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Abstract

The aim of this paper is to study the feasibility of time-reversal methods in a non homo-
geneous elastic medium, from data recorded in an acoustic medium. We aim to determine,
from partial aperture boundary measurements, the presence and some physical properties of
elastic unknown “inclusions”, i.e. not observable solid objects, located in the elastic medium.
We first derive a variational formulation of the acousto-elastic problem, from which one con-
structs a time-dependent finite element method to solve the forward, and then, the time
reversed problem. Several criteria, derived from the reverse time migration framework, are
then proposed to construct images of the inclusions, and to determine their locations. The
dependence/sensitivity of the approach to several parameters (aperture, number of sources,
etc.) is also investigated. In particular, it is shown that one can differentiate between a
benign and malignant close inclusions. This technique is fairly insensitive to noise in the
data.

keywords: Time reversal; wave propagation; inverse problem; acousto-elastodynamics; nu-
merical simulation

Introduction

Time reversal (TR) is a subject of very active research for over two decades, and was experi-
mentally developed by M. Fink in 1992 in acoustics, showing very interesting features [29]. It
remains an active subject of research, whether in the theoretical, physical or numerical points
of view, with many applications such as tumor detection [35] or earthquake prevention, see [36]
and references therein.

TR is a procedure based on the reversibility property of wave propagation phenomena in non-
dissipative media, like in acoustic, electromagnetic or elastodynamics. A consequence of this
property is that one can “time-reverse” developed signals, by letting them propagate back in
time to the location of the source (or scatterers) that emitted them originally. This remarkable
property allows proposing innovative methods, for instance in medical imaging [41, 40, 10, 24],
seismic inversion [39] and active or passive detection problems [16]. The outstanding aspect of
this experiment is the possibility to refocus in a very precise way the signal, without knowing
the details of the source that emitted it. The first mathematical analysis can be found in [7] for
a homogeneous medium and in [21], [13] for a random medium.

TR can also be used to identify scatterers, using the fact that a scatterer impinged upon by an
incident wave behaves as a source for the reflected field. More generally, scatterers behave like
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secondary sources, so that TR causes reflected signals to refocus at the scatterer location.

TR can also be considered as an inverse problem, for which the solution is obtained without
the need of an iterative process. Theoretically, solving a time reversed problem under ideal
circumstances, this should yield the exact solution. However, there is always the possibility that
under some (realistic!) conditions, the time reverse process will fail. This may happen due to
several reasons: measurement noise, availability of only partial information in space or in time,
and lack of knowledge about the medium properties or the source.

From a computational point of view, TR involves advancing the numerical solution of the rele-
vant wave problem “backward in time”. The most direct use of the refocusing property allows
one to solve the inverse problem of finding the location of a source when remote measurements
of the wave field are given. Frequent applications are in seismology, for locating the epicenter of
an earthquake from measurements taken on the ground [30, 37].

Here we are concerned with the refocusing on the scatterers of the diffracted wave to try to
obtain elastic properties of an inclusion. Detection of elastic properties of a given objects inside
a given “noisy” medium, by ultrasound waves can have a lot of applications, such as medical
imaging, material detection inside a rock, see [33, 17] and references therein.

As usual for inverse problems, this will require to define criteria, like cost functions in inverse
problems [30], to measure or at least evaluate the quality of the final result, namely the refocus-
ing of wave on the diffracting object we aim to recover.

The main goal of this article is to derive and analyze the TR approach for the time-dependent
acousto-elastodynamics configuration. As described in [10, 27] the recording of reflected waves
are carried out in the fluid part of the domain, which means that only acoustic pressure is
recorded. Our goal here is to deal with this partial data (acoustic pressure without knowl-
edge of elastic displacements). The main applications of linear elastodynamics, or acousto-
elastodynamics are generally structural engineering [12], where the main purpose is to examine
beams that support buildings and bridges, or seismology, where the waves can be excited natu-
rally by earthquakes or artificially using manmade explosions, to explore the subsoil properties.
In this paper, we will focus on another application: instead of waves that excited on earth, we
will consider waves that propagate through a tissue, for example, through breast tissue. The
applications we have in mind are for instance the detection of tumors.

As far applications are concerned, this approach is supposed to determine the elastic properties
of obstacles in media that are assumed to mimic breast tissue, benign and malignant tumors
[38, 27]. Applications we have in mind are to help the detection of breast tumors, by using effi-
cient simulations of ultrasound waves. This technique can be used instead of intrusive diagnosis
that performed in cases where the common diagnosis of the cancerous tissue is not guaranteed
(e.g. Mammography, human palpation, Ultrasound, etc.).

For these reasons, mathematical models and then numerical simulations will mimic the process
of sending ultrasound waves through a breast tissue according to a (partially) known mechanical
properties and noise and try to detect cancerous tumors by the reflected waves, in case of partial
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information. Hence in this article1, in order to be closer to what happens in many real cases
as in medical imaging and other fields, we do not assume that the line of receivers encloses the
bounded domain Ω, we rather consider that the aperture is reduced. Then, we will apply the
derived method to identify an “inclusion” or to differentiate between a single inclusion and a
two close inclusions each one with different elastic properties that correspond to different breast
tumors (benign and malignant). Typically, a benign tumor corresponds to normal breast tissues,
with a Young modulus between 1 and 70 KPa, whereas malignant tumors have a Young modulus
varying from 15 to 500 KPa (see for instance [28]). Note also that, as pointed out for instance
in [2], the method does not require a priori knowledge of the physical properties of the inclusions.

