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Abstract

We propose a spectral method by using the Jacobi functions for computing eigenvalue gaps and their
distribution statistics of the fractional Schrodinger operator (FSO). In the problem, in order to get reliable
gaps distribution statistics, we have to calculate accurately and efficiently a very large number of eigenvalues,
e.g. up to thousands or even millions eigenvalues, of an eigenvalue problem related to the FSO. For simplicity,
we start with the eigenvalue problem of FSO in one dimension (1D), reformulate it into a variational
formulation and then discretize it by using the Jacobi spectral method. Our numerical results demonstrate
that the proposed Jacobi spectral method has several advantages over the existing finite difference method
(FDM) and finite element method (FEM) for the problem: (i) the Jacobi spectral method is spectral accurate,
while the FDM and FEM are only first order accurate; and more importantly (ii) under a fixed number of
degree of freedoms M, the Jacobi spectral method can calculate accurately a large number of eigenvalues
with the number proportional to M, while the FDM and FEM perform badly when a large number of
eigenvalues need to be calculated. Thus the proposed Jacobi spectral method is extremely suitable and
demanded for the discretization of an eigenvalue problem when a large number of eigenvalues need to be
calculated. Then the Jacobi spectral method is applied to study numerically the asymptotics of the nearest
neighbour gaps, average gaps, minimum gaps, normalized gaps and their distribution statistics in 1D. Based
on our numerical results, several interesting numerical observations (or conjectures) about eigenvalue gaps
and their distribution statistics of the FSO in 1D are formulated. Finally, the Jacobi spectral method
is extended to the directional fractional Schrodinger operator in high dimensions and extensive numerical
results about eigenvalue gaps and their distribution statistics are reported.

Keywords: fractional Schrodinger operator, Jacobi spectral method, nearest neighbour gaps, average
gaps, minimum gaps, normalized gaps, gaps distribution statistics.

1. Introduction

Consider the eigenvalue problem of the fractional Schrédinger operator (FSO) (or time-independent
fractional Schrédinger equation) in one dimension (1D):
Find X € R and a nonzero real-valued function u(z) # 0 such that

Lrso u(z) == [(—0pe)®/? + V(m)} u(z) = A u(z), x € Q:=(a,b),
u(z) =0, x € Q°:=R\Q,
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where 0 < a < 2, V(x) € L?(f) is a given real-valued function and the fractional Laplacian operator (FLO)
(—022)*/? is defined via the Fourier transform (see [63, 24} 40] and references therein) as

(=002)/? u(z) = FHEI*(Fu)(€)) @€ eR, (1.2)

with F and F~! the Fourier transform and inverse Fourier transform [16} 40} [31], respectively. We remark
here that an alternative way to define (—d,,)®/? is through the principle value integral (see [56} 58, 25| 43, 24]
and references therein) as

(—GM)O‘/2 u(z) = CY /R u|(f);PUJJF(‘Z)dy7 r € R, (1.3)

where Cf' is a constant whose value can be computed explicitly as

co_ 2T(+0)/2)  ol((1+0)/2)
L onl2D(—a/2)]  20-enl/2D0(1 — a/2)’

Another remark here is that the problem is equivalent to the problem defined on the whole z-axis
R by taking the potential V(z) = +oo for z € Q°. When a = 2, collapses to the (classical) time-
independent Schrodinger equation (or a standard Sturm-Liouville eigenvalue problem) which has been widely
used for determining energy levels and their corresponding stationary states of a quantum particle within
an external potential V(z) in quantum physics and chemistry [23] and many other areas [42, 20} 22]. When
a = 1, the FLO (—A)"/2 and its variation (8 — A)'/2? with 3 > 0 a constant have been widely adopted
in representing Coulomb interaction and dipole-dipole interaction in two dimensions [5] [7, 17, [34] and
modeling relativistic quantum mechanics for boson star [28] [6]. When 0 < o < 2, is usually referred
as the time-independent fractional Schrodinger equation (or fractional eigenvalue problem) which has been
widely adopted for computing energy levels and their stationary states in fractional quantum mechanics
[43, [7, [I7], polariton condensation and quantum fluids of lights [I8] 50], while the FSO can be interpreted
via the Feynman path integral approach over Brownian-like quantum paths or over the Lévy-like quantum
paths, see [58, [43] [35] and references therein.

Without loss of generality, we assume that V(x) is non-negative, i.e. V(z) > 0 for z € Q. Since all
eigenvalues of are distinct (or all spectrum are discrete and no continuous spectrum), we can rank (or
order) all eigenvalues of as

O< AT <A <. <A< (1.4)

where the times that an eigenvalue \ of appears in the above sequence is the same as its algebraic
multiplicity. When V(z) = 0 for « € Q, all eigenvalues of are simple eigenvalues, i.e. their algebraic
multiplicities are all equal to 1, then all < in can be replaced by <. Define the nearest neighbor gaps
as [33]

SO (N) =A% — A, N=1,23,..., (1.5)
where when N = 1, ie., 65,(1) = A§ — A} := Jg(a) (ie. the difference between the first two smallest
eigenvalues) is called as the fundamental gap of the FSO (L)), which has been studied analytically and/or
numerically for « = 2 [BL[IL 8] and 0 < o < 2 [9], 13]; the minimum gaps as [15], 54]

(N):= i oe (n) =  Inin A1 — An, N=1,2,3,...; (1.6)

the average gaps as [33]

(e o o _ «@ a) _ 'N+1 1 _
6ave(N) E N n§:1 (Snn(n) - N n§:1: ( n+1 An) - T7 N = 1,25 RN (17)
In addition, if there exist constants v > 0 and C' > 0 such that
. A
lim = =C>0, (1.8)
n—+oo NY
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then the normalized gaps (or “unfolding” local statistics in the physics literature) are defined as [33], 53]
6gorm(N) = y?\é/'Jrl_y]%a N:1727 9 (]-9)

where

& 1/~
a._(4n) —1,2,.... 1.10
w=(g) . n (1.10)
Then an interesting question is to study their asymptotics, i.e. the behaviour of 0%, (N), 02,,(N), d%,.(V)
and 6%, (N) when N — +oo, and another interesting and very challenging question is to study the level
spacing distribution P,(s) := limiting distribution of the normalized gaps 6., (N), which is defined as
133, 53]

1<n<N]|o o [*
#{l1<n< ]\Ifnorm(n)«c} No¥ /Pa(s)ds, 0<z<+00, (1.11)
0

where #.S denotes the number of elements in the set S.
When o =2 and V(z) = 0 in (L.1), it collapses to a standard Sturm-Liouville eigenvalue problem of the
Laplacian operator as

Lso u(z) := =04y u(z) = =" () = X u(x), z € Q= (a,b),

u(a) = u(b) = 0. (1.12)

The eigenvalues and their corresponding eigenfunctions of (|1.12)) can be obtained analytically via the sine

series as )
a—o [ nT . (nm(r—a) B
A0=e = (b—a) , un(x) = sin (b—a ), n=1,2,.... (1.13)

32

These results immediately imply that the fundamental gap 0 (o = 2) = =g and

w0 = (G5) - (755) = g+

372

(b—a)?’ N=1.2...
s b [(S2) () |- o0

Sorm(N) =yN 3 —yy *=N+1-N=1,

norm

BIA(N) = 65 (N =1) =

min

; (1.14)

where

2
—a

From the last equation in (1.14]), one can immediately obtain the level spacing distribution defined in (|1.11))
for o =2 as

Py—s(s) =0d(s—1), 5> 0, (1.15)

where §(-) is the Dirac delta function.

When a = 2 and V(z) # 0 in (L.I)), it collapses to a standard Sturm-Liouville eigenvalue problem, which
has been extensively studied in the literature. For analytical results, we refer to [38] 42, 32] and references
therein. For numerical methods and results, we refer to [12, [4] [59] and references therein.

When 0 < a < 2, in general, one cannot find the eigenvalues of the eigenvalue problem analytically
and/or explicitly. For mathematical theories of the eigenvalue problem (1.1}, we refer to [27, 37] and
references therein. Some numerical methods have been proposed to solve numerically, including an
asymptotic method was proposed in [63], a finite element method (FEM) [I4] with piecewise linear element
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was presented in [35] and a finite difference method (FDM) was studied in [26]. The FDM and FEM are
usually first order accurate when 0 < a < 2 and they can be adapted to compute the first several eigenvalues
[35] 26 [14]. However, if we want to calculate accurately and efficiently a very large number of eigenvalues,
e.g. up to thousands or even millions eigenvalues, of the eigenvalue problem in order to obtain a reliable
gaps distribution statistics, the FDM and FEM have severe drawbacks. The main aim of this paper is to
propose a spectral method by using the generalized Jacobi functions for computing different eigenvalue gaps
and their distribution statistics of the fractional eigenvalue problem related to FSO . The proposed
numerical method has at least two advantages: (i) it is spectral accurate, and more importantly (ii) under
a fixed number of degree of freedoms (DOF) M, it can calculate accurately a large number of eigenvalues
with the number proportional to M. Thus this method is a very good candidate for solving our problem,
i.e. to compute eigenvalue gaps and their distribution statistics of the fractional eigenvalue problem .

