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Abstract

In this paper, we propose a unified numerical framework for the time-dependent incompressible Navier–

Stokes equation which yields the H1-, H(div)-conforming, and discontinuous Galerkin methods with the use

of different viscous stress tensors and penalty terms for pressure robustness. Under minimum assumption

on Galerkin spaces, the semi- and fully-discrete stability is proved when a family of implicit Runge–Kutta

methods are used for time discretization. Furthermore, we present a unified discussion on the penalty term.

Numerical experiments are presented to compare our schemes with classical schemes in the literature in both

unsteady and steady situations. It turns out that our scheme is competitive when applied to well-known

benchmark problems such as Taylor–Green vortex, Kovasznay flow, potential flow, lid driven cavity flow,

and the flow around a cylinder.

Keywords: incompressible Navier–Stokes equation, discontinuous Galerkin method, mixed finite element

method, energy stability, implicit Runge–Kutta methods, pressure robustness

1. Introduction

Continuous and discontinuous Galerkin methods for the incompressible Navier–Stokes (NS) equation have

been an active research area and extensively studied, see, e.g., [15, 19, 26, 31, 46] and references therein.

Most of the classical H1-conforming finite element methods weakly enforce the divergence free constraint and

suffer from a loss of velocity accuracy due to the influence of pressure approximation and small viscosity, see,

e.g., [28]. To remedy the situation, one popular approach by Franca and Hughes [17] is to add the grad-div

stabilization term. Many works can be found in this direction, from both theoretical and computational point

of view, see, e.g., [36, 37, 38, 39]. Recent research has shown that the grad-div stabilization is a penalization

procedure [9, 27, 34], and large grad-div stabilization parameters might lead to Poisson locking phenomena if

the finite element method is not inf-sup stable in the limiting case [27]. To completely decouple the pressure

and velocity, one may use the H(div)-conforming methods. With the help of a carefully designed velocity

and pressure finite element pair [3, 6, 41], the numerical velocity is actually pointwise divergence-free and
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pressure-robust, see, e.g., [16, 22, 23, 28, 33, 43, 47]. Finally for two-dimensional incompressible flows, one

may use the vorticity-stream formulation [8, 19, 35] to automatically enforce the divergence-free constraint.

For pressure robustness, discontinuous Galerkin (DG) methods usually penalize the jump of the velocity

normal component [1, 21, 23, 29]. In [15], a new inf-sup condition involving the jump of pressure is constructed

for steady incompressible NS equation and optimal convergence is observed when Pk+1 × Pk DG space for

velocity and pressure is used. In [44], a element-wise grad-div penalization has been used on tensor product

meshes for non-isothermal flow, and an improvement of mass conservation is observed for both inf-sup stable

Pk+1 ×Pk and Pk ×Pk pairs. Readers are also referred to [10, 13, 14] for DG methods with more than two

variables. In particular, [14] achieves pointwise divergence-free velocity by H(div)-conforming finite element

subspace, while a postprocessed divergence-free numerical velocity is obtained in [13].

In this paper, we present a unified framework for the spatial discretization of the time-dependent in-

compressible NS equation that covers the H1-conforming, H(div)-conforming, and DG methods including

penalty term for pressure robustness and upwinding term for convection. With carefully designed numerical

fluxes and consistent terms in the unified scheme, the semi-discrete stability for the first time is proved

in Theorem 1 for the time-dependent incompressible NS equation under minimal assumption on Galerkin

spaces. Furthermore, a unified discussion on the penalty term for pressure robustness is presented, and thus,

the motivation of penalization in H1-conforming, H(div)-conforming, and DG methods is quite transparent,

see Section 3. Another distinct feature of this paper is the use of a family of implicit Runge–Kutta methods

for time discretization of the NS equation, which is shown to guarantee fully-discrete kinetic energy stability.

To the best of our knowledge, such stability analysis could not be found in existing literature, see Theorem

2 for details.

In contrast to previous works, our numerical scheme incorporates the classical stress tensor τh = ν∇huh
or ν(∇huh +∇huTh ) as well as the full viscous stress tensor τh = ν

(
∇huh +∇huTh − 2

3 (∇h · uh) I
)
. Due to

the divergence-free constraint, the variational formulation based on τ = ν∇u or τ = ν(∇u+∇uT ) could be

recovered from the corresponding formulation based on τ = ν
(
∇u+∇uT − 2

3 (∇ · u) I
)

at the continuous

level. However, the equivalence breaks down at the discrete level because of insufficient regularity. Therefore,

it is meaningful to check the numerical performance of those numerical methods based on the full viscous

stress tensor. In Section 4, we shall test the performance of our schemes with full viscous stress tensor

applied to a number of steady and unsteady benchmark problems.

Preliminary notations for numerical methods are introduced in the rest of this section. We use Th
to denote a conforming and shape-regular simplex mesh on a bounded Lipschitz domain Ω in Rd where

d ∈ {2, 3}. For each element K ∈ Th, let hK denote the diameter of K. Let Fh be the collection of faces of

Th with F ih the set of interior faces and F∂h the set of boundary faces. For any (d− 1)-dimensional set Σ, we

2



use 〈·, ·〉Σ to denote the L2 inner product on Σ, and

〈·, ·〉∂Th :=
∑
K∈Th

〈·, ·〉∂K , 〈·, ·〉∂T̊h :=
∑
K∈Th

〈·, ·〉∂K\∂Ω,

〈·, ·〉Fh
:=

∑
F∈Fh

〈·, ·〉F , 〈·, ·〉Fi
h

:=
∑
F∈Fi

h

〈·, ·〉F .

For each F ∈ F ih, we fix a unit normal nF to F , which points from one element K+ to the other element

K− on the other side. The jump and average operators are defined as:

[[φ]] |F = φ|K+ − φ|K− , [[φn]] |F = φ|K+nF − φ|K−nF , {{φ}}|F =
1

2
(φ|K+ + φ|K−) ,

[[v]] |F = v|K+ − v|K− , [[v ⊗ n]] |F = v|K+ ⊗ nF − v|K− ⊗ nF , {{v}}|F =
1

2
(v|K+ + v|K−) ,

where φ and v are arbitrary scalar- and vector-valued functions, respectively. For a boundary face F ∈ F∂h
which is contained in a single element K ∈ Th, we further assume that nF is the outward pointing normal

to ∂Ω and define

[[φ]] |F = φ|K , [[φn]] |F = φ|KnF , {{φ}}|F = φ|K ,

[[v]] |F = v|K , [[v ⊗ n]] |F = v|K ⊗ nF , {{v}}|F = v|K .

Throughout the rest of this paper, we use n ∈
∏
F∈Fh

Rd to denote the piecewise constant vector defined on

the skeleton Fh such that n|F := nF for all F ∈ Fh. Let Pj (K) denote the space of polynomials of degree

at most j. We shall make use of the following function spaces

[Hm(Th)]d =
{
v ∈ [L2(Ω)]d : v|K ∈ [Hm(K)]d, ∀K ∈ Th

}
,

L2
0(Ω) =

{
q ∈ L2(Ω) :

∫
Ω

q = 0

}
,

Vh ⊆
{
vh ∈ [L2(Ω)]d : vh|K ∈ [Pr (K)]d, ∀K ∈ Th

}
,

Qh ⊆
{
qh ∈ L2

0(Ω) : qh|K ∈ Pk (K) , ∀K ∈ Th
}
,

where Vh and Qh will be given in Section 3. Here we do not require a specific relationship between r and k.

The rest of this paper is organized as follows. In Section 2, we first present the unified framework and

then prove the semi- and fully-discrete stability of the general scheme. In Section 3, we derive H1-, H(div)-

conforming, and DG methods from the unified scheme, and discuss the expression of the penalty term for

each of the three methods. In Section 4, we test our schemes in both unsteady and steady situations, and

compare the simulation results with classical schemes and data in the literature. Finally we conclude our

paper in Section 5.
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2. General formulation

In this section, we present a general framework covering the H1-conforming, H(div)-conforming, and DG

methods for the following incompressible Navier–Stokes equation

∂tu+∇ · (u⊗ u+ pI)− ν∇ · τ (u) = f , in (0, T ]× Ω,

∇ · u = 0, in (0, T ]× Ω,

u = 0, on (0, T ]× ∂Ω,

u(0,x) = u0(x), in Ω,

where ν > 0 is the viscosity constant, and τ (u) is the viscous strain tensor that could be

τ (u) := ∇u, or τ (u) := ∇u+∇uT , or τ (u) := ∇u+ (∇u)T − 2

3
(∇ · u) I. (1)

The three choices of viscous strain tensor yield the same problem in the smooth level. Let (·, ·) denote the

usual L2 inner product on Ω and ∇h the broken gradient with respect to Th. Our general semi-discrete

scheme seeks unknowns (uh(t), ph(t)) ∈ Vh ×Qh for each time t ∈ (0, T ] such that

(∂tuh,vh)− (uh ⊗ uh,∇hvh)− (ph,∇h · vh) + 〈σ̂hn,vh〉∂Th (2a)

− 1

2
((∇h · uh)uh,vh) +

1

2
〈uh,n{{uh · vh}}〉∂T̊h + dh(uh,vh)

+ ν

[
(τh(uh),∇hvh)− 〈τ̂h n,vh〉∂Th + 〈ûh − uh, τh(vh)n〉∂Th

]
= (f ,vh),

(∇h · uh, qh)− 〈[[uh]] · n, {{qh}}〉Fh
= 0, (2b)

for all (vh, qh) ∈ Vh ×Qh subject to the initial condition uh(0) = Ihu0, where Ih is a suitable interpolation

onto Vh, and τh(uh) is the discrete viscous strain tensor, which could be

τh(uh) := ∇huh, or τh(uh) := ∇huh +∇huTh , or τh(uh) := ∇huh + (∇huh)T − 2

3
(∇h · uh) I. (3)

Note that 1
2 〈uh,n{{uh · vh}}〉∂T̊h is a consistent term added for convenience of analysis. In order to improve

pressure robustness, we use the penalty term dh(uh,vh) which is consistent and positive semi-definite,

namely, for all vh ∈ Vh,

dh(vh,vh) ≥ 0, (4)

dh(u,vh) = 0. (5)

In principle, dh could also depend on the pressure although we have not found such examples in practice.