The paper is organized as follows: we present in Section 1, the forward problem, which is
practically used only for numerically generating the measurement data (to be inverted). In
Section 2, we describe the process of time reversal (TR) and the way it is derived for the
acousto-elastic problem. In Section 3, we describe the cost functional used to evaluate the
quality of identification. We then present numerical experiments and results, with a particular
focus on breast cancer detection applications. A conclusion is drawn at the end of the paper.

1 The forward model

1.1 Governing equations

We consider a non homogeneous two-dimensional fluid-solid domain Ω ⊂ RN , N = 2, that con-
sists of a top-most acoustic layer Ωf and, underlying it, an elastic domain Ωs. The acoustic part
Ωf corresponds to a homogeneous fluid, characterized by a known wave propagation velocity

V p
f =

√
λf
ρf

, ρf and λf denoting respectively the density and the bulk modulus of the fluid.

In order to be closer to realistic cases as in geophysics or medical imaging, we consider that
the elastic part of the domain Ωs corresponds to a layered solid, characterized for each layer

by a known wave propagation velocities V p
s =

√
λs+2µs
ρs

and V s
s =

√
µs
ρs

, ρs and λs, µs being

respectively the density and the Lamé coefficients of the considered layer (see Figure 1).

Hence, the incident wave, generated by a known source, or being an incoming wave from infinity,
is first propagated in the fluid part of the medium, then transmitted (and partially reflected)
into the solid medium. This wave is then scattered by a buried obstacle D located inside the
solid domain (which may contain one or several inclusions) characterized by different physical
properties from the surrounding elastic layer. The resulting scattered wave is then recorded by
a source-receivers array (SRA) located in the fluid part of the domain (see Figure 1). We also
assume that after a time Tf , the total field is negligible in the domain of interest Ω.

To model this phenomenon, we introduce the scalar wave equation in the fluid part Ωf ⊂ Ω,
and the elastodynamic wave equation in the solid part Ωs ⊂ Ω. The fluid-solid interface ΓI (see
Figure 1) will be handled by interface transmission conditions.

Remark 1 We present here the coupled system of acousto-elastodynamics equations. The (fully)
elastodynamics equations can be derived, by simply removing the fluid part (and related equations)
from the model described below, and by adding a term source (and recorders) in the elastic

1a short report appeared in the C. R. Mecanique (2019) [3]
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Figure 1: Geometry of a fluid-solid domain Ω, with the inclusion(s) D and the source-receivers
array (SRA) (dashed line).

domain. Note also that there is no ”conceptual” difficulty to derive the same problems in three-
dimensional geometry.

Let us consider first the acoustic problem. We denote by ∂Ωf the boundary of Ωf and n =
(n1, n2) is the the unit outward normal vector to ∂Ω. We denote by p(x, t) the pressure on a
time t, x = (x1, x2) ∈ Ωf , and by f(x, t) a given source. In these conditions, the acoustic wave
equation in Ωf can be written as

1

λf

∂2p

∂t2
− div (

1

ρf
∇p) = f , (1)

together with homogeneous initial conditions at the initial time t = 0

p(t = 0) = 0,
∂p

∂t
(t = 0) = 0 . (2)

Let us consider now that the boundary ∂Ωf can be split in ∂Ωf = Γf ∪ ΓI , ΓI being the fluid-
solid interface introduced above, and Γf the artificial outer surface of Ωf . Assuming that the
boundary Γf is a ball, we supplement Eqs. (1-2) with the first order Bayliss-Turkel absorbing
boundary conditions BT1 [9, 8]

∂p

∂t
+ Vp

∂p

∂r
+ Vp

p

2r
= 0 on Γf , (3)

r denoting the radial coordinate.

Remark 2 In the case of straight boundary Γf , we will use the Engquist-Majda absorbing bound-
ary condition [20] instead of (3)

∂p

∂t
= −Vp∇p · n on Γf . (4)

On the interface ΓI , transmission conditions will be added, see (9) below.
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Similarly for the solid part Ωs of the domain, the velocity u(x, t) = (u1(x1, x2, t), u2(x1, x2, t))
at a point x = (x1, x2) ∈ Ωs satisfies, for all t > 0,

ρs
∂2ui
∂t2
−
∑
j=1,2

∂

∂xj
τij(u) = 0 , i = 1, 2 , (5)

where �(u) := (τi,j(u))1≤i,j≤2 is the (time derivative of the) classical stress matrix defined by

τij(u) = λsdivu δij + µs(
∂ui
∂xj

+
∂uj
∂xi

), i, j = 1, 2 .

Remark 3 These equations can be equivalently formulated in a vector form as

ρs
∂2u

∂t2
− div � = 0 , or ρs

∂2u

∂t2
− div (µs∇u)−∇((λs + µs)∇ · u) = 0 .

As for the fluid part of the domain, this equation is supplemented with homogeneous initial
conditions

u(t = 0) = 0,
∂u

∂t
(t = 0) = 0 . (6)

Here also, the boundary of the solid domain ∂Ωs can be split in ∂Ωs = Γs ∪ ΓI , where Γs de-
notes the artificial outer surface of Ωs. Equations (5) and (6) are supplemented with absorbing
boundary conditions on Γs, as proposed for instance in [31], [6].