Based on our extensive numerical results and observations, we speculate the following:

Conjecture (Gaps and their distribution statistics of FSO in (1.1]) without potential) Assume 0 < o < 2
and V(z) =0 in (1.1]), then we have the following asymptotics of its eigenvalues:

ao= () () ARy ey gy [1- 227D 0] nz 1, (1a6)
6%e) (%) 5 -2

«@
where A\ _(n) = (b"_—’ra) (n = 1,2,...) are the eigenvalues of the local fractional Laplacian operator on

Q = (a,b) with homogeneous Dirichlet boundary condition [8]. From (1.16), we obtain immediately the
following approximations of different gaps:

55&1(1\7)%( - ) [aN"‘1+a(a_1)(2+a)N“2+O(Na3)], 0<a<2,

b—a 4
5?11(1):/\3_ ?’ 1<Ol<2,
Sm(V) = § = 0mm(1) =23 = AF, . a=1
FoulN) =Xy~ My (55) Nl 0<a<l,
N > 1. 1.17
[]\[a—l_’_@]\7&—2_’_00\]—1)]7 l1<a<?2, B ( )
[e%
T R R L AR G
|:Na71 _ (bfTa)a AN~ 4 O(NO‘*Q)} , 0<ac<l,
5r?orm(N)z1+O(N72)7 0<Oé<2,

In addition, for the gaps distribution statistics defined in (|1.11]), we have

P,(s) =6d(s—1), s> 0, 0<a<2 (1.18)

The paper is organized as follows. In Section[2] we begin with some scaling properties of and propose
a spectral-Galerkin method by using the generalized Jacobi functions to discretize the fractional eigenvalue
problem . In Section we test the accuracy and resolution capacity (or trust region) with respect to the
DOF M of the proposed Jacobi spectral method and compare it with the existing numerical methods such
as FDM and FEM. In Section [ we apply the proposed numerical method to study numerically asymptotics
of different eigenvalue gaps and their distribution statistics of without potential and formulate several
interesting numerical observations (or conjectures). Similar results are reported in Section [5| for with
potential. Extensions of the numerical method and results to the directional fractional Schrédinger operator
in high dimensions are presented in Section [f] Finally, some conclusions are drawn in Section [7]



2. A Jacobi spectral method

In this section, we begin with a scaling argument to the problem ((1.1)) so as to reduce it on a standard
interval (—1,1), then reformulate it into a variational formulation and discretize the problem by using the
Jacobi spectral method.

2.1. Scaling property
Introduce

a+b I b—a . x—x9
o = = Tr =

0 2 ) 9 17 )
and consider the re-scaled fractional eigenvalue problem:

Find A € R and a real-valued function @(Z) # 0 such that

V(%) =LV (z), x€Q=/a,b), (2.1)

Lrso a(#) == [(—aﬁ)o‘/’Z + f/(:z)] a(@) = Aa@), FeQ:=(-1,1),
W(#) =0, FeQ° :=R\Q;
then we have

Lemma 2.1. Let A be an ezgenvalue of . and @ = u(Z) be the corresponding eigenfunction, then
A= L X is an eigenvalue of (1.1) and v := u(z) = u(z) = a (””f”o) is the corresponding eigenfunction.

Assume that 0 < )\a < /\0‘ < /\a ... are all eigenvalues of ., then 0 < AT < A§ <...<AS < ...
(ranked as in (L.4)) with )\’l = O‘)\O‘ (n=1,2,...) are all eigenvalues of (L.1). In addztwn we have the
scaling property on the different gaps as

6% (N) = L™%6%,(N), with 6% (N) := S\Q - 2\%,

6m1n( ) = 5m1n( )7 thh 5m1n( ) = 121121\[ 6 ( )7

6aave( ) = aésve( )7 with 6:ve Z 6 N= ]" 2’ sl (23)

/N\O‘ 1/y
51?0rm( ) = 5r?orm( )v with 5n0rm( ) = ?j?\(/+1 - g?\t/, y?\tf (L(XNC'> )

which immediately imply that the level spacing distribution P,(s) of (1.1] . ) does not change under the rescaling
-, i.e. the problems and | . ) have the same level spacmg distribution.

Proof: From (|1.3) and noticing (2.1]), a direct computation implies the scaling property of the fractional
Laplacian operator

+ LE) —u(zo + Ly) , .
—aa::v /2 - / =C¢ U(xo Ld
(20" ul) - |1+a U e Two + Le —wo — Lyl Y
= L°cy / T —gite ‘1+a = L7 (=0:)% (), z€Q, zeQ  (24)
Noticing 3
u(z) =0, z€Q° = @) =0, FecQ- (2.5)

Substituting into , noting , we get,
Nu(@) = Na(@) = [(~0:2)F + V(@) @) = [La (~0p)% +V (‘”” onﬂ u(w)

= I {(—am)%’ + LoV (“” _onﬂ u(@) = L [(=0p0) ¥ + V(2)] u(z), z€Q, €0, (2.6)




which immediately implies that u(z) is an eigenfunction of the operator (—0,,)2 + V (z) with the eigenvalue
A=L\

From the assumption (T.4) with Q = (—1,1) that 0 < A < Ay < ... < \® < ... are all eigenvalues
of (2.2)), we get immediately that 0 < A} < A§ < ... < A¥ < ... with AY = L7\ (n = 1,2,...) are all
eigenvalues of the eigenvalue problem (L.I). Then the scaling property on the different gaps (2.3) can be
obtained straightforward by using A% = L¥\% (n =1,2,...). O

2.2. A wvariational formulation

Following those in the literature [39, [30], we introduce the fractional functional space H 2 (R) through
the Fourier transform

H3(R) = {ve D'(R) | ||ollg & < o0}, (2.7)

where the norms are defined as

|(/ €1 |(;v)(5>2d5>5, ||v||g,R(/R<1+|52>%‘|<fv><5>2ds)é; (2.8)

and then the fractional functional space H?% () can be obtained from H % (R) by extension [39, 30]
H2(Q)={v: Q= R|0=Eque H2(R)}, (2.9)
where the norms are defined as
vl = [vlg.0 = [Eavlgr,  Ilvlg == lvllg.0=Eavlgr, Vo€ HZ(Q), (2.10)
with & = Equ: R — R (extension of v from  to R) defined as

i) = (o)) = { o7 TER 2.1)

For any v € H?% (Q), multiplying v to (I.1)) and integrating over Q and using integration by parts, we
obtain the variational (or weak) formulation of the fractional eigenvalue problem (|L.1)) as:
find A € R and 0 # u € H % (1), such that

a(u,v) = A b(u,v), Yo € H? (), (2.12)

N)

where the bilinear forms a(-,-) and b(-,-) are given as
a(u,v) = / [(=022) 2 u+ V(2)u] vdz = / [(—02) 30 (—02) §v + V(z)uv] dz,
Q Q (2.13)

b(u,v) = /Qu(a:)v(x)dm, Vu,v € HZ ().

2.3. A spectral discretization by using the Jacobi functions

Since we are mainly interested in gaps and their distribution statistics, from the results in Lemma 2.1,
without loss of generality, from now on, we always assume that Q = (—1,1), i.e. a = —1 and b =1 in (L.1).

Let {Pn% ’%(x)}j’fzo denote the classical Jacobi polynomials (or Gegenbauer polynomials) which are or-
thogonal with respect to the weight function w? % (z) = (1 — 22)% over the interval (-1, 1), i.e.

1
/Pf’f(x)P%’E(m)w%a%(a?)dx:Cn5nm7 nm=0,12,..., (2.14)

where §,,.,, is the kronecker delta and

22t DPn+a/2+1)?

C2n+a+1T(n+a+1)n!
6

Cn

n=0,1,2.... (2.15)



Define the generalized Jacobi functions

Tt T @)= (1-2)5P (2) =wS S () P % (2), —1<x<1, n=012,..., (2.16)
then by Theorem 2 in Ref. [44], we have
a _—a _a T 1 a a
(—0u0) 2 Tn 27 2 (2) = MPHZ’Z(@, l<z<l, n=01,2.... (2.17)

n!