The particular expression of dh will be specified later, see Section 3 for details. Let hF denote the diameter
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of F ∈ Fh and h = {hF }F∈Fh
the face size function. We recommend the following numerical fluxes

σ̂h = {{uh}} ⊗ {{uh}}+ {{ph}}I + ζ |{{uh}} · n| [[uh ⊗ n]] ,

τ̂h = {{τh(uh)}} − ηh−1 [[uh ⊗ n]] ,

ûh = {{uh}} on F ih, ûh = 0 on F∂h .

where ζ = {ζF }F∈Fh
and η = {ηF }F∈Fh

are user specified piecewise non-negative constants for controlling

the amount of numerical dissipation.

Now we introduce the viscous bilinear form ah, the convective bilinear form bh, and the convective form

ch in the following.

ah(vh,wh) := (τh(vh),∇hwh)−
〈(
{{τh(vh)}} − ηh−1 [[vh ⊗ n]]

)
n,wh

〉
∂Th

+ 〈{{vh}} − vh, τh(wh)n〉∂T̊h − 〈vh, τh(wh)n〉∂Ω,

bh(vh, qh) := (∇h · vh, qh)− 〈[[vh]] · n, {{qh}}〉Fh
, (6)

ch (βh;vh,wh) := −(vh ⊗ βh,∇hwh)− 1

2
((∇h · βh)vh,wh)

+ 〈(ζ |{{βh}} · n| [[vh ⊗ n]])n,wh〉∂Th + 〈({{vh}} ⊗ {{βh}})n,wh〉∂Th +
1

2
〈βh,n{{vh ·wh}}〉∂T̊h .

One can then rewrite (2) in the following compact form

(∂tuh,vh) +Nh(uh;vh)− bh (vh, ph) = (f ,vh), ∀vh ∈ Vh, (7a)

bh (uh, qh) = 0, ∀qh ∈ Qh, (7b)

where

Nh(uh;vh) := ch (uh;uh,vh) + νah (uh,vh) + dh(uh,vh).

Note that Nh(uh;vh) is nonlinear in uh but linear in vh.

Remark 1. From the derivation given above, it can be observed that the scheme (7) is consistent if u(t) ∈

[H1
0 (Ω)]d ∩ [H

3
2 +ε(Th)]d and p(t) ∈ L2

0(Ω) ∩H 1
2 +ε(Th) with ε > 0.

Throughout the rest of this paper, we use C to denote any positive absolute constant that is independent of

h. We shall also make use of the following mesh-dependent norms

‖ [[vh]] ‖L2(Fh) := 〈vh,vh〉
1
2

Fh
,

‖vh‖1,h :=
(
‖τh(vh)‖2L2(Ω) + ηh−1‖ [[vh]] ‖2L2(Fh)

) 1
2

.

It is noted that ‖ · ‖1,h is a well-defined norm on Vh, see [4, 5, 12] for details. The next theorem shows that

ah is coercive with respect to the norm ‖ · ‖1,h.
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Lemma 1 (Positivity of ah). For all F ∈ Fh, assume that ηF ≥ η0, where η0 is a sufficiently large

constant independent of h. Then for vh ∈ Vh it holds that

ah (vh,vh) ≥ C‖vh‖21,h.

Proof. Combining terms on Fh, one can rewrite ah in the following symmetric form

ah(vh,wh) = (τh(vh),∇hwh)−〈[[vh]] , {{τh(wh)}}n〉Fh
−〈[[wh]] , {{τh(vh)}}n〉Fh

+
〈
ηh−1 [[vh]] , [[wh]]

〉
Fh
. (8)

First we assume τh(vh) = ∇hvh +∇hvTh − 2
3 (∇h · vh)I. It follows from (8) and the algebraic identity

(τh(vh),∇hwh) =
1

2
(τh(vh), τh(wh)) +

(
2

3
− 2d

9

)
(∇h · vh,∇h ·wh)

that

ah(vh,vh) ≥ 1

2
‖τh(vh)‖2L2(Ω) − 2 〈[[vh]] , {{τh(vh)}}n〉Fh

+
〈
ηh−1 [[vh]] , [[vh]]

〉
Fh
.

Assuming η is sufficiently large, we conclude the proof from the trace and Cauchy–Schwarz inequalities, which

is standard in the analysis of interior penalty DG methods, see, e.g., [2, 5] for details. The other two cases

τh(uh) = ∇huh and τh(uh) = ∇huh +∇huTh can be proved in a similar way.

Lemma 2 (Positivity of ch). Assume ζF ≥ 0.5 for all F ∈ F∂h . Then for βh,vh ∈ Vh, we have

ch (βh;vh,vh) ≥ 0.

Proof. Using integration by parts, ch could be rewritten as

ch (βh;vh,wh) = (βh · ∇hvh,wh) +
1

2
((∇h · βh)vh,wh)− 〈({{βh}} · n) [[vh]] , {{wh}}〉Fi

h

− 1

2
〈[[βh]] · n, {{vh ·wh}}〉Fi

h
+ 〈ζ |{{βh}} · n| [[vh]] , [[wh]]〉Fh

. (9)

It then follows from the following identities

(βh · ∇hvh,vh) +
1

2
((∇h · βh)vh,vh) =

1

2
〈vh,vh (βh · n)〉∂Th ,

1

2
〈vh,vh (βh · n)〉∂Th =

1

2
〈[[βh]] ,n{{vh · vh}}〉Fi

h
+ 〈({{βh}} · n) [[vh]] , {{vh}}〉Fi

h
+

1

2
〈βh · n,vh · vh〉F∂

h
,

and (9) with wh = vh that

ch (βh;vh,vh) = ζ 〈|{{βh}} · n| [[vh]] , [[vh]]〉Fi
h

+ 〈ζ|βh · n|+ 0.5βh · n,vh · vh〉F∂
h
, (10)

Finally, we conclude the proof by using ζF ≥ 0.5 for F ∈ F∂h .

Remark 2. The term 〈ζ|βh · n|,vh · vh〉F∂
h

with ζ ≥ 0.5 plays an important role in guaranteeing the positive

semi-definiteness of the convective form, which is crucial for proving the stability of the semi-discrete time-

dependent incompressible NS equation. In contrast, such stability is not considered in DG schemes for

steady-state NS equation. This new modification is one of the key differences of our formulation from the

classical formulations in e.g., [1, 15].
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With the help of Lemmata 1 and 2, we obtain the following stability.

Theorem 1. [Semi-discrete Stability Estimate] Let the assumptions in Lemmata 1 and 2 hold and

‖f‖L1(0,t;L2(Ω)) :=

∫ t

0

‖f(s)‖L2(Ω)ds <∞, ∀t ∈ [0, T ].

Then for all 0 ≤ t ≤ T , the scheme (7) admits the following semi-discrete stability

‖uh(t)‖L2(Ω) ≤ ‖uh (0)‖L2(Ω) + ‖f‖L1(0,t;L2(Ω)).

Proof. Taking vh = uh in (7a) and qh = ph in (7b), we have

1

2

d

dt
‖uh‖2L2(Ω) +Nh(uh;uh) = (f ,uh). (11)

It then follows from the identity given above, the positivity of ah, ch, dh (see (4) and Lemmata 1 and 2) and

the Cauchy–Schwarz inequality that

‖uh‖L2(Ω)
d

dt
‖uh‖L2(Ω) ≤ ‖f‖L2(Ω)‖uh‖L2(Ω),

which implies

d

dt
‖uh‖L2(Ω) ≤ ‖f‖L2(Ω) . (12)

Integrating (12) over [0, t] yields

‖uh(t)‖L2(Ω) ≤ ‖uh (0)‖L2(Ω) + ‖f‖L1(0,t;L2(Ω)).

The proof is complete.