For our purpose here, let us introduce the first order absorbing condition that can be written
here as

�(u)n + M
∂u

∂t
= 0 on Γs , (7)

where M is a N ×N matrix (here N = 2) defined by

M =

(
n1 n2

n2 −n1

)(
ρVp 0
0 ρVs

)(
n1 n2

n2 −n1

)
,

that is, a symmetric and positive definite matrix. Physically, this condition expresses that the
normal stress is inversely proportional to the velocity. In particular, one can define a total energy
as a non increasing function of the time, and condition (7) is absorbing, leading to a well posed
mathematical problem. A particular and very common case of Eq. (7) corresponds to horizontal
and vertical boundary, says Γs1 and Γs2 respectively. In that case, the condition is expressed as

A
∂u

∂t
= �(u)n , (8)

where the matrix A is a diagonal N × N matrix, with A11 = −
√
ρs(λs + 2µs), A22 = −√ρsµs

for horizontal boundaries, and the contrary for vertical boundaries.

Finally, we have to deal with the transmission conditions to impose on the interface ΓI between
the fluid and the solid parts.
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1. We begin with the continuity of the normal (with respect to ΓI) component, that reflects
that the jump across ΓI of the displacement is equal to 0, and so is the jump of the
velocity u, that is [u ·n]ΓI

= 0. Now, using the Euler equation written in velocity-pressure

ρf
∂u

∂t
+∇p = 0, and differentiating in time the jump relation across ΓI , we readily obtain

the first relation
1

ρf

∂p

∂n
=

1

ρf
∇p · n = −∂u

∂t
· n , (9)

n denoting here the unit outward normal vector from ∂Ωs to ∂Ωf .

2. The second relation to impose is the continuity of the normal component of the stress
tensor, that gives, agaim after differentiation in time

∂p

∂t
ni =

∑
j=1,2

τij(u)nj , i = 1, 2 , (10)

or
∂p

∂t
n = �(u)n in a vector form.

Remark 4 For an horizontal interface, relation (9) can be simply expressed
1

ρf

∂p

∂x2
= −∂u2

∂t
,

whereas relation (10) is written as 0 =
∂u1

∂x2
+
∂u2

∂x1
,

∂p

∂t
= λs

∂u1

∂x1
+ (λs + 2µs)

∂u2

∂x2
.

As a consequence of the transmission conditions, there is conservation of N + 1 = 3 scalar quan-
tities. Note also that these conditions appear as natural boundary conditions in the variational
formulation that will be derived below, due to the use of the pressure-velocity formulation (1-5).

1.2 Variational formulation

We now introduce the variational formulation for the acousto-elastodynamics equations, whose
derivation is not classical, due to the coupling between the fluid and the solid parts. This is why
the elastodynamics wave equation is expressed in velocity (and not in displacement). This ap-
proach leads to an ”easy” coupling on the interface ΓI , and allows to perform the computations
in a natural and expected way.

Let us take a test function q ∈ V for acoustic wave equation, V being an ad hoc Sobolev space.
Classically, V = H1(Ωf ) := {v ∈ L2(Ωf );∇v ∈ L2(Ωf )}. Multiplying (1) by q ∈ V , integrating
over the domain Ωf , and using a classical integration-by-parts formula, we get∫

Ωf

1

λf

∂2p

∂t2
q dω +

∫
Ωf

1

ρf
∇p · ∇q dω −

∫
∂Ωf

1

ρf

∂p

∂n
q dσ =

∫
Ωf

fq dω ,

Taking into account that ∂Ωf = Γf ∪ ΓI , one uses the continuity of the normal component (9)
on ΓI , and the ABC (3) on Γf (or the ABC (4) the case occurring). We get∫

Ωf

1

λf

∂2p

∂t2
q dω +

∫
Ωf

1

ρf
∇p · ∇q dω +

∫
ΓI

∂u

∂t
· n q dσ

+

∫
Γf

(
1√
ρfλf

∂p

∂t
+

1

ρf

p

2r

)
q dσ =

∫
Ωf

fq dω , (11)
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where the second term in the integral on Γf , that is

∫
Γf

1

ρf

p

2r
q dσ, is replaced by 0 if one uses

the ABC (4).

Similarly for elastodynamics wave equation, to derive the variational formulation in Ωs, we
consider v = (v1, v2) a vector test function, that belongs to the relevant Sobolev space V :=
H1(Ωs). We use the Green’s identity (see [18], p. 288)

−
∫

Ωs

divS · vdω =

∫
Ωs

S : ∇vdω −
∫
∂Ωs

(S n) · vdσ , ∀v ∈ V , (12)

where S denotes a symmetric tensor field and the symbol : stands for the contracted product of

two tensors namely, �(u) : �(v) =
2∑
i=1

2∑
j=1

�ij(u)�ij(v) = �ij(u)�ij(v) with the Einstein summa-

tion convention.

Multiplying (5) by v = (v1, v2) ∈ V, integrating over the domain Ωs, and using integration by
parts (12), we get∫

Ωs

ρs
∂2u

∂t2
· v dω +

∫
Ωs

λsdivudivv dω +

∫
Ωs

2µs�(u) : �(v) dω −
∫
∂Ωs

τij(u) vi nj dσ = 0 .

Using now the continuity of the normal component of the stress tensor (10) on the interface,
and the ABC (7) on Γs (or the ABC (8) the case occurring), we obtain∫

Ωs

ρs
∂2u

∂t2
·v dω+

∫
Ωs

λsdivudivv + 2µsτij(u) τij(v) dω−
∫

ΓI

∂p

∂t
v ·n dσ +

∫
Γs

M
∂u

∂t
·v dσ = 0 .

where the integral

∫
Γs

M
∂u

∂t
·v dσ is replaced by −

∫
Γs

A
∂u

∂t
·v dσ when using the ABC (8) instead

of (7).