Combining ([2.16)) and (2.17]), we obtain

—1 —1
1 1
_/ (=022) ¥ Tn *" 2 () (—0pe) 1 T *" * (1) de/ (n+7l?é+ >Pn272<x) Im > ?(x) dx
F_(;H-oz—i— y B | (249
= — P22 (x) P27 (z)w? % () da
! ~1
20H1T(n 4+ /2 4+ 1)?
= =0,1,2
(n)2(2n+a+1) Onm, - mym =0, 1,
Introduce
V2 1n! _a _a
bn() : ntoadtn TP (), —1<z<1, n=0,1,2.... (2.19)

= Qa/2+1/2F(n + a/2 + 1)

Let M > 0 be a positive integer and define the finite dimensional space (which is an approximate subspace
of H?(Q)) as
Was :=span {¢n,(x), 0 <m < M —1}, (2.20)
then a Jacobi spectral method (JSM) for (2.12) is given as:
Find Ay € R and 0 # up; € W)y such that

a(uM,vM) = A\y b(UM7’()M), Yoy € Wy (221)

In order to cast the eigenvalue problem ([2.21) into matrix form, we express uy; € Wy, as a combination
of the basis functions as

M-—1
up () = Y fy Gm(x), 1<z <L (2.22)
m=0

Plugging (2.22)) into (2.21]) and noticing (2.18)), after some detailed computation, we obtain the following
standard matrix eigenvalue problem:

Iy +V)U =My BU, (2.23)
where U = (i, @1, -+ ,tp—1)T € RM is the eigenvector, Ip; is the M x M identity matrix, and V =
('Unm,)OSn,mSM—l S RMXM and B = (bnm)OSn,mSM—l S RIVIXM are giVen as

1
o nom=0,1,..., M —1. (2.24)
brm :/ O ()P (x)d,
-1

Plugging (2.19) into the second equation in (2.24)), after a detailed computation, we get

n—m

(-1)="/7@2n+a+1)2m+a+ DI (a+ 1)(n +m)!
bum = 20kt mHID (o + 25 4+ 0(§ + 252 + DI(§ + 250 + 1) (252)!
0, n + m odd.

n + m even, (2.25)



If V(z) = 0, then V = 0. Of course, if V() # 0, then the integrals in the first equation in (2.24) can
be computed numerically via numerical quadratures with spectral accuracy [52, [I1]. Finally the matrix
eigenvalue problem ([2.23)) can be solved numerically by the standard eigenvalue solvers such as QR-method
[46).

We remark here that different numerical methods have been proposed in the literature for discretizing
the fractional Laplacian operator (—d,,)*/? via the formulation or or their equivalent forms for
numerical simulation of fractional partial differential equations, see [41], 62} 2] 44}, 49] 53], 21] and references
therein. In fact, a method to discretize the fractional Laplacian operator (fam)a/ 2 can directly generate
a method to solve the fractional eigenvalue problem . For example, a finite element method (FEM)
with piecewise linear elements was proposed and analyzed in [35] [14] for computing the eigenvalues of .
Similarly, if we adopt the standard finite difference method to discretize the fractional Laplacian operator
(=0 )®/? [19, &) in (L-I), we can obtain a finite difference method (FDM) for computing the eigenvalues
of . The details are omitted here for brevity.

3. Accuracy and comparison with existing methods

In this section, we test the accuracy and resolution capacity of the Jacobi specral method (JSM) presented
in the previous section and compare it with the fractional centered finite difference method (FDM) proposed
in [62, 19] and the finite element method (FEM) with piecewise linear element proposed in [35] for the
eigenvalue problem (1.1)) with = (—1,1). The ‘exact’ eigenvalues A (n = 1,2, ...) are obtained numerically
by using the JSM (2.21) under a very large DOF M = My, e.g. My = 12800. Let A} ), be the numerical
approximation of AY (n =1,2,..., M) obtained by a numerical method with the DOF chosen as M. Define
the absolute and relative errors of A% as

PP
ea = |)\Oé - A?:;M ) ea = 77“1\47 n= 172a"'7 (31)

n n n,r A
n
respectively.

3.1. Accuracy test

We first test the convergence rates of different numerical methods for the eigenvalue problem
including the JSM (2.21)), FEM [35, [14] and FDM [62, 19, [26]. Table [1] displays the absolute errors of
computing the first eigenvalue of with V(z) = 0 and different o by using our JSM , FEM [35]
and FDM [62, [19]; and Table [2] lists the absolute errors of computing the first, second, fifth and tenth
eigenvalues of with @ = 0.5 and V(z) = 0 by using those methods. For comparison with existing
results, Table [3|lists the first three eigenvalues of with V() = 0 and different « obtained by using our
JSM under the DOF M = 160 and the asymptotic method in [63] under the DOF M = 5000. Figure
shows convergence rates of our JSM for computing the first, second, fifth and tenth eigenvalues of

(1.1) with V(z) = 0 and different «; and Figure |2|lists similar results of (1.1)) with V' (z) = “—22 and different
a.

From Tabs. [1] & ] and Figs. [1] & [l and extensive additional results not shown here for brevity, we can
draw the following conclusions: (i) For fixed DOF M and a € (0,2], the errors from our JSM are
significantly smaller than those from the FEM [35] and FDM [62, [19] (cf. Tabs. [[] & [2). (ii) Both the FEM
[35] and FDM [62], 19] converge almost quadratically and linearly with respect to the DOF M when a = 2
and 0 < a < 2, respectively (cf. Tabs. |1| & . (iii) Our JSM method converges spectrally and super-
linearly (or sub-spectrally) with respect to the DOF M when o« = 2 and 0 < « < 2, respectively (cf. Fig.
& . (iv) In Tab. |3] the numerical results reported by our JSM have at least eight significant digits
when the DOF M > 160, while the results by the asymptotic method in [63] have at most four significant
digits even when the DOF M = 5000! Thus our JSM method is significantly accurate than those
low-order numerical methods in the literatures for computing eigenvalues of the eigenvalue problem .
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M=2 | M=4 M =38 M=16 | M=32 | M=64 | M =128 | M = 256

JSM | 3.63E-5 | 8.47E-9 | 1.36E-12 | 1.36E-12 | 1.39E-12 | 1.40E-12 | 1.17E-12 | 3.62E-12
a=2.0 | FEM | 5.32E-1 | 1.29E-1 | 3.18E-2 7.92E-3 1.97E-3 | 4.87E-4 1.16E-4 | 2.32E-5
FDM | 4.67E-1 | 1.24E-1 | 3.15E-2 7.90E-3 1.97E-3 | 4.87E-4 1.16E-4 | 2.32E-5

JSM | 3.18E-5 | 1.68E-8 | 1.78E-11 | 2.49E-12 | 2.55E-12 | 2.24E-12 | 3.08E-12 | 2.12E-12
a=195| FEM | 496E-1 | 1.16E-2 | 2.79E-2 6.86E-3 1.72E-3 | 4.49E-4 1.24E-4 | 3.78E-5
FDM | 2.31E-1 | 2.86E-2 | 5.16E-3 5.41E-4 | 2.75E-5 7.56E-6 3.76E-6 | 1.18E-6

JSM | 2.31E-6 | 7.17E-7 | 1.57E-8 | 1.72E-10 | 2.16E-12 | 1.02E-12 | 6.64E-13 | 1.41E-12
a=15 | FEM | 2.72E-1 | 6.86E-2 | 2.55E-2 1.18E-2 5.86E-3 2.96E-3 1.49E-3 | 7.53E-4
FDM | 9.15E-2 | 6.78E-2 | 5.41E-2 3.21E-2 1.73E-2 9.01E-3 4.59E-3 | 2.31E-3

JSM | 2.16E-5 | 6.32E-6 | 3.56E-7 1.15E-8 | 2.65E-10 | 4.67E-12 | 5.94E-13 | 5.53E-13
a=10 | FEM | 1.66E-1 | 5.97E-2 | 2.29E-2 1.51E-2 7.83E-3 | 4.01E-3 2.03E-3 | 1.01E-3
FDM | 1.15E-1 | 1.00E-1 | 6.03E-2 3.28E-2 1.71E-2 8.77E-3 4.44E-3 | 2.24E-3

JSM | 1.22E-4 | 3.14E-5 | 3.95E-6 | 3.65E-7 | 2.80E-8 1.94E-9 | 1.26E-10 | 7.10E-12
a=05 | FEM | 8.74E-2 | 3.93E-2 | 2.03E-2 1.06E-2 5.54E-3 2.84E-3 1.45E-3 | 7.35E-4
FDM | 1.08E-1 | 7.00E-2 | 3.87E-2 2.04E-2 1.05E-2 5.40E-3 2.74E-3 | 1.38E-3