2.1. Fully discrete stable scheme

Let the time interval [0, T ] be partitioned into 0 = t0 < t1 < · · · < tN−1 < tN = T . For each n, let

τn := tn+1 − tn. We use the Runge–Kutta (RK) method (see, e.g., [24]) to discretize the semi-discrete

finite-dimensional system (7). In particular, an m-stage RK method is determined by parameters {aij}mi,j=1,

{bi}mi=1, {ci}mi=1. Applying this RK method to the time direction in (7), we obtain the following fully discrete

RK-DG method

(un+1
h ,vh) = (unh,vh) + τn

m∑
i=1

bi
{

(f i,vh)−Nh(U i
h;vh) + bh(vh, P

i
h)
}
, ∀vh ∈ Vh, (13)

where f i = f(tn + ciτn), and the internal stages U i
h ∈ Vh and P ih ∈ Qh with 1 ≤ i ≤ m are determined by

(U i
h,vh) = (unh,vh) + τn

m∑
j=1

aij

{
(f j ,vh)−Nh(U j

h;vh) + bh(vh, P
j
h)
}
, ∀vh ∈ Vh, (14a)

bh(U i
h, qh) = 0, ∀qh ∈ Qh. (14b)
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Note that 0 ≤ ci ≤ 1 for all RK methods. The internal stages U i
h and P jh have useful approximation property.

In fact, U i
h ≈ uh(tn + ciτn) and P jh ≈ ph(tn + cjτn).

Although the semi-discrete stability is proved in Theorem 1, a traditional time discretization such as

the family of Backward Differentiation Formulas (BDF) methods would usually destroy such nice dynamic

structure. In general, it is quite delicate to design a stability preserving time integration technique for

complex dynamical systems, see, e.g., [20] for stability preserving RK schemes for hyperbolic conservation

laws and [31, 40] for stable low order time difference schemes for incompressible NS equations.

In this subsection, we consider a family of Gauss–Legendre collocation Runge–Kutta (GLRK) methods

[7, 25] that achieve arbitrarily high order accuracy. The parameters {ci}mi=1 are zeros of the Gauss–Legendre

polynomial dm

dsm

(
sm(1−s)m

)
. Then {aij}mi,j=1 and {bi}mi=1 are uniquely determined by {ci}mi=1. For instance,

if m = 1, then c1 = 1
2 , a11 = 1

2 , b1 = 1, which is equivalent to the Crank–Nicolson scheme. If m = 2, then

c1 = 1
2 −

√
3

6 , c2 = 1
2 +

√
3

6 , b1 = b2 = 1
2 , and

a11 =
1

4
, a12 =

1

4
−
√

3

6
, a21 =

1

4
+

√
3

6
, a22 =

1

4
.

It is well-known that any GLRK method satisfies (see [25])

bibj − biaij − bjaji = 0 ∀1 ≤ i, j ≤ m, (15)

m∑
i=1

bi = 1, bi > 0, ∀1 ≤ i ≤ m. (16)

The next theorem shows that the GLRK method preserves the semi-discrete stability given in Theorem 1.

Theorem 2 (Fully Discrete Kinetic Energy Estimate). Let the assumptions in Theorem 1 hold. In

addition, we assume one of the three following conditions holds: (a) τh(uh) = ∇huh; (b) τh(uh) = ∇huh +

∇huTh ; (c) ‖vh‖L2(Ω) ≤ C‖vh‖1,h when τh(uh) = ∇huh +∇huTh − 2
3 (∇h · uh)I. Then we have the following

fully discrete kinetic energy estimate

‖unh‖2L2(Ω) ≤ ‖u
0
h‖2L2(Ω) + C

n−1∑
j=0

τj

m∑
i=1

bi‖f(tj + ciτj)‖2L2(Ω), ∀n ≥ 1.

Proof. Since Nh(uh;vh) is linear in vh, there exists a unique Rh(uh) ∈ Vh such that

(Rh(uh),vh) = Nh(uh;vh) for all vh ∈ Vh.

Let Bh : Vh → Qh denote the linear operator associated with bh, i.e.,

(Bhvh, qh) = bh(vh, qh) for all qh ∈ Qh.

Therefore, (13) and (14) translate into

un+1
h = unh + τn

m∑
i=1

biF
i
h, (17a)

U i
h = unh + τn

m∑
j=1

aijF
j
h , (17b)

(U i
h, B

T
h qh) = (BhU

i
h, qh) = 0, ∀qh ∈ Qh, (17c)
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where F ih := f i −Rh(U i
h) +BTh P

i
h. It follows from (17a) that

‖un+1
h ‖2L2(Ω) = ‖unh‖2L2(Ω) + τn

m∑
i=1

bi
(
F ih,u

n
h

)
+ τn

m∑
j=1

bj

(
unh,F

j
h

)
+ τ2

n

m∑
i,j=1

bibj

(
F ih,F

j
h

)
. (18)

Using (17b), the second term on the right hand side becomes

τn

m∑
i=1

bi
(
F ih,u

n
h

)
= τn

m∑
i=1

bi

F ih,U i
h − τn

m∑
j=1

aijF
j
h


= τn

m∑
i=1

bi
(
f i −Rh(U i

h),U i
h

)
− τ2

n

m∑
i,j=1

biaij(F
i
h,F

j
h),

(19)

where (17c) is used in the last equality. Similarly, it holds that

τn

m∑
j=1

bj

(
unh,F

j
h

)
= τn

m∑
j=1

bj

(
f j −Rh(U j

h),U j
h

)
− τ2

n

m∑
i,j=1

bjaji(F
i,F j). (20)

Collecting (18), (19), (20) and using (15), we obtain

‖un+1
h ‖2L2(Ω) = ‖unh‖2L2(Ω) + 2τn

m∑
i=1

bi
(
f i −Rh(U i

h),U i
h

)
+ τ2

n

m∑
i,j=1

(bibj − biaij − bjaji)
(
F ih,F

j
h

)
= ‖unh‖2L2(Ω) + 2τn

m∑
i=1

bi
{(
f i,U i

h

)
−
(
Rh(U i

h),U i
h

)}
.

(21)

For vh ∈ Vh, recall the discrete Poincaré inequality (cf. [5, 15])

‖vh‖L2(Ω) ≤ C
(
‖∇hvh‖L2(Ω) + ‖h− 1

2 [[vh]] ‖L2(Fh)

)
, (22)

and the discrete Korn’s inequality (see Eq. (1.19) in [4])

‖∇hvh‖L2(Ω) ≤ C
(
‖∇hvh +∇hvTh ‖L2(Ω) + ‖h− 1

2 [[vh]] ‖L2(Fh)

)
. (23)

Using (22), (23) and the definition of ‖ · ‖1,h, it holds that

‖vh‖L2(Ω) ≤ C‖vh‖1,h, ∀vh ∈ Vh, (24)

when τh(vh) = ∇hvh or τh(vh) = ∇hvh + ∇hvTh . Otherwise, the previous inequality follows from the

assumption (c). Now combining Lemmata 1, 2, Equation (4) and using (24), (16), we have

m∑
i=1

bi
{(
f i,U i

h

)
−
(
Rh(U i

h),U i
h

)}
≤

m∑
i=1

bi
((
f i,U i

h

)
− νah(U i

h,U
i
h)
)

≤
m∑
i=1

bi
(
‖f i‖L2(Ω)‖U i

h‖L2(Ω) − ν‖U i
h‖21,h

)
≤

m∑
i=1

bi

(
ε−1

2
‖f i‖2L2(Ω) +

ε

2
‖U i

h‖2L2(Ω) − ν‖U
i
h‖21,h

)

≤
m∑
i=1

bi

(
ε−1

2
‖f i‖2L2(Ω) −

(
ν − εC

2

)
‖U i

h‖21,h
)
,

(25)
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where C is in (24) and ε > 0. It then follows from the estimate given above with ε = 2C−1ν that

‖un+1
h ‖2L2(Ω) ≤ ‖u

n
h‖2L2(Ω) + τn

m∑
i=1

ε−1

2
bi‖f i‖2L2(Ω).

The proof is complete.

Remark 3. In order to prove (24) with τh(vh) = ∇hvh +∇hvTh − 2
3 (∇h · vh)I, one needs the corresponding

discrete Korn’s inequality (23), which is not known in the literature. A possible proof should rely on the

characterization of the kernel {v ∈ [H1(K)]d : τh(v) = 0} on each element K ∈ Th and estimation of

suitable semi-norm associated with that kernel, see [4].

For each n ≥ 0, let

δtu
n
h :=

un+1
h − unh
τn

, u
n+ 1

2

h :=
un+1
h + unh

2
, fn+ 1

2 := f

(
tn +

1

2
τn

)
.

The Crank–Nicolson time discretization to (7) can be written as

(δtu
n
h,vh) +Nh

(
u
n+ 1

2

h ;vh

)
− bh

(
vh, p

n+ 1
2

h

)
= (fn+ 1

2 ,vh), ∀vh ∈ Vh, (26a)

bh

(
u
n+ 1

2

h , qh

)
= 0, ∀qh ∈ Qh. (26b)

Here p
n+ 1

2

h approximates ph(tn + 1
2τn). The popular Crank–Nicolson scheme can be written as the 1-stage

GLRK (m = 1, a11 = 1
2 , b1 = 1, c1 = 1

2 ) as mentioned before. Therefore, we obtain the unconditional

stability of the fully discrete scheme (26) from Theorem 2.

3. Three methods from the unified formulation

In this section, we derive three pressure-robust methods from the unified scheme (7) proposed in Section 2.

