizontal and vertical
direction. For the simulations with hardening and perfect plasticity, the applied strain was incrementally
increased to εappl = 0.05 at a strain rate of ε̇appl = 0.01 [1/s] in 100 time steps. For the test cases that
include softening, the equivalent strain was incrementally increased to εappl = 0.01 with the same strain rate
and number of time steps.

Figs. 2(b) and 2(c) give an example of the effect of the extra term using the perfectly plastic material
model. The residual is visualised based on the computation of the mechanical equilibrium and normalised
with the yield stress of martensite. It illustrates how, for this case, the initial guess is nearly perfect if the
extra term is employed, while it is quite poor without it. In particular, the relative residuals are as low as
10−5 - 10−9, whereas the relative residuals for the initial guess using [5] are in the order of 10−2 - 10−5.

2 Both the micrograph and the corresponding binary image obtained by thresholding have been taken from the GooseFFT
repository [6, 7], see [8] for the experimental and thresholding protocol.
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Table 1. Material parameters as assumed for the ferrite and martensite phases.

Parameter E [GPa] ν [-] γ̇0 [1/s] m [-] σ0 [MPa] h [MPa]
Hard. Perf.pl. Soft.

Ferrite 206.824 0.3 0.001 0.05 425 940 0 -940
Martensite 206.824 0.3 0.001 0.05 1180 1740 0 -1740

(a) SEM image after scanning. (b) Initial guess as suggested in [5]. (c) Initial guess using the extra term
of Eq. (32).

Figure 2. SEM image (801 x 801 pixels) and visualisation of the magnitude of the residual of the mechanical
equilibrium equation normalised with the yield stress of martensite at the start of the Newton-Raphson iterations on
the SEM micrograph for perfect visco-plasticity at εappl = 5.0 · 10−2.

The average CPU time used to compute the mechanical response of the microstructure is shown in
Fig. 3(a). For each considered case, the extra term decreases the CPU time by approximately 45%, by
reducing the number of Newton-Raphson iterations per load increment. In particular since the initial guess is
closer to the final solution, the convergence of the Newton-Raphson protocol is improved. This is confirmed by
the convergence of the relative residual norm in Table 2. As the extra term essentially calculates the increase
in plastic strain using the plastic strain rate from the previous time step, it is most accurate where there is
little change in plastic strain rate between different time steps, thus especially for the steady state regime
of the perfectly visco-plastic model. This is further illustrated in Fig. 3(b), which shows the cumulative
number of iterations as a function of the imposed strain. As observed, the improvement becomes clearly
visible once the yield stress of the material is reached and the plastic strain starts to develop at a significant
rate. For the overlapping curves of the hardening and perfectly plastic case, the effect of the improvement is
observable from an applied strain of εappl = 0.005 onwards. At εappl = 0.02, the predictability of the plastic
strain increases and the improvement distinguishes itself even further. Due to the more localised nature of
the plastic strain as the result of softening, the improvement in terms of the number of Newton-Raphson
iterations is not monotonic.

When varying the time-step size ∆t or the rate-sensitivity exponent m, as shown in Fig. 4, the average
number of Newton-Raphson iterations used per load increment is consistently halved by the improvement.
Note that the number of time steps was increased with decreasing rate-sensitivity exponent m, such that the
ratio between the two was kept constant.

Table 2. Convergence of the norm of the mechanical equilibrium equation normalised with the yield stress of
martensite during Newton-Raphson iterations for the classical and improved initial guess, measured at εappl = 0.05
for the hardening and perfectly plastic case, and at εappl = 0.0075 for softening, i.e. well in the plastic regime.

Iteration Hardening Perfect plasticity Softening
Classical Improved Classical Improved Classical Improved

i = 0 4.86E+00 5.86E-04 4.64E+00 2.77E-04 3.26E+00 1.42E-03
i = 1 1.22E-01 1.49E-08 1.62E-01 1.35E-08 1.36E-01 3.30E-07
i = 2 4.96E-04 - 6.87E-04 - 2.02E-03 -
i = 3 2.47E-08 - 1.01E-07 - 1.58E-06 -
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(a) Total CPU time averaged over three runs
for different hardening parameters.
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Classical, perfect plasticity
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(b) Cumulative number of Newton-Raphson iterations versus
applied strain εappl with overlapping curves for hardening and
perfect plasticity.