JSM | 1.29E-4 | 4.01E-5 | 8.58E-6 1.57E-6 2.68E-7 | 4.49E-8 7.36E-9 | 1.06E-9
a=0.1 | FEM | 2.02E-2 | 1.01E-2 | 5.27E-3 2.75E-3 1.42E-3 7.30E-4 3.72E-4 | 1.89E-4
FDM | 3.12E-2 | 1.80E-2 | 9.59E-3 | 4.99E-3 2.56E-3 1.31E-3 6.65E-4 | 3.36E-4

Table 1: Absolute errors of computing the first eigenvalue of (1.1) with @ = (—1,1), V(z) = 0 and different a by using our
JSM (2:21), FEM [35] and FDM [62, [19]

M=2 | M=4 | M=8 | M=16 | M =32 | M =64 | M =128 | M = 256
JSM | 1.22E-4 | 3.14E-5 | 3.95E-6 | 3.65E-7 | 2.80E-8 | 1.94E-9 | 1.26E-10 | 7.10E-12
e | FEM | 8.74E-2 | 3.93E-2 | 2.03E-2 | 1.06E-2 | 5.54E-3 | 2.84E-3 | 1.45E-3 | 7.35E-4
FDM | 1.08E-1 | 7.00E-2 | 3.87E-2 | 2.04E-2 | 1.05E-2 | 5.40E-3 | 2.74E-3 | 1.38E-3
JSM NA 1.88E-4 | 2.54E-5 | 2.03E-6 | 1.41E-7 | 9.29E-9 | 5.90E-10 | 3.42E-11
es | FEM NA 8.03E-2 | 3.10E-2 | 1.59E-2 | 8.49E-3 | 4.46E-3 | 2.31E-3 | 1.18E-3
FDM NA 2.54E-2 | 4.02E-2 | 2.71E-2 | 1.55E-2 | 8.36E-3 | 4.35E-3 | 2.23E-3

JSM NA NA 2.14E-3 | 7.30E-6 | 5.89E-7 | 4.14E-8 | 2.73E-9 | 1.16E-10
es | FEM NA NA 1.26E-1 | 3.05E-2 | 1.33E-2 | 6.91E-3 | 3.66E-3 | 1.91E-3
FDM NA NA 1.19E-2 | 3.88E-3 | 1.13E-3 | 3.10E-4 | 8.17E-5 | 2.10E-5
JSM NA NA NA 1.02E-2 | 1.92E-6 | 1.31E-7 | 8.44E-9 | 5.01E-10
€Yy | FEM NA NA NA 1.41E-1 | 2.66E-2 | 9.96E-3 | 5.00E-3 | 2.63E-3
FDM NA NA NA 2.14E-3 | 5.99E-4 | 1.59E-4 | 4.14E-5 | 1.06E-5

Table 2: Absolute errors of computing the first, second, fifth and tenth eigenvalues of (L.1) with Q = (—1,1), & = 0.5 and
V(z) = 0 by using our JSM (2.21)), FEM [35] and FDM [62] [19]

3.2. Resolution capacity (or trust region) test

In order to get reliable gaps and their distribution statistics, we have to calculate accurately and efficiently
a very large number of eigenvalues, e.g. up to thousands or even millions eigenvalues. Specifically we need
to make sure that the numerical errors are much smaller than the minimum gap of those gaps which are
used to find numerically the distribution statistics. In general, to solve the eigenvalue problem by
a numerical method with a given DOF M, we can obtain M approximate eigenvalues. A key question is
that how many eigenvalues or what fraction among the M approximate eigenvalues can be used to find
numerically the distribution statistics, i.e. the errors to them are quite small. We remark here that for the
Schrédinger operator, i.e. o = 2 in , by using a spectral method, it is proved that about % fraction
of the M approximate eigenvalues is quite accurate (or the errors are quite small) [59]. To see whether
this property is still valid for our JSM for the FSO (1.1)), Figure [3| displays the relative errors e

n,r

(n=1,2,...,6400) of (1.1) with V(z) = 0 and different « by using our JSM (2.21)), FEM [35] and FDM
9
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JSM (2.21) | Ref. [63] | JSM (2.21) | Ref. [63] | JSM (2.21) | Ref. [63]
o =1.99 | 2.443601434 | 2.442 9.73318159 | 9.729 21.82868373 |  21.829
a=19 | 2244059359 | 2.243 8.59575252 | 8.593 18.71689400 |  18.718
a =18 | 2.048734983 | 2.048 7.50311692 | 7.501 15.79989416 |  15.801
a=15 | 1.597503545 | 1.597 5.05975992 | 5.059 9.59430576 9.957
a=10 | 1.157773883 | 1.158 275475474 | 2.754 4.31680106 4.320
a=05 | 0.970165419 | 0.970 1.60153773 | 1.601 2.02882105 2.031
a=02 | 0957464477 | 0.957 1.19653989 | 1.197 1.31909097 1.320
a=0.1 | 0972594401 | 0.973 1.09219649 | 1.092 1.14732244 1.148
a =0.01 | 0.996634628 | 0.997 1.00871791 | 1.009 1.01374130 1.014

Table 3: The first three eigenvalues of (1.1) with Q = (—1,1), V(z) = 0 and different « obtained numerically by our JSM
(2.21)) under the DOF M = 160 and the asymptotic method in under the DOF M = 5000.

(a) (b)

10-15

-0 = 0.5

a0 =05
I L I I 10" I I I I

14 18y 24 34 28 32 u 36 40 44

Figure 1: Convergence rates of computing different eigenvalues of (1.1) with @ = (—1,1), V(z) = 0 and different o by using
our JSM (2.21) for: (a) the first eigenvalue Ay, (b) the second eigenvalue \§, (c) the fifth eigenvalue Ag', and (d) the tenth
eigenvalue A{j.

[62, 19] under the DOF M = 8192.

From Fig. [3| we can see that our JSM is significantly better than FEM and FDM when a large
number of eigenvalues are to be computed accurately. In fact, FEM and FDM can be used to compute the
first a few eigenvalues of . However, when a large amount of eigenvalues are needed, one has to adapt
a spectral method such as our JSM .

To quantify the resolution capacity of our JSM , Figure {4 displays the relative errors ej . (n =
1,2,...,M) of with V() = 0 and different « under different DOFs M, i.e. M = 512, 2048 and 8192;

2132

and Figure |5(shows similar results when V' (z) = %-.
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Figure 2: Convergence rates of computing different eigenvalues of (1.1) with Q@ = (-1,1), V(z) = 72 and different « by using
our JSM (2.21) for: (a) the first eigenvalue Ay, (b) the second eigenvalue \§, (c) the fifth eigenvalue Ag', and (d) the tenth
eigenvalue A{j.

From Figs. [4] & [p| we can see that our JSM (2.21)) under a given DOF M has the following resolution
capacity (or trust region)

X% = M|
€ = - )\%HM >

(3.2)

[N

<egp:=1077, n=12,...,¢,M, with ¢, ~

3w

4. Numerical results of FSO in 1D without potential

In this section, we report numerical results on eigenvalues of (1.1) with Q@ = (—1,1) and V(z) = 0 by
using our JSM (2.21)) under the DOF M = 8192. All results are based on the first 4096 eigenvalues, i.e. we
use half of the eigenvalues obtained numerically to present the results and to calculate distribution statistics.

4.1. Eigenvalues and their approximations
Figure@i plots eige~nvalues A% (n=1,2,...) and their leading order approximations as A = 5\2 = ("—2”)&
(n = 1,2,...), while A% (n = 1,2,...) are the eigenvalues of the local fractional Laplacian operator on

Q = (—1,1) with homogeneous Dirichlet boundary condition [8]. Figure [6p displays the relative errors of

the eigenvalues and their leading order approximations, i.e. ey, = (S\g — A%} /A2, which immediately
suggests a high order approximation at A& =~ 5\2‘ = 5\% (1 — %§> (n =1,2,...). By fitting our numerical

results, we can obtain numerically C§ = @ which is plotted in Figure @ Finally Figure |§|d displays
the absolute errors of the eigenvalues and their high order approximations, i.e. €% := |AY — A%
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Figure 3: Relative errors of the first 6400 eigenvalue, i.e. e} . (n = 1,2,...,6400) of (L.1)) with Q@ = (=1,1) and V(z) = 0 by

using our JSM (2.21), FEM [35] and FDM [62, [19] under the DOF M = 8192 for: (a) a = 1.95, (b) a = 1.5, (¢) a = 1.0, and
(d) @ = 0.5. A horizonal (dash) line with gp := 1079 and a vertical (dash) line with n := M /2 are added in each sub-figure.