For a positive integer k, we introduce the H1-conforming Taylor–Hood finite element spaces

V C
h :=

{
vh ∈ [C0 (Ω)]d : vh|K ∈ [Pk+1 (K)]

d
, ∀K ∈ Th and vh|∂Ω = 0

}
,

QC
h :=

{
qh ∈ C0 (Ω) ∩ L2

0 (Ω) : qh|K ∈ Pk (K) , ∀K ∈ Th
}
.

(27)

We shall also make use of the Pk+1 × Pk discontinuous Galerkin spaces

V DG
h :=

{
vh ∈ [L2(Ω)]d : vh|K ∈ [Pk+1 (K)]d,∀K ∈ Th

}
,

QDG
h :=

{
qh ∈ L2

0(Ω) : qh|K ∈ Pk (K) ,∀K ∈ Th
}
,

(28)

where k could be any nonnegative integer in (28). Let H(div; Ω) := {v ∈ [L2(Ω)]d : ∇ · v ∈ L2(Ω)}. Let

Qk(K) := [Pk+1(K)]d or Qk(K) := [Pk(K)]d + Pk(K)x,

which is the Raviart–Thomas [41] or Brezzi–Douglas–Marini [6] shape function space, respectively. The

H(div)-conforming finite element space is

V DIV
h := {vh ∈ H (div; Ω) : vh|K ∈Qk (K) , ∀K ∈ Th and vh · n|∂Ω = 0} . (29)

10



3.1. Pressure robustness

Consider the following discrete divergence-free space

Zh := {vh ∈ Vh : bh (vh, qh) = 0, ∀qh ∈ Qh}.

For error estimation of velocity in (7), the term |bh (vh, p− ph) | with vh ∈ Zh measures the inconsistency of

convective bilinear form and serves as a guide to design dh(uh,vh). Note that this inconsistency is directly

related to the concept of pressure robustness [28], that is, the error in pressure induces a velocity error.

The goal of dh is to reduce the influence of pressure approximation on velocity approximation, which in this

paper is said to improve pressure robustness. For any vh ∈ Zh, we have bh (vh, ph) = 0 and thus

|bh (vh, p− ph) | = |bh (vh, p) |

= |(∇h · vh, p)− 〈[[vh]] · n, {{p}}〉Fh
|

≤ ‖∇h · vh‖L2(Ω)‖p‖L2(Ω) +
ε−1

2
‖ [[vh]] · n‖2L2(Fh) +

ε

2
‖{{p}}‖2L2(Fh),

where 0 < ε� 1 is a small number. In view of ‖∇h ·vh‖L2(Ω) and ‖ [[vh]] ·n‖L2(Fh) in the previous estimate,

it is reasonable to add the penalization term

dh(uh,vh) := γgd(∇h · uh,∇h · vh) + 〈γF ([[uh]] · n), [[vh]] · n〉Fh
, (30)

where γgd, {γF }F∈Fh
≥ 0 are sufficiently large (piecewise) constants.

3.2. H1-conforming method

Let uh,vh ∈ V C
h and ph, qh ∈ QC

h . Then the form (8) simplifies to

ah (uh,vh) =



(∇uh,∇vh) when τh(uh) := ∇huh ,

(∇uh,∇vh) + (∇ · uh,∇ · vh) when τh(uh) := ∇huh +∇huTh ,

(∇uh,∇vh) + 1
3 (∇ · uh,∇ · vh) when τh(uh) := ∇huh +∇huTh − 2

3 (∇h · uh) I,

(31)

where the identity (∇uTh ,∇vh) = (∇ ·uh,∇ · vh) under uh|∂Ω = 0 is used. The forms (6), (9), (30) simplify

to

bh(uh,vh) = (∇h · vh, qh),

ch (uh;uh,vh) = (uh · ∇uh,vh) +
1

2
((∇ · uh)uh,vh),

dh(uh,vh) = γgd(∇h · vh,∇h · uh).

Therefore, the corresponding scheme (7) with Vh = V C
h , Qh = QC

h recovers the skew symmetric formulation

[11, 31] with grad-div stabilization [17, 28]. The inf-sup condition is guaranteed by

C‖qh‖L2(Ω) ≤ sup
vh∈V C

h \{0}

(qh,∇ · vh)

‖vh‖H1(Ω)

, ∀qh ∈ QC
h .

11



Remark 4. The H1-conforming method has a minimum number of degrees of freedom, hence significantly

reduces the computational cost. However, the H1-conforming method is not able to handle convection domi-

nated flows.

3.3. H(div)-conforming method

Let uh,vh ∈ V DIV
h and ph, qh ∈ QDG

h . It follows from [[uh · n]] = 0 on Fh, the inclusion ∇·V DIV
h ⊂ QDG

h ,

and (7b) that

∇ · uh = 0 on Ω.

Therefore the full viscous strain tensor τh(uh) = ∇huh +∇huTh − 2
3 (∇ · uh)I and the symmetric gradient

strain tensor τh(uh) = ∇huh +∇huTh coincide. Then ah and bh reduce to

ah (uh,vh) =



(∇huh,∇hvh)− 〈[[vh]] , {{∇huh}}n〉Fh

−〈[[uh]] , {{∇hvh}}n〉Fh
+
〈
ηh−1 [[uh]] , [[vh]]

〉
Fh
, when τh(uh) := ∇huh,

(∇huh +∇huTh ,∇hvh)−
〈
[[vh]] , {{∇huh +∇huTh }}n

〉
Fh

−
〈
[[uh]] , {{∇hvh +∇hvTh }}n

〉
Fh

+
〈
ηh−1 [[uh]] , [[vh]]

〉
Fh

when τh(uh) := ∇huh +∇huTh or

∇huh +∇huTh − 2
3 (∇h · uh) I.

and

bh(uh,vh) = (∇h · vh, qh),

respectively. Similarly, using ∇ · uh = 0 and [[uh · n]] = 0, we obtain the simplified convective term

ch (uh;uh,vh) = (uh · ∇huh,vh)− 〈(uh · n) [[uh]] , {{vh}}〉Fi
h

+ 〈ζ |uh · n| [[uh]] , [[vh]]〉Fi
h
,

and the vanishing penalty term dh (30), i.e.,

dh(uh,vh) = 0.

In this case, the scheme (7) with Vh = V DIV
h , Qh = QDG

h reduces to the classical H(div)-conforming method

[23, 45], but with symmetrical gradient formulation for the viscous bilinear form. Finally the inf-sup condition

is guaranteed by

C‖qh‖L2(Ω) ≤ sup
vh∈V DIV

h \{0}

(qh,∇ · vh)

‖vh‖H(div;Ω)

, ∀qh ∈ QDG
h .

Remark 5. The H(div)-conforming method is naturally pressure robust, since the pressure approximation

is completely decoupled from the velocity approximation [23, 28]. With the help of upwind flux (ζ ≥ 0), the

H(div)-conforming method could deal with convection dominated flow.
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3.4. Discontinuous Galerkin method

The scheme (7) with Vh = V DG
h and Qh = QDG

h yields our DG scheme. If the normal component of the

velocity is penalized sufficiently, then we obtain that for vh ∈ Zh,

0 = bh (vh, qh) = (∇h · vh, qh)− 〈[[vh]] · nF , {{qh}}〉Fh
≈ (∇h · vh, qh), ∀qh ∈ QDG

h .

By ∇h · V DG
h ⊆ QDG

h and the previous reasoning, we may further conclude that

∇h · vh ≈ 0.

Hence dh should be of the form

dh(uh,vh) =
∑
F∈Fh

γF 〈[[vh]] · nF , [[uh]] · nF 〉F . (32)

Assuming γF = γh−1
F , (cf. [1, 23]), the penalty term dh further simplifies to

dh(uh,vh) = γ
∑
F∈Fh

h−1
F 〈[[vh]] · nF , [[uh]] · nF 〉F , (33)

where γ is a sufficiently large parameter. The symmetric form in (8) is given as

ah (uh,vh) =



(∇huh,∇hvh)− 〈[[vh]] , {{∇huh}}n〉Fh

−〈[[uh]] , {{∇hvh}}n〉Fh
+
〈
ηh−1 [[uh]] , [[vh]]

〉
Fh
, when τh(uh) := ∇huh,

(∇huh +∇huTh ,∇hvh)−
〈
[[vh]] , {{∇huh +∇huTh }}n

〉
Fh

−
〈
[[uh]] , {{∇hvh +∇hvTh }}n

〉
Fh

+
〈
ηh−1 [[uh]] , [[vh]]

〉
Fh
, when τh(uh) := ∇huh +∇huTh ,

(∇huh +∇huTh − 2
3 (∇h · uh) I,∇hvh) +

〈
ηh−1 [[uh]] , [[vh]]

〉
Fh

−
〈
[[vh]] , {{∇huh +∇huTh − 2

3 (∇h · uh) I}}n
〉
Fh

−
〈
[[uh]] , {{∇hvh +∇hvTh − 2

3 (∇h · vh) I}}n
〉
Fh
,

when τh(uh) := ∇huh +∇huTh
− 2

3 (∇h · uh) I.

