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Abstract. We propose an efficient semi-Lagrangian method for solving the two-dimensional incompressible
Euler equations with high precision on a coarse grid. The new approach evolves the flow map using the gradient-
augmented level set method (GALSM). Since the flow map can be decomposed into submaps (each over a finite
time interval), the error can be controlled by choosing the remapping times appropriately. This leads to a numerical
scheme that has exponential resolution in linear time. Error estimates are provided and conservation properties are
analyzed. The computational efficiency and the high precision of the method are illustrated for a vortex merger and
a four mode and a random flow. Comparisons with a Cauchy-Lagrangian method are also presented.

1. Introduction. The numerical simulation of incompressible fluids is an important mathe-
matical problem with many scientific and industrial applications. The study of the incompressible
Euler equations in two dimensional (2D) space poses many challenges. It is well known that solu-
tions of the 2D Euler equations, although smooth, have fast growing gradients. The growth of the
sup-norm of the vorticity gradient can be bounded by a double exponential in time [30], this bound
has been proven to be sharp in the case of smooth initial data on a disk [13]. Furthermore, on a
flat periodic 2-torus, it has been shown that for an arbitrary time interval, there exists a vorticity
field whose gradient exhibit exponential growth within the chosen interval [6]. For a review on
summarizing advances of mathematics for the Euler equations, we refer to a 2013 paper by Bardos
and Titti [2]. These results suggest that the spatial discretization for the numerical solution of
Euler equations can be challenging. As the gradient of the solution grows, the numerical resolution
required to correctly capture the solution also increases. The resources necessary to avoid excessive
spatial truncation errors can thus become prohibitive for long time simulations. On the other hand,
allowing for spatial truncation errors by undersampling the solution can generate numerical dissi-
pation akin to a viscosity term which qualitatively affects the simulation. In some cases, truncation
errors resonate with the solution, creating spurious oscillations and numerical instability. This
phenomenon is analysed in detail by Ray et al. [26] in the case of a conservative Fourier-Galerkin
scheme, and a regularization technique has been proposed by Pereira et al. in [24].

Existing numerical methods for fluid simulation lie in the spectrum from fully Lagrangian to
fully Eulerian formulation. Eulerian methods use fixed spatial meshes to represent evolving quan-
tities. This gives easy access to the relevant simulated quantities. The spatial features generated
by large fluid deformations can be represented as long as the grid has sufficient resolution. How-
ever, finer scale features are lost resulting in artificial dissipation. Examples of Eulerian methods
include the Fluid-in-Cell [9] method and the Marker-in-Cell method [11], where fluid quantities
are associated to fixed spatial subdivisions and updated in time using the evolution equations.
In Lagrangian methods, particles or grid nodes follow the movement of the flow, resulting in less
dissipative schemes. However, with the particle or moving grid framework, the evaluation of Eule-
rian quantities is difficult and less accurate. Furthermore, large fluid deformations can be difficult
to resolve and often require frequent remeshing or resampling routines. Examples of purely La-
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grangian methods include Smooth Particle Hydrodynamics [10, 20] and Vortex blob method [3],
where fluid quantities are transported using a particle method. Many numerical solvers use a
mix of Lagrangian and Eulerian description to exploit the advantages of each approach. For in-
stance, Arbitrary Lagrangian-Eulerian [12, 7] methods use reference coordinates that are neither
fully Lagrangian nor Eulerian to describe the fluid configuration. Another large family of numerical
solvers are the semi-Lagrangian methods. In these methods, relevant quantities are represented
on an Eulerian frame, however, the evolution equations are discretized from a Lagrangian descrip-
tion. Methods of this type include the Cauchy-Lagrangian method [25] where the vorticity field is
evolved by transport along a moving mesh following the flow, the result is then periodically pro-
jected back on an Eulerian grid. Level-set methods are another popular semi-Lagrangian framework
used for fluid simulation and implicit interface tracking, see [23]. In these methods, characteristics
are traced backwards in time and Eulerian interpolation schemes are used to update the solution.
Semi-Lagrangian schemes have also been used to generate fast simulations intended for computer
graphics [28, 8]. One main property of the semi-Lagrangian approach is that it tries to captures
the characteristic structure of the equations. In particular, in 2D inviscid flow, the vorticity field
is transported along characteristic curves, hence accuracy and stability can be improved by taking
the geometric approach of following these characteristic curves in order to propagate the solution
in time.

In this paper, we present a method where the evolved numerical quantity is the deformation
map of the domain generated by the fluid velocity. This approach is geometric and fully exploits
the characteristic structure of the fluid flow. We construct numerically a characteristic map which
identifies a point on an arbitrary characteristic curve to its initial position through a spatial trans-
formation. Advected quantities, in particular vorticity, can then be constructed as the function
composition of the initial condition with the characteristic map. This method stems from the
semi-Lagrangian Gradient-Augmented Level-Set (GALS) [21] and Jet-Scheme methods [27] and
constitutes an extension of the Characteristic Mapping (CM) method for linear advection [14, 18]
to the self-advection in 2D incompressible Euler. The CM method for Euler splits the evolution
equations into the advection of the vorticity and the computation of the velocity through the Biot-
Savart law. These two parts are connected in that the advection provides the vorticity field for the
Biot-Savart kernel, whose resulting velocity field is then used to advect the CM map. In doing so
we achieve a separation of scales: under the assumption that the flow is governed by large scale
features of the velocity field, the characteristic map can be accurately evolved on a coarse grid. Fur-
thermore, since the vorticity solution is constructed through the pullback of the initial condition
by the characteristic map, the functional definition of the solution provides arbitrarily fine spatial
resolution.

One main issue in inviscid fluid simulations is the artificial viscosity incurred from the spatial
truncations during the evolution of the solution. Some methods such as [25] approach this problem
by designing high order methods in order to take extremely large time steps, hence minimizing the
accumulation of the diffusive error. Others employ an adaptive multi-resolution mesh refinement
to efficiently resolve fine scale features [5, 15]. One unique property of the CM method for 2D
Euler demonstrated in this paper is that it completely eliminates artificial viscosity by never di-
rectly evolving a discretized vorticity field: the vorticity changes as a consequence of the evolving
characteristic map used to compute the pullback. In particular, a straightforward consequence is
that the extrema of the vorticity field are conserved for all times. Additionally, in order to cor-
rectly represent the arbitrarily fine scales generated by the flow, we use a time decomposition of
the characteristic map based on its semigroup structure. This allows the CM method to represent
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exponentially growing vorticity gradients while only computing on a fixed coarse grid. The resulting
scheme achieves arbitrary subgrid resolution, high long term enstrophy conservation and is void of
artificial dissipation.

The rest of the paper is organized as follows: in section 2 we lay out the mathematical framework
for the CM method and carry out some heuristic analysis of its properties. In section 3, we present
in detail the numerical implementation of the method and provide some error bounds. Section 4
contains several numerical tests and discussions on the accuracy and qualitative properties of the
solutions. Finally, we make some concluding remarks and propose future directions of work in
section 5.

2. Mathematical Framework. In this section, we present the mathematical framework be-
hind the Characteristic Mapping (CM) method for 2D incompressible Euler. The section is orga-
nized as follows: first, we present the equations with the advection/Biot-Savart splitting used in
the method. Then we look at the CM method for the advection equation along with its intrinsic
semigroup structure. We will next examine the advection-vorticity coupling of the equation through
the Biot-Savart law. Finally, we will put everything together to write the modified equation which
naturally arises from a numerical CM method for Euler equations.

The 2D incompressible Euler equations are:

∂tu+ (u · ∇)u = −∇p (x, t) ∈ U × R+,(2.1a)

∇ · u = 0,(2.1b)

u(x, 0) = u0(x),(2.1c)

where U is the fixed spatial domain, u is a vector field describing the instantaneous velocity of
a fluid element and p is the pressure. For this paper, we assume for simplicity that U is the flat
2-torus and hence there are no boundary conditions. In general, for a boundary ∂U , the boundary
condition for inviscid flow is u · n∂U = 0 on ∂U where n∂U is the normal vector to the boundary.
This will require further extensions to the framework and is not covered in this paper.

Define ω = ∇× u the scalar vorticity of the fluid, and taking a 2D curl of 2.1, we obtain the
vorticity equations:

∂tω + (u · ∇)ω = 0 (x, t) ∈ U × R+,(2.2a)

∇ · u = 0,(2.2b)

ω(x, 0) = ω0(x).(2.2c)

Using the incompressibility assumption, u can be obtained from ω by solving a Helmholtz-Hodge
problem, u is then given by the Biot-Savart law

(2.3) u = −4−1∇× ω.

