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Abstract
Flexible filaments and fibres are essential components of important complex fluids that appear

in many biological and industrial settings. Direct simulations of these systems that capture the mo-
tion and deformation of many immersed filaments in suspension remain a formidable computational
challenge due to the complex, coupled fluid–structure interactions of all filaments, the numerical
stiffness associated with filament bending, and the various constraints that must be maintained as
the filaments deform. In this paper, we address these challenges by describing filament kinemat-
ics using quaternions to resolve both bending and twisting, applying implicit time-integration to
alleviate numerical stiffness, and using quasi-Newton methods to obtain solutions to the resulting
system of nonlinear equations. In particular, we employ geometric time integration to ensure that
the quaternions remain unit as the filaments move. We also show that our framework can be used
with a variety of models and methods, including matrix-free fast methods, that resolve low Reyn-
olds number hydrodynamic interactions. We provide a series of tests and example simulations to
demonstrate the performance and possible applications of our method. Finally, we provide a link
to a MATLAB/Octave implementation of our framework that can be used to learn more about our
approach and as a tool for filament simulation.
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1 Introduction
Microscopic flexible filaments and rigid fibres suspended in fluid arise in many industrial and biological
applications, ranging from the wood pulp fibres found in paper production (Derakhshandeh et al., 2011;
Stockie & Green, 1998; Ross & Klingenberg, 1997; Pettersson et al., 2017; du Roure et al., 2017) to
the flagella and cilia used by cells to swim, pump, or mix fluid (Lauga & Powers, 2009; Elgeti et al.,
2015; Brennen & Winet, 1977; Supatto & Vermot, 2011; Smith et al., 2019; Faubel et al., 2016; Elgeti
& Gompper, 2013). In suspension, such as in polymeric fluids, their presence alters the bulk rheological
properties of the medium leading to non-Newtonian responses such as shear thinning or viscoelasticity
(Larson, 1999). When entangled or connected in networks, filaments and fibres form gels and disordered
solids as is the case in important biological materials such as mucus (Hwang et al., 1969; Sheehan &
Carlstedt, 1984; Quraishi et al., 1998; Lai et al., 2009) and the extra-cellular matrix (Baker et al., 2009;
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Heck et al., 2017). Filaments can also be active biological elements that facilitate transport through
self-deformation (Lauga & Powers, 2009; Brennen & Winet, 1977), or through growth and the motion
of motor proteins along their lengths (Shelley, 2016).

Simulation of filament or fibre motion requires solving a complex low Reynolds number fluid–
structure interaction problem where the motion and deformation of all filaments are coupled through
the surrounding fluid. As a result, computations involving filaments use many existing models and
methods developed over the years to resolve the hydrodynamic aspects of the problem at various levels
of approximation, ranging from drag-based resistive force theory (Moreau et al., 2018; Yamamoto &
Matsuoka, 1995) and point and regularised singularity methods (Cortez, 2001; Cortez et al., 2005;
Cosentino Lagomarsino et al., 2005; Delmotte et al., 2015; Olson et al., 2013; Smith, 2009; Smith et al.,
2007) for single filament problems, to the immersed boundary method (Peskin, 2002; Fauci & Peskin,
1988; Stockie & Green, 1998; Lim et al., 2008; Lim, 2010; Wiens & Stockie, 2015) and discretisations of
the integral equations given by slender-body theory coupled with fast-summation techniques (Saintillan
et al., 2005; Tornberg & Shelley, 2004; Gustavsson & Tornberg, 2009; Nazockdast et al., 2017; Tornberg
& Gustavsson, 2006) for larger collections of flexible filaments or rigid fibres.

While there are a variety of models and methods available to treat filament hydrodynamics, a similar
catalogue of methods and algorithms for filament elasticity is less developed. Due to the higher-order
derivatives associated with bending and twisting, the equations of filament motion are numerically
stiff. In addition, conditions such as inextensibility give rise to constraints that must be satisfied as
filaments move and deform. Despite this, explicit time integration is often used (Peskin, 2002; Li
et al., 2013; Olson et al., 2013; Simons et al., 2015) to advance the filaments in time, while constraints
of inextensibility are mimicked through stiff springs (Chelakkot et al., 2010; Stockie & Green, 1998),
both of which tend to limit stable timestep sizes. There have been recent efforts to use implicit time
integration schemes (Moreau et al., 2018; Hall-McNair et al., 2019), as well as treat the constraints
directly using Lagrange multipliers (Delmotte et al., 2015) or through a suitable choice of the filament
degrees of freedom (Moreau et al., 2018; Hall-McNair et al., 2019). These studies, however, are limited
in the number of filaments that they can treat as they rely on explicit knowledge of the filament
mobility matrix and require dense linear algebra to solve for the unknown Lagrange multipliers, or
to implicitly integrate the equations of motion. For specific hydrodynamic approaches intended for
larger-scale simulation of many interacting filaments, similar techniques have been used to reduce
computational times. For example, predictor–corrector schemes have been successfully used with the
immersed boundary method (Wiens & Stockie, 2015), while recent work (Nazockdast et al., 2017),
building from Tornberg & Shelley (2004), presents a complete approach utilising Lagrange multipliers
and implicit time integration along with matrix-free hydrodynamics using the fast multipole method.

In this study, we provide a comprehensive, computationally-scalable methodology for simulating
filament dynamics that is not dependent on the specific method or model used to describe the hydro-
dynamic forces experienced by the filaments. Our approach only assumes that hydrodynamics forces
and torques experienced by the discretised beam segments are linearly related to their translational
and rotational velocities, consistent with low Reynolds number hydrodynamics. The methods that we
present in this paper expand on those we have already used for planar simulations of thousands of
interacting sperm cells (Schoeller & Keaveny, 2018) and the motion of undulatory swimmers through
structured (Majmudar et al., 2012) and unstructured (Kamal & Keaveny, 2018) complex environments.
This paper presents the fully three-dimensional version of the methodology that takes advantage of unit
quaternions to describe filament kinematics and geometric time integration schemes (Iserles et al., 2000;
Faltinsen et al., 2001; Park & Chung, 2005) to advance the unit quaternions in time.