From Fig. @, we can obtain numerically the following approximations of the eigenvalues of ([1.1)) with
Q= (-1,1) and V(z) =0 as

< - 92—
A% =A% + O(n®2) =A@ {1 - Q(TO‘) +O(n_2)] L on=1,2,..., (4.1)
where
Ta nT\® o, nm\® /m\ea2—a) 4.1 o a2 — )
e (2) e (2) (2) —n Np|1-S5 2], n21 0<as<2 (42)

Combining (4.1) and Lemma 2.1, we can immediately obtain the conclusion (|1.16}).
To demonstrate high accuracy of our numerical method, Tablelists eigenvalues of ((1.1]) with Q = (-1,1)
and V(z) = 0 for different a.

4.2. Asymptotic behaviour of different gaps

Figure [7] plots different eigenvalue gaps of with Q = (=1,1), V(x) = 0 and different . From Fig.
we can draw the following conclusions based on our numerical results: (i) the nearest neighbour gaps
0% (N) increase and decrease with respect to N when 1 < o < 2 and 0 < a < 1, respectively; and they
are almost constant when a = 1 (cf. Fig. [7h). (ii) The minimum gaps 6%;,(N) are almost constants and
decrease with respect to N when 1 < o < 2 and 0 < a < 1, respectively (cf. Fig. [b). (iii) The average
gaps 02, (V) increase and decrease with respect to N when 1 < a < 2 and 0 < «a < 1, respectively; and

they are almost constant when o = 1 (cf. Fig. [7k). (iv) The normalized gaps 6%, (N) &~ 1 when N > 1
(cf. Fig. [7).
12
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Figure 4: Relative errors of the eigenvalues of (1.1) with @ = (—1,1) and V(z) = 0 by using our JSM (2.21)) under different
DOFs M for: (a) a = 1.95, (b) a = 1.5, (¢) a = 1.0, and (d) « = 0.5. A horizonal (dash) line with g¢ := 10~° and vertical

(dash) lines with n := M/2 are added in each sub-figure.

a=0.1 a=0.5 a=1.0 a=1.5 a=1.95 a=2.0
AT | 0.9725944 | 0.9701654 | 1.157773883 | 1.5975035456 | 2.35198053244 | 2.4674011002
AS | 1.0921964 | 1.6015377 | 2.754754742 | 5.0597599283 | 9.20812426623 | 9.8696044010
AS | 1.1473224 | 2.0288210 | 4.316801066 | 9.5943057675 | 20.3833201062 | 22.206609902
4 | 1.1868395 | 2.3871563 | 5.892147470 | 15.018786212 | 35.7934316323 | 39.478417604
5 | 1.2165513 | 2.6947426 | 7.460175739 | 21.189425897 | 55.3737634238 | 61.685027506
A8 | 1.2412799 | 2.9728959 | 9.032852690 | 28.035207791 | 79.0793754673 | 88.826439609
7 1 1.2619743 | 3.2256090 | 10.60229309 | 35.488011031 | 106.871259423 | 120.90265391
Ag | 1.2801923 | 3.4610502 | 12.17411826 | 43.507108689 | 138.718756729 | 157.91367041
§ | 1.2961956 | 3.6805940 | 13.74410905 | 52.051027490 | 174.594065184 | 199.85948912
To | 1.3107082 | 3.8884472 | 15.31555499 | 61.092457389 | 214.473975149 | 246.74011002
So | 1.4082270 | 5.5522311 | 31.02330309 | 174.43784577 | 829.684155066 | 986.96044010
Agp | 1.5111219 | 7.8894197 | 62.43917339 | 495.95713648 | 3207.64320222 | 3947.8417604
Mg | 1.5742803 | 9.6777480 | 93.85508924 | 912.11187382 | 7073.79138904 | 8882.6439609

Table 4: Eigenvalues of ([1.1)) with Q@ = (—1,1) and V(x) = 0 for different a.

In fact, based on the numerical asymptotic approximation (4.1)), we can formally obtain the following
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Figure 5: Relative errors of the eigenvalues of (1.1)) with Q = (—1,1) and V(z) = % by using our JSM (2.21)) under different
DOFs M for: (a) a = 1.95, (b) a = 1.5, (¢) @ = 1.0, and (d) o = 0.5. A horizonal (dash) line with g9 := 1079 and vertical
(dash) lines with n := M/2 are added in each sub-figure.

approximation of the nearest neighbour gaps as
On(N) = My = A=A - A
(N + 1)7T>a _ (Z)a a2—a) (N + 1)1 - (NW)& + (f)a a2~ @) a1

2 2 4 2 2 4

: _(N L) - N 70‘(24_ @) (N 41)*! = N“‘l)}

)|
(- ) ()]
)

o (252 o) (ko)

et ala=DE+a)

Il
/~
—

Q

N2 4 O(N‘”‘3)} ., N=12.... (4.3)

Again, this asymptotic results also confirm that the nearest neighbour gaps §2, (N) increase and decrease
with respect to NV when 1 < @ <2 and 0 < « < 1, respectively; and they are almost constant when a = 1.
Based on the asymptotic results (4.3) and the numerical results in Fig. , we can conclude that

5o, (1) = Ay — A, l<a<?2,
Tnin(N) =4 =) =23 =A%, a=1, N=12,.... (4.4)
(V) = a (5)" Ne-l, 0<a<l.
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Figure 6: (a) Eigenvalues A\ (n =1,2,...,4096) of (1.1) with Q = (—1,1) and V(z) = 0 for different o (symbols denote numer-

ical results and solids lines are from the leading order approximation A% = (%)a), (b) Relative errors € ,. = (S\f{ - A%) /e

(symbols denote numerical results and solids lines are from fitting formula Cg‘n’l when n > 1); (c) Fitting results for C§;

and (d) absolute errors &% = ‘Ag - ;\g) with A% = 32 (1 - Cgn~1).

Again, these asymptotic results suggest that the minimum gaps d5;,(N) are almost constants and decrease
with respect to IV when 1 < a <2 and 0 < a < 1, respectively.
Similarly, we have the asymptotic results for the average gaps as
(N) )\?V+1 - )\1134 ~ l]lV+1 - >\(11
N N

1 KMT)Q _ (f)aM(N_,_l)afl _/\tll]

5(1

ave

04(27—"—04)]\[0‘_2 - A(ll <2> N—l _|_O(Noz—3):| , N = 1’2’ el (45)
i

N 2 2 4
_ m o[ a—1 l aia(Q—a) a—2 l 0‘*17 a g “ -1
- (2) N <1+N> SN (14 X(Z) N
- (&) NO"1+O<N“’2—70[(2;&)]\]“*2—)\% (i) N1+O(Na3)}

Noz—l 4

4
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Figure 7: Different eigenvalue gaps of (1.1)) with Q = (—1,1), V(z) = 0 and different a for (symbols denote numerical results
and solids lines are from fitting formula when N > 1): (a) the nearest neighbour gaps 45, (), (b) the minimum gaps 6%, (N),
(c) the average gaps §%.,.(N), and (d) the normalized gaps 6%, .m (V).

Thus when 1 < a < 2, we have

o 2
5.V = (3) [Na—l + WNH + O(N—l)] . N=12,..., (4.6)
and when 0 < a < 1, we have
@ o z « a—1 _ yyo g “ —1 a—2 _
6ave(N)_(2) [N XS <W> Nl +O(N )}, N=12..., (4.7)
and when a = 1, we get
N T 3 2 .1 -1 )
6ave(N):§ 1+ 1—7)\1 N +O(N79|, N=12,.... (4.8)
T

Again, these asymptotic results suggest that the average gaps 0%, (V) increase and decrease with respect to

N when 1 < o <2 and 0 < a < 1, respectively; and they are almost constants when o = 1 (cf. Fig. )
Based on the asymptotic results of the eigenvalue A in (4.1]), noticing (1.8)-(1.10), we can get the
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asymptotic results for the normalized gaps as

FrormN) = 2 [(A4) = (A3
~ (N1 (1 _ m LO(N + 1)2))1/a N (1 . +O(N2)>1/a
_ N—|—1—220[—]\76;1+O((N+1)‘2)—N—|—2_40[+]€—O(N‘2)
= 1+N(Né+1>+O(N3), N=12,..., (4.9)

where C' is a constant. Again, this asymptotic result suggests that the normalized gaps 6%, (N) ~ 1 when

N > 1 (cf. Fig. [0).
Finally, combining (3), (1), @8), @), (8). @) and @3), we can get the conjecture (LI7) stated

in Section 1.

4.3. The gap distribution statistics
Figure |8 displays the histogram of the normalized gaps {0%,,,(n) | 1 <n < N = 4096} defined in (4.9
for (L.1)) with Q = (—1,1), V(z) = 0 and different a.