Given a solution u(x, t) of 2.1, we first make the observation that ω solves the advection
equation (2.2a) under the velocity field u. The method of characteristics for advection equations
implies that ω satisfies

(2.4)
d

dt
ω(γ(t), t) = 0,
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for any characteristic curve γ solving

d

dt
γ(t) = u(γ(t), t),(2.5a)

γ(0) = γ0.(2.5b)

The smoothness of these characteristic curves is proven in [4].
The approach presented in this paper consists in splitting the vorticity equations (2.2) into the

coupling of the advection of the vorticity by (2.4) and the Biot-Savart law (2.3). The advection
equation is solved using the Characteristic Mapping method [18] and the Biot-Savart law is applied
in Fourier space. We present details on these two methods in the following sections.

2.1. Characteristic Mapping Framework. The Characteristic mapping approach consists
in finding the solution operator for the advection equation associated to some transport velocity.
A more detailed exposition of this approach can be found in [18, 21, 14].

Consider a linear advection equation with a divergence-free transport velocity u

∂tφ+ (u · ∇)φ = 0 (x, t) ∈ U × R+,(2.6a)

φ(x, 0) = φ0(x).(2.6b)

A solution φ of the advection equation must satisfy

d

dt
φ(γ(t), t) = 0,(2.7)

or equivalently

φ(γ(t), t) = φ0(γ0)(2.8)

for all characteristic curves γ satisfying (2.5).
Therefore, we look for a solution operator X : U × R+ → U such that X(γ(t), t) = γ0 for all

characteristic curves γ(t) associated to the velocity u. For any fixed t, the map X(·, t) : U → U
is the inverse of the t-time flow map of the velocity u. We call X the backward characteristic map
since it “traces back” a particle at time t to its initial position γ0. Assuming smooth divergence-free
velocity, the flow map is a diffeomorphism, hence, we can write X as the solution to the following
vector valued advection equation:

∂tX + (u · ∇)X = 0 ∀(x, t) ∈ U × R+,(2.9a)

X(x, 0) = x.(2.9b)

One can check that d
dtX(γ(t), t) = 0 and hence X(γ(t), t) = X(γ0, 0) = γ0.

Remark 1. Wolibner proved in 1933 [29] that for an L1 initial vorticity field (with appropriate
decay at infinity), the corresponding velocity field (which is log-Lipschitz) solving the Euler equations
generates a Hölder continuous forward characteristic map. That is to say, the transformation
Φ(·, t) : γ0 7→ γ(t) is a Hölder continuous homeomorphism for all t. The existence, continuity and
area-preservation of the backward map X follows since X(·, t) = Φ−1(·, t).

The solutions to the advection equation 2.6 can be then computed as the pullback of the initial
condition by this backward map using 2.6

φ(x, t) = φ0 (X(x, t)) .(2.10)
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In fact, for any initial condition φ0, the corresponding advection equation has solution φ0 ◦X.
The characteristic map is independent of the advected quantity, it captures the deformation of the
space induced by the velocity u and acts as a solution operator of all quantities transported by u.

2.1.1. Semigroup structure. The treatment of incompressible inviscid flow from the point
of view of differential geometry and geodesic flow on the group of volume preserving diffeomor-
phisms was initiated by Arnold in 1966 [1]. The backward characteristic maps are the inverse maps
of the elements of the one-parameter semigroup of these volume preserving forward flow maps
parametrized by t. Hence, they inherit the same semigroup properties.

Consider the solution operator X† of the advection equation taking some arbitrary time t† as
initial time:

∂tX
† + (u · ∇)X† = 0,(2.11a)

X†(x, t†) = x.(2.11b)

We use the notation

X[t,t†](x) = X†(x, t),(2.12)

for t > t†. Here X[t,t†] is the backward characteristic map generated by u in the time interval [t†, t]
and traces back along characteristics a particle at position x at time t to its position X[t,t†](x) at

time t†. One can check that given arbitrary times t0 < t1 < t2, we have

X[t2,t0] = X[t1,t0] ◦X[t2,t1].(2.13)

This is in fact true without the t0 < t1 < t2 assumption and would involve forward characteristic
maps. This paper will only focus on the use of the backward maps.

This semigroup structure is at the heart of the CM method. The time evolution of the charac-
teristic map is defined though this map composition rather than through the usual PDE. We can
see the evolution of X as given by

X(·, t+ ∆t) = X(·, t) ◦X[t+∆t,t],(2.14)

The numerical approximation of X relies on discretizing the above using some small time step.
We also make use of this semigroup property to adaptively adjust the numerical resolution of

the map. In particular, a backward characteristic map X(·, t) for the time interval [0, t] can be split
into arbitrarily many submaps in the following way:

We subdivide the interval [0, t] into m subintervals [τi−1, τi] with 0 = τ0 < τ1 < · · · < τm = t.
One can then check that the following decomposition holds:

X(·, t) = X[t,0] = X[τ1,0] ◦X[τ2,τ1] ◦ · · · ◦X[τm−1,τm−2] ◦X[t,τm−1](2.15)

Each of the submaps X[τi,τi−1] can be computed individually and stored. The global time map is
then defined as the composition of all the stored submaps. This decomposition will provide several
important numerical advantages which we will discuss in section 3. In particular, each submap has
the identity map as initial condition and the subdivision allows for dynamic and adaptive spatial
resolution without changing the computational grid.
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In 2D incompressible Euler, the vorticity gradient can grow exponentially in time. Using the
characteristic map, we can write

ω(x, t) = ω0(X(x, t)).(2.16)

We observe from this that the advection operator is responsible for the formation of high vorticity
gradient since

∇ω(x, t) = ∇ω0 · ∇X(x, t).(2.17)

In cases where the vorticity gradient grows exponentially, we infer that ∇X must also grow expo-
nentially. The semigroup decomposition is analogous to the exponential function in one variable,
where the natural instantaneous evolution is multiplicative instead of additive in the sense that
exp(c(t+ ∆t)) ≈ (1 + c∆t) exp(ct) is more natural than exp(c(t+ ∆t)) ≈ exp(ct) + c∆t exp(ct) (the
latter requiring tracking an integrand which grows exponentially). Similarly, taking the gradient of
equation (2.15), we have

∇X[t,0] = ∇X[τ1,0]∇X[τ2,τ1] · · · ∇X[τm−1,τm−2]∇X[t,τm−1].(2.18)

This means that an exponential growth in gradient can be achieved by the composition of submaps
each having bounded gradient.

2.2. Advection-Vorticity Coupling. We use the backward characteristic map to rewrite
the vorticity equation 2.2a as the following coupling of u, ω and X:

ω(x, t) = ω0(X(x, t)),(2.19a)

u = −4−1∇× ω,(2.19b)

(∂t + u · ∇)X = 0.(2.19c)

Equation 2.19b is known as the Biot-Savart law in and can be obtained from ∇·u = 0 and the
definition of the vector Laplacian:

4F = ∇ (∇ · F )−∇× (∇× F )(2.20)

for F a R2 → R2 vector field. In 2D, we let u = F and commute 4−1 and ∇× in 2.19b. The
velocity is then obtained from the stream function ψ:

ψ = −4−1 ω, u = ∇× ψ.(2.21)

The CM method for Euler equations then consists of numerically evolving X in time using
equation (2.19c); the velocity and vorticity are defined using (2.19a), and (2.21).

2.3. Modified Equation. The coupling of the advection of the vorticity and the Biot-Savart
law can be thought of as a feedback loop between the characteristic map and the discretized ve-
locity. Let Xn be the numerical characteristic map at a discrete time step tn. This generates a
velocity un which we use to evolve the map to the next time step. In this section, we look at the
modified equation which arises from replacing the true velocity u by some modified ũ which is
better approximated by the discrete un. We give some general error estimates between the true
solution and the solution of the modified equation based on the discrepancies between u and ũ.
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For some given numerical solution Xn, n = 0, 1, 2, . . ., we look at a modified velocity ũ defined
at all times which approximates the velocities un at discrete time steps tn. The corresponding
modified equation for the characteristic map is then

∂tX̃ + (ũ · ∇)X̃ = 0.(2.22)

From here on, we will use the notation tilda for variables associated to the modified equation. Dis-
cretized variables will be denoted by script letters with a superscript n referring to the corresponding
time step tn.

We will estimate the difference between the true solution X and the solution to the modified
equation X̃. This is a useful strategy as it will allow us to bound the error of the numerical solution
using |X −X | ≤ |X − X̃|+ |X̃ −X |.