Figure 3. Comparison of the numerical performance of the initial guess from [5] (classical) and the initial guess from
this work (improved) for visco-plasticity with hardening, perfect plasticity and softening.

Classical, hardening
Improved, hardening

(a) Influence of the time-step ∆t.

Classical, hardening
Improved, hardening

(b) Influence of the rate-sensitivity exponent m.

Figure 4. Comparison of the average number of Newton-Raphson iterations per time increment of the initial guess
from [5] (classical) and the initial guess from this work (improved) for visco-plasticity with hardening, measured on
a 101x101 section of the SEM image of Fig. 2(a).
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7 Synopsis

A general linearisation procedure for the consistent tangent of a small-strain visco-plastic material model was
presented in this note. The procedure is based on multi-variable linearisation around a so-called “reference
state”. In particular, the linearisation of the time integration scheme (i.e. Eq. (24)) was found to yield an
extra term compared to classical expressions [2–4], which only appears because the material response is time-
dependent. It has the effect of yielding a very accurate initial guess for the Newton-Raphson protocol based
on the ongoing viscous flow. It was shown, using a modern variational FFT-based solver, that the extra term
reduces both the CPU time and the number of Newton-Raphson iterations by around a factor two.
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A Nomenclature

We use boldface symbols to denote vectors a = ai ~ei, second-order tensors, A = Aij ~ei~ej , and fourth-order
tensors, 4A = Aijkl ~ei~ej~ek~el. A tensor contraction is denoted using centered dot, e.g. C = A ·B
corresponds to Cik = AijBjk. A double tensor contraction is denoted using colon, e.g. c = A : B
corresponds to c = AijBji. I ≡ δij ~ei~ej is a second-order unit tensor, and II ≡ δijδkl ~ei~ej~ek~el corresponds
to a dyadic product of two second-order unit tensors. tr(A) ≡ Aii/3 is the trace of second-order tensor.
∇ ·A corresponds to the divergence operator ∂Aij/∂xj . Note that for all index notations a summation of
the three spatial dimensions is implied.

B Implementation of the improved initial guess

We use Algorithm 1 of Ref. [5] whereby the only modification is line 7 of the algorithm, which now reads

GC(t) δε
∗
(0) = −GC(t)

[
E(t+∆t) −E(t) −∆tγ̇tκtN t

]
(34)

see Ref. [5] for nomenclature. Here we only specify that we take all nodes (grid points) visco-plastic and
that γ̇t, κt and N t are columns that collect the nodal quantities. Note also that we use Algorithm 1 of
Ref. [5], without any modification, as reference.

http://dx.doi.org/10.1016/j.jcp.2020.109721
http://arxiv.org/abs/1912.12140
http://dx.doi.org/10.1016/0045-7825(85)90070-2
http://dx.doi.org/10.1061/(ASCE)0733-9399(1990)116:8(1764)
http://dx.doi.org/10.1002/9780470694626
http://dx.doi.org/10.1007/b98904
http://dx.doi.org/10.1002/nme.5481
http://arxiv.org/abs/1601.05970
https://github.com/tdegeus/GooseFFT
http://dx.doi.org/10.1016/j.cma.2016.12.032
http://arxiv.org/abs/1603.08893
http://dx.doi.org/10.1016/j.msea.2016.06.082
http://arxiv.org/abs/1603.08898
http://dx.doi.org/10.1016/j.ijplas.2008.12.012
http://dx.doi.org/10.1016/j.ijplas.2012.09.012


10 Journal of Computational Physics, doi: 10.1016/j.jcp.2020.109721, arXiv: 1912.12140

C Generalised trapezoidal integration

We now generalise our results to the generalised trapezoidal integration scheme, which employs a linear
combination of variables evaluated at time t and at time t+ ∆t through a parameter 0 ≤ θ ≤ 1. Note that
the choice of this parameter allows one to recover the explicit forward Euler scheme when θ = 0 and the
backward Euler scheme when θ = 1. The drawback of the generalised trapezoidal scheme lies in its return
map, which requires that the following set of non-linear equations is solved

εt+∆t
e = trεe −∆γ

[
(1− θ)N t + θN t+∆t

]
∆γ = ∆t

(
(1− θ) γ̇t + θγ̇t+∆t

) (35)

In comparison, the implicit backward Euler scheme (θ = 1) only requires the solution of the latter,
non-linear scalar, equation for ∆γ. Using the generalised trapezoidal integration scheme, Eq. (8) is
discretised as follows