(a) (b) ()
= = =
oS &S oS
0 0.5 1 15 2 0 05 1 15 2 0 05 1 15 2
S S S
(d) (e) )
= = =
o & o
0 0.5 1 15 2 0 05 1 15 2 0 05 1 15 2
S S S

Figure 8: The histogram of the normalized gaps {6%,m(n) | 1 <n < N = 4096} of (1.1) with @ = (—1,1) and V(z) = 0 for
different a: (a) a = 2.0, (b) a = 1.9, (c) a = V3, (d) a = 1.5, (¢) a = 1.0, and (f) a = 0.5.

From Fig. 8| we can conclude that the gaps distribution statistics of (L.1)) with V(z) = 0 is P,(s) =
0(s—1)for0 < <2.

4.4. Eigenfunctions and their singularity characteristics

Denote uj (x) be the eigenfunction satisfying [|ug|/z2(q) = 1 and % > 0, which corresponds
r=—1

to the eigenvalue A2 (n = 1,2,...) of (1.1I) with © = (—=1,1) and V(z) = 0. The ‘exact’ eigenfunctions
u®(z) (n =1,2,...) are obtained numerically by using the JSM (2.21) under a very large DOF M = M),

n
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Figure 9: Convergence rates of computing different eigenfunctions of (1.1)) with Q = (—1,1), V(z) = 0 and different o by using
our JSM (22.21)) for: (a) the first eigenfunction uf, (b) the second eigenfunction ug, (c) the fifth eigenfunction ug', and (d) the
tenth eigenfunction ugy.

e.g. Mo =512. Let ug, 5, be the numerical approximation of uy (n=1,2,..., M) obtained by a numerical
method with the DOF chosen as M. Define the absolute errors of u as

eus = [lugy —up ez, n=12.... (4.10)

Figure |§| shows convergence rates of our JSM for computing the first, second, fifth and tenth eigen-
functions of with Q = (=1,1), V(x) = 0 and different a. Figure [10| plots different eigenfunctions of
(1.1) with Q@ = (=1,1), V(z) = 0 and different . Finally Figure displays different eigenfunctions of
(1.1) with © = (—=1,1), V(z) = 0 and different o near the boundary layer 0 < £ := 2 + 1 < 1 to show the
singularity characteristics of the eigenfunctions u at the boundary z = —1.

From Figs. we can draw the following conclusions: (i) Our JSM method (2:2I)) converges super-
linearly with respect to the DOF M for computing the eigenfunctions u® (cf. Fig. E[) (ii) For fixed
0 < a < 2, the eigenfunctions u% (n =1,2,...) can be characterised as

ul(z) = (1— 22202 (x), -1<z<1, (4.11)

n

where v (n = 1,2,...) are smooth functions over the interval Q = [~1,1] (cf. Fig. [11). In addition, our
numerical results indicate that, when n — oo (cf. Fig. [L0d), the eigenfunctions u2 (0 < a < 2) of with
Q= (—1,1) and V(z) = 0 converge to the eigenfunction u®=? = sin(nmx) of with o = 2, Q = (—1,1)
and V(z) =0, i.e.

uo (x) — sin (mr(a;—l—l)) = u2=2(z), z€Q, n — oo. (4.12)

Based on the above results, for the eigenvalue problem of the FSO in high dimensions:
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Figure 10: Plots of different eigenfunctions of (1.1)) with @ = (—1,1), V(z) = 0 and different « for: (a) the first eigenfunction
uf(z), (b) the second eigenfunction ug(z), (c) the fifth eigenfunction ug (x), and (d) the tenth eigenfunction ufy(x).

Find X\ € R and a nonzero real-valued function u(x) # 0 such that

Leso u(x) = [(—A)Q/Q + V(x)] ux) = Au(x), xe€QCRY

- (4.13)
u(x) =0, x € Q¢ :=RN\Q,

where d > 2, 0 < a < 2, © is a bounded domain and the fractional Laplacian (—A)"‘/2 is defined via the
Fourier transform [I6, [47], we conjecture here that the eigenfunction u(x) can be written as

u(x) = v(x) (dist(x,00)*%, x€Q, (4.14)

where v(x) is a smooth function over  and dist(x, 92) represents the distance from x € Q to 9.

We remark here that the singularity characteristics of the eigenfunctions in (4.11)) (or (4.14)) is quite
different with the singularity characteristics given in [I3] for fractional PDEs as

u(x) ~ (dist(x,00))*? + v(x), xe, (4.15)

where v(x) is a smooth function over Q. From our numerical results, we speculate that the correct singularity

characteristics of the solution of fractional PDEs should be instead of (4.15))!

5. Numerical results of FSO in 1D with potential

In this section, we report numerical results on eigenvalues of (I.1) with Q = (—1,1) and V(x) # 0 by
using our JSM (2.21]) under the DOF M = 8192. All results are based on the first 4096 eigenvalues, i.e. we
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Figure 11: Singularity characteristics of different eigenfunctions of (L.1)) with Q = (=1, 1), V(z) = 0 and different « for (symbols
denote numerical results and solids lines are from fitting formula Cfa/z when 0 < £ =+ 1 < 1): (a) the first eigenfunction
uf, (b) the second eigenfunction ug, (c) the fifth eigenfunction ug, and (d) the tenth eigenfunction ug.

use half of the eigenvalues obtained numerically to present the results and to calculate distribution statistics.
Here we consider four different external potentials given as:
Case I. V(x)=
Case II. V(z)
Case III. V(x) = 433 + sin(5x);
Case IV. V(z) = 5022 + sin(27z).

5.1. Eigenvalues and their asymptotics

Table [5| lists the eigenvalues of with Q = (—1,1) and V(z) = ””2—2 for different a. Figure |12] plots
the eigenvalues of with Q = (—1,1), different external potentials V' (z) and different .

From Fig. we can conclude that, when n > 1, the leading order asymptotics of the eigenvalues A&
in is still valid for the eigenvalue problem of FSO with potential V(z).

5.2. Gaps and their distribution statistics

Figureplots different eigenvalue gaps of (1.1) with Q@ = (=1,1), V(x) = 72 and different . Figure
displays the histogram of the normalized gaps {6 |1 <n < N =4096} defined in (4.9) for (I.1) with
Q= (-1,1), V(x) = “”—22 and different «. For other potentials, our numerical results shovv snnilar behav1or
on eigenvalues and their gaps, which are omitted here for brevity.

Again frorn Figs. [[3 and [[4] we can conclude that, when n > 1, the asymptotics of the eigenvalue gaps

given in . . . and ( are still valid for the eigenvalue problem of FSO (1.1)) with

potential V( ) In addition, the gaps distribution statistics is still P,(s) = d(s — 1) for 0 < « S 2 in this
case.

norm ( )
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a=20.5 a=1.0 a=1.5 a=19 a=2.0
AT | 1.0599238 | 1.240244372 | 1.6707307180 | 2.31063679348 | 2.53245197432
AS | 1.7684725 | 2.918074603 | 5.2120578091 | 8.73899699079 | 10.0106621605
AS | 2.1903345 | 4.481368142 | 9.7550085449 | 18.8734566366 | 22.3620761310
4 | 2.5518267 | 6.058660406 | 15.182580104 | 32.6230979973 | 39.6388288214
5 | 2.8580498 | 7.626501974 | 21.354271585 | 49.8832020720 | 61.8477048695
Ag | 3.1370031 | 9.199495156 | 28.200700106 | 70.5802261928 | 88.9903414346
7 | 3.3893161 | 10.76885112 | 35.653816621 | 94.6494682651 | 121.067291745
Ag | 3.6251388 | 12.34077821 | 43.673146060 | 122.040857583 | 158.078785000
A§ | 3.8445549 | 13.91072820 | 52.217197374 | 152.708819987 | 200.024930128
o | 4.0526430 | 15.48221913 | 61.258734930 | 186.615849002 | 246.905784303
So | 5.5522311 | 31.02330310 | 174.43784577 | 697.513597025 | 986.960440109
AJp | 7.8894197 | 62.43917340 | 495.71364899 | 2606.30876720 | 3947.84176043
Agp | 9.6777480 | 93.85508927 | 912.11187382 | 5633.40862247 | 8882.64396098

Table 5: Different eigenvalues of (1.1I) with Q@ = (—1,1), V(z) = %

% |

10®

108
s
~<

10*

102

and different o obtained numerically by our JSM (2.21]).
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Figure 12: Eigenvalues A% (n = 1,2,...,4096) of (1.1) with @ = (—1,1) and different « for differential external potentials
(symbols denote numerical results and solids lines are from fitting formula when n > 1): (a) Case I, (b) Case II, (c) Case III,
and (d) Case IV.