Consider the evolution of X and X̃ in some time interval [t0, t] (for t0 < t). We can write X
and X̃ in integral form:

X[t,t0](x) = x+

∫ t0

t

u
(
X[t,r](x), r

)
dr,(2.23a)

X̃[t,t0](x) = x+

∫ t0

t

ũ
(
X̃[t,r](x), r

)
dr.(2.23b)

Letting zx(t) = X[t,t0](x)− X̃[t,t0](x), we have that

|zx(t)| ≤
∫ t

t0

∣∣∣u (X[t,r](x), r
)
− ũ

(
X̃[t,r](x), r

)∣∣∣ dr ≤ ∫ t

t0

Cdr +

∫ t

t0

A|z(r)|dr(2.24)

for some C ≈ ‖u− ũ‖∞ and A ≈ ‖∇u‖∞. Hence, by Grönwall’s lemma, we have that

X[t,t0](x)− X̃[t,t0](x) . A(t− t0)eA(t−t0)‖u− ũ‖∞.(2.25)

Heuristically, we note from this that if a numerical solution X approximates well the solution
X̃ of the modified equation generated by the discretized velocity field ũ (or some approximation of
it), that is, if the scheme is “self-consistent”, then it is sufficient to control the difference between ũ
and the true velocity u. This tool makes the error analysis more straightforward and allows us to
obtain better bounds on the error in the conservation of various advected quantities. In particular,
we can write the modified equation approximated by the numerical vorticity solution:

∂tω0(X̃) = ∇ω0 · ∂tX̃ = −∇ω0 · (ũ · ∇)X̃ = −(ũ · ∇)ω0(X̃).(2.26)

That is, the numerical vorticity approximates an advection equation under the modified flow gen-
erated by ũ, making the error “advective” rather than diffusive. The exact nature of the modified
equation is unclear and depends on the leading order term of u− ũ. In cases where spatially trun-
cation errors dominate, we shall see that this is closely related to the Lagrangian-Averaged Euler
equations.

2.3.1. Multiscale Evolution. Due to the presence of different scales in the solution and
to limited computational resources, we need to make choices on the degree of spatial truncation
appropriate to each evolved quantity. In particular, the Biot-Savart law implies that u has a faster
decay in its Fourier coefficients compared to ω and X. Therefore, it can be represented on a
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coarser grid without incurring excessive L∞ error. In this method, we make a similar assumption
as in Lagrangian-Averaged Euler (LAE-α), that is, that the low frequency features of the velocity
dictate the global evolution of the flow and high frequency small features do not need to be solved
for exactly: it is sufficient to resolve the coarse scales of the velocity field as long as the fine scale
features of the transported vorticity are not lost. With this assumption in mind, we design a method
where the representation of the instantaneous velocity as well as the short time deformation map (by
“short time”, we refer to the submaps in the decomposition (2.15)) are done on a grid much coarser
than the fine scales present in the vorticity solution. However, since the vorticity is defined as the
pullback/rearrangement by X, all scales in the vorticity are preserved and coherently transported
under the smoothed velocity field. Indeed, in the CM method, ω is defined as a function ω0 ◦X
over the entire domain. The absence of a grid-based discretization of ω means that we do not incur
a spatial truncation error on the vorticity during its evolution. This lack of a grid-scale artificial
viscosity means that the small scales are not lost. As a result, the CM method achieves arbitrary
resolution on the vorticity field and allows us to separate the scales involved in the problems:
the large scales are computed and accurately represented whereas small scales are preserved and
passively transported.

Here we also make a parallel between the CM method and the LAE-α equations. The LAE-α
equations aim at modelling the flow of an incompressible inviscid fluid on a spatial scale larger than
α by taking a Lagrangian average of the velocity field. For more details on the LAE-α and LANS-α
formulation, readers can refer to [17, 19, 16]. In its vorticity form, the LAE-α can be written as

∂tω + (u · ∇)ω = 0,(2.27a)

u = −∇×4−1(1− α4)−1ω.(2.27b)

The above equation also models the flow of a second-grade non-Newtonian fluid; an analysis of the
relation between second-grade non-Newtonian fluids, the vortex blob method [3] and the LAE-α
equations can be found in [22].

We see from (2.27) that the vorticity is transported by u and that u is obtained from the
Biot-Savart law on a smoothed vorticity field (1 − α4)−1ω. This smoothing effect can also be
achieved by a spatial filter during the same Biot-Savart computation in CM. Therefore, a coarse grid
representation of the velocity field can in effect result in an approximation of the averaged velocity
in the LAE-α equations. The difference is that the quantity of interest in LAE-α is the averaged
velocity whereas in CM, we are interested in the vorticity field which contains arbitrarily fine scales.
It remains that in cases where the sampling of the velocity corresponds to the (1−α4)−1 smoothing
in LAE-α, the characteristic map from both formulations are the same and hence generate the same
dynamics.

3. Numerical Implementation. We present in this section the numerical framework for the
CM method. First, we present the Hermite interpolation structure used for spatial discretization
as well as the spatial definition of the discretized velocity field. We then provide a time semi-
discretization of the equation and make the link to the modified equation in 2.3. The space and
time discretizations are combined to generate the CM solver for the Euler equations for which we
then give some error estimates. Finally, we describe the remapping method which aims to adaptively
resolve increasingly complicated spatial features.

3.1. Spatial Discretization. We review in this section the definition of Hermite cubic in-
terpolants which is at the heart of all spatial computations in this method. We then present the
spatial discretization of the velocity field.
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3.1.1. Hermite Cubic Interpolation. We assume that the computational domain Ω is dis-
cretized in a rectangular meshgrid G. In 2D, G consists of grid points xi,j and has cells Ci,j with
corners xi,j ,xi+1,j ,xi,j+1 and xi+1,j+1. We will from now on assume for simplicity that Ω is a flat
torus and G is a square grid with Ci,j having uniform width ∆x.

The space of Hermite cubic functions on G, VG, is a finite dimensional subspace of C1(Ω)
consisting of functions that are bicubic in each Ci,j . To construct the basis functions, we take a
tensor product of the 1D cubic basis (see figure 3.1):

Q0(x) = (1 + 2|x|)(1− |x|)2 x ∈ [−1, 1],(3.1a)

Q1(x) = x(1− |x|)2 x ∈ [−1, 1],(3.1b)

Q0(x) = Q1(x) = 0 x /∈ [−1, 1].(3.1c)

These functions have the property that ∂cQk|y = δckδ
0
y for c, k ∈ {0, 1} and y ∈ {−1, 0, 1} and are

cubic in [−1, 0] and [0, 1] and are everywhere continuously differentiable.

Fig. 3.1: 1D Hermite cubic basis functions.

We define the 2D basis functions on the grid G for x = (x1, x2):

Hi,j
k,l(x) = Qk

(
x1 − x1

i,j

∆x

)
Ql

(
x2 − x2

i,j

∆x

)
∆xk+l.(3.2)

These basis functions satisfy

∂(c,d)Hi,j
k,l(xa,b) = δai δ

b
jδ
c
kδ
d
l .(3.3)

Each Hi,j
k,l is supported on 4 cells Ci−1,j−1, Ci,j−1, Ci−1,j and Ci,j . It is bicubic in each cell, ev-

erywhere C1 with continuous mixed derivative ∂(1,1). It has continuous normal derivatives and C∞
tangential derivatives on cell boundaries.

The projection operator HG : C1(Ω)→ VG is the interpolation operator

HG[f ](x) =
∑
i,j

∑
k,l

fk,li,jH
i,j
k,l(x),(3.4)

where fk,li,j = ∂(k,l)f(xi,j) for f ∈ C1(Ω).

It is well known that for f ∈ C4(Ω) the interpolation is order 4:

‖f −HG[f ]‖∞ < c‖D4f‖∞∆x4,(3.5)
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for some constant c
Furthermore, we see that if the grid data fk,li,j is perturbed by ε, then the perturbation of the

interpolant is

‖HG[f ]−HG[fε]‖∞ = O(ε∆xk+l).(3.6)

Therefore, in order to obtain a 4th order accurate interpolant of a function f , it is sufficient to
know the (k, l) derivative of f to order O(∆x4−(k+l)).

3.1.2. Spatial representation of the velocity field. In 2D Euler, the vorticity field solves
a transport equation under the velocity u. Assuming we have the global time characteristic map,
X(·, t), and that the initial condition for the vorticity ω0 is given analytically, we have that the
vorticity at time t is given by

ω(x, t) = ω0(X(x, t)).(3.7)

This evaluation is necessary at every time step for the Biot-Savart law. Numerically, the spatial
resolution is limited by the grid’s Nyquist frequency resulting in artificial diffusion when defining
the velocity u. Instead of allowing for artificial diffusion by coarse grid sampling (undersampling),
we define

(3.8) uε = ηε ∗ u,

where ηε is a mollifier supported in a ball of radius ε.
Commuting mollification with derivatives, we have that

uε = ∇× ψε for ψε = ηε ∗ ψ,(3.9a)

ψε = −4−1 ωε for ωε = ηε ∗ ω.(3.9b)

Finally, using ω = ω0 ◦X, we can write the pullback of the convolution

ωε(x, tn) =

∫
Bε(x)

ηε(x− y)ω0 (X(y, tn)) dy(3.10)

=

∫
X(Bε(x),tn)

ηε(x−X−1(y, tn))ω0(y)|det(∇X)|−1dy

=

∫
X(Bε(x),tn)

η̃ε(X(x, tn),y)ω0(y)dy = [η̃ε ∗ ω0]X(x,tn) ,

where η̃ε(x,y) = ηε(X
−1(x, tn) − X−1(y, tn))|det(∇X(x, tn))|−1. The last line above can be

verified by plugging in x = X−1(·, tn).
During simulations, when sampling the vorticity at discrete locations xi, we pick a mollifier

such that ηε,xi form a partition of unity of the domain. This further guarantees that the numerical
average vorticity is equal to the true exact average up to quadrature and Jacobian determinant
errors. Given a numerical approximation Xn of X(·, tn), we define the mollified numerical vorticity
at time step tn to be

ωnε (x) := [ηnε ∗ ω0]Xn(x) ,(3.11)

for ηnε (x,y) = ηε((Xn)−1(x) − (Xn)−1(y))|det(∇Xn(x))|−1. Note that the numerical evaluation
of ωnε is performed by quadrature on the deformed cells Xn(Cij) and requires no computations of
the inverse or Jacobian determinant of Xn.
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Remark 2. We only use this mollified vorticity to generate a mollified velocity, the true nu-
merical solution is still defined as ωn = ω0 ◦Xn.