Remark 5 For an horizontal interface parallel to the x1 axis, the variational formulation (11)
can be simply expressed∫

Ωf

1

λf

∂2p

∂t2
q dω +

∫
Ωf

1

ρf
∇p · ∇q dω +

∫
ΓI

∂u2

∂t
q dσ +

∫
Γf

(
1√
ρfλf

∂p

∂t
+

1

ρf

p

2r

)
q dσ =

∫
Ωf

fq dω .

In addition, in the common case of horizontal and vertical absorbing boundaries Γs1 and Γs2,
one has∫

Ωs

ρs
∂2u1

∂t2
v1 dω +

∫
Ωs

((λs + 2µs)
∂u1

∂x1
+ λs

∂u2

∂x2
)
∂v1

∂x1
+ µs(

∂u1

∂x2
+
∂u2

∂x1
)
∂v1

∂x2
dω

+

∫
Γs1

√
ρsµs

∂u1

∂t
v1 dσ +

∫
Γs2

√
ρs(λs + 2µs)

∂u1

∂t
v1 dσ = 0

∫
Ωs

ρs
∂2u2

∂t2
v2 dω +

∫
Ωs

((λs + 2µs)
∂u2

∂x2
+ λs

∂u1

∂x1
)
∂v2

∂x2
+ µs(

∂u1

∂x2
+
∂u2

∂x1
)
∂v2

∂x1
dω

+

∫
Γs2

√
ρsµs

∂u2

∂t
v2 dσ +

∫
Γs1

√
ρs(λs + 2µs)

∂u2

∂t
v2 dσ −

∫
ΓI

∂p

∂t
v2 dσ = 0
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Remark 6 The transmission conditions at the interface ΓI appear through an anti-symmetric
form c(·, ·) defined by

d

dt
c((p,u), (q,v)) :=

d

dt

(∫
ΓI

−pv · n dσ +

∫
ΓI

u · n q dσ
)

This allows us to define an energy of the system and to prove that this energy is conserved (in the
absence of ABC), or decreases (in the presence of ABC). Let us give here the sketch of the proof:

We first introduce the following notations:

((p,u), (q,v)) =

∫
Ωf

1

λf
p q dω +

∫
Ωs

ρsu · v dω ,

a((p,u), (q,v)) = af (p, q) + as(u,v) =

∫
Ωf

1

ρf
∇p · ∇q dω +

∫
Ωs

λsdivudivv + 2µsτij(u) τij(v) dω ,

b((p,u), (q,v)) =

∫
Γf

1√
ρfλf

p q dσ +

∫
Γs

Mu · v dσ , and e(p, q) =

∫
Γf

1

ρf

p

2r
q dσ ,

so that the variational formulation can be written as, after extinction of the source f(x, t)

d2

dt2
((p,u), (q,v)) + a((p,u), (q,v)) +

d

dt
b((p,u), (q,v)) +

d

dt
c((p,u), (q,v)) + e(p, q) = 0 .

To define the energy of the system, we choose q =
∂p

∂t
and v =

∂u

∂t
in the formulation above.

This yields the antisymmetric term c to vanish, and we get

1

2

d

dt
((
∂p

∂t
,
∂u

∂t
), (

∂p

∂t
,
∂u

∂t
)) +

1

2
a((p,u), (p,u)) = −b((∂p

∂t
,
∂u

∂t
), (

∂p

∂t
,
∂u

∂t
))− 1

2
e(p, p) . (13)

The first term of (13) can be interpreted as a kinetic energy, whereas the second one is a term of
deformation. Without term of ABC, namely for b ≡ e ≡ 0, the energy defined above is conserved,
whereas it decreases in presence of ABC.

2 Recreate the past with time reversal

We wish to recover an unknown obstacle buried in the elastic part of the medium from field
measurements, by using the TR method. Basically, it takes advantage of the reversibility of
wave propagation phenomena in a non dissipative unknown medium to back-propagate signals
to the sources that emitted them [1]. In this section, we will first present the principle of the
Time Reversal techniques, then derive it for the fluid-solid problems.

2.1 Principle of time reversal

Let us describe briefly the principle of TR, for a general propagation equation. We consider an
incident wave uI impinging an obstacle D characterized by different physical properties from
the surrounding medium. Assuming that the total field u satisfies a linear hyperbolic equation
or system of equations, says L, one can write

L(u) = 0 in RN , (14)

8



together with zero initial conditions.

Now, we introduce a bounded domain Ω that surrounds D, and assume that the incident wave
uI is generated by a source such that after a time Tf the total field u is negligible in Ω. The
time-reversed solution uR of equation (14) is simply defined as uR := u(Tf − t). Denoting by
ΓSRA the boundary of source-receivers array on which the scattered field is recorded. We impose
Dirichlet boundary conditions on ΓSRA equal to the time reversal of the recorded fields and zero
initial conditions.

In real configurations, since the physical properties of the inclusion or its exact location are
unknowns, the form of the operator L is unknown inside the inclusion D, but only outside D.
In these conditions, the corresponding uR satisfies equation (14) (reversed in time) only outside
the object D, namely in Ω\D. Hence, one can not define a well-posed boundary value problem
on uR in Ω\D.

Nevertheless, the classical TR approach overcomes this difficulty by solving the problem in the
entire domain Ω, assuming that there is no inclusion D, building in this way an “approximate”
time-reversed solution. More precisely, denoting by wR this “approximate” time-reversed solu-
tion, one solves in the entire domain Ω, i.e. without inclusion D,

L0(wR) = 0 in Ω ,

together with Dirichlet boundary conditions on ΓSRA, equal to the time reversal of the recorded
fields, and zero initial conditions for the TR problem.