5.8. Comparison on eigenvalues of (1.1) without and with potential

Let 0 < A0 < A3 < ... < A%0 < ... be all eigenvalues of with Q = (=1,1) and V(z) = 0, and
denote all eigenvalues of with a potential V' as in . Figure [15| plots differences of the eigenvalues
of with a potential V and without a potential, i.e. 6 := A2 —A*0 — Cy (1 < n < N = 4096) for
different potentials V(z) and «, where Cy = %fil V(x)dz.
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Figure 13: Different eigenvalue gaps of (1.1)) with Q@ = (-1,1), V(z) = % and different « for (symbols denote numerical results
and solids lines are from fitting formula when N > 1 in a-c): (a) the nearest neighbour gaps §2,(N), (b) the minimum gaps

02, (N), (c) the average gaps 65,(IN), and (d) the normalized gaps 85, (V).
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Figure 14: The histogram of the normalized gaps {63 ., (n) | 1 <n < N =4096} of (L.1) with Q@ = (—1,1) and V(z) = % for
different oz (a) a = 2.0, (b) a = 1.9, (c) @ = /3, (d) a = 1.5, () a = 1.0, and (f) a = 0.5.
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Figure 15: Differences of the eigenvalues of (1.1) with a potential V' and without a potential, i.e. 6X =AY — )\%’O — Cy
(1 <n < N =4096) for different potentials V(z) and a: (a) a =2, (b) a =+/2, (¢) @ =1, and (d) a = 0.5.

From Fig. we can draw the following conclusion for the eigenvalues of ([1.1]) with a potential V:
A :)\%’0+Cv+0(n_“(°‘)>, n> 1, (5.1)

where
< 7&
( ) { « 0< « 28&a 1,

~45 a=1, (5.2)

5.4. Figenfunctions
2

Figure 16| plots different eigenfunctions u® of with Q = (=1,1) and V(z) = % for different a.

From Fig. the singularity characteristics of the eigenfunction given in is still valid for the
eigenvalue problem of FSO with potential V(z). In addition, our numerical results indicate that, when
n — oo (cf. Fig. ), the eigenfunctions u8 (0 < a < 2) of with a potential V' converge to the

eigenfunction u$=? = sin (%) which is the eigenfunction of (1.1) with o =2 and V(z) = 0.

Finally, based on our extensive numerical results and observations, we speculate the following observation
(or conjecture) for the FSO in (I.1)) with potential:

Conjecture II (Gaps and their distribution statistics of FSO in (L.1) with potential) Assume 1 < o < 2
and V(z) € C(Q) in (1.1)), then we have the following asymptotics of its eigenvalues:
(£2)" - (%) 22 22net 4+ Oy + 0 ?), 1<a <2,
X =14 3% ~1oea + Ov+ 0T, a=1, n>1, (5:3)
« «
) 40— (55) 2 0, 0<a<l,
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Figure 16: Plots of different eigenfunctions of (1.1) with Q@ = (-1,1), V(z) = % and different o: (a) the first eigenfunction
uf(zx), (b) the second eigenfunction u§ (z), (c) the fifth eigenfunction ug (z), and (d) the tenth eigenfunction uf,(x).

where

1 I
Cy = @/QV(x)dx =5 a/a V(z)dz. (5.4)

In addition, we have the following asymptotics for different gaps:

“ —1)(2
5% (N) ~ (b T a) [aN“l + WNH + O(Na?’)] ., O0<ac<2,
(03
) = X g ma (7)) N <<
[N"_“F@N“‘”O(N‘l)y l<a<?, N>1 (55)

520 (N) ~ (b 7 a) I+ @G -2 )N +Oo(N )], a=1,

[Net = (20) AN OV )], 0<a< ],
6% m(N) =14+ O(N™2), 0<a<?2,
In addition, for the gaps distribution statistics defined in 7 we have
P,(s) =4d(s—1), s>0, 0<a<2 (5.6)

6. Extension to directional fractional Schrodinger operator in high dimensions

In this section, we extend the Jacobi spectral method (JSM) presented in Section 2 to directional
fractional Schrédinger operator (D-FSO) in high dimensions and apply it to study numerically its eigenvalues
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and their gaps as well as gap distribution statistics.

6.1. D-FSO in high dimensions

Consider the eigenvalue problem related to the directional fractional Schrédinger operator (D-FSO) in
high dimensions:
Find XA € R and a nonzero real-valued function u(x) # 0 such that

Lp_pso u(x) := [Dg + V(x)]u(x) = A u(x), x € Q= (=L, L) x...(—Lg, Ly) C RY,

6.1
u(x) =0, x € Q°:=RNQ, (6.1)
V(x) € L*(Q) is a given real-valued function and the

where d > 2, x = (21,%9,...,24)7, 0 < a < 2,
= ijl(—awj)a/ 2 is defined via the Fourier transform (see

directional fractional Laplacian operator DY :
[16], [47, [40] and references therein) as

d
Diu() =F 1 QI (Fu)©) | x€EeR, (62)

with € = (£1,62,...,&0)T, F and F~! the Fourier transform and inverse Fourier transform over R? [51] [57],
respectively. We remark here that the directional fractional Laplacian operator DS has been widely used in
the literature for different fractional PDEs, see [41] 61], 45, 29] 40] and references therein. Without loss of
generality, we assume that L; > Lo 2 ...>Lsg>0.

Again, since all eigenvalues of (6.1]) are distinct (or all spectrum are discrete and no continuous spectrum),
similar to ) for , we can also rank (or order) all elgenvalues of ( . as ., while again the times
that an eigenvalue )\ of appears in the sequence is the same as its algebraic multiplicity. Under
the order of all eigenvalues in for , we define the fraction of repeated eigenvalues of as

#2<n <N A3 =)g )

RY(N) = ~

N=23.... (6.3)

In addition, let 0 < A% < A$? < ... < A%0 < ... be all eigenvalues of (L)) with Q = (—1,1) and V(z) = 0,
and u®%(z) (n = 1,2,...) be the corresponding eigenfunctions. Then when V (x) = 0 in ([6.1]), all eigenvalues
of the problem ([6.1)) can be given as

N e ZL N0 g da =12, (6.4)

and their corresponding eigenfunctions can be given as

ug (X) :H?lzlu?[’o(xl/Ll)v XEQa jla"'ajd:172a"' . (65)

Ji---3d

The above results immediately imply that the fundamental gap of (6.1) with V(x) = 0 can be obtained as

—aya,0 aya,0 «@ ocO a,0 a,0 )‘gio_)\?,o
U B > .
Stg(a) = LToNS0 + § LAY § LAY ()\2 XS ) > s (6.6)

where D is the diameter of .

The JSM presented in Section 2 can be easily extended to solve the eigenvalue problem (6.1]) by tensor
product [45]. The details are omitted here for brevity.
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Figure 17: Eigenvalues of (6.1) with d = 2, L1 = 1, V(x) = 0 and different L2 and « (symbols denote numerical results and
solids lines are from fitting formula Cgn®/2 when n > 1): (a) a = 1.9, (b) a = 1.5, (c) a = 1.0, and (d) a = 0.5.
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Figure 18: Numerical results of C$ (symbols denote numerical results and solids lines are from fitting formula) for different
areas S = || = 4Lz and o: (a) plots of C as a function of S for different o, and (b) plots of C§ as a function of « for
different S.

6.2. Numerical results in two dimensions (2D) without potential

We take d = 2, Ly = 1 and V(x) = 0 in (6.1)). In this case, noting (6.4) and with d = 2, instead
of using the JSM in 2D to compute eigenvalues and their corresponding eigenfunctions of , a simple
and more efficient and accurate way is to first use the JSM in 1D to compute the eigenvalues and their
corresponding eigenfunctions of with @ = (—1,1) and V(z) = 0, and then to get the eigenvalues and
their corresponding eigenfunctions of with d = 2 and V(x) = 0 via and with d = 2.

In our computations, we first use the JSM in 1D with M = 8192 to compute numerically the eigenvalues
of with Q = (—1,1) and V(z) = 0. Then we use the first N = 4096 computed eigenvalues to get
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Figure 19: Different eigenvalue gaps of (6.1) with d = 2, L1 = 1, V(x) = 0, L2 = 5= and different « for: (a) the nearest
neighbour gaps 65, (N), (b) the minimum gaps 6%, (N), (c) the average gaps 6%,,(N) (symbols denote numerical results and
solids lines are from fitting formula when N > 1), and (d) the normalized gaps 62, .., (N

w

~

the eigenvalues of with d = 2 and V(x) = 0 via with d = 2 and then rank (or order) the total
4096 x 4096 eigenvalues of as . Finally, we take (up to) the first N = 4000000 eigenvalues to
compute the gaps and their distribution statistics.