The velocity field can be obtained from ωn through the stream function as in equation 2.21.
Numerically we will solve this using a spectral method with Fast Fourier transforms. Let F denote
the Discrete Fourier transform operation, we have:

ψnε := −F−1
[
4−1 F [ωnε ]

]
,(3.12)

where the above 4−1 solves the Poisson equation in Fourier space and is a diagonal operator.
The divergence-free property of the velocity should be preserved in order for the characteristic

map to be volume preserving. Therefore un should be defined as the curl of some scalar function.
To achieve this, we use a grid U for the representation of the velocity field and define

unε := ∇×HU [ψnε ].(3.13)

This definition guarantees that unε ∈ curl(VU ) ⊂ {f ∈ C0(Ω) | ∇ · f ≡ 0}. Indeed, un is C∞ in
each cell and continuous across cell boundaries, its divergence is however continuous everywhere and
identically 0 due to the continuity of the mixed partials ∂(1,1)HU [ψnε ]. As a result, the numerical
flow is also divergence-free which allows us to control the error on the volume-preserving property
of the characteristic map.

Remark 3. The grid U and the parameter ε used to represent the velocity field are independent
of the grid used for the evolution of X , the interpolant is also not restricted to Hermite cubics.
Consequently, U can be made arbitrarily fine and ε arbitrarily small such that unε approach the
exact Biot-Savart velocity associated to the numerical vorticity ωn = ω0 ◦ X . In fact, choosing
a fine grid does not require large computational resource as it only involves an inverse FFT of a
zero-padded ψ̂nε . On the other hand, it may be computationally advantageous to pick a larger ε as
this allows us to perform a coarser sampling of ωn, a procedure which involves evaluating all the
submaps in the characteristic map decomposition.

3.2. Time Discretization. Section 3.1.2 gives us a discretization of the velocity field at time
tn given the characteristic map. In this section, we provide the time discretization for the evolution
of the characteristic map based on this unε .

The characteristic map can be evolved using the semigroup property (2.14). Let tn be the
discrete time steps, with ∆t = tn+1 − tn, we have

X[tn+1,0] = X[tn,0] ◦X[tn+1,tn].(3.14)

In order to approximate the one-step map X[tn+1,tn], we extend the velocity unε to the time
interval [tn, tn+1] using an order p Lagrange polynomial in time. This is similar to a multistep
method. Let

ũ(x, t) :=

p−1∑
i=0

li(t)u
n−i
ε (x),(3.15)

where li are the Lagrange basis polynomials for time steps tn−i. We note that for each fixed time
t, ũ is a linear combination of un−iε . In particular, this implies that if ∇ ·un−iε = 0 then ∇ · ũ = 0.
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The one-step map X[tn+1,tn] is then approximated from (2.23b) by a k-stage Runge-Kutta
integration of the velocity ũ along characteristic curves, for ∆t backward in time:

X [tn+1,tn](x) = x−∆t

s∑
j=1

bjkj ,(3.16)

with

kj = ũ

(
x−∆t

j−1∑
m=1

ajmkm, tn+1 − cj∆t

)
,(3.17)

and k0 := 0. The coefficients a, b, c are those of the Butcher tableau corresponding to the explicit
Runge-Kutta scheme.

Remark 4. The smoothness of ũ is required for the convergence of RK schemes. However, the
Hermite cubic definition of unε in section 3.1.2 is C0. Nonetheless, this does not pose a problem since
HU [ψnε ] is a piecewise polynomial approximation of ψnε , which is smooth: the moduli of smoothness
for unε scale with the cell width of U (in the limit of infinitely fine grid U , unε is smooth). Therefore,
by appropriately scaling U with ∆t the lack of smoothness does not affect the convergence.

3.3. Characteristic Mapping Method for 2D Incompressible Euler. We combine the
time and space discretization in the previous sections to generate the Characteristic Mapping
method for 2D Euler. The evolution of X[t,0] at discrete time steps tn is given by (3.14). We
construct the numerical approximation of X by evolving a map in the space of Hermite cubic C1

diffeomorphisms in the sense that each coordinate function is a piecewise Hermite cubic polynomial
defined on some grid M . We use the same evolve-project strategy as the CM method for linear
advection to advance the characteristic map [18]:

Xn+1 = HM

[
Xn ◦X [tn+1,tn]

]
,(3.18)

X 0(x) = x.(3.19)

where the one step map X [tn+1,tn] is given in (3.15) and (3.16). The velocities unε required to define
the one step map are given by (3.11), (3.12) and (3.13). The velocities un−iε at previous time steps
used in (3.15) are stored until no longer needed (for p steps where p is the order of the Lagrange
polynomial chose to represent ũ).

3.3.1. Error Estimates. We give some estimates on the characteristic map error:

En := ‖X(x, tn)−Xn(x)‖∞.(3.20)

First, we consider some given numerical solutions Xn for n = 0, 1, . . . N for some unspecified
N . The characteristic map at each time step tn generates a velocity field unε . We take the velocity
field ũ(x, t) for t ≥ 0 to be the velocity field of the modified equation (2.22). We notice that the
numerical solution X is exactly the CM discretization of the advection operator X̃ for the velocity ũ
(taking ũ as given). That is X is a CM method approximation of the advection operator generated
by the modified velocity it engenders.

Theorem 3.1. Using an s-stage explicit RK integrator with Hermite cubic spatial interpolation,
the numerical characteristic map Xn(x) approximates X̃(x, tn) to order

‖Dα(X̃(x, tn)−Xn(x))‖∞ = O(tn(∆x2−|α|min(∆t,∆x2∆t−1) + ∆ts)),(3.21)

for α ∈ {0, 1}2.
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(a) Initial condition. (b) Grid deformation from
characteristic map.

(c) Pullback of the initial
condition by the map.

Fig. 3.2: Evolution of the characteristic map acting on the initial condition.

Proof. Taking ũ as a fixed velocity, X is simply CM method applied to ũ. The error estimates
are given in [18]. It is a property of jet-schemes with Hermite cubic interpolants that we lose one
order of convergence for the first mixed derivative only in the spatial error term. This is because
time integration in jet-schemes computes the function values and mixed derivatives of degree 1 in
each dimension and all interpolants and functions evaluated in the method are at least everywhere
C1.

We note that the velocity field ũ is smooth in space (see remark 4), however it may be discon-
tinuous in time at tn. This does not cause an issue as the smoothness of the velocity is only required
in the time step intervals [tn, tn+1]. The local truncation error estimates still hold for the one-step
maps X [tn+1,tn] and X̃[tn+1,tn]; the global truncation error can be obtained from the composition
and Hermite interpolation of the one-step maps.

Corollary 3.2. The CM method for 2D incompressible Euler conserves enstrophy to order
O(tn(∆x2 min(∆t,∆x2∆t−1) + ∆ts)).

Proof. Since ũ is by definition divergence-free, we have that X̃ is a volume preserving map,
i.e. det(∇X̃) = 1. We get by a change of variable that, with U = X̃(U),∫

U

f(ω0(x)))dx =

∫
X̃(U)

f(ω0(X̃(x, tn))) det(∇X̃(x, tn))dx =

∫
U

f(ω0(X̃(x, tn)))dx,(3.22)

for any measurable f . Therefore, we have∫
U

f(ω0(Xn(x)))dx−
∫
U

f(ω0(x)))dx ≈
∫
U

∇(f ◦ ω0)(Xn(x)− X̃(x, tn))dx(3.23)

≤ ‖∇(f ◦ ω0)‖L2‖Xn − X̃(·, tn)‖L2 = O(tn(∆x2 min(∆t,∆x2∆t−1) + ∆ts))

In particular, taking f(ω) = ω2 gives us conservation of enstrophy, and for higher order monomials,
implies that the moments of the vorticity are conserved, as they are in the continuous setting.