2.2 Time Reversal for acousto-elastodynamics equations

Considering a fluid-solid problem as described above, we aim to reconstruct the time reversed
acousto-elastic wave (pR,uR), scattered from a scatterer D, which may contain several obsta-
cles or inhomogeneities. As explained above, our measurement data have been recorded on the
boundary ΓSRA, from a known incident wave.

In the configurations considered in the present paper, due to the non-homogeneity of the fluid-
solid domain, made of two or several layers, the incident field is defined as the pressure-velocity
fields that propagate in the absence of scatterer D. This assumes that the location of the in-
terface ΓI and of the eventual other discontinuities is known. However, the recording being
performed in the fluid part, we have likewise to solve a time reversed fluid-solid problem only
from acoustic recording, that is from the measurement of the pressure p in the fluid part.

We describe now the TR system of equations, together with the boundary and interface con-
ditions. The resulting system being quite similar to the one of the forward problem, we will
explain briefly the construction of the variational formulations.

Consider first Ωf the fluid part of the domain, where the time-reversed pressure pR(x, t′) is
defined by pR(x, t′) = p(x, Tf − t), x ∈ Ωf . The wave equation involving only second order time
derivatives, this definition ensures that the reverse field pR(x, t′) is a solution to the acoustic
wave equation

1

λf

∂2pR

∂t′2
− div (

1

ρf
∇pR) = 0 ,

9



together with TR initial conditions and TR absorbing boundary conditions on Γf , analogous to
(2) and (3) or (4). In that case, there is no external source f . Nonetheless, the boundary ΓSRA
modeling a source-receivers array, a Dirichlet boundary condition equal to the time reversal of
the recorded fields is imposed there, namely pR(t′) = p(Tf − t) on ΓSRA.

Secondly, for the elastic part of the domain, let us denote by uR(x, t′) = (uR1 (x1, x2, t
′), uR2 (x1, x2, t

′))
the time-reversed velocity solution to equation (5), that solves

ρs
∂2uRi
∂t′2

−
∑
j=1,2

∂

∂xj
τij(u

R) = 0 , i = 1, 2 ,

together with (TR) initial conditions, and (TR) absorbing boundary conditions on Γs, with
expressions analogous to (6) and (7) or (8).

Finally, we derive the time-reversed continuity transmission conditions at the interface ΓI . We
readily arrive at

1

ρf

∂pR

∂n
=
∂uR

∂t′
· n , (15)

− ∂pR

∂t′
ni =

∑
j=1,2

τij(u
R)nj , i = 1, 2 , (16)

Here again, one can obtain simplified versions of (15) and (16) for an horizontal interface, in the
same spirit as in remark 4.

Let us conclude this section with the variational formulation for the time-reversed acousto-
elastic equations. It is obtained by following the same principles as for the forward one. For
completeness, we present below the final expression, that is written∫

Ωf

1

λf

∂2pR

∂t′2
q dω+

∫
Ωf

1

ρf
∇pR·∇q dω−

∫
ΓI

∂uR

∂t′
·n q dσ−

∫
Γf

1√
ρfλf

∂pR

∂t′
q dσ =

∫
ΓSRA

fSRA q dω ,

∫
Ωs

ρs
∂2uR

∂t′2
·vdω+

∫
Ωs

λsdivuRdivv+2µsτij(u
R)τij(v)dω+

∫
ΓI

∂pR

∂t′
v·ndσ+

∫
Γs

A
∂uR

∂t′
·vdσ = 0 .

The forward and reversed formulations are discretized by similar numerical schemes. Both are
approximated by using a P2 finite element method with FreeFem++ [32]. The time derivative is
approximated by a second order centered finite difference scheme, which is time reversible also
on the numerical level.

3 Numerical results

In the following, we will illustrate our approach through numerical examples, in the case of two
scatterers located in the elastic part of the medium. Let us first describe the principle of the
numerical process:

1. To first create the synthetic data, an incident wave is generated by a point source located
in the fluid part Ωf , and is propagated in the medium during a time Tf such that, for
t ≥ Tf , the total field is almost negligible. On the boundary ΓSRA - also located in the
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fluid part - the forward signal is recorded. The incident field, as defined in subsection 2.2,
is also computed in this first step, to enable construction of the scattered field uS from
the total one by subtraction.

2. The time-reversed computation consists in back propagating the recorded scattered data -
the difference between the recorded total field and the incident field, both reversed in time
- from the SRA in the entire domain, without knowing the location and the properties
of the inclusions which diffracted the signals. In other words, the recorded data are back
propagated in the medium without knowing the presence of the inclusions in the elastic
medium.

3. Now, to determine the locations and some properties of these inclusions, one introduces a
criterion that consists in the cross-correlating between the forward incident wave uI with
the reversed wave uSR, namely

RTM(x) =

∫ Tf

0
uSR(Tf − t,x) · uI(t,x)dt . (17)

Criterion (17) is derived in the same spirit as those involved in reverse-time migration, in
classical applications of earth imaging and images the discontinuities of the propagation
speed. There are many references on the subject, especially in the framework of geophysics
modeling and inversion (see, among others, [11] or [19] and references therein), where the
adjoint-solution formulation is a particular TR problem, cf. [2]. This method is also related
to those arising from topological derivative-based methods, as described in [26, 4, 14]. This
also allows us to construct a method imaging the unknown scatterers in the medium. Note
that analogous criteria can be defined using only one of the components of u, for example
for u2

RTMu2(x) =

∫ Tf

0
uS2,R(Tf − t,x) · uI2(t,x)dt , (18)

or with the div and curl operators. For instance for the divergence, one will also consider
the following imaging function

RTMdiv(x) =

∫ Tf

0
divuSR(Tf − t,x) · divuI(t,x)dt . (19)

In the same way, one could also consider mathematical energies for the criterion, that
can are nothing but the L2 (without including the gradients) or H1 (with the gradients)
norms.