Beginning from Kirchhoff rod theory (Kirchhoff, 1859; Lim et al., 2008), we provide a description
of the filament model and highlight the differences between deformations restricted to a plane and
those that are fully three-dimensional. In particular, for fully three-dimensional deformations, we
show how both filament bending and twisting can be captured through the use of unit quaternions to
describe how the filament’s material frame varies with arclength. We employ Lagrange multipliers to
obtain the constraint forces and moments necessary to link the material frame with the positions of
points along the filament, and implicit time integration to handle numerical stiffness. By comparing
Jacobian-free Newton–Krylov (Knoll & Keyes, 2004) and Broyden’s methods (Broyden, 1965; Kvaalen,
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1991), we show how the resulting system of nonlinear equations, whose solution provides the updated
generalised positions and Lagrange multipliers, can be solved most effectively using Broyden’s method
with a suitable choice of approximate Jacobian based on a diagonal mobility matrix. Also novel to our
approach is our application of geometric time integration to ensure the quaternions remain unit. We find
these schemes help to guarantee robustness of the iterative solver for the nonlinear system of equations.
We provide a number of tests of our method and explore several examples using both a hydrodynamic
approach based on direct summation of the Rotne–Prager–Yamakawa (RPY) tensor (Wajnryb et al.,
2013) and matrix-free computations based on the force-coupling method (FCM) (Maxey & Patel, 2001;
Lomholt & Maxey, 2003). In doing so, we show that our method provides an effective tool for studying
a variety of applications involving filament dynamics including tethered filaments and cilia arrays,
interacting undulatory swimmers, and sedimenting suspensions and clouds of filaments. We provide
a basic MATLAB/Octave implementation (Schoeller et al., 2019) of the method that can be used to
reproduce our numerical results, applied to other problems of interest, or altered to couple with the
user’s preferred hydrodynamic solver.

2 Filament model
We begin by describing the filament model for a single filament. In this work, a filament refers to an
inextensible, slender (i.e. high-aspect ratio) body, whose shape is given by a curve in space and whose
deformations are related to the rotations of a right-handed frame defined along the length of the curve.
The filament has circular cross-section with radius a and length L. Its physical size is assumed to be
sufficiently small such that its inertia, and that of the surrounding fluid, can be ignored. It can be
subject to external forces and moments along its length, such as those due to the surrounding fluid, in
addition to the internal moments due to bending and twist, and the internal force that arises due to
constraints on filament motion. In addition, we consider the important case where, in the absence of
external forces and torques, the filament may relax to a curve with nonzero curvature and twist.

2.1 Kinematics

The positions of the points along the filament’s centreline at time t are given by Y (s, t), where s ∈ [0, L]
is the filament arclength. Along with the position, there is a right-handed, orthonormal material frame
{t̂(s, t), µ̂(s, t), ν̂(s, t)} at each s and t, see Fig. 1a. At this stage, the unit vector t̂ and position, Y ,
are independent of each other, but later we will introduce the kinematic constraint, ∂Y /∂s = t̂, that
links these quantities and will lead to forces within the filament.

Filament deformation is determined by how the material frame varies with s. Following Landau
& Lifshitz (1986, §18); Powers (2010), this deformation can be described by the vector Φ(s, t) that
describes the spatial-rate of rotation of the local frame with s such that ∂v/∂s = Φ× v for any vector
in the material frame, v. Using t̂ and ∂t̂/∂s, Φ can be expressed as

Φ = t̂× ∂t̂

∂s
+ t̂

(
Φ · t̂

)
, (1)

where the first term is related to bending based on a curve with tangent t̂, while the second term
describes twisting about t̂. By combining the derivatives of the frame vectors with the fact that
∂(t̂ · µ̂)/∂s = ∂(t̂ · ν̂)/∂s = ∂(ν̂ · µ̂)/∂s = 0, we can write the bending contribution as

t̂× ∂t̂

∂s
= µ̂

(
t̂ · ∂ν̂

∂s

)
+ ν̂

(
µ̂ · ∂t̂

∂s

)
, (2)

while the twist contribution is given by

Φ · t̂ = ν̂ · ∂µ̂
∂s
. (3)
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2.2 Constitutive law and internal moments

The internal moments, M , are linearly related to filament bending, Eq. (2), and twisting, Eq. (3),
through the bending, KB, and twist, KT , moduli. These moduli are related to the shear modulus, G,
and the Young’s modulus, E, of the underlying filament material via KB = EI, KT = 2GI, where
I = πa4/4 is the moment of inertia about any radial axis lying in the circular filament cross-section
(Landau & Lifshitz, 1986, §16, 17). Specifically, we substitute Eqs. (2) and (3) into (19.7) of Landau
& Lifshitz (1986, §19) to yield

M(s, t) =KB

((
t̂ · ∂ν̂

∂s

)
µ̂+

(
µ̂ · ∂t̂

∂s

)
ν̂

)

+KT

(
ν̂ · ∂µ̂

∂s

)
t̂.

(4)

With this form of M , the filament equilibrium configuration is straight and untwisted. Following Lim
et al. (2008); Lim (2010); Olson et al. (2013), to incorporate a nontrivial equilibrium shape into the
model, we can introduce the preferred curvatures, κµ(s, t) and κν(s, t), and preferred twist, γ0(s, t),
such that

M(s, t) =KB

(
µ̂

(
t̂ · ∂ν̂

∂s
− κµ(s, t)

)
+ ν̂

(
µ̂ · ∂t̂

∂s
− κν(s, t)

))

+KT t̂

(
ν̂ · ∂µ̂

∂s
− γ0(s, t)

)
.

(5)

In the absence of applied forces and torques acting on the filament, its shape is determined completely
by κµ, κν and γ0. Additionally, by allowing κµ, κν and γ0 to be time dependent, we can introduce
shape changes that allow the filament to propel itself in a surrounding fluid without experiencing a net
force or net torque, in accordance with the constraints on swimming at low Reynolds number (Purcell,
1977; Lauga & Powers, 2009).

2.3 Kinematic constraint and internal stress

Along with the internal moments, filament deformation will give rise to an internal force, Λ(s, t), or the
force on the filament cross-section. In Lim et al. (2008); Lim (2010); Olson et al. (2013), this force is
captured through a constitutive law that relates ∂Y /∂s and the local frame such that in equilibrium,

∂Y

∂s
= t̂. (6)

We instead impose Eq. (6) as a kinematic constraint, requiring that t̂ be the unit tangent to the curve
defined by Y . This constraint gives rise to the internal force, Λ(s, t) and as such, it can be viewed as
the Lagrange multiplier1 that enforces (6). The internal force provides both the tension in the direction
t̂ that keeps the filament inextensible, but also the necessary normal force that couples the force and
moment balances as we describe below.