To obtain a full error bound, it is sufficient to bound the difference between the true charac-
teristic map and the map from the modified equation. Let

Ẽn := ‖X(x, tn)− X̃(x, tn)‖∞.(3.24)

From theorem 3.1, we then have that

En ≤ Ẽn +O(tn(∆x2 min(∆t,∆x2∆t−1) + ∆ts)).(3.25)
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Theorem 3.3. From the above error decomposition we can deduce that the global truncation
error for the characteristic map is

En = O
(
∆ts + ∆x2 min(∆t,∆x2∆t−1) + ∆tp

)
.(3.26)

Proof. It is sufficient to control the evolution of Ẽn. We note that X[tn,0] = X[tn−1,0]◦X[tn,tn−1]

and X̃[tn,0] = X̃[tn−1,0] ◦ X̃[tn,tn−1], hence

X[tn,0] − X̃[tn,0] = (X[tn−1,0] − X̃[tn−1,0]) ◦X[tn,tn−1] +O(X[tn,tn−1] − X̃[tn,tn−1]).(3.27)

From our estimates in (2.25), we have that X[tn,tn−1] − X̃[tn,tn−1] = O(∆t‖u − ũ‖∞). Given
that ω(x, tn−1)− ωn−1(x) = O(En−1), we have

X[tn,tn−1] − X̃[tn,tn−1] = O(∆tEn−1 + ∆tp+1),(3.28)

where we incurred an extra order p+ 1 error from the Lagrange interpolation.
Therefore,

Ẽn ≤ Ẽn−1 +O(∆tEn−1 + ∆tp+1)(3.29)

= Ẽn−1 +O
(

∆tẼn−1 + ∆t(tn(∆x2 min(∆t,∆x2∆t−1) + ∆ts)) + ∆tp+1
)
,(3.30)

which implies that

Ẽn = O
(
∆x2 min(∆t,∆x2∆t−1) + ∆ts + ∆tp

)
.(3.31)

Together with (3.25), we obtain the desired error estimate.

Remark 5. Equation (3.28) in fact omits a sampling error incurred when defining unε , due
to sampling the vorticity at discrete points. In this method, we define ωnε by convolution with a
pullback mollifier instead of directly evaluating ω0 ◦Xn at sample points. This allows us to justify
a Fourier truncation at low number of modes, however, we incur an error term which is second
order in the width of the mollifier. This is omitted from the analysis since the sampling grid for ωnε
is independent of the computational grid for the map, hence the sampling error can be controlled
separately.

3.3.2. Convergence Tests. We provide here some numerical evidence for the error estimates
derived above. We will more extensively test the full method in section 4.

We use a standard four-modes initial condition (4.1) to test the convergence. For the spatial
error, we fix ∆t at 1/512 using third order Lagrange interpolation in time and third order explicit
Runge-Kutta for time-integration. We then vary the spatial grid size between 32 to 512. To test
the error in the time variable, we fix the spatial grid at 1024 and vary ∆t between 1/8 and 1/128.
This time, we test both a second and third order Lagrange interpolant while keeping the same
Runge-Kutta scheme as before. This aims to show the independence of the conservation error from
the solution error. For all tests, we sample the vorticity on a 1024 grid and represent the stream
function as a piecewise Hermite cubic interpolant on a 2048 grid. We run the simulation to time
t = 1 and calculate the errors in the following quantities:

Map error := ‖Xn −X(·, tn)‖∞,(3.32a)

Vorticity error := ‖ωn − ω(·, tn)‖∞,(3.32b)

Enstrophy conservation error := ‖ωn‖2L2 − ‖ω0‖2L2 ,(3.32c)

Energy conservation error := ‖un‖2L2 − ‖u0‖2L2 .(3.32d)
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Conservation errors are calculated directly, the sup-norm map and vorticity errors are estimated
by comparing each result to the ∆x = 1/1024, ∆t = 1/512 test. The functions are evaluated on a
2048 grid, both the L∞ and L2 norms are approximated by their discrete variant on this grid. The
results are shown in figure 3.3.
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(a) Time convergence test,
3rd order Lagrange.

∆x = 1/1024.
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(b) Time convergence test,
2nd order Lagrange.

∆x = 1/1024.
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(c) Spatial convergence test,
3nd order Lagrange.

∆t = 1/512.

Fig. 3.3: Map and vorticity error and conservation errors of enstrophy and energy
for the Characteristic Mapping method without remapping.

Figures 3.3a and 3.3b are both time convergence plots, the difference is that one uses a third
order Lagrange interpolant for the definition of ũ and the other, second order. We see that as
expected, the enstrophy conservation error is independent of the choice of Lagrange interpolant
and is third order in both cases due to the use of RK3 integration for ũ. The error on the map
values and vorticity however, do depend on the accuracy of ũ and have third and second order
convergence for the respective tests.

Figure 3.3c shows the convergence with respect to ∆x. Our error estimates suggest a conver-
gence between O(∆t∆x2) and O(∆t−1∆x4). For a fixed ∆t, this is between second and fourth
order. This ambiguity comes from the time stepping in GALS methods. The grid data at time
tn+1 are obtained by evaluating the time tn Hermite interpolants at X [tn+1,tn](xg) for xg a grid
point; X [tn+1,tn](xg) is commonly called the “foot-point”. The interpolation error depends on the
location of the foot-point relative to grids points. In each dimension, Hermite cubic interpolation
errors scales quadratically with both closest grid points. This implies that the interpolation error is
O(∆x2∆t2) if ∆t� ∆x and O(∆x4) otherwise. This is consistent with the third order convergence
we see in figure 3.3c.

The experiments in this section suggest that the CM method with Hermite cubic spatial inter-
polation, third order Lagrange time interpolation and RK3 time integration yields a globally third
order method. This is to provide some support for the error estimates in section 3.3.1. In practice,
since a faithful representation of fine scale features in the velocity field does not contribute very
much to the global dynamics and deformation of the domain, we use a coarse grid to represent
short time characteristic maps in order to improve efficiency. In this regard, the remapping step
presented in the next section will play an important role in maintaining an accurate resolution of
the fine scale features in the deformation map generated by long term advection. We will then
provide more numerical results and benchmark tests in section 4.
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3.4. Adaptive Remapping and Arbitrary Resolution. In the absence of a viscosity term,
solutions of Euler equations tend to develop arbitrarily small scale spatial features. As a result, a
fixed grid for representing the characteristic map is only valid for a limited amount of time before
spatial resolution needs to be increased. Changing the computational grid during simulations can
be cumbersome and adversely affect the speed of all computations thereafter. We use instead a
decomposition method based on the semigroup property of the characteristic map mentioned in
section 2.1.1. Numerically, the time t characteristic map can be constructed as the composition of
several submaps of time subintervals:

X (·, t) := X [τ1,0] ◦X [τ2,τ1] ◦ · · · ◦X [τm−1,τm−2] ◦X [t,τm−1],(3.33)

for some subdivision 0 < τ1 < τ2 < · · · < τm−1 < t. Each of these submaps are computed using the
CM method described in previous sections. We initialize X [τ,τi] with the identity map at τ = τi
and evolved until a remapping time τ = τi+1 which can be determined dynamically. Once the
remapping time is reached, we store X [τi+1,τi] in memory and start computing the map for the next
subinterval.

Heuristically speaking, each of the subintervals [τi, τi+1] should be short enough such that the
grid used to discretize X [τi+1,τi] can correctly represent the deformation generated by the velocity
ũ in this interval. Here we should point out that the intervals [τi, τi+1] should be distinguished
from the [tn, tn+1] from previous sections. The latter has length ∆t and is used to discretize
the one-step maps X [tn+1,tn]; these are immediately composed and projected through X [tn+1,t†] =

HM

[
X [tn,t†] ◦X [tn+1,tn]

]
, they are used to evolve the maps. The intervals [τi, τi+1] on the other

hand are longer, each X [τi,τi+1] comprise of several ∆t steps. Once computed, they will be stored
in memory.

In this implementation, we use the error in the Jacobian determinant

endet := ‖ det∇Xn − 1‖∞(3.34)

as a measurement of the map quality, based on which we choose the remapping times. We pick an
error threshold δdet for the submaps. The ith submap is initialized with the identity map. After
each time step, we compute the Jacobian determinant of X [τi+n∆t,τi] at off-grid sample points. If
for some n, the Jacobian error exceeds δdet for the first time, we define τi+1 := τi + n∆t and store
X [τi+1,τi]. The same process is repeated for the i+ 1st submap using τi+1 as initial time.

Although ‖ det∇Xn − 1‖∞ < δdet does not constitute a proper bound on the error in X , we
can use this as an approximate a posteriori error estimate for the gradient of the map compared to
that of the map from the modified equation. Indeed, since ‖X − X̃‖∞ is the error from using the
CM method on the velocity ũ, it is globally third order when ∆x ∼ ∆t. Assuming that ∇X −∇X̃
is small, we can justify the following first order expansion

edet = ‖ det∇X − det∇X̃‖∞ ≈
∥∥∥tr
(
∇X̃−1(∇X −∇X̃)

)∥∥∥
∞

= O(‖∇X −∇X̃‖∞)(3.35)

Choosing the remapping times such that for each subinterval, we have edet < δdet implies that
each submap has O(∆xδdet) error with respect to X̃ and hence volume preservation and enstrophy
conservation error of the same order. In turn, since the error is 0 at the initial time and we remap
at the first time step where this threshold is exceeded, we know that we can assume the error to be
small enough to justify the above first order expansion (at least for all previous time steps).