For bh(uh,vh) and ch(uh;uh,vh), we use the same form as in (6) and (9), respectively. Finally the pressure

stability is guaranteed by observing the following inf-sup condition [1]

C‖qh‖L2(Ω) ≤ sup
vh∈V DG

h \{0}

bh (vh, qh)

‖vh‖sip
, ∀qh ∈ QDG

h ,

where ‖vh‖sip :=
(
‖vh‖2L2(Ω) + ‖h− 1

2 [[vh]] ‖2L2(Fh)

) 1
2

.

Remark 6. It is clear that u|∂Ω = 0 holds point-wise on the boundary for the H1-conforming method.

However, for H(div)-conforming and DG methods, u|∂Ω = 0 is weakly imposed in (7). In fact, any non-

homogeneous Dirichlet boundary condition could be weakly enforced via modifying the right hand side of (26).

In particular, the scheme (26) under the boundary condition u|∂Ω = g is modified as

(δtu
n
h,vh) +Nh

(
u
n+ 1

2

h ;vh

)
− bh

(
vh, p

n+ 1
2

h

)
= (fn+ 1

2 ,vh) + νf
n+ 1

2

h,a (vh) + sf
n+ 1

2

h,c (vh) + sf
n+ 1

2

h,d (vh), ∀vh ∈ Vh,

bh

(
u
n+ 1

2

h , qh

)
= sf

n+ 1
2

h,b (qh) , ∀qh ∈ Qh,
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where s = 0 for the H(div) scheme (Vh × Qh = V DIV
h × QDG

h ) and s = 1 for the DG scheme (Vh × Qh =

V DG
h ×QDG

h ). The newly introduced f
n+ 1

2

h,a , f
n+ 1

2

h,b , f
n+ 1

2

h,c , f
n+ 1

2

h,d are defined as

f
n+ 1

2

h,a (vh) :=
∑
F∈F∂

h

η

hF

〈
gn+ 1

2 ,vh

〉
F
−
∑
F∈F∂

h

〈
gn+ 1

2 , τh(vh)n
〉
F
,

f
n+ 1

2

h,b (qh) :=
∑
F∈F∂

h

〈
gn+ 1

2 , qhn
〉
F
,

f
n+ 1

2

h,c (vh) :=
∑
F∈F∂

h

〈
ζ
∣∣gn+ 1

2 · n
∣∣gn+ 1

2 ,vh

〉
F
,

f
n+ 1

2

h,d (vh) :=
∑
F∈F∂

h

γ

hF

〈
gn+ 1

2 · n,vh · n
〉
F
.

Remark 7. Similarly to the H(div)-conforming method, the DG method is able to handle convection domi-

nated flows when upwind flux is introduced. In addition, the DG scheme allows non-conforming and polygonal

meshes. However, the DG scheme may lack pressure robustness, which could be cured by increasing the pa-

rameter γ.

It is worth mentioning that energy-stable and convergent H(div) and DG schemes in [23] are designed

for the Euler equation modelling incompressible and inviscid flows. Our H(div)-conforming scheme shares

the same convective form ch with the H(div) scheme in [23]. However, in contrast to our DG scheme, the

convective form ch of the DG scheme in [23] relies on a postprocessed velocity. We also point out that, only

semi-discrete stability is shown in [23] and the BDF1 time integrator used in the fully discrete scheme there

might not yield decaying numerical energy.

4. Numerical Experiments

In this section, we test the performance of several methods in the form (26) with

Vh ×Qh = V C
h ×QC

h , or V DIV
h ×QDG

h , or V DG
h ×QDG

h .

The corresponding scheme is denoted as Scheme H1, H(div), or DG-N, respectively. The viscous strain tensor

in (26) is chosen as τh(uh) = ∇huh+∇huTh− 2
3 (∇h · uh) I. Schemes H1 and H(div) are considered in the first

and second experiments, while the DG-N scheme from our framework are tested in all experiments. Recall

that the incompressibility condition ∇ ·u = 0 is weakly enforced via the condition bh(uh, qh) = 0 ∀qh ∈ Qh,

where the bilinear form bh is introduced in Section 3. When implementing our schemes, that condition

yields the linear system of equations BhUh = 0, where Uh is the vector representation of uh and Bh is

a matrix representing bh. For nonhomogeneous boundary condition, the right hand side of bh(uh, qh) = 0

(and BhUh = 0) is modified as discussed in Remark 6. Although our framework is designed for unsteady

problems, we compare our DG-N spatial discretization with the scheme proposed in [1, 15], which we will
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denote as DG-C and is of the form (7) with the following bilinear and convective forms

ah(uh,vh) = (∇huh,∇hvh)− 〈[[vh]] , {{∇huh}}n〉Fh
− 〈[[uh]] , {{∇hvh}}n〉Fh

+
〈
ηh−1 [[uh]] , [[vh]]

〉
Fh
,

bh(vh, qh) = (∇h · vh, qh)− 〈[[vh]] · n, {{qh}}〉Fh
,

ch (uh;uh,vh) = (uh · ∇huh,vh)− 〈({{uh}} · n) [[uh]] , {{vh}}〉Fi
h

+

〈
1

2
|{{uh}} · n| [[uh]] , [[vh]]

〉
Fi

h

,

dh(uh,vh) = γ(∇ · uh,∇ · vh) + γ
∑
F∈Fh

h−1
F 〈[[vh]] · nF , [[uh]] · nF 〉F .

In contrast to DG-N, the scheme DG-C in [1, 15] is designed only for steady incompressible flow and not

proved to be energy stable for unsteady flow.

In ah and ch, the penalization parameters η and ζ are empirically set to be η = 3(k+ 1)(k+ 2) (cf. [45])

and 0.5 respectively, where k is the degree of polynomials in (28). The penalty parameters γ (for DG-N and

DG-C) and γgd (for H1) will be specified in each numerical example.

The numerical simulations are performed in FEniCS [30] on a laptop with Intel Core i5 CPU (2.7 GHz)

and 8 GB RAM. We use the Newton nonlinear solver with the MUMPS linear solver inside FEniCS to solve

the nonlinear systems of equations arising from fully discrete schemes. We set absolute and relative error

tolerances used in the Newton solver to be 10−8 for dynamic problems and 10−10 for stationary problems.

4.1. Taylor–Green Vortex

The analytical solutions of Taylor–Green vortex [23] in R2 are given by

u(t,x) =

(
sin(x1) cos(x2)e−2νt,− cos(x1) sin(x2)e−2νt

)
,

p(t,x) =
1

4

(
cos(2x1) + cos(2x2)

)
e−4νt

with ν = 0.01. The space domain and time interval are set to be Ω := [0, 2π]2 and [0, T ] with T = 1s, respec-

tively. All schemes are based on the Crank–Nicolson time discretization with uniform time step τ = 0.01s.

The space domain is partitioned by uniform meshes with mesh sizes hmax ∈ {0.8886, 0.4443, 0.2221, 0.1777},

see Figure 1 for sample meshes. For the H1 scheme, we choose k ∈ {1, 2} in (27) and γgd = 0 in (30). Note

that the Taylor–Hood space (27) with k = 0 is not inf-sup stable. For H(div) and DG schemes, we set

k ∈ {0, 1, 2} in (28) and Qk(K) = [Pk+1(K)]d (Brezzi-Douglas-Marini element) in (29). In addition, the DG

scheme uses the penalty parameter γ ∈ {0, 10}. Numerical results are presented in Figure 2 and Tables 1 to

3.

From Tables 2 and 3, we observe that both DG schemes achieve the expected convergence rates (when

γ = 10), and achieve roughly the same level of accuracy for both velocity and pressure with the same order

of runtime. In addition, we observe a decreasing of errors in both velocity and pressure when we increase

γ from 0 to 10. In order to ensure stability, and to test the behaviors of the full viscous strain tensor, our

DG scheme has more terms (in both ah and ch) to be updated at each time step compared with DG-C.
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Figure 1: Uniform Meshes

Therefore, the running time of DG-N scheme is slightly longer. We do not observe a clear trend of runtime

when we increase γ from 0 to 10, for both DG schemes. Figure 2 shows that the approximation becomes

better when increasing polynomial degree and/or decreasing mesh sizes for our DG-N scheme.

Numerical results on H1 and H(div) schemes are presented in Table 1. Due to smaller numbers of degrees

of freedom, the runtime of the H1 scheme is less than H(div) and DG schemes. An interesting phenomenon

is the apparent superconvergence of the H1 scheme when k = 1. It can be observed from Tables 1 and 2

that errors of H(div), DG-N, and DG-C schemes are of the same magnitude, while the H1 scheme is much

less accurate. It is noted that the H(div) scheme has a longer running time than DG schemes although it

has less number of degrees of freedom and a simpler expression. We will not pursue a rigorous explanation

on this and conjecture that the ‘unreasonble’ runtime of H(div) schemes might be due to the inefficiency of

assembling process for Brezzi–Douglas–Marini elements in FEniCS.