3.1 Imaging with TR: numerical results

In the following, we will illustrate our approach through several numerical examples. Let us
begin by describing the geometry of the domain. We consider the medium sketched in Figure 2
(inspired from [25]), made of a fluid part (top) and of an elastic one (bottom) sketching a breast
tissue geometry. It is a heterogeneous medium, as it contains a very thin layer, modelling the
presence of the skin. The SRA is an horizontal line as depicted on this figure.

As recalled above, the first step consists in creating the synthetic data by solving the for-
ward problem and by recording the values of the pressure p(x, t) on ΓSRA. For this purpose,
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an incident wave is generated by a point source located in the fluid part, in which the den-
sity ρ = 1000kg/m3 and λ = 2.25GPa, that is a velocity Vp = 1500m/sec. For the solid
part, in the very thin layer (says the skin), we take ρ = 1150kg/m3, λ = 6.66GPa and
µ = 66.66kPa, which correspond to compressional and shear wave velocities Vp = 2407.73m/sec
and Vs = 7.61m/sec, whereas ρ = 1000kg/m3, λ = 1.83GPa and µ = 18.33kPa - corresponding
to velocities Vp = 1354.02m/sec and Vs = 4.28m/sec - in the rest of the elastic domain.

In addition, there are two penetrable obstacles with different size, shape, and elastic properties,
located in the elastic part, outside the skin. The first one, that represents a benign tumor, is
characterised by ρ = 1000kg/m3, λ = 2.16GPa, µ = 21.66kPa, which correspond to P-wave
and S-wave velocities Vp = 1471.97m/sec and Vs = 4.65m/sec. The second one models a ma-
lignant tumor, with the same ρ, λ = 2.99GPa and µ = 30kPa. The corresponding P-wave
and S-wave velocities are Vp = 1732.06m/sec and Vs = 5.47m/sec. The size of the scatterers is
between 0.4λW and 1.25λW and the distance between them is around 3λW , where λW denotes
the wavelength. Both obstacles being penetrable, the reflection of the incident wave highlighting
the inclusion can be quite weak.

For the forward simulation, the source used f(x, t) is a Ricker signal located in the fluid part, with
f(x, t) = (1−2π2(ν0t−1)2)e−π

2(ν0t−1)2 , ν0 = 100kHz being the central frequency corresponding
to a wavelength λW = 12mm. Inverse problems are frequently ill-posed. Hence, an important
question is the sensitivity of the method with respect to noise in the data. Therefore, to verify
the (in)sensitivity of the method with respect to the noise in the data, we added Gaussian noise
by replacing the recorded data pS on ΓSRA by

pSNoise = (1 + Coeff ∗ randn) ∗ pS (20)

where randn satisfies a centered reduced normal law and the coefficient Coeff is the level of
noise. In our simulations, Coeff = 10%. Remark that this is a multiplicative, and non an
additive noise. Indeed, following [22], this allows us to disturb the registered signal avoiding
“inverse crime” related to the interaction between numerical schemes used for the forward and
the reverse problem. In other words, the noise added here is a way to model the noise due to
the recording device, and does not represent a background noise, that will be rather modeled
by an additive noise. In addition, also to avoid any potential inverse crime, the computational
meshes used in the forward simulation are totally different from those used in the reversed ones.

In [3], we showed the feasibility of our approach in a square two-layered medium. In the follow-
ing numerical tests, we are interested to test the robustness of this method on a geometry that
mimics breast tissue as described above. As a first instance, one considers the two following
configurations. The first one illustrates that one can image two objects with the same physical
properties, but with different sizes, even in non homogeneous domain (fluid-solid, skin, etc.). To
that end, one considers an obstacle made of two malignant elliptic scatterers D1, D2, separated
by a distance of approximatively 3λW , with major and minor axis equal to 1.25λW , 0.75λW for
D1, and 0.58λW , 0.4λW for D2. In Fig.3 and Fig.4, we plot the value of the function RTM
defined in (17) and (19) respectively, in the elastic layer. The left part represents a 2D view,
whereas on the right part is depicted the same image in a 3D view. This shows that one is able
to determine the existence and location of the two malignant tumors.

The second numerical test illustrates the possibility to image two objects with different physical
properties, benign versus malignant. Here, one considers a malignant scatterer D1 on the left,
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Figure 2: Geometry of typical domain Ω sketching a breast cancer detection problem, based on
details taken from [25].

Figure 3: 2D (left) and 3D (right) representation of the imaging function Y-component (18) in
Ωs for 2 malignant scatterers, with a noise level of 10%.

Figure 4: 2D (left) and 3D (right) representation of the imaging function divergence (19) in Ωs

for 2 malignant scatterers, with a noise level of 10%.
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and a benign one D2 on the right part of Ωs. In addition in that case, we reduce the size of
the malignant object to check how we can detect it. As one can see in Fig.5 and Fig.6, here
again, the method is able to distinguish the two inclusions, and also to determine, at least
qualitatively, that the one is probably malignant, whereas the other is benign. In addition, to
ensure the results are consistent, we switch between the physical properties of both tumors and
confirm that the results are preserved accordingly. In the next subsection, we will introduce
more quantitative criteria to determine the presence and the properties of these inclusions.

In both cases, the same numerical experiments have been performed with added noise on the
total field, instead of the scattered one: the results are nearly the same. This is not a surprise,
since it has been proved that time reversal is fairly insensitive to noise in the data (see for
instance [1, 37]).