This remapping technique is key in the accurate, dissipation-free resolution of the vorticity field.
Qualitatively speaking, there are two types of errors in this method, one is dissipative in nature,

16



and the other, “advective”. Dissipative error refers to artificial diffusion (or diffusion-like) terms
that we incur from spatial truncation of the solution. When we represent an evolving quantity on a
fixed spatial grid, the high frequency features of the solution, namely those above the grid’s Nyquist
frequency, are loss. When these spatial truncations are directly applied to the Euler equations, we
get artificial dissipation of ω or u resulting in loss of enstrophy or energy. In the case of Fourier-
Galerkin truncation, the dissipative errors can resonate with the solution resulting in numerical
artefacts and spurious oscillations [26].

Due to the discrete nature of numerical computations, truncation errors are somewhat in-
evitable. In the present method, the evolution of Xn (and only Xn) contains a diffusive type error
since during each GALS update step, the Hermite cubic interpolation consists of a 4th order aver-
aging of grid values. The leading order error is a 4th order spatial derivative acting like a squared
Laplacian. Over time, this accumulated averaging error artificially smooths out the map and resists
fine scale deformations which might be present in the true solution. However, since ωn = ω0 ◦Xn,
the error in the vorticity is not dissipative in nature. The vorticity is not directly obtained from
the previous step ωn−1 and there is no averaging involved. Instead, the error occurs only at the
evaluation of ωn and is produced by evaluating ω0 at a wrong position. In fact, since X and Xn

are both diffeomorphisms of Ω, there exists a diffeomorphism Ψn = (Xn)−1 ◦X[tn,0] such that

X[tn,0] = Xn ◦Ψn,(3.36)

The error for ωn can then be seen as an advective error in the sense that

ω(x, tn) = ωn(Ψn(x)),(3.37)

where ω on the left-hand side refers to the true solution.
This means that qualitatively speaking, the global dynamics of the solution are not obtained

from a viscous approximation: the numerical fluid is still inviscid. We make an error on the
position of the vortices, controlled by the error of the characteristic map. In particular, it is a
straightforward consequence that the numerical solution has the correct L∞-norm. Moreover, all
Lp-norms for 1 ≤ p < ∞ are controlled by ‖X − X̃‖∞. Essentially, the CM method places the
inevitable diffusive truncation error on the deformation map so that by composition with ω0, the
dissipative error in X manifests itself in ω as an advective error, hence preserving the inviscid
quality of the numerical solution.

Going back to the remapping routine, we apply the same principle. In limiting the length of
the submap intervals [τi, τi+1] by choosing a small δdet, we limit the amount of artificial diffusion
a single submap can accumulate. This prevents the dissipative type error from smoothing out the
map and smearing out the fine scale deformations generated by the advection: the global time map
is constructed by composition of the short time submaps, also resulting in an advection type error
for the map.

In practice, we can interpret the choice of δdet in several ways. On one hand, since the use
of a smoother unε velocity can be seen as coarse scale discretization of the fluid velocity in the
sense of the LAE-α and non-Newtonian fluid equations, we can view the choices of the remapping
threshold δdet as control on the artificial elasticity of the numerical flow due to spatial truncations.
In this sense, the CM method does not make an error on the viscosity, rather it allows for some small
controlled elasticity in the fluid. On the other hand, δdet controls the error on the volume preserving
property of the map. The numerical deformation map is not exactly volume preserving, hence the
characteristic paths approximate to those of a fluid that is slightly compressible. Therefore, the CM
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method avoids numerical dissipation by allowing for a small controlled compressibility in particle
paths. It is important to note however that the vorticity field is still advected and is not stretched
by the compressibility relaxation of the characteristic map.

Lastly, one can also look at the spatial resolution of the remapping routine from the point of view
of the gradient of the represented quantities. Heuristically speaking, the maximum gradient that can
be accurately represented on a grid of cell width ∆x is O(∆x−1), that is, the gradient scales roughly
with N , the number of grid points per dimension. It follows that for an exponentially growing
vorticity gradient, the required grid size to avoid excessive truncation errors grows exponentially
also. For methods where the evolution of ω is carried out additively, i.e. methods of the type

ωn+1 = ωn + ∆t∂tω
n,(3.38)

it implies that computations for ∂tω
n must be carried out on an exponentially growing grid.

On the other hand, ω is not evolved additively in the CM method, the gradient is instead
generated by the characteristic map:

∇ω(·, tn) = ∇ω0∇X [tn,0].(3.39)

Here, the exponential quantity is ∇Xn. This growth is however a natural property of the char-
acteristic map (the map being itself the exponential flow map of the backward time velocity). In
fact, the semigroup decomposition (2.18) is the intrinsic generating process of the gradient just as
multiplication is the generating process of the exponential function. We have

∇X [t,0] =

m∏
j=1

∇X [τj ,τj−1],(3.40)

where the `2 operator norm ‖∇X [τj ,τj−1]‖2 of each submap gradient is expected to scale exponen-
tially with ∆τj = τj − τj−1. Therefore, by appropriately choosing the remapping criterion, one can
make ∆τ small enough that the gradient of each submap is bounded of order O(1 + ∆τ), hence
representable on a coarse grid. This means that through the semigroup property, we can generate
exponential growth in the vorticity gradient without having to do computations on an exponentially
growing grid. As we shall see in the next section, this yields a computationally efficient method
which captures arbitrarily fine scales and arbitrarily large gradients in the solution.

4. Numerical Tests. In this section we present some numerical tests using the CM method
for 2D Euler to simulate incompressible flows starting from some given initial condition. All com-
putations are done on Matlab using double precision. However, the GALS method for evolving the
characteristic map uses a 4th order ε-difference method to replace the analytic chain rules involved
in map updates. This simplifies implementation, but with our choice of ε = 5× 10−4, it effectively
limits the machine precision for the characteristic map to around 10−13.

4.1. “4-modes” test. We test the CM method for 2D incompressible Euler using the “4-
modes” initial condition. We use the tests performed in [25] as reference. The initial vorticity is
given by:

ω0(x, y) = cos(x) + cos(y) + 0.6 cos(2x) + 0.2 cos(3x),(4.1)

This flow can roughly be characterised as two vortices of opposite signs partitioning a flat torus.
The contour plot of ω0 and 4ω0 are shown in figure 4.1. For this flow, we used a 1282 grid for the
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evolution of the maps with a 5122 grid to represent ũ. The time step ∆t was set at 1/32 and the
remapping determinant error threshold to 10−4. The simulation was run to times 3.5 and 4 for the
vorticity spectrum plot in figure 4.13, and for several times until t = 8 for the long time simulation
in figures 4.2 an 4.3.

(a) ω0 (b) 4ω0

Fig. 4.1: Contour plot of the 4-modes initial vorticity and its Laplacian.

The same tests were performed in [25] up to time t = 5 using the Cauchy-Lagrange method
of various truncation order in time on spatial grids up to 81922. This was necessary due to the
presence of large high frequency components in the vorticity at large times and to the necessary
anti-aliasing routines in Fourier pseudo-spectral methods. On the other hand, one can justify using
a coarser 1282 grid for the submap evolution in the CM method since the submaps are remapped
and reset to identity before large high frequency features can form. Furthermore, these maps are
evolved using the velocity field ũ which, by the Biot-Savart law, has a faster decay in its Fourier
coefficients than the vorticity field.

The simulations in this section were carried out on Matlab on a computer with an Intel Core
i5-2320 3.00GHz 4 cores processor and 8GB of RAM. For the current simulations, we have not used
any parallelization routines. However, almost all the computational time is spent on Hermite inter-
polations. Parallel and GPU implementation of these operations are standard and could drastically
improve the speed of the simulations. Parallelization and application of domain decomposition
techniques (possibly for the Biot-Savart kernel) may be of interest for future work.

Figures 4.2 and 4.3 show the contour plots of the vorticity and its Laplacian at length 1 time
intervals between 0 and 8. The characteristic maps are computed on a coarse gird, we only use a
fine grid sampling of the vorticity to generate the figures. Table 4.1 shows the number of remaps
and total computational times required to reach the various plotting times.

t 1 2 3 4 5 6 7 8

Number of remaps 1 4 14 30 47 65 88 105

Total CPU time 20 s 41 s 66 s 100 s 145 s 202 s 274 s 359 s

Table 4.1: Number of remaps and CPU times for the 4-modes test.

From figures 4.2 and 4.3, we see that for larger times, the flow forms very thin vortex sheets
where the two vortices meet. These regions have high vortex gradient and present increasingly fine
scale features. For methods employing a fixed grid to represent the solution ωn, these fine features
will eventually become smaller than the grid resolution after which they are lost. This can be
interpreted as numerical diffusion associated to the grid size and eventually destroys sharp features
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(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6 (g) t = 7 (h) t = 8

Fig. 4.2: Contour plot of the vorticity using 1282 grid for Xn, 5122 grid for
representing ψn, ∆t = 1/32 and δdet = 10−4.