4.2. Kovasznay Flow

In this experiment, we consider the steady Kovasznay flow [15] with the analytical solutions given by

u(t,x) =

(
1− eλx1 cos(2πx2),

λ

2π
eλx1 sin(2πx2)

)
,

p(t,x) = −1

2
e2λx1 − 1

8λ

(
e−λ − e3λ

)
with λ = 1

2ν − ( 1
4ν2 + 4π2)

1
2 and the simulation domain Ω := [−0.5, 0]× [1.5, 2]. All schemes with ν = 0.025

are tested on uniform meshes with mesh sizes hmax ∈ {0.1768, 0.0884, 0.0442, 0.0354}. Other parameters are

identical to those given in Experiment 4.1.

The overall performance of H1, H(div), and DG schemes are similar to those in Experiment 4.1, see

Tables 4, 5, and 6. The H1 scheme is the best among all schemes when k = 2. Figure 3 shows that the

approximation becomes better when increasing polynomial degree and/or decreasing the mesh size for our

DG scheme.
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Figure 2: Taylor–Green Vortex: Contours of vorticity ∇h×uh from DG-N with hmax = 0.8886 (left) and hmax = 0.1777 (right)

at t = 1.0s when k = 0 (upper row) and k = 2 (bottom row), ν = 0.01, γ = 10.
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Table 1: Taylor–Green vortex: Velocity (at t = 1.0s) and pressure(at t = 0.995s) of H1 and upwind H(div) schemes, ν = 0.01

k hmax

H1 H(div)

d.o.f
‖u− uh‖L2(Ω)

error order

‖p− ph‖L2(Ω)

error order
Runtime d.o.f

‖u− uh‖L2(Ω)

error order

‖p− ph‖L2(Ω)

error order
Runtime

0

0.8886 N/A N/A N/A N/A 841 2.26e-1 —– 4.55e-1 —– 1.97s

0.4443 N/A N/A N/A N/A 3281 5.21e-2 2.12 2.25e-1 1.01 5.71s

0.2221 N/A N/A N/A N/A 12961 1.20e-2 2.11 1.12e-1 1.01 20.78s

0.1777 N/A N/A N/A N/A 20201 7.57e-3 2.09 8.97e-2 1.00 35.62s

1

0.8886 1004 2.86e-1 —– 1.54e-1 —– 1.83es 2161 2.01e-2 —– 6.80e-2 —– 5.17s

0.4443 3804 2.55e-2 3.49 2.37e-2 2.70 4.66s 8521 2.44e-3 3.04 1.72e-2 1.99 20.31s

0.2221 14804 1.52e-3 4.07 5.62e-3 2.08 16.18s 33841 2.93e-4 3.06 4.31e-3 2.00 104.10s

0.1777 23004 6.33e-4 3.92 3.58e-3 2.02 27.13s 52801 1.49e-4 3.04 2.76e-3 2.00 170.04s

2

0.8886 2364 5.03e-2 —– 2.56e-2 —– 4.26s 4081 1.29e-3 —– 7.05e-3 —– 14.42s

0.4443 9124 5.67e-3 3.15 3.27e-3 2.97 13.23s 16161 7.44e-5 4.12 8.90e-4 2.99 70.15s

0.2221 35844 3.75e-4 3.92 3.48e-4 3.23 55.46s 64321 4.57e-6 4.02 1.11e-4 3.00 360.00s

0.1777 55804 1.52-4 4.04 1.68e-4 3.28 88.89s 100401 1.88e-6 3.99 5.71e-5 3.00 622.18s

Table 2: Taylor–Green vortex: Comparison of DG-N and DG-C schemes for the velocity at t = 1.0s and pressure at t = 0.995s

when ν = 0.01 and γ = 10.

k hmax d.o.f
DG-N DG-C

‖u− uh‖L2(Ω)

error order

‖p− ph‖L2(Ω)

error order
Runtime

‖u− uh‖L2(Ω)

error order

‖p− ph‖L2(Ω)

error order
Runtime

0

0.8886 1401 2.35e-1 — 4.55e-1 — 2.30s 2.27e-1 — 4.51e-1 — 1.69s

0.4443 5601 5.44e-2 2.11 2.26e-1 1.01 5.73s 5.28e-2 2.10 2.26e-1 1.00 5.64s

0.2221 22401 1.26e-2 2.11 1.12e-1 1.01 29.65s 1.24e-2 2.10 1.13e-1 1.00 22.50s

0.1777 35001 7.92e-3 2.08 8.97e-2 1.00 54.50s 7.78e-3 2.07 8.99e-2 1.00 38.00s

1

0.8886 3001 2.07e-2 — 6.80e-2 — 4.05s 2.00e-2 — 8.68e-2 — 3.78s

0.4443 12001 2.54e-3 3.03 1.72e-2 1.99 17.32s 2.42e-3 3.04 2.23e-2 1.96 15.62s

0.2221 48001 3.03e-4 3.07 4.31e-3 2.00 98.24s 2.83e-4 3.10 5.60e-3 1.99 87.66s

0.1777 75001 1.53e-4 3.06 2.76e-3 2.00 175.95s 1.42e-4 3.08 3.58e-3 2.00 158.56s

2

0.8886 5201 1.44e-3 — 7.04e-3 — 9.93s 1.37e-3 — 8.00e-3 — 9.38s

0.4443 20801 8.14e-5 4.15 8.90e-4 2.99 55.93s 7.80e-5 4.14 9.72e-4 3.04 52.93s

0.2221 83201 4.90e-6 4.05 1.11e-4 3.00 316.97s 4.65e-6 4.07 1.20e-4 3.01 308.49s

0.1777 130001 2.00e-6 4.02 5.71e-5 3.00 569.20s 1.90e-6 4.01 6.15e-5 3.01 562.17s
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Table 3: Taylor–Green vortex: Comparison of DG-N and DG-C schemes for the velocity at t = 1.0s and pressure at t = 0.995s,

when ν = 0.01, γ = 0.

k hmax d.o.f
DG-N DG-C

‖u− uh‖L2(Ω)

error order

‖p− ph‖L2(Ω)

error order
Runtime

‖u− uh‖L2(Ω)

error order

‖p− ph‖L2(Ω)

error order
Runtime

0

0.8886 1401 8.11e-1 — 5.34e-1 — 2.99s 8.28e-1 — 5.17e-1 — 2.57s

0.4443 5601 3.04e-2 1.42 2.55e-1 1.07 9.36s 3.05e-1 1.44 2.52e-1 1.04 5.74s

0.2221 22401 9.92e-2 1.62 1.21e-1 1.07 28.35s 1.04e-1 1.55 1.21e-1 1.06 21.91s

0.1777 35001 6.89e-2 1.63 9.58e-2 1.06 42.47s 7.26e-2 1.61 9.58e-2 1.06 36.60s

1

0.8886 3001 1.66e-1 — 8.80e-2 — 6.98s 1.50e-1 — 7.90e-2 — 4.14s

0.4443 12001 2.60e-2 2.68 1.98e-2 2.15 20.10s 2.30e-2 2.71 1.86e-2 2.09 15.87s

0.2221 48001 3.18e-3 3.03 4.55e-3 2.12 92.16s 3.24e-3 2.83 4.45e-3 2.06 88.11s

0.1777 75001 1.62e-3 3.02 2.87e-3 2.06 163.94s 1.70e-3 2.89 2.83e-3 2.03 158.39s

2

0.8886 5201 6.99e-3 — 7.47e-3 — 11.95s 5.95e-3 — 7.24e-3 — 9.57s

0.4443 20801 3.30e-4 4.40 9.01e-4 3.05 55.58s 3.19e-4 4.22 8.98e-4 3.01 56.46

0.2221 83201 1.90e-5 4.12 1.12e-4 3.01 315.91s 1.99e-5 4.00 1.12e-4 3.00 309.51s

0.1777 130001 7.78e-6 4.00 5.74e-5 3.00 570.54s 8.27e-6 3.94 5.74e-5 3.00 562.16s

From Tables 5 and 6, we observe that both DG schemes achieve the expected convergence rates for

velocity and pressure when γ ∈ {0, 10}. The errors and running time of DG-N are slightly smaller than

DG-C when γ = 0. In contrast to the Taylor–Green vortex, the running time of both DG schemes for

the stationary Kovasznay flow are similar because there is no dynamic update at each time step. We also

observe that the runtime tends to decrease when γ increases from 0 to 10, especially for DG-C. An interesting

observation is that there is a trend of increasing of errors in both velocity and pressure when we increase γ

from 0 to 10, which indicates that the penalty term (33) may fail to reduce the errors in some cases when

the convective term appears. It is shown in [1] that the solution will converge to BDM solution if γ → ∞

for the Stokes problem, which indicates a decreasing of absolute errors when increasing γ (at least for Stokes

flow). Due to nonlinearity of Naiver–Stokes equations, theoretical analysis on the optimality of γ seems not

available. Hence we will investigate this influence numerically in the next experiment.