Figure [17| displays eigenvalues (in increasing order) of for different Lo and «, which suggests that
A~ n®? when n > 1 for 0 < a < 2. Then we fit numerically A% when n > 1 by Cgn®/2. Figure
displays the fitting results of C§' with respect to the area S = 4Ly of 2 and «, which suggests that

4 [4x\*?
C§:2+a(§> , 0<a<2, S =4Ly > 0. (6.7)
These results immediately suggest that
4[4\
An = Tt a (%) n®'? 4 o(n/?), n> 1. (6.8)

Specifically, when o = 2, our numerical results suggest that

_ 4
A0=2 = % [n + o2 0(1)} . o>, (6.9)
where C7 /= 0.5943 from our numerical results. In fact, can be regarded as an improved Weyl law when
a =2 [60], and can be regarded as an extension of the Weyl law for a = 2 [60] to 0 < a < 2, and we
call as the generalized Weyl law on the asymptotics of the eigenvalues of the D-FSO in 2D.
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Figure 20: The histogram of the normalized gaps {63, (n) | 1 < n < N = 4000000} of (6.1) withd =2, L1 =1 and V(x) =0

for different 0 < @ < 2and 0 < Ly < 1: (a) a =2.0and Lz =1, (b) « =2.0 and Ly = 2/3, (¢) o« = 2.0 and Ly = ?; (d)
a=15and Ly =1, (¢) a =15 and Ly = 2/3, (f) « = 1.5 and Ly = ?; (g) «=1.0and Lo =1, (h) @« = 1.0 and Ly = 2/3,

(i) a=1.0 and Ly = ?; (j)a=05and Ly =1, (1) «a=0.5 and Ly =2/3, (m) a = 0.5 and Ly = ? Solid lines are fitting
curves for the gaps distribution statistics P (s).

In fact, combining and , we can obtain the asymptotic of the average gaps of the D-FSO in
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Figure 21: Plots of 1 — R*(N) vs N (N > 1) for different o and Lo: (a) o = 2 for different Ly € Q; (b) o = 1 for different
Ly € Q; and (¢) Lo =1 for different 0 < a < 2.

(6.1) as
)‘%Hrl — A7

63\/8 N

(N) =

1

4 (4
= a/2 a/2y _ ya
2+a(5) (N 4+ 1)%/2 4 o (N +1)°/2) — a9

a/2
_ 2ia (45) N@=2/2 | y(la-2)/2)

= ON©=2/% N1, (6.10)

which immediately implies that, when o = 2, 62, ,(N) ~ 1 (i.e. almost a constant) when N > 1, and
respectively, when 0 < a < 2, 63;6( ) ~ Nl 2)/2 (decrease With respect to N) when N > 1.

In addition, Figure plots different eigenvalue gaps of (6.1) with d =2, L1 = 1, V(x) =0, Ly = v/2/2
and different a. Figure [20| displays the histogram of the norrnahzed gaps {§norm( )| 1<n< N =4000000}
for different o and Lo. Figure 2] plots 1 — R*(N) vs N (N > 1) for different o and L.

From Figs. we can draw the following conclusions:

(i) The minimum gaps dmin(N) — 0 when N — +oo (cf. Fig. [[9b); and the average gaps Gave(IN) ~ 1
when N > 1 for o = 2, and respectively, dave(N) ~ N(@=2/2 when N > 1 for 0 < a < 2 (cf. Fig. ),
which confirm the asymptotic results in .

(ii) When Ly = 1 and 0 < @ < 2 or @ = 2 and Lg E Qor a=1and Ly € Q, the gaps distribution
statistics P.(s) = d(s) (cf. Fig. 20p,b,d,g,h,j and Fig. R1). In these cases, R*(N) — 1 when N — oo (cf.
Fig. |121) and our numerical results suggest the following asymptotlcs R“( )=1-N —72(L2) when a = 2
for dlfferent Ly € Q (cf. Fig. 21p); R*(N) =1 — N~'/2 when a = 1 for dlfferent Ly € Q (cf. Fig
and R*(N) =1 — N-7s(®) when L2 =1 for different 0 < a < 2 (cf. Fig. [21k). In addition, Flgure& plots
T9(Lso) and 753(c) based on our numerical results.

(iii) When Ly ¢ Qand 0 < v < 1 or 1 < o« < 2, P, (s) can be well approximated by a Poisson distribution

(cf. Fig. 7e7f,l,m), ie.

P.(s) = 7(a)e"T(@s, s> 0. (6.11)
In addition, Figure [23| plots 7(«a), which suggests that
1, l<a<?2,
m(e) ~ { 1.057a703%5, 0 <a <1 (6.12)

(iv) When aw = 1 and Ly ¢ Q, P,(s) can be well approximated by a bimodal distribution [48] (cf. Fig.
oD

(v) The classification of the gaps distribution statistics P,(s) for different 0 < o < 2 and L; > 0 and
Ly > 0 is summarized in Table [6]
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Figure 22: Fitting results of 72(L2) for different Lo € Q (left) and 73(«x) for different « (right).
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Figure 23: Fitting results of 7(«) for different a.
Lg/lel 17éL2/L16Q 1#L2/L1¢Q
a=2 0(s) 4(s) Poisson
l<a<?2 0(s) Poisson Poisson
a=1 o(s) o(s) Bimodal distribution
0<ax<l o(s) Poisson Poisson

Table 6: Summary of the eigenvalue gap distribution statistics of (6.1)) with d = 2 and V(x) = 0 for different 0 < a < 2 and
L1 >0and Ly > 0.

6.3. Numerical results in 2D with potential

Here we use the JSM in 2D to compute numerically the eigenvalues and their corresponding eigenfunctions
of with d = 2 and a non-zero potential V(z,y). In our computations, we choose the total DOF
M = 144 x 144, i.e. with DOFs M; = 144 and M> = 144 in xz; and x5 directions, respectively. With the
M eigenvalues computed, we only use M /4 (or even less) numerical eigenvalues to compute gaps and their
distribution statistics. We take Ly =1 and V(z,y) = # in (6.1).

Figure [24] plots different eigenvalue gaps of with Ly = 3/2/2 for different o, and Figure [25| displays
the histogram of the normalized gaps {0%.,.,,(n) | 1 <n < N = 4096} for different o and Lo.

We also carry out numerical simulations on eigenvalues and their different gaps as well as their distribution
statistics of in 2D with different other potentials. Our numerical results suggest that the asymptotic
behavior of the eigenvalue A% in and are still valid when is with a potential V(x) € C(£2).
In addition, similar to the 1D case, the gaps and their distribution statistics of with a potential are
quite similar to those without potential, which are reported in Figs. [[9&20] Those numerical results are
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omitted here for brevity.
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Figure 24: Different gaps of (6.1) with d =2, L1 = 1, Ly = ¥/2/2 and V (z,y) = #: (a) the average gaps 0%,.(IN), and (b)

the minimum gaps 6%, (V) (symbols denote numerical results and solids lines are from fitting formula when N > 1).
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Figure 25: The histogram of the normalized gaps {05,,,(n) | 1 < n < N = 4096} of (6.1) with d =2 and V(z,y) = #:
(a) a=2and La = 1; and (b) @ = /2 and La = ¥/2/2 (the solid line is a fitting curve by the Poisson distribution).

Finally, based on our extensive numerical results and observations, we speculate the following observation
(or conjecture) for the D-FSO in (6.1) without/with potential:

Conjecture III (Gaps and their distribution statistics of D-FSO in (6.1) with d = 2) Assume 0 < o <2
and V(z) € C(Q) in (6.1), then we have the following asymptotics of its eigenvalues:

o 4 4m o/ a/2 a/2

where S is the area of €. In addition, we have the following asymptotics of different gaps:

5ror(1in(N) - 07 N — +00,
4 (4r\*? (6.14)
e (N)= — | = N@=2/2 L o(N(@=2)/2 N> 1.
ave (IV) 2+a<5> +o( ); >
In addition, the gap distribution statistics summarized in Tab. |§| is also valid for (6.1) in 2D with the
potential V.
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7. Conclusion

We proposed a Jacobi-Galerkin spectral method for accurately computing a large amount of eigenval-
ues of the fractional Schrodinger operator (FSO). A very important advantage of the proposed numerical
method is that, under a fixed number of degree of freedoms M, the Jacobi spectral method can calculate
accurately a large number of eigenvalues with the number proportional to M. Based on the eigenvalues
obtained numerically by the proposed method, we obtained several important and interesting results for
the eigenvalues and their different gaps of FSO in 1D and directional FSO in 2D. Based on the gaps, the
distribution statistics of the normalized gaps were obtained numerically for the FSO.
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