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6 (g) t = 7 (h) t = 8

Fig. 4.3: Contour plot of the Laplacian of the vorticity using 1282 grid for Xn,
5122 grid for representing ψn, ∆t = 1/32 and δdet = 10−4.

of the solution. In the case of conservative high resolution methods such as [25], the truncation of
high frequency modes can provoke resonance in the solution leading to a type of spurious oscillations
called “Tygers”: essentially, for a given spatial resolution the numerical solution will reach a time
after which numerical artefacts become visible and the solution becomes unstable.

The CM method circumvents this issue by obtaining the solution as a “rearrangement” of
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the initial condition using the backward map. The lack of spatial resolution due to the discrete
representation of the map does not result in a diffusive type error in the vorticity. This can be
observed in figures 4.2 and 4.3 where we can see that for large times, the solution still contains
fine scale features and there are no spurious oscillations, implying that we do not incur diffusive
type error in ωn. There is however a diffusive type error in X akin to an elasticity term. From the
point of view of vorticity, the effect of this diffusive error in the map is that the vorticity will be
transported along a less violent flow. This error is controlled by the remapping routine. Normally,
if we evolve a single characteristic map on a 1282 grid, the accumulated diffusive error will prevent
sharp deformations to form. Using the remapping method with δdet = 10−4 we limit the amount of
diffusive error in each submap. The global map is constructed from the composition of the submaps
and hence is able to represent large shears and the formation of thin vortex sheets. Indeed, we can
see from the results that the vorticity develops scales much finer than the 1282 grid used for the
submap evolution. These scales were absent in the initial condition and are generated from the
domain deformation represented by the composition of several submaps.

Another advantage of the remapping routine is that it offers some control over the growth of
the enstrophy conservation error. Indeed, since each additional submap transports the vorticity
at the previous remapping time, we incur the conservation error in corollary 3.2 with respect
to the enstrophy at the previous remapping. This means that the enstrophy error accumulates
additively when remapping. The error from each submap is controlled through the choice of the
remapping tolerance δdet, thereby providing better long term conservation. The enstrophy and
energy conservation errors are shown in table 4.2.

t 1 2 3 4

Enstrophy 1.35 · 10−6 2.75 · 10−6 4.39 · 10−6 6.13 · 10−6

Energy −3.21 · 10−8 −4.14 · 10−8 −5.17 · 10−8 4.66 · 10−8

t 5 6 7 8

Enstrophy 7.90 · 10−6 9.76 · 10−6 1.17 · 10−5 1.37 · 10−5

Energy −3.51 · 10−7 −1.64 · 10−6 −3.98 · 10−6 −7.51 · 10−6

Table 4.2: Conservation errors for the 4-modes test using the CM method.

Compared to a direct grid based representation of the vorticity, this growth is much slower.
Indeed, in [25], using the 8th order Cauchy-Lagragian method on a 10242 grid, the enstrophy error
increases from 10−14 to 10−12 to 10−6 for times 1, 3 and 5, whereas for the CM method, the
enstrophy error seems to grow linearly with time.

The remapping method combined with the functional representation of the characteristic map
offers the possibility of arbitrary spatial resolution of the solution. Indeed, since the interpolation
structure of the submaps implies that the global map X [t,0] can be readily evaluated anywhere
in the domain, if follows that the vorticity of any quantity transported by the flow can also be
evaluated anywhere. With the accuracy control provided by the remapping method, this means
that solutions can be faithfully represented at an arbitrary resolution. We illustrate this property
by gradually zooming into the solution at times 4 and 8.

Figures 4.4, 4.5, 4.6 and 4.7 illustrate the arbitrary spatial resolution provided by the charac-
teristic map. Each zoomed plot is sampled with the same number of sample points, providing the
same image resolution on gradually smaller subdomains. We observe that when we zoom in, we
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Fig. 4.4: Gradual 64× zoom on the vorticity at t = 4.
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Fig. 4.5: Gradual 64× zoom on the Laplacian of the vorticity at t = 4.

recover additional small scale features not seen on the original plot. The undersampling from the
[0, 1]× [0, 1] plot fails to represent the complexity of the contour lines inside the thin vortex sheet
(see figures 4.7a v.s. 4.7a). These features are recovered when using a finer sampling. This in fact
shows that the solution provided by the CM method is not bound to a fixed set of sample points.
Whereas in most methods, once a grid is chosen, any detail finer than this grid is lost, the CM
method does not compute the solution on a fixed grid, rather it provides an algorithm to sample
the vorticity field ωn = ω0 ◦Xn defined as a function over the whole domain. This means that the
solution can be evaluated anywhere, providing arbitrary spatial resolution. In practice, in case ω0

is given numerically, this implies that we maintain the same resolution as that of ω0 throughout
the entire simulation: there is no loss of spatial features.
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Fig. 4.6: Gradual 64× zoom on the vorticity at t = 8.
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Fig. 4.7: Gradual 64× zoom on the Laplacian of the vorticity at t = 8.

4.2. Random initial conditions. In this section, we perform the same tests as in section 4.1
on a randomly generated initial condition. The procedure to generate the random initial condition
is given in [26]. In short, the vorticity is defined in Fourier space, which is divided into lattice
shells, each containing all modes k such that |k| ∈ [K,K + 1). The Kth shell contains N(K)
modes, and for each of these modes, we assign a vorticity Fourier coefficient ω̂k of fixed modulus
2K7/2 exp(−K2/4)/N(K) and a phase picked randomly from [0, 2π) with uniform distribution.
This guarantees that the total vorticity in the Kth shell decays like 2K7/2 exp(−K2/4). Further, to
ensure that the vorticity is real, opposite wave vectors (i.e. ω̂k and ω̂−k) are given opposite phases
so that the resulting Fourier expansion is Hermitian. The same test was performed in [25] until
t = 1 using the Cauchy-Lagrange methods with 20482 spatial Fourier modes.

(a) ω0 (b) 4ω0

Fig. 4.8: Contour plot of the random initial vorticity and its Laplacian.

Since the CM method does not work directly with the Fourier transform of the initial vorticity,
we defined our initial ω0 as follows: we first generate ω̂k as described above, we then sample the
Fourier series on a 5122 grid to obtain a Hermite cubic interpolant which we use as ω0. We used total
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of 32 lattice shells, i.e. K = 0, 1, . . . 32; in fact, due to the prescribed decay rate of the coefficients,
|ω̂k| is already well below machine precision for |k| = 32 and is below machine underflow for 64.
Using more shells would have no consequence on our ω0. The initial vorticity and its Laplacian are
shown in figure 4.8. We ran the CM method on this initial condition using a 2562 grid for the map,
10242 grid to represent ψn, ∆t = 1/64 and δdet = 10−4. Contour plots of the vorticity field and
of the its Laplacian are shown at 0.5 time intervals in figures 4.9 and 4.10. The number of remaps
and CPU times required are shown in table 4.3.

t 0.5 1 1.5 2

Number of remaps 3 18 38 69

Total CPU time 233 s 499 s 822 s 1226 s

Table 4.3: Number of remaps and CPU times for the random initial condition
test using the CM method.

(a) t = 0.5 (b) t = 1 (c) t = 1.5 (d) t = 2

Fig. 4.9: Contour plot of ωn for the random initial condition test using 2562 grid
for Xn, 10242 grid for representing ψn, ∆t = 1/128 and δdet = 10−4.

(a) t = 0.5 (b) t = 1 (c) t = 1.5 (d) t = 2

Fig. 4.10: Contour plot of 4ωn for the random initial condition test using 2562

grid for Xn, 10242 grid for representing ψn, ∆t = 1/128 and δdet = 10−4.

As in the 4-modes test, we also observe slow growth in conservation errors for the random initial
data in table 4.4.
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Fig. 4.11: Gradual 64× zoom on the vorticity at t = 2.
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Fig. 4.12: Gradual 64× zoom on the Laplacian of the vorticity at t = 2.

t 0.5 1 1.5 2

Enstrophy error −2.40 · 10−6 1.36 · 10−6 5.95 · 10−6 9.36 · 10−6

Energy error −7.74 · 10−7 −4.71 · 10−6 −3.79 · 10−5 −9.36 · 10−5

Table 4.4: Conservation errors for random initial condition test using the CM
method.

In comparison, the enstrophy error for the 8th order, 20482 harmonics Cauchy-Lagrangian
method grows from 10−14 to 10−13 to 10−8 for times 0.2, 0.6 and 1.

4.3. Spatial resolution. The vorticity solutions in both tests in this section are observed to
have increasingly finer spatial features as time progresses. One way to quantify the evolution of the
spatial scales is through the Fourier expansion of the solution, in particular, we look at the decay
of the magnitudes of the high frequency coefficients. This can be seen from the vorticity spectrum
obtained by integrating the square of vorticity over circular shells in Fourier space. That is, let ω̂k

be the k = (k1, k2) coefficient of the Fourier transform of ω, we have

Eω(K) :=
1

2

∑
K≤|k|<K+1

|ω̂k|2,(4.2)

where |k| =
√
k2

1 + k2
2.