4.3. Influence of γ and γgd

In this subsection, we go back to the original form of the penalty term (30) with γF = γh−1
F which is

dh(uh,vh) = γgd(∇h · uh,∇h · vh) + γ
∑
F∈Fh

h−1
F 〈[[vh]] · nF , [[uh]] · nF 〉F
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Table 4: Kovasznay flow: Velocity and pressure of H1 and upwind H(div) schemes, ν = 0.025.

k hmax

H1 H(div)

d.o.f
‖u− uh‖L2(Ω)

error order

‖p− ph‖L2(Ω)

error order
Runtime d.o.f

‖u− uh‖L2(Ω)

error order

‖p− ph‖L2(Ω)

error order
Runtime

0

0.1768 N/A N/A N/A N/A 2113 4.45e-2 —– 6.73e-2 —– 1.49e-1s

0.0884 N/A N/A N/A N/A 8321 1.00e-2 2.15 3.00e-2 1.17 6.01e-1s

0.0442 N/A N/A N/A N/A 33025 2.46e-3 2.03 1.43e-2 1.06 3.06s

0.0354 N/A N/A N/A N/A 51521 1.57e-3 1.99 1.14e-2 1.03 5.05s

1

0.1768 2468 3.37e-3 —– 2.26e-3 —– 1.13e-1s 5473 2.69e-3 —– 3.70e-3 —– 5.79e-1s

0.0884 9540 4.17e-4 3.01 5.17e-4 2.13 4.61e-1s 21697 3.31e-4 3.02 8.11e-4 2.19 2.93s

0.0442 37508 5.20e-5 3.00 1.28e-4 2.01 2.22s 86401 4.13e-5 3.00 1.87e-4 2.12 15.56s

0.0354 58404 2.66e-5 3.00 8.18e-5 2.00 3.54s 134881 2.11e-5 3.00 1.17e-4 2.08 26.68s

2

0.1768 5892 1.61e-4 —– 1.23e-4 —– 3.66e-1s 10369 1.68e-4 —– 3.06e-4 —– 2.00s

0.0884 23044 1.01e-5 4.00 1.15e-5 3.42 1.58s 41217 1.08e-5 3.96 3.12e-5 3.29 10.32s

0.0442 91140 6.32e-7 4.00 1.26e-6 3.19 7.24s 164353 6.87e-7 3.98 3.50e-6 3.16 58.00s

0.0354 142084 2.59e-7 4.00 6.34e-7 3.09 11.81s 256641 2.82e-7 3.99 1.75e-6 3.10 105.40s

Table 5: Kovasznay flow: Comparison of DG-N and DG-C schemes when ν = 0.025 and γ = 10.

k hmax d.o.f
DG-N DG-C

‖u− uh‖L2(Ω)

error order

‖p− ph‖L2(Ω)

error order
Runtime

‖u− uh‖L2(Ω)

error order

‖p− ph‖L2(Ω)

error order
Runtime

0

0.1768 3585 3.77e-2 — 5.89e-2 — 1.27e-1s 4.91e-2 — 6.52e-2 — 1.25e-1s

0.0884 14337 9.62e-3 1.97 2.86e-2 1.04 5.55e-1s 1.04e-2 2.24 3.01e-2 1.11 5.81e-1s

0.0442 57345 2.44e-3 1.98 1.41e-2 1.02 2.91s 2.46e-3 2.08 1.47e-2 1.04 2.96s

0.0354 89601 1.57e-3 1.98 1.13e-2 1.01 4.82s 1.57e-3 2.02 1.17e-2 1.02 4.90s

1

0.1768 7681 2.59e-3 — 2.99e-3 — 4.65e-1s 2.59e-3 — 2.55e-3 — 4.62e-1s

0.0884 30721 3.25e-4 3.00 7.01e-4 2.09 2.61s 3.23e-4 3.00 5.64e-4 2.17 2.63s

0.0442 122881 4.07e-5 3.00 1.69e-4 2.05 14.73s 4.03e-5 3.00 1.31e-4 2.11 14.98s

0.0354 192001 2.08e-5 3.00 1.08e-4 2.03 26.13s 2.06e-5 3.00 8.24e-5 2.07 26.25s

2

0.1768 13313 1.37e-4 — 2.02e-4 — 1.58s 1.37e-4 — 1.83e-4 — 1.53s

0.0884 53249 8.86e-6 3.95 2.50e-5 3.01 9.17s 8.87e-6 3.95 2.36e-5 2.96 9.16s

0.0442 212993 5.62e-7 3.98 3.08e-6 3.02 53.67s 5.63e-7 3.98 2.96e-6 2.99 55.35s

0.0354 332801 2.31e-7 3.99 1.57e-6 3.01 101.30s 2.31e-7 3.99 1.52e-6 3.00 95.62s
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Figure 3: Kovasznay Flow: Contours of velocity magnitude from the DG-N scheme with hmax = 0.1768 (left) and hmax = 0.0354

(right) when k = 0 (upper row) and k = 2 (bottom row), ν = 0.025 and γ = 10.
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Table 6: Kovasznay flow: Comparison of DG-N and DG-C schemes when ν = 0.025 and γ = 0.

k hmax d.o.f
DG-N DG-C

‖u− uh‖L2(Ω)

error order

‖p− ph‖L2(Ω)

error order
Runtime

‖u− uh‖L2(Ω)

error order

‖p− ph‖L2(Ω)

error order
Runtime

0

0.1768 3585 4.04e-2 — 6.05e-2 — 1.62e-1s 8.00e-2 — 1.08e-1 — 1.28e-1s

0.0884 14337 1.03e-2 1.97 2.84e-2 1.09 6.86e-1s 1.14e-2 2.81 2.96e-2 1.87 7.10e-1s

0.0442 57345 2.50e-3 2.05 1.38e-2 1.04 3.21s 2.65e-3 2.11 1.40e-2 1.08 3.59s

0.0354 89601 1.58e-3 2.06 1.10e-2 1.02 4.86s 1.67e-3 2.06 1.12e-2 1.02 5.67s

1

0.1768 7681 2.34e-3 — 2.18e-3 — 4.54e-1s 2.29e-3 — 2.12e-3 — 4.75e-1s

0.0884 30721 2.87e-4 3.03 5.01e-4 2.12 2.60s 2.84e-4 3.01 5.06e-4 2.07 2.84s

0.0442 122881 3.54e-5 3.02 1.22e-4 2.04 14.63s 3.55e-5 3.00 1.25e-4 2.02 15.26s

0.0354 192001 1.81e-5 3.01 7.77e-5 2.02 25.49s 1.82e-5 3.00 7.96e-5 2.01 26.52s

2

0.1768 13313 1.21e-4 — 1.42e-4 — 1.61s 1.21e-4 — 1.51e-4 — 1.56s

0.0884 53249 7.75e-6 3.96 1.82e-5 2.97 9.39s 7.78e-6 3.96 1.97e-5 2.94 9.74s

0.0442 212993 4.90e-7 3.98 2.28e-6 2.99 54.09s 4.93e-7 3.98 2.49e-6 2.99 55.67s

0.0354 332801 2.01e-7 3.99 1.17e-6 3.00 94.04s 2.02e-7 3.99 1.27e-6 3.00 94.78s

and study the influence of γgd and γ on the velocity approximation of the DG schemes. The model problems

is the potential flow (cf. [1])

u(t,x) =

(
5x4

1 − 30x2
1x

2
2 + 5x4

2,−20x3
1x2 + 20x1x

3
2

)
,

p(t,x) = −1

2
|u(t,x)|2

on the domain Ω := [−1, 1]2 consisting of ten colliding jets which meets at the stagnation point (0, 0) (see

Figure 4) and the Kovasznay flow (in Subsection 4.2) with ν = 0.025 and γ (respectively γgd) ranging from

0, 1, 5, 25, 125 when k = 2, 3 and h = 0.0884.

It can be observed from Tables 7 and 8 that larger γ (while γgd = 0) decreases the velocity error

tremendously in potential flow, but increases the errors in Kovasznay flow while keeping the same order of

error magnitude. This observation indicates that the addition of penalty term γ
∑
F∈Fh

h−1
F 〈[[vh]] ·nF , [[uh]] ·

nF 〉F may fail to decrease errors, but it may not affect the order of error too much. To the best of our

knowledge, we have not seen a similar report for the DG schemes in the literature. Finally, we do not observe

an obvious increasing or decreasing error when increasing γgd (while keeping γ = 0) except for the case from

γgd = 0 to γgd = 1.