∆εp = ∆γ
(
(1− θ)N t + θN t+∆t

)︸ ︷︷ ︸
Nθ

(36)

where
∆γ = γt+∆t − γt = (1− θ) ∆tγ̇t + θ∆tγ̇t+∆t (37)

After linearising Eq. (36) around •∗, we obtain

δεp = δγN θ +
(
γ∗ − γ∗−∆t

)︸ ︷︷ ︸
∆γ∗

θδN (38)

where the quantities N θ and ∆γ∗ are fully known. The expression for δN is derived by linearising its
definition in Eq. (9) around •∗ as

δN =

[
3G

σ∗eq

4Id − 2G

σ∗eq
N∗N∗

]
: δεe (39)

To find δγ, we combine Eqs. (37), (19) and (20) into

γ∗ − γt − (1− θ) ∆tγ̇t − θ∆tγ̇∗ + δγ − θ∆tδγ̇ = 0 (40)

The small variation δγ̇ is then derived as

δγ̇ =
∂γ̇

∂σeq
δσeq +

∂γ̇

∂σs
δσs =

α∗

∆t

(
2N∗ : δεe −

σ∗eq h δγ

σ∗sG

)
, α∗ =

γ̇0G∆t

mσ∗s

(
σ∗eq
σ∗s

) 1
m−1

(41)

in which α∗ is unaffected by the choice of integration scheme. A closed form expression for δεp can now be
obtained from Eqs. (37–40). This step of the procedure exposes the major disadvantage of the generalised
trapezoidal integration scheme. The lack of co-linearity between trN and N∗ requires a system of
non-linear equations to be solved during the return map, as opposed to the single non-linear scalar equation
for the backward Euler scheme. As a result, both the linearised stress update:

δσ = 4C∗vp : δε− Gβ∗

α∗
(
θ∆tγ̇∗ + (1− θ) ∆tγ̇t − γ∗ + γt

) (
4P ∗

)−1
: N θ (42)

and the consistent tangent:

4C∗vp = 4Ce − 2Gθβ∗
(

4P ∗
)−1

: N θN∗ − ∆γ∗4G2θ

σ∗eq

(
4P ∗

)−1
:
[

3
2

4Id −N∗N∗
]

(43)

contain the inverse of the fourth-order tensor

4P ∗ =

(
1 +

3Gθ∆γ∗

σ∗eq

)
4Id − 2Gθ∆γ∗

σ∗eq
N∗N∗ (44)
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The constant β∗ reads

β∗ =
2α∗

1 + 2α∗θN θ : N∗ +
σ∗
eqh

σ∗
sG
θα∗

(45)

Note that in the equation above the implicit backward Euler scheme is recovered for θ = 1 as the
product N θ : N∗ = 3

2 after applying the linearisation as defined in Eq. (18).
Similar to the main text, we have two relevant choices for the reference state •∗. An ‘ordinary’
Newton-Raphson iteration is recovered by taking •∗ ≡ •i at t+ ∆t. In this case Eq. (42) reduces to the
classical

δσ = 4Ci
vp : δε (46)

This result follows from combining the discretised strain rate Eq. (37) with Eq. (42), cancelling all four
terms within brackets in the latter. The improved initial guess is found by taking •∗ ≡ •t. In this case
γ∗ ≡ γt reducing the terms within brackets of Eq. (42) to ∆tγ̇t. After some reorganisation, we can write
the final result for the stress update in a form identical to the main text, namely

δσ = 4Ct
vp :

[
δε−∆tγ̇tκtN t

]
(47)

in which the change of integration scheme is only observed by a small change in the constant

κt =
1(

1 +
σ∗
eqh

σ∗
sG
θα∗

) (48)

Indeed, for θ = 1 Eq. (30) is recovered. Fig. 5 shows the average number of Newton-Raphson iterations
used per load increment for different time-step sizes ∆t using the trapezoidal scheme with θ = 0.5. The
improved initial guess gives results consistent with that of the backward Euler schemes as the
Newton-Raphson iterations are approximately halved, saving significant CPU-time.

Classical, hardening
Improved, hardening

Figure 5. Comparison of the average number of Newton-Raphson iterations versus the time-step ∆t of the initial
guess from [5] (classical) and the initial guess from this work (improved), using visco-plasticity with hardening and the
generalised trapezoidal integration scheme with θ = 0.5. These measurements were performed on a 101x101 section
of the SEM image of Fig. 2(a).
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