Figure 5: Left side: 2D representation of the imaging function Y-component (17) in Ωs for 2
tumors, the left one is malignant, the right one is benign, with a noise level of 10%. Right side:
switch between the tumors.

Figure 6: Left side: 2D representation of the imaging function divergence (19) in Ωs for 2 tumors,
the left one is malignant, the right one is benign, with a noise level of 10%. Right side: switch
between the tumors.

3.2 RTM criteria to differentiate between benign and malignant tumors

We have seen in the previous subsection that the method is able to image the inclusions, to
locate them and even to (partially) “differentiate” them. In addition, we have also to define
a mathematical criterion that tests the computed solution, to determine more quantitatively
the properties of the located object. Hence, we introduce a heuristic method to assert that the
tumor is benign or malignant.

The first one (or It) uses that fact that the Young modulus E, that measures the stiffness of a
solid material, is stronger in the skin than in any other tissue, benign or malignant (it is also
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true for the density ρ). Indeed, the Young modulus of the skin is between 200 KPa to 2 MPa,
while it is between 70 KPa to 180 KPa for a malignant tumor, see for instance [28]. Hence, one
can use it as a reference value to compute a percentage criterion that maps the values obtained
on the RTM results in subsection 3.1 (for criterion (18), (19), or for another one) to a percentage
that could allow us to differentiate between benign and malignant tumors. This relative RTM
criterion or RTMpercentage is defined as follows:
For a given quantity v that can be u, u2, divu, or another variable mentioned above, compute
first the maximum value in space of the integral in time of v for the incident wave vI , namely

‖
∫ Tf

0
|vI(t,x)|2dt‖L∞(Ω) := max

x∈Ω
(

∫ Tf

0
|vI(t,x)|2dt)

Then, compute the normalized criterion

RTMpercentage(x) =

∫ Tf

0
vSR(Tf − t,x).vI(t,x)dt

‖
∫ Tf

0
|vI(t,x)|2dt‖L∞(Ω)

(21)

where vSR denotes the time-reversed scattered of v.

The RTMpercentage for v = u2 is depicted in Fig.7. As one can see on the right part of the figure,
one can clearly identify the malignant tumor, the maximal value of the criterion being equal to
59%, whereas the benign one is nearly not visible.

Figure 7: RTM with normalized values (see equation 21) of fluid-solid medium that represents
a breast tissue with 2 tumors: one benign (E = 65KPa) and one malignant (E = 90KPa);
Representation of Y component component on the solid part with noise of 10%

In addition to the previous example, this one demonstrates that TR in our context is not only
able to identify the support of the scatterers, but also to discriminate (at least partially) a benign
inclusion from a malignant one. However, as one can see on the left part of Fig. 7 - the maximal
value of the criterion being equal only to 29% versus 18% for the benign one - the quality of the
result depends on the position of the (unique) source with respect to the scatterer to identify.

3.3 Work with more than a single source

A way to improve the quality of the scatterer identification results, despite the partial infor-
mation available due to the partial coverage, is to increase the number of sources to gain more
coverage of the examined medium. Indeed, it has been showed in [7], [13], [15], [5] or [34] and
[23] that the spatial resolution of the refocusing is better when there is multiple scattering, that
can originate from several sources. Basically, multiple scattering helps the refocusing process by
causing many different waves that enrich the information contributing to the refocusing.
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In these conditions, we have now to incorporate multiple-source measurements into the criteria
introduced above. Indeed, the RTM criteria defined in (17) or (21) are valid when we use only
one illumination. Here we propose to consider the sum of each illumination, namely to sum each
criterion (21) defined for a given illumination j. Hence, we introduce the function

RTMsum(x) =
∑

j∈SRA


∫ Tf

0
vSR(Tf − t,x, j).vI(t,x, j)dt

‖
∫ Tf

0
|vI(t,x, j)|2dt‖L∞(Ω)

 (22)

where j is the index of the source.

To illustrate our purpose, namely to get a better coverage of the examined configuration, we
performed numerical tests by using three sources located on the SRA: the left-most element of
the SRA, the middle one (used in the previous tests), and the right-most element. In each case,
we consider a fluid-solid medium that represents a breast tissue with 2 tumors in the solid part
(see Fig. 2) with different properties.

In the first configuration (Fig.8), a small malignant tumor (90 KPa, 0.4λW ) is located on the
left of the elastic domain, and a bigger benign one (65 Kpa, 1.25λW ) is on the right. At the
opposite, in the second configuration (Fig.11), a small benign tumor (65 Kpa, 0.4λW ) is on the
left whereas a bigger malignant one (90 KPa, 1.25λW ) is the right. In both cases, the first
illumination is from the extreme left receiver, the second from the middle one (already depicted
above, see Fig.7), and the last from the extreme right receiver. The magnitude of the noise is
10% (see (20)). Then, the result of the criterion RTMsum (22) obtained with these three sources
is depicted in Fig. 9 and Fig.11 respectively.

As expected (compare Fig. 9 and Fig. 11), it is easier to distinguish the malignant scatter from
the benign one when the bigger is malignant. Indeed, the image obtained is more differentiated
than in the opposite case. However, even when the benign inclusion is the bigger one, using
three sources has improved the coverage, and then improved the differentiation. In addition, it
increases confidence in the result, which is less dependent on the incidence of the illumination.

These results are summed up in table 1, where we present the maximum value of the criterion
RTMsum for the two configurations: for a single source (the middle one), for two sources (extreme
left and right receivers) and for the three sources. It allows us to get a quantitive criterion of
discrimination between different inclusions.