We compare the vorticity spectrum from the CM method to that of Cauchy-Lagrangian (CL8)
method presented in [25]. Figure 4.13 shows the overlay of the vorticity spectra obtained from both
methods. The vorticity fields are sampled at times 3.45 and 3.95 (due to the nature of the time
step in the Cauchy-Lagrangian method, the sampling times presented in [25] did not land exactly
on t = 3.5 and 4).
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(a) t ≈ 3.5 (b) t ≈ 4

Fig. 4.13: Decay in the vorticity spectrum at times 3.5 and 41.

(a) 4-modes (b) Random initial condition

Fig. 4.14: Radius of analyticity δ(t) vs time.

We see that in figure 4.13, the vorticity spectra obtained from the CM method matches almost
exactly, up to double precision, the high-fidelity results obtained from the Cauchy-Lagrangian 80962

simulation (The curves are on top of each other. The plots are provided in vector-graphics format,
zooming in the tail of the spectrum shows some discrepancies between the two curves. This is in
large part due to the two simulations not having exactly the same final times). This suggests that
small time deformations can be accurately represented on a coarse 1282 grid and the fine scale
global time deformations can be reconstructed by the composition of the submaps without loss of
resolution.

One measurement of the asymptotic decay of the Fourier coefficients is the radius of analyticity.
The decay rate of the vorticity spectrum at high frequency modes indicates the spatial scales present

1The Cauchy-Lagrangian method employs variable length time steps. The vorticity spectrum presented in [25]
are computed at the last time step before reaching times 3.5 and 4. The final times turned out to be approximately
3.45 and 3.95. In this figure, the final times for the CM method are taken to be exactly 3.45 and 3.95.
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in the solution. Asymptotically, the decay of the vorticity spectrum is typically

Eω(K) ∼ Kαe−2δK .(4.3)

The rate of the exponential, δ, is the radius of analyticity and governs the spatial truncation error.
For a grid which resolves a maximum frequency of kmax, the spatial truncation error scales like
e−δkmax .

Figure 4.14 shows the evolution of the radius of analyticity in time for both numerical tests.
The radius is estimated at various times by taking a least-squared fit of the logarithm of the
tail of the vorticity spectrum log(Eω(K)) with respect to the quantities log(K), K and 1; we
extract δ from the fitted coefficient for K. We see that the reduction in the radius of analyticity
is exponential. This implies that in order to maintain a certain level of spatial truncation, the
maximum resolved frequency kmax must grow exponentially. In particular, for the 4-modes test,
at time 8, a grid size of order 104 would be needed to properly resolve the solution. Carrying out
computations with traditional methods on such grids would be difficult on a personal-use computer.
We see that CM method allows us to evolve the solution for long times without having to use such
large grids: through the submap decomposition, only local time coarse grids computations are
required, the fine scale details can be recovered by the composition of the submaps. The CM
method in fact dynamically adapts to the spatial resolution necessary to the problem. Through the
remapping process, the available numerical resolutions autonomously grows as the spatial features
in the solution increase.

4.4. Illustration of the Arbitrary Subgrid Resolution. Finally, in this section we provide
an illustration of the power semigroup decomposition approach in achieving high subgrid resolution
of the solution. For this, we simulate a 2 vortex merger problem. We use two identical Gaussian
blobs of variance 0.07 placed 0.3 apart in a periodic domain of width 1 (see figure 4.15). The two
vortices both have clockwise spins and are expected to start spinning around each other and almost
merge into a single vortex blob. Due to the lack of viscosity, the vortices do not become a single
vortex and will generate instabilities as time goes on.

Fig. 4.15: Initial vorticity for the vortex merger simulation.

The fine scale features produced by this flow requires a high amount of spatial resolution to
evolve and represent. We performed the simulation using the CM method on a 512 grid for the
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Fig. 4.16: Vorticity field at time t = 20

map and 1/128 time step until t = 20. The results are shown in figures 4.16 and 4.17.
The final frame (figure 4.16) at time 20 is obtained using a composition of 605 submaps.

This allows for the representation of a tremendous amount of fine scale subgrid structures. To
illustrate this, we take a gradual zoom towards the position (x, y) = (13/32, 13/32) in the last
frame. Figure 4.18 shows the zoomed view on the t = 20 vorticity field. Each subfigure is obtained
by evaluating the submap compositions on the subdomain corresponding to the zoomed view. Since
the characteristic map has a functional definition, we can use the same number of sample points to
generate each picture, therefore obtaining high resolution images of arbitrarily small regions in the
domain. For instance, figure 4.18l shows the vorticity field in a region of size 1/8192× 1/8192. The
image is generated using 7682 sample points, providing an accurate depiction of the details seen at
the fine scale level.

The numerical experiments in section 4 showcase several advantageous properties of the CM
method for the 2D incompressible Euler equations. Firstly, the submap decomposition using the
semigroup property of the characteristic map allows for quick and accurate computations on a
coarse grid, circumventing the usual requirement of increasing spatial resolution due to exponential
vorticity gradient growth. As evidence, solutions from a 1282 grid CM solver achieves the same
vorticity spectrum as an 81922 grid direct vorticity solver (see figure 4.13). Furthermore, due to
the volume preserving property of the characteristic map, the CM method achieves high accuracy
enstrophy conservation for all times. Whereas other methods experience a spike in enstrophy error
when the vorticity fields becomes complicated, the enstrophy conservation in CM is independent of
the current time vorticity and is a direct result of volume preservation. This allows the enstrophy
error to grow only linearly in time, regardless of the complexity of the vorticity field. Lastly,
the functional definition of the numerical vorticity through composition with the backward map
allows for an arbitrary spatial resolution of the solution. Furthermore, the submap decomposition
generates the correct scales of gradients, ensuring that the increasing fine scale features in the
vorticity solutions are properly represented as the resolution increases. This property is evidenced
in figures 4.4, 4.5, 4.6, 4.7 and more thoroughly in 4.18 in section 4.4, where we zoom in on the
solution to show the arbitrary spatial resolution achieved by the CM method.
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(a) t = 2 (b) t = 4 (c) t = 6

(d) t = 8 (e) t = 10 (f) t = 12

(g) t = 14 (h) t = 16 (i) t = 18

Fig. 4.17: Evolution of the vorticity field in the vortex merger simulation.
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(a) width = 2−2 (b) width = 2−3 (c) width = 2−4

(d) width = 2−5 (e) width = 2−6 (f) width = 2−7

(g) width = 2−8 (h) width = 2−9 (i) width = 2−10

(j) width = 2−11 (k) width = 2−12 (l) width = 2−13

Fig. 4.18: Gradual zoom on the last frame, each subfigure is a 2× zoom on the
previous.
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5. Conclusion. In this paper, we have presented a novel numerical method for solving the
2D incompressible Euler equations. The work in this paper is an extension of the CM method for
linear advection and is based on the GALS and Jet-Scheme frameworks. This method is unique
in that it solves for the deformation map generated by the fluid flow and captures the geometry
of the problem; all evolved quantities of interest can be obtained from this transformation. As
a result, this scheme is characterized by the arbitrarily fine subgrid resolution it provides on the
solutions, and a lack of artificial dissipation. Several key observations has lead to the development
of this method. Firstly, the arbitrarily fine scales typically generated by an inviscid flow lead to
the functional representation of the vorticity field though the pullback by the characteristic map,
this approach not only preserves fine scales but more importantly avoids spatial truncations of the
vorticity field hence eliminating artificial dissipation. These properties are demonstrated in the tests
in section 4, in particular in the zoomed view of the solutions. Secondly, the possible exponential
growth in the vorticity gradient lead to the use of the semigroup structure of the flow maps to
decompose the characteristic map: exponential growth can be generated by a composition of maps
of fixed resolution. Lastly, the assumption that the dynamics of the fluid is mainly governed by
the large scale low frequency features of the velocity allowed us to carry out the characteristic map
computations on a coarse grid, improving the efficiency of the method. We drew a parallel between
the use of coarse scale velocity and the Lagrangian-Averaged Euler equations.

The use of the characteristic map for the simulation of inviscid fluids opens many new pos-
sibilities for future research. The next step is to include the vorticity-stretching term in order to
generalize this 2D method to 3 dimensional problems. There is also a possibility of including forcing
terms and potentially extensions to the method which deals with forcing terms while maintaining
the characteristic structure. Furthermore, even though the current hyperbolic advective structure
of the method is somewhat incompatible with the parabolic diffusion term, there may be modifica-
tions to the framework which allows for the integration of a viscosity term which would allow for
the use of the CM method on the 3D incompressible Navier-Stokes equations. Lastly, at a longer
term, the implementation of boundary conditions and the application of the method to complex
geometries is also an important problem to study. These are the current directions of our research
as we believe that the CM method provides a unique and appropriate framework for solving more
general problems in computational fluid dynamics.
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