2.4 Force and moment balances

In general, the internal force and moment described above will balance external forces, f , and torques,
τ , per unit length that act along the filament, see Fig. 1c. The external forces and torques can arise

1Rather than considering force and moment balances along the filament, the filament model can alternatively be derived
through the introduction of a Lagrangian (Lim et al., 2008, appendix). The internal force arises from the constraint term,∫ L

0
Λ ·
(
∂Y

∂s
− t̂
)

ds, (7)

in the Lagrangian, which will also contain the bending and twist energies, as well as any external potential.
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continuous discrete

Y (s1)

s = 0

s = L

Y (s2)

bt1

bν1

bµ1

bt2

bν2 bµ2

(a) Position Y (s) and local frame
{t̂(s), µ̂(s), ν̂(s)} at arclengths s1 and
s2.

Y1

Y2

Y3

∆L
2 t̂1

∆L
2 t̂2

s = 0 s = 3∆L

∆L
2 t̂3

(b) Spatial discretisation of the filament with
positions Yn and vectors t̂n satisfying the
constraint Eq. (12)

Λ(s)

M(s)

f(s), τ (s)

(c) The internal forces Λ(s) and moments
M(s). External force and torque densit-
ies along the filament are f(s) and τ (s),
respectively.

Tn

Λn+ 1
2

Fn

Mn+ 1
2

Λn− 1
2

Mn− 1
2

(d) Forces and torques in the discrete system
with Fn = ∆Lfn and Tn = ∆Lτn

Figure 1: Continuous and discrete representations of the filament model

due to, for example, an external field such as gravity or short-ranged filament–filament interactions.
In particular, we insist that they include the force and torque per unit length exerted on the filament
by the surrounding fluid. We assume that the interaction with the fluid is governed by low Reynolds
number hydrodynamics, and hence these forces and torques are linearly related to the filament’s motion.
As described in Landau & Lifshitz (1986, §19); Powers (2010), the resulting force and moment balances
are

∂Λ

∂s
+ f = 0, (8)

∂M

∂s
+ t̂×Λ+ τ = 0. (9)

In addition to these equations, we will have conditions at the filament ends. For example, for filaments
with free ends, we have2 Λ(0, t) = Λ(L, t) = 0 and M(0, t) = M(L, t) = 0. Filaments that are
tethered will need to satisfy conditions imposed on Y and {t̂, µ̂, ν̂} at the tethered end. At this stage,
it is important to note that Eqs. (8) and (9) establish the low Reynolds number mobility problem
that couples the motion of all filaments through the fluid flows that they generate. This mobility
problem, which we describe and solve in the discrete setting (see Section 2.7), yields equations for the
translational and angular velocities of the discrete filament segments. The values of these velocities,
however, will depend on Λ which remains unknown. The values of Λ are determined later by imposing
the kinematic constraint, Eq. (6), when integrating the differential equations for the filament segment
positions and orientations.

2.5 Discrete force and moment balances

To solve the equations numerically, the filament is first discretised into N segments of length ∆L as
shown in Fig. 1b. The segments have positions, Yn, and orientations, t̂n, for n = 1, . . . , N . The segment

2The boundary conditions Λ(0, t) = Λ(L, t) = 0 require that
∫ L

0 f ds = 0. In our case, this will be satisfied since
f includes forces due to the surrounding fluid which will automatically balance any net force applied to the filament by
other means (e.g. gravity, filament–filament repulsion).
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orientations are the discrete representation of the frame vector, t̂, at the segment position. Applying
central differencing to Eqs. (8) and (9), the force and moment balances become

Λn+1/2 −Λn−1/2
∆L + fn = 0, (10)

Mn+1/2 −Mn−1/2
∆L + 1

2 t̂n ×
(
Λn+1/2 +Λn−1/2

)
+ τn = 0, (11)

where Mn+1/2 and Λn+1/2 are the internal moment and stress, respectively, between segments n and
n + 1; fn is the external force per unit length on segment n; and τn is the external torque per unit
length on n; see Fig. 1d. Free end conditions are established by requiring that M1/2 = MN+1/2 = 0
and Λ1/2 = ΛN+1/2 = 0. Similarly, for the kinematic constraint, Eq. (6), we have

gn+1/2 = Yn+1 − Yn −
∆L
2
(
t̂n + t̂n+1

)
= 0. (12)

Multiplying Eqs. (10) and (11) by ∆L, we convert the force and moment per unit length balances to
the force and torque balances such that

FC
n + Fn = 0, (13)

TEn + TCn + Tn = 0, (14)

for segment n. The elastic torque on n is given by

TEn = Mn+1/2 −Mn−1/2. (15)

Since the internal moment is directly linked to how the local frame changes with arclength, the com-
putation of Mn+1/2 will depend on whether filament deformation is strictly planar, or fully three-
dimensional. We present both cases below in Sections 2.8.1 and 2.9.2.

The constraint force and torque, respectively, on segment n, are given by

FC
n = Λn+1/2 −Λn−1/2, (16)

TCn = ∆L
2 t̂n ×

(
Λn+1/2 +Λn−1/2

)
. (17)

The values of Λn+1/2 are the Lagrange multipliers associated with the discrete version of the kinematic
constraint, Eq. (12), that relates the translational and rotational motions of segments n and n+1. The
Lagrange multipliers are unknown and must be computed as the filament moves and deforms.

Finally, the external forces and torques acting on a segment are defined as Fn = ∆Lfn and Tn =
∆Lτn, respectively. The external forces and torques can arise due to an external field, such as gravity
or an external flow, but also through interactions with neighbouring filaments as mediated by the fluid,
or through direct collisions and steric interactions. We describe here how we capture these interactions
and, in particular, how hydrodynamic interactions lead to segment motion. In the case where the
external forces and torques are due only to steric interactions and the surrounding fluid, we have

Fn = FB
n − FH

n , (18)
Tn = −THn , (19)

where FB
n are the steric forces experienced by segment n and −FH

n and −THn are the hydrodynamic
force and torque on segment n. We have chosen to introduce the negative sign here so that FH

n and
THn denote, respectively, the force and torque segment n exerts on the fluid.

2.6 Steric interactions

In our simulations, segments from different filaments and non-neighbouring segments from the same
filament repel each other via a short-ranged, pairwise barrier force. For simplicity, we take this force to
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be a function of the centre-to-centre separation of the segments, though a more detailed representation
of the segment shape could also be taken.

Specifically, in our simulations, the total barrier force on segment n is

FB
n =

∑
m

FB
nm, (20)

where the force on segment n due to m is (Dance et al., 2004)

FB
nm = FS

(
4a2χ2 − r2

nm

4a2(χ2 − 1)

)4
rnm
2a (if rnm < 2χa), (21)

and FB
nm = 0 if rnm ≥ 2χa. We also have that FB

nm = 0 for any separation distance if n and m are
neighbouring segments from the same filament. In Eq. (21), the displacement between segments is
rnm = Yn − Ym, while rnm = ‖rnm‖. The parameter FS controls the strength of repulsion at contact,
while χ controls the range over which the barrier force acts. Recall that 2a is the filament thickness.
In practice, to prevent the segments from overlapping, we choose the reference force FS to be large
compared to the typical bending force and set χ = 1.1 to ensure that the force only acts for particle
separations that are 10% of their contact distance.

2.7 Hydrodynamics interactions and segment motion

The hydrodynamic forces and moments on the segments balance the internal stresses and moments and
the inter-segment repulsive forces. In the absence of fluid inertia, this leads to a low Reynolds number
mobility problem which provides a linear relationship between the forces and torques on the segments
and their velocities and angular velocities,(

V
Ω

)
=M ·

(
FH

TH

)
, (22)

where V > = (V >1 , . . . ,V >N ) is the vector of all segment velocity components. Similarly Ω contains
the angular velocity components for all segments, while FH and TH are the vectors that hold the
forces and torques, respectively, that all the filament segments exert on the surrounding fluid. The
methods presented in this paper can be coupled with a variety of hydrodynamic models and associated
computational methodologies, including those that are mobility matrix-free, provided that they retain
this linear relationship between the forces that the segments exert on the fluid and segment motion.
Such approaches include Stokesian Dynamics (Brady & Bossis, 1988; Sierou & Brady, 2001), bound-
ary integral methods (Pozrikidis, 1992), the method of regularised Stokeslets (Cortez, 2001) and the
immersed boundary method applied to the Stokes equations (Peskin, 2002).

In this work, we employ two approaches to perform the mobility matrix multiplication and resolve
segment motion: a direct computation based on the Rotne–Prager–Yamakawa (RPY) tensors (Wa-
jnryb et al., 2013), and a matrix-free approach based on the force-coupling method (FCM) (Maxey
& Patel, 2001; Lomholt & Maxey, 2003). Both approaches provide a similar resolution of segment
hydrodynamic interactions based on the Stokes flows generated by singular and regularised force and
torque distributions. In addition, RPY and FCM are closely related to the methods mentioned above
and are chosen to demonstrate how our filament model can be used in conjunction with a wide range
of methods, models, and solvers for filament motion in viscous fluids. We note that both RPY and
FCM link the radius of the filament cross-section to the segment length. Thus, increasing the number
of segments changes the aspect ratio of the filament, and hence its hydrodynamic response. While we
will see in Section 4.3 that this hydrodynamic model provides accurate values for the hydrodynamic
force on the filament over a range of aspect ratios, it could be important to be able to increase (or
decrease) the spatial resolution of filament deformation without affecting hydrodynamic response. This
decoupling is achieved, for example, with slender body theory (Tornberg & Shelley, 2004), as well as
through a modified version of the method of regularised Stokeslets (Cortez, 2018). With this drawback
in mind, we designed the overarching computational framework to be flexible and readily accommodate
changes to the hydrodynamic model provided it satisfies Eq. (22).
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2.7.1 RPY mobility matrix

In one approach, we perform a direct pairwise evaluation of the RPY tensor (Wajnryb et al., 2013) to
compute the mobility matrix–vector multiplication. The operation count for this computation scales
like the number of segments squared, though more sophisticated, faster techniques (Liang et al., 2013)
could also be used. With RPY, and given a collection of N non-overlapping particles of radius a and
separations of rnm = Yn − Ym, rnm = ‖rnm‖ > 2a, in a fluid with viscosity η, the velocities of particle
n are given by (

Vn
Ωn

)
=

N∑
m=1

(
Mtt
nm Mtr

nm

Mrt
nm Mrr

nm

)(
Fm
Tm

)
. (23)

For an unbounded fluid, the sub-tensors are defined as

Mtt
nm =


1

6πηaI n = m,

1
8πηrnm

((
1 + 2a2

3r2
nm

)
I +

(
1− 2a2

r2
nm

)
r̂nmr̂nm

)
n 6= m,

(24)

Mrr
nm =


1

8πηa3 I n = m,

1
16πηr3

nm
(3r̂nmr̂nm − I) n 6= m,

(25)

Mtr
nm =Mrt

nm =

 0 n = m,

1
8πηr2

nm
ε · r̂nm n 6= m,

(26)

where r̂nm = rnm/rnm, I is the identity matrix, and ε is the three-dimensional Levi-Civita symbol. We
note that there are extensions and variants of these tensors which allow for particles of different sizes,
overlapping particles, the inclusion of background shear flows, and the presence of no-slip boundaries
(Wajnryb et al., 2013; Zuk et al., 2014; Swan & Brady, 2007).

2.7.2 Force-coupling method

We also present computations where the mobility matrix–vector multiplication is performed using the
matrix-free FCM (Maxey & Patel, 2001; Lomholt & Maxey, 2003; Liu et al., 2009). With FCM, the
forces and torques the segments exert on the fluid are transferred to the fluid through a truncated and
regularised force multipole expansion in the Stokes equations,

−∇p+ η∇2u+
∑
n

FH
n ∆n(x)− 1

2
∑
n

THn ×∇Θn(x) = 0, (27)

∇ · u = 0, (28)

where the sums are over all segments, η is the fluid viscosity, u is the fluid velocity and p is the pressure.
The Dirac delta functions in the multipole expansions are replaced by the Gaussians,

∆n(x) =
(
2πσ2

∆

)−3/2
exp

(
−‖x− Yn‖

2

2σ2
∆

)
, (29)

Θn(x) =
(
2πσ2

Θ

)−3/2
exp

(
−‖x− Yn‖

2

2σ2
Θ

)
. (30)

Taking advantage of the ratios established for spherical particles (Maxey & Patel, 2001; Lomholt &
Maxey, 2003), we take the Gaussian envelope sizes to be related to the filament thickness through
σ∆ = a/

√
π and σΘ = a/(6

√
π)1/3. In Eq. (27), we have ignored the contribution of the stresslets that

would enforce a vanishing rate of strain within the segments (Lomholt & Maxey, 2003). The stresslets
can also be included at the cost of several conjugate gradient iterations (Yeo & Maxey, 2010) each time
the segment velocities and angular velocities are determined.
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After the fluid velocity is found, it is spatially averaged using the same Gaussian functions to obtain
the velocity Vn and angular velocity Ωn of each segment n. Specifically, we have that

Vn =
∫
u∆n(x) d3x, (31)

Ωn = 1
2

∫
(∇× u)Θn(x) d3x . (32)

Following Yeo & Maxey (2010); Keaveny (2014), in our computations, the regularised forcing is first
evaluated on a regular grid. The Stokes equations subject to periodic boundary conditions are then
solved using a Fourier spectral method. Finally, the trapezoidal rule is used to integrate numerically
Eqs. (31) and (32) to obtain the translational and angular velocity for each segment.

2.8 Planar filament deformation and motion

In order to keep track of filament deformation and motion, as well as compute the internal moments
and forces, we need to describe how the local frame, {t̂(s, t), µ̂(s, t), ν̂(s, t)}, at each point along the
filament rotates with time.

In many important problems, such as sperm locomotion through planar flagellar beats (Schoeller
& Keaveny, 2018; Yang et al., 2008), filament deformation and motion are restricted to a single plane
and only bending occurs. Due to the absence of both elastic and preferred twist, the local frame at
each point along the filament will rotate about a single, fixed direction. Without loss of generality, we
can take this direction to be aligned with the fixed vector êz, as well as ν̂ = êz for all s and t. This
direction is always normal to the plane of motion.

2.8.1 Computing the internal moments from the angles

As a result of taking the out-of-plane direction as ν̂ = êz, we have that κµ = 0 in Eq. (5). The internal
moment is then purely the result of bending and is given by

M = KB t̂×
∂t̂

∂s
−KBκν êz, (33)

with the understanding that since t̂ lies in the same plane for all s, t̂ × ∂t̂/∂s will be in the direction
êz for all s and t. In the discretised model, the elastic moments are then given by

Mn+1/2 = KB

(
t̂n ×

(
t̂n+1 − t̂n

∆L

)
− κν(sn+1, t)êz

)
(34a)

= KB

( 1
∆L

(
t̂n × t̂n+1

)
− κν(sn+1, t)êz

)
. (34b)

where again it is understood that t̂n × t̂n+1 is in the direction êz for all n and t. The restriction
to a single plane also allows for t̂n to be conveniently expressed in terms of an angle θn(t) such that
t̂n = (cos θn, sin θn, 0).

With this expression for Mn+1/2 found, we now have expressions for all the forces and torques on
the segments appearing in the discrete force and torque balances, Eqs. (13) and (14).

2.8.2 Differential-algebraic system and time integration in two dimensions

With expressions for forces FC
n and FB

n , and torques TCn and TEn , we now move on to integrating the
system in time. The mobility problem in Eq. (22) expresses the velocities, Vn, and angular velocities,
Ωn, for each segment n, in terms of these aforementioned forces and torques through(

V
Ω

)
=M ·

(
FC + FB

TC + TE

)
. (35)
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Due to the motion being restricted to the plane, we have Vn · êz = 0 and Ωn = (0, 0, Ωn) for each n.
We emphasise that we cannot simply evaluate Eq. (35) to obtain the segment motion since the values
of Λn+1/2 appearing in FC

n (see Eq. (16)) are unknown and are obtained by applying the kinematic
constraint, Eq. (12), for each n. Thus, the segment positions and angles can be updated by integrating
numerically in time the differential-algebraic system of equations,

dYn
dt = Vn, (36)
dθn
dt = Ωn, (37)

Yn+1 − Yn −
∆L
2
(
t̂n + t̂n+1

)
= 0. (38)

Due to the numerical stiffness associated with the overdamped dynamics of elastic beams (Powers,
2010; Nazockdast et al., 2017), as well as the need to ensure that the constraints are satisfied after
advancing in time, we discretise in time using the implicit second-order backwards differential formula
(BDF) (Ascher & Petzold, 1998) and impose the constraint at the updated positions and orientations
(time j + 1), such that

Y j+1
n − 4

3Y
j
n + 1

3Y
j−1
n − 2

3∆tV j+1
n = 0, (39a)

θj+1
n − 4

3θ
j
n + 1

3θ
j−1
n − 2

3∆tΩj+1
n = 0, (39b)

Y j+1
n+1 − Y

j+1
n − ∆L

2
(
t̂j+1
n + t̂j+1

n+1

)
= 0, (39c)

where ∆t is the timestep size and V j+1
n and Ωj+1

n are given by the mobility problem, Eq. (35), with
the right-hand side evaluated at j+ 1 using Y j+1

n , θj+1
n , and Λj+1

n+1/2. This yields a nonlinear system of
equations for the positions, Y j+1

n+1 , and angles, θj+1
n , as well as the internal force Lagrange multipliers,

Λj+1
n+1/2, associated with each constraint. If M is the number of filaments and N is the number of

segments per filament, the position and orientation updates, Eqs. (39a) and (39b), and the constraints,
Eq. (39c), constitute a system of M(5N − 2) nonlinear equations.

Before solving this system numerically, we first reduce the system size by substituting the constraint,
Eq. (39c), into the position updates, Eq. (39a), as to reduce the number of degrees of freedom to those
of a so-called robot arm whose motion is completely described by a single position and the orientations
of each link comprising the arm. Specifically, in the case of a single filament, we replace Y j+1

n for n > 1
by

Y j+1
n = Y j+1

1 + ∆L
2

n∑
m=2

(
t̂j+1
m−1 + t̂j+1

m

)
(40)

to obtain the new, reduced system of equations,

Y j+1
1 − 4

3Y
j

1 + 1
3Y

j−1
1 − 2

3∆tV j+1
1 = 0, (41a)

θj+1
n − 4

3θ
j
n + 1

3θ
j−1
n − 2

3∆tΩj+1
n = 0, (41b)

Y j+1
1 + ∆L

2

n∑
m=2

(
t̂j+1
m−1 + t̂j+1

m

)
− 4

3Y
j
n + 1

3Y
j−1
n − 2

3∆tV j+1
n = 0. (41c)

This system may be expressed as f(X∗) = 0, where the solution X∗ contains the updated position
for the first segment, all orientation angles and the Lagrange multipliers. For M filaments each with
N segments, as a result of this substitution, the dimension of the nonlinear system is reduced from
M(5N − 2) to 3MN .

11



2.9 Three-dimensional filament deformation and motion

In general, there is no restriction about how the filament can bend or twist, and the local frame along
the filament can rotate about any axis. Rather than considering the local frame vectors explicitly, we
keep track of these rotations using the unit quaternions that map the standard basis to the local frame
at each point along the filament. Unit quaternions allow for successive rotations to be computed easily
while requiring less storage and fewer floating point operations than rotation matrices. Quaternions
also avoid gimbal lock that is typically experienced with Euler angles (Allen & Tildesley, 2017). Before
describing how we employ quaternions in our methodology, we provide a brief overview of representing
rotations using quaternions.

2.9.1 Representing rotations as quaternions

Quaternions (Allen & Tildesley, 2017; Dunn & Parberry, 2011; Vince, 2011) can be viewed as an
extension of the complex numbers in that they have one real part and three imaginary components. As
such, the quaternions inherit the notion of conjugation from the complex numbers, q∗ = (q0,−q), and
the norm of a quaternion is the Euclidean norm ‖q‖2 = q2

0 + ‖q‖2 = q2
0 + q2

1 + q2
2 + q2

3. Quaternions are
also frequently identified with elements of R4 as

q = (q0, q1, q2, q3) = (q0, q) . (42)

We use the operation [(q0, q)]R3 = q to extract the vector in R3 constructed from the last three entries
of a quaternion.

Quaternions are subject to standard element-wise addition, real multiplication by a scalar, and the
associative, non-commutative product,

p • q = (p0,p) • (q0, q) (43a)
= (p0q0 − p · q, p0q + q0p+ p× q) . (43b)

Under this product, the unit quaternions, i.e. quaternions with ‖q‖2 = 1, form a group with identity
Iq = (1,0) and inverse q−1 = q∗.

As unit quaternions can be written as

q =
(

cos
(
θ

2

)
, sin

(
θ

2

)
v̂

)
, (44)

they can be identified with spatial rotations of an angle, θ, anticlockwise about the unit vector, v̂.
Specifically, the rotation applied to a vector w is given by(

0,w′
)

= q • (0,w) • q∗, (45)

where w′ is the image of w after its rotation. This rotation can also be written as

w′ = R (q)w, (46)

where R(q) is the rotation matrix whose entries are related to those of the quaternions through

R (q) =

 1− 2q2
2 − 2q2

3 2 (q1q2 − q3q0) 2 (q1q3 + q2q0)
2 (q1q2 + q3q0) 1− 2q2

1 − 2q2
3 2 (q3q2 − q1q0)

2 (q1q3 − q2q0) 2 (q3q2 + q1q0) 1− 2q2
2 − 2q2

1

 . (47)

For successive rotations first by q, say, followed by p, we have that R(p • q) = R(p)R(q).
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2.9.2 Computing the internal moments from the quaternions

As we use quaternions to describe how the local frame rotates as the filament bends and twists, it is
convenient to have an expression for the internal moments in terms of the quaternions themselves.

Specifically, the unit quaternions provide the rotation of the standard basis to the local frame
vectors, and we have that at each point along the filament and at each time,

R (q (s, t)) =
(
t̂ (s, t) µ̂ (s, t) ν̂ (s, t)

)
. (48)

In Appendix A.1, we describe how to obtain the quaternion that satisfies this condition at t = 0.
Using Eq. (48) and the expression for the internal moments in terms of the frame vectors, Eq. (5),

the internal moments can be expressed as

M = R (q)D

[2q∗ • ∂q
∂s

]
R3
−

γ0
κµ
κν


 , (49)

where D = diag(KT ,KB,KB). The details of this derivation are presented in Appendix A.2. This
expression is a special case of more general constitutive laws discussed in Zupan et al. (2009).

For the discretised system, the internal moments are then given by

Mn+1/2 = R
(
qn+1/2

)
D

2
[
q∗n+1/2 •

(
qn+1 − qn

∆L

)]
R3
−

γ0
κµ
κν


 , (50)

where the interpolated quaternion, qn+1/2, is constructed by performing half of the rotation from qn to
qn+1. Specifically, we have qn+1/2 = (qn+1•q∗n)1/2•qn where the square root is defined in Appendix A.1.

2.9.3 Differential-algebraic system and time integration in three dimensions

With the translational and angular velocities of the segments given by the mobility problem, Eq. (35),
but with Eq. (50) used to compute TE , the positions and quaternions are updated by integrating the
differential-algebraic system,

dYn
dt = Vn, (51)

dqn
dt = 1

2 (0,Ωn) • qn, (52)

Yn+1 − Yn −
∆L
2
(
t̂n + t̂n+1

)
= 0. (53)

The differential equation Eq. (52) for the quaternions describes the time evolution of the entire frame
of segment n such that taking v̂(t) = R(qn(t))v̂(0) for a vector v̂ is equivalent to (see Appendix A.3)
integrating in time the perhaps more familiar expression

dv̂
dt = Ωn × v̂. (54)

As when filament motion and deformation were restricted to a plane, we can update the positions
using the second-order BDF scheme. While we would like to update the quaternions using a similar
scheme, we must also ensure that after each update they continue to have unit norm as to continue
to represent rotations. This could be accomplished by simply applying the second-order BDF scheme
to Eq. (52) and subsequently normalising the result. We have found in practice, however, that this
approach interfaces poorly with the quasi-Newton methods we use to solve the nonlinear system for
the segment positions, orientations and Lagrange multipliers as it introduces timestep restrictions for
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numerical stability. Instead, we apply a geometric multi-step method (Faltinsen et al., 2001) to perform
the multiplicative update

qj+1
n = pj+1

n • qjn, (55)

for some appropriate unit quaternion pj+1
n . This approach preserves the norm of the quaternion to

machine precision and, in practice, leads to better numerical stability properties of the larger numerical
method.

Applying the general framework set out in Faltinsen et al. (2001) to our specific case, we have that
for sufficiently small ∆t, Eq. (52) has solution

q (t0 + ∆t) = exp (u (t0 + ∆t, q (t0 + ∆t))) • q (t0) , (56)

where the vector u is an element of the Lie algebra (in this case so(3)) and the exponential map (Iserles
et al., 2000) is given by

exp (u) =
(

cos
(‖u‖

2

)
, sin

(‖u‖
2

)
u

‖u‖

)
. (57)

The Lie algebra element itself satisfies the differential equation

du
dt = dexp−1

u (Ω) , (58)

with u(t0) = 0. The function dexp−1
u is the inverse of the differential of the exponential mapping and

is given by (Iserles et al., 2000)

dexp−1
u (Ω) = Ω − 1

2u×Ω −
1

2‖u‖2
(
‖u‖ cot

(‖u‖
2

)
− 2

)
u× (u×Ω) . (59)

In a general sense, the Lie algebra element can be interpreted as the integral of the angular velocity
over time. This holds true if the rotation is about a single axis. For example, if Ω ≡ αêz for a
constant α, then Eq. (58) with initial condition q(0) = Iq gives u(t) = αtêz and we obtain q(t) =
(cos(αt/2), 0, 0, sin(αt/2)).

By introducing Eq. (58), the problem of updating the unit quaternions is transferred to one of
updating the Lie algebra elements. This can be done using a standard, additive scheme with the only
caveat being that since the previously updated Lie algebra elements are in the tangent spaces of the
previous quaternions, we must also re-centre our coordinate system at the current quaternion when
using a multi-step method (Faltinsen et al., 2001). We show in Appendix A.4 that re-centring this
yields the simpler second-order BDF scheme

uj+1
n = 1

3u
j
n + 2

3∆t dexp−1
uj+1

n

(
Ωj+1
n

)
, (60)

for the Lie algebra element of segment n.
Combining the Lie algebra element update with that for the positions, as well as the constraints

linking the segment orientations and positions, we obtain the system of equations

Y j+1
n − 4

3Y
j
n + 1

3Y
j−1
n − 2∆t

3 V j+1
n = 0, (61a)

uj+1
n − 1

3u
j
n −

2
3∆t dexp−1

uj+1
n

(
Ωj+1
n

)
= 0, (61b)

Y j+1
n+1 − Y

j+1
n − ∆L

2
(
t̂j+1
n + t̂j+1

n+1

)
= 0, (61c)

for the updated segment positions, Lie algebra elements, and Lagrange multipliers. As in 2D, V j+1
n

and Ωj+1
n are given by the mobility problem, Eq. (35), with the right-hand side evaluated at j+ 1. For

M filaments, each discretised into N segments, this is an M(9N − 3) system of nonlinear equations.
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As done in the case of planar filament deformations, we reduce the system size before seeking a
numerical solution by substituting

Y j+1
n = Y j+1

1 + ∆L
2

n∑
m=2

(
t̂j+1
m−1 + t̂j+1

m

)
(62)

into the position updates. This yields the new system of equations

Y j+1
1 − 4

3Y
j

1 + 1
3Y

j−1
1 − 2

3∆tV j+1
1 = 0, (63a)

uj+1
n − 1

3u
j
n −

2
3∆tdexp−1

uj+1
n

(
Ωj+1
n

)
= 0, (63b)

Y j+1
1 + ∆L

2

n∑
m=2

(
t̂j+1
m−1 + t̂j+1

m

)
− 4

3Y
j
n + 1

3Y
j−1
n − 2

3∆tV j+1
n = 0. (63c)

As done in the planar case, we may again express this system as f(X∗) = 0, where the solution X∗
contains the updated position for the first segment, all the Lie algebra elements and the Lagrange
multipliers. This substitution reduces the dimension of the nonlinear system fromM(9N−3) to 6MN .

3 Numerical solvers for the nonlinear systems
As described in the previous section, updating the filament positions, orientations, and the Lagrange
multipliers requires finding a solution X∗ of the nonlinear system of equations of the form f(X∗) = 0.
This system is given by Eq. (41) for planar filament deformations and Eq. (63) in the fully three-
dimensional case.

To solve the system, one would typically apply Newton’s method. Starting with X0 as an initial
guess of the solution, the solution is computed iteratively from

Xk+1 = Xk − J−1(Xk)f(Xk), (64)

where J is the Jacobian of the system, J = ∇Xf (i.e. Jij(X) = ∂fi(X)/∂Xj). The process is continued
until ‖f(X)‖ is smaller than a given tolerance.

For the systems given by Eqs. (41) and (63), the Jacobian J will contain the mobility matrix, M
(see Eq. (22)), as well as its derivative with respect to segment positions. In general, when one uses
fast, matrix-free methods, the mobility matrix is not known explicitly. Even if the mobility matrix was
known, the Jacobian would still be very complicated and challenging to compute, especially given the
dependence of the mobility matrix on particle positions. Additionally, storing the Jacobian would incur
significant memory costs when the number of filament segments is large.

To avoid the costs and complications associated with standard Newton’s method, we explore how
solutions can be obtained using Jacobian-free Newton–Krylov and Broyden’s methods. The remainder
of this section provides a description of these methods and, in particular, highlights the advantages
and drawbacks associated with these approaches when applied to our specific computation. We also
provide results from a series of tests comparing these methods and show that Broyden’s method with
a suitable approximate Jacobian provides the most effective approach to finding the solution.

3.1 Jacobian-free Newton Krylov (JFNK)

The Jacobian-free Newton–Krylov (JFNK) method (Knoll & Keyes, 2004) uses Newton’s method to
find the solution of the nonlinear system, but avoids an explicit computation of the Jacobian through
judicious evaluations of the function, f . With this method, the linear system of the form, J(Xk)x =
f(Xk) for unknown x, that arises during each Newton iteration is solved using a Krylov subspace
method, typically GMRES (Saad & Schultz, 1986). Within GMRES, the Jacobian matrix–vector
multiplication required at each iteration is approximated by the finite difference formula,

Jv = f(X + δv)− f(X)
δ

+O(δ). (65)
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Since in JFNK multiplication by the Jacobian is replaced by Eq. (65), each GMRES iteration requires
evaluating f(X).

In our case, this involves evaluating Eq. (41) or Eq. (63) and computing the translational and
angular velocities of each segment, which itself requires performing a multiplication by the mobility
matrix, the most computational costly aspect of the simulation. Thus, although JFNK does not require
explicit knowledge of the Jacobian, it could still incur high computational costs if GMRES is slow to
converge and many GMRES iterations are required for each Newton iteration. As a result, and as is
often the case with GMRES, preconditioning may be required to limit iteration counts and to ensure
good convergence rates.

3.2 Broyden’s method

Another approach, and the one that we will ultimately adopt, to obtain the solution of the nonlinear
system is Broyden’s quasi-Newton method (Broyden, 1965). Like the traditional Newton’s method,
Broyden’s method finds the solution iteratively, but instead uses an initial approximate Jacobian, J0,
that is improved at each iteration through rank-one updates based on the secant equation. The choice of
update, however, is not unique and the so-called “good” Broyden’s method updates the Jacobian itself
(see Line 4 in Algorithm 1), while the so-called “bad” Broyden’s method updates its inverse (Line 5
in Algorithm 2). In both cases, we can employ a limited-memory version (van de Rotten, 2003) of
Broyden’s method where the updates are stored as vectors rather than altering and writing to memory
the full Jacobian at each iteration. Thus, the only matrix that may require storage is J0, which can be
chosen with this memory requirement in mind.

Algorithm 1: Limited-memory, good Broyden’s method, to solve f(X) = 0
1 Take initial guess of solution X0, convergence tolerance ε > 0, estimate J0 for the Jacobian at X0
2 k = 0
3 while ‖f(Xk)‖ > ε do
4 ∆Xk = −

[
J0 +∑k

i=1 cid
>
i

]−1
f(Xk)

5 Xk+1 = Xk + ∆Xk

6 ck+1 = f(Xk+1)/‖∆Xk‖, dk+1 = ∆Xk/‖∆Xk‖
7 k := k + 1
8 return Xk

Algorithm 2: Limited-memory, bad Broyden’s method, to solve f(X) = 0
1 Take initial guess of solution X0, convergence tolerance ε > 0, estimate J0 for the Jacobian at X0
2 k = 0
3 Evaluate J−1

0
4 while ‖f(Xk)‖ > ε do
5 ∆Xk = −

[
J−1

0 +∑k
i=1 cid

>
i

]
f(Xk)

6 Xk+1 = Xk + ∆Xk

7 ck+1 = −
[
J−1

0 +∑k
i=1 cid

>
i

]
f(Xk+1)/‖∆fk‖, dk+1 = ∆fk/‖∆fk‖, where

∆fk = f(Xk+1)− f(Xk)
8 k := k + 1
9 return Xk

For Broyden’s method to converge, not only must the convergence conditions for Newton’s method
be satisfied, but also the initial guess for the Jacobian, J0, must be sufficiently close to J. The process
of choosing J0 is similar to that of finding a suitable preconditioner in that one seeks J0 ≈ J with the
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condition that systems involving J0 should be easily solved. Below we present two approaches that we
have explored to obtain approximate Jacobians based on simplified, yet related, physical systems.

3.2.1 Jacobian-free Broyden’s method (JFB)

Our first approach involves applying the JFNK-style finite differencing, Eq. (65), to a function, f0(X) ≈
f(X), to perform the matrix–vector multiplications by J0 = ∇Xf0 and solve the systems appearing in
Algorithm 1 or Algorithm 2 using GMRES. As this combines a Jacobian-free approach with Broyden’s
method, we refer to this approach as Jacobian-free Broyden’s (JFB) method.

In the tests presented below, the function f0 involves all the steps of the model presented in Section 2,
however, we omit both the hydrodynamic interactions between filament segments by replacing the
mobility matrixM byM0 = diag(M) and remove the steric interactions between filament segments.
In this way, the computationally expensive mobility matrix multiplication is only performed once per
Broyden iteration.

3.2.2 A block diagonal, explicit J0 (EJB)

Along with JFB, we also construct explicitly the approximate Jacobian based on f0(X) with a diagonal
mobility matrix and no steric interactions between filaments. By differentiating f0(X), we obtain
expressions for the entries of J0 which we evaluate at each timestep. These expressions are provided in
Appendix B.

In general, for simulations involving M filaments, each with N segments, J0 will be 3NM × 3NM
for filament motion confined to a plane, and 6NM × 6NM for the fully 3D case. When interactions
between the filaments are ignored, J0 will be block diagonal and consist ofM blocks of size 3N×3N for
2D motion and 6N × 6N for fully 3D simulations. As a result, solutions to systems involving J0 can be
found by solving the M smaller, independent linear systems corresponding to each block. Additionally,
only the M blocks, rather than the entire matrix, need to be stored in memory.

3.3 A comparison of the nonlinear system solvers

Here, we test and compare the different approaches for solving f(X) = 0. Based on the tests presented
below, we find that bad Broyden’s method using the explicit expressions for J0 (see Appendix B)
provides the most effective approach for solving the system arising from the discretisation of the
differential-algebraic system, Eqs. (41) and (63).

In our tests, we consider a monolayer of M filaments, each formed of N segments and subject to
a constant force per unit length of magnitude W in the plane of the monolayer. The simulations are
performed using the MATLAB with FCM implementation described in the next section. The filaments
are initially straight and are distributed uniformly and isotropically in the centre-plane of a periodic
domain of size 141∆L× 141∆L× 8.8∆L. Varying N between 5 and 60, we explore a range of filament
lengths L = N∆L. FCM is used to resolve the hydrodynamic interactions between the filaments, and
the Stokes equations are solved on a grid of 1024 × 1024 × 64 points. With the domain size fixed,
the computational cost of FCM scales linearly with number of filament segments. The filaments are
allowed to settle for two characteristic sedimentation times defined as T = ηL/W . The parameter W
is set such that the dimensionless elasto-gravitational number (Cosentino Lagomarsino et al., 2005)
is B = L3W/KB = 1000 and filament deformation is significant. The timestep size is set to be
∆t = T/300.

In the following tests, the GMRES residual tolerance for both JFNK and JFB is 10−4 and the
JFNK finite difference parameter δ is set to 10−7. The Newton and Broyden iteration tolerances for
the infinity norm of the residual relative to a are both ε = 10−4. These parameters have been selected
to minimise wall times while still ensuring sufficient accuracy. To quantify solver performance, we
measure average wall times, the average number of mobility matrix multiplications per timestep, and
the average iteration count per timestep. These averages of are computed between simulation times
t = T and t = 2T once the suspension has evolved away from its initial configuration. All simulations
were performed on a 16-core 2.5GHz AMD Opteron 6380 processor.
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Figure 2: Comparison between bad Broyden’s method with J0 (EJB-b) and JFNK with three different precon-
ditioner options: (i) unpreconditioned, (ii) P∆t, and (iii) J0. Left: Average wall time per timestep
for M filaments formed of N = 15 segments. Right: Average number of mobility solves required per
timestep.

3.3.1 JFNK versus Broyden’s method (JFNK v EJB-b)

We first compare wall times per timestep for the simulation run with JFNK with those using “bad”
Broyden’s method with the explicit approximate Jacobian (EJB-b), Algorithm 2. A key aspect of
using JFNK effectively is the choosing the correct preconditioner to accelerate GMRES convergence.
Here, we explore two preconditioners. In the first instance, employ a diagonal right preconditioner
that mitigates ill-conditioning due to the factor of ∆t appearing in entries of the Jacobian associated
with the system Eqs. (41) and (63). Since other entries in the Jacobian are O(1), small timesteps
can increase the Jacobian condition number, resulting in slow GMRES convergence. As demonstrated
explicitly in Appendix B for a drag-only mobility matrix, this factor of ∆t appears in the Jacobian as
a result of variations with respect to the Lagrange multipliers.

Accordingly, the relevant diagonal entries of the right preconditioner are set to ∆t/(6πηa). Spe-
cifically, for a single, N segment filament in 2D, the right preconditioner is

P∆t =
(
IN+2 0

0 ∆t
6πηaI2N−2

)
, (66)

with the system ordered as in Eq. (41).
To provide a balanced comparison with Broyden’s method, we also use as a left preconditioner the

block-diagonal, explicit Jacobian described in Section 3.2.2 and derived in Appendix B. Based on the
filament model with a diagonal mobility matrix and no steric iteractions, this preconditioner captures
the local physics of the problem and its block structure allows for rapid system solves and reduced