‖RTMsum(x)‖L∞(Ω) 1 source 2 sources 3 sources

small Ml # big Bn 0.291 # 0.181 0.384 # 0.286 0.351 # 0.262

small Bn # big Ml 0.109 # 0.595 0.19 # 0.782 0.192 # 0.706

Table 1: Maximum value of the criterion RTMsum defined on (22) for a fluid-solid medium that
represents a breast tissue with 2 tumors with different properties (noise of 10%). In the first
row, the small tumor is malignant (MI) with E = 90KPa and the big one is benign (Bn) with
E = 65KPa. In the second row, the small tumor is benign whereas the big one is malignant.

16



Figure 8: RTM for 2 inclusions: a small malignant tumor (90 KPa, 0.4λW ) on the left, and a
bigger benign one (65 Kpa, 1.25λW ) on the right. Left: using the left-most source of the SRA -
Right: Using the right-most source of the SRA

Figure 9: Criterion RTMsum (22) obtained with 3 sources (left-most, middle, right-most) for
the 2 inclusions of Figure 8.

Figure 10: RTM for 2 inclusions: a small benign tumor (65 Kpa, 0.4λW ) on the left, and a
bigger malignant one (90 KPa, 1.25λW ) on the right. Left: using the left-most source of the
SRA - Right: Using the right-most source of the SRA.

Figure 11: Criterion RTMsum (22) obtained with 3 sources (left-most, middle, right-most) for
the 2 inclusions of Figure 10.
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3.4 Improving the coverage

In this last part, we propose to study the improvement of the coverage by using several sources
with different angles, with the hope of enhancing the imaging results. To that end, we will use
several (narrow) SRAs that will produce images from different angles, and then combine them.
This process is actually similar to experimental ultrasound examination using several probes
that has partial coverage of the examined tissue, see Fig. 12.

Figure 12: Multiple SRA that cover the medium, each SRA consist of 27 sensors and is sequen-
tially placed in positions from 1 to 5.

Hence, we perform the same experiment as above, namely with a small malignant tumor (90
KPa, 0.4λW ) on the left, and a bigger benign one (65 Kpa, 1.25λW ) on the right (see Fig.9), but
this time with 5 “probes” as described above. The imaging function is represented in Fig. 13
(left part), where we reproduced (right part) the previous case (with the same scale) to facilitate
the comparison. As one can see, using multiple measurements with several incidences improve
the differentiation between the 2 scatterers, the right benign one becoming almost invisible in the
left part of the figure, whereas on the right image depicted with the same scale, it remains quite
difficult to differentiate the 2 scatterers. This example shows that with more illuminations and
more “incidences”, one can improve the differentiation between the malignant and the benign,
even in the “difficult” case of a small malignant tumor versus a bigger benign one.

Figure 13: Imaging function RTMsum of the Y-component. The left scatter is malignant (90
Kpa), the right one is benign (65 KPa). Left image: with 5 SRAs - Right image: same as Fig.
9.

Now, in this second numerical test, we want to investigate the case where both scatterers have
the same physical properties. We consider the same geometry as above, but in that case, both
scatterers are either malignant or benign objects. Here again, we use, as before, 5 illuminations
from 5 different incidences. Results are depicted in Fig. 14 with the same scale. This shows that
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the malignant objects are clearly visible, even both are malignant, whereas, with the same scale,
the benign ones are almost invisible. This illustrates the possibility to retrieve the properties of
the tumors not only in a “relative” way, but also in a more “absolute” way.

Figure 14: Imaging function RTMsum of the Y-component when both tumors are malignant (90
KPa) (left figure) compared to the case where both tumors are benign (65 KPa) (right figure).

As a last illustration, we investigate the ability of the method to differentiate between two close
inclusions. In this numerical example, we consider 2 malignant scatterers with the same size of
about 0.4λW , separated by a distance of λW

2 . Figure 15 displays results of the imaging function
RTMsum for the Y-component. One can clearly observe the 2 inclusions in the medium. Hence,
even it the tumors are quite close one to the other, the method is able to image them and even
to differentiate them.

Figure 15: Imaging function RTMsum of the Y-component for 2 close malignant (90 KPa)
objects.

Conclusion

In this paper, we proposed a time-reversal method for scatterer identification in a non homoge-
neous elastic medium. Because of the concerned configuration, i.e. a layered fluid-solid medium,
one is forced to consider only partial aperture case with data recorded only in the acoustic part
of the medium.

Since the medium is not homogeneous (fluid layer, skin, elastic medium,..), and due to the
presence of noise, the time-reversal method is not able to “recreate the past” of the wave propa-
gation, even if the location and the properties of the inclusions which diffracted the signals were
know: this due to the non-homogeneity of the medium.

However, we shown that these data contain enough information to identify the scatterers, that is
the properties and locations of the inclusions backscattering the signal. This was made possible
by introducing criteria, derived from the reverse time migration framework, to construct images
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of the inclusions and to determine their locations.

The dependence of the approach to several parameters (aperture, number of sources, etc.) was
also investigated. In particular, it was shown that one can differentiate between a benign and
malignant close inclusions, that are treated following the same procedure. We also shown that
the method is able to differentiate between one and two inclusions, even quite close. In addition,
this approach has proved to be fairly insensitive to noise in the data, as usual in time-reversal
methods. Finally, although our numerical examples are in two-space dimensions for fluid-solid
media, they can be extended to 3D or other wave propagation equations, especially for linear
elastodynamics, without fluid part. In the same spirit, possible extensions to the harmonic case
(see example in [1] for the acoustic case) seems to be within reach.
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