4.4. Lid Driven Flow

In this section, we consider lid driven flow for the DG-N scheme with Re = 100, 400 (which corresponds

to ν = 0.01, 0.0025 respectively in this setting) [18] and the square domain Ω := [0, 1]2. There is a tangential
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Table 7: Comparison between DG-N and DG-C schemes with ν = 0.025 and hmax = 0.0884 for Kovasznay flow and potential

flow when γgd = 0.

k γ

Kovasznay flow ‖u− uh‖L2(Ω) Potential flow ‖u− uh‖L2(Ω)

DG-N DG-C DG-N DG-C

2

0 7.75e-6 7.78e-6 3.26e-4 2.60e-4

1 8.25e-6 8.27e-6 2.09e-4 2.09e-4

5 8.72e-6 8.73e-6 9.76e-5 9.13e-5

25 8.96e-6 8.96e-6 2.86e-5 2.57e-5

125 9.02e-6 9.02e-6 7.48e-6 6.82e-6

3

0 1.41e-7 1.42e-7 6.43e-6 5.05e-6

1 1.47e-7 1.47e-7 4.39e-6 4.24e-6

5 1.55e-7 1.55e-7 2.05e-6 1.92e-6

25 1.60e-7 1.59e-7 5.86e-7 5.32e-7

125 1.61e-7 1.61e-7 1.30e-7 1.16e-7

Table 8: Comparison between DG-N and DG-C schemes with ν = 0.025 and hmax = 0.0884 for Kovasznay flow and potential

flow when γ = 0.

k γgd

Kovasznay flow ‖u− uh‖L2(Ω) Potential flow ‖u− uh‖L2(Ω)

DG-N DG-C DG-N DG-C

2

0 7.75e-6 7.78e-6 3.26e-4 2.60e-4

1 7.80e-6 7.82e-6 2.47e-4 2.63e-4

5 7.81e-6 7.82e-6 2.47e-4 2.61e-4

25 7.81e-6 7.82e-6 2.48e-4 2.61e-4

125 7.81e-6 7.82e-6 2.48e-4 2.61e-4

3

0 1.41e-7 1.42e-7 6.43e-6 5.05e-6

1 1.44e-7 1.44e-7 4.20e-6 4.17e-6

5 1.44e-7 1.45e-7 4.05e-6 4.04e-6

25 1.44e-7 1.45e-7 4.02e-6 4.01e-6

125 1.44e-7 1.45e-7 4.02e-6 4.01e-6
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Figure 4: Stream lines for potential flow.

velocity u = (1, 0) on the top, while no-slip boundary conditions are applied on the other sides. In this test,

we use polynomial k = 3 for the pressure, γ = 10 and h = 0.0283 (which corresponds to a mesh size of

50× 50).

Figures 5 and 6 show the contour and streamlines of the lid driven cavity flow. The important aspect of

Figure 6 is that a small corner vortex at the bottom right corner, which normally requires a very high mesh

resolution, has been predicted by our scheme. In Figures 7 and 8 we compare our simulation results with the

data reported in [18], we find our simulation results match the data perfectly except at the coordinate point

(0.9063, 0.5) for vertical velocity; we are not sure if there is a typo in the original data from [18] as even

in classical fluid finite element book like [48] (Figure 4.5(b), page 134) this point is ignored when making

comparisons.

Figure 5: Lid Driven Cavity: Contours of velocity magnitude from DG-N with Re = 100 (left) and Re = 400 (right) when

p = 3, hmax = 0.0283 and γ = 10.
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Figure 6: Lid Driven Cavity: Stream trace from DG-N with Re = 100 (left) and Re = 400 (right) when k = 3, hmax = 0.0283

and γ = 10.

Figure 7: Lid Driven Cavity: Horizontal velocity from DG-N with Re = 100 (left) and Re = 400 (right) when k = 3,

hmax = 0.0283, γ = 10 at x1 = 0.5 (with x2 varying)
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Figure 8: Lid Driven Cavity: Vertical velocity from DG-N with Re = 100 (left) and Re = 400 (right) when k = 3, hmax = 0.0283,

γ = 10 at x2 = 0.5 (with x1 varying)

Figure 9: Mesh for flow around a cylinder
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Figure 10: Contour of velocity magnitude when t = 2s, 3s, 5s, 6s from top to bottom—BDF2 time discretization
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Figure 11: Contour of velocity magnitude when t = 2s, 3s, 5s, 6s from top to bottom—Crank–Nicolson time discretization

28



4.5. Flow around a cylinder

In the last example, we follow [32, 42, 30] and consider the flow over a cylinder with our DG-N scheme

when γ = 10 using both BDF2 and Crank–Nicolson time discretization. We follow the example in [30]

and use the FEniCS mshr tool to generate a fixed mesh, see Figure 9. Note that the BDF2 method is not

necessarily stability preserving. The simulation domain Ω := ([0, 2.2]× [0, 0.41]) \B, where B is the disk

centered at (0.2, 0.2) with radius 0.05. The simulation time interval is [0, T ] with T = 8s and the time step

τ = 0.01. A primary feature of this benchmark is the formation of von Kármán vortex street. Our goal is to

study the influence of time discretization on the formulation of the vortex. The inflow and outflow profile is

given (cf. [32]) as

u(t, 0, x2) = u(t, 2.2, x2) =
6

0.412
sin(πt/8)x2(0.41− x2), (34)

v(t, 0, x2) = v(t, 2.2, x2) = 0, (35)

and the boundary condition on the rest of ∂Ω is set to be u = 0. The Reynolds number Re corresponding

to the mean velocity inflow ranges from 0 to 100. From Figures 10 and 11, we observe that the vortex forms

gradually over time when Crank–Nicolson is used for the time discretization, while there is no apparent

vortex formulation when using BDF2, which indicates the importance of using stability preserving time

discretization.

5. Conclusion

We have developed a general framework including the H1, H(div) and DG methods with the use of

different stress tensors. We proved the stability in general and discussed the expressions for penalty terms

for each of the three cases. For Taylor–Green vortex and Kovasznay flow, our DG schemes are comparable

to classical schemes in the literature, while the H1 scheme from the framework is less accurate but with

much less runtime with the Taylor-Green vortex. The H(div) scheme has the longest runtime among four

schemes for Taylor-Green vortex implemented in FEniCS. We also show through examples that penalizing

normal component of the velocity in DG schemes may fail to decrease absolute errors. In general, we are

not able to demonstrate it rigorously and the choice of γ is empirical. In addition, we show that our DG

scheme agrees very well with the features and data of lid driven flow. Finally, the importance of stability

preserving time discretization has been shown by comparing the BDF2 and Crank–Nicolson scheme for the

flow around a cylinder.
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Mathématiques & Applications (Berlin) [Mathematics & Applications], vol. 69, Springer, Heidelberg,

2012. MR 2882148

30



[16] Richard S. Falk and Michael Neilan, Stokes complexes and the construction of stable finite elements with

pointwise mass conservation, SIAM Journal on Numerical Analysis 51 (2013), no. 2, 1308–1326.

[17] Leopoldo P. Franca and Thomas J. R. Hughes, Two classes of mixed finite element methods, Computer

Methods in Applied Mechanics and Engineering 69 (1988), no. 1, 89–129.

[18] U. Ghia, K. N. Ghia, and C. T. Shin, High-Re solutions for incompressible flow using the Navier-Stokes

equations and a multigrid method, Journal of Computational Physics 48 (1982), no. 3, 387–411.

[19] Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations,

Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986, Theory and algo-

rithms. MR 851383

[20] Sigal Gottlieb, Chi-Wang Shu, and Eitan Tadmor, Strong stability-preserving high-order time discretiza-

tion methods, SIAM Rev. 43 (2001), no. 1, 89–112. MR 1854647

[21] Philip M. Gresho and Stevens T. Chan, On the theory of semi-implicit projection methods for viscous

incompressible flow and its implementation via a finite element method that also introduces a nearly

consistent mass matrix. part 2: Implementation, International Journal for Numerical Methods in Fluids

11 (1990), no. 5, 621–659.

[22] Johnny Guzmán and Michael Neilan, Conforming and divergence-free Stokes elements on general tri-

angular meshes, Mathematics of Computation 83 (2014), no. 285, 15–36.

[23] Johnny Guzmán, Chi-Wang Shu, and Filánder A. Sequeira, H(div) conforming and DG methods for

incompressible Euler’s equations, IMA Journal of Numerical Analysis 37 (2016), no. 4, 1733–1771.

[24] E. Hairer, S. P. Nørsett, and G. Wanner, Solving ordinary differential equations. I, second ed., Springer

Series in Computational Mathematics, vol. 8, Springer-Verlag, Berlin, 1993, Nonstiff problems. MR

1227985

[25] Ernst Hairer, Christian Lubich, and Gerhard Wanner, Geometric numerical integration, second ed.,

Springer Series in Computational Mathematics, vol. 31, Springer-Verlag, Berlin, 2006, Structure-

preserving algorithms for ordinary differential equations. MR 2221614

[26] Jan S. Hesthaven and Tim Warburton, Nodal discontinuous Galerkin methods: Algorithms, analysis,

and applications, Springer Science & Business Media, 2007.

[27] Eleanor W. Jenkins, Volker John, Alexander Linke, and Leo G. Rebholz, On the parameter choice

in grad-div stabilization for the Stokes equations, Advances in Computational Mathematics 40 (2014),

no. 2, 491–516.

31



[28] Volker John, Alexander Linke, Christian Merdon, Michael Neilan, and Leo G. Rebholz, On the divergence

constraint in mixed finite element methods for incompressible flows, SIAM Review 59 (2017), no. 3, 492–

544.

[29] Sumedh M. Joshi, Peter J. Diamessis, Derek T. Steinmoeller, Marek Stastna, and Greg N. Thomsen,

A post-processing technique for stabilizing the discontinuous pressure projection operator in marginally-

resolved incompressible inviscid flow, Computers & Fluids 139 (2016), 120–129.

[30] Hans Petter Langtangen and Anders Logg, Solving PDEs in Python, Springer, 2017.

[31] William Layton, Introduction to the Numerical Analysis of Incompressible Viscous Flows, SIAM, 2008.

[32] William Layton, Carolina C. Manica, Monika Neda, Maxim Olshanskii, and Leo G. Rebholz, On the

accuracy of the rotation form in simulations of the Navier–Stokes equations, Journal of Computational

Physics 228 (2009), no. 9, 3433–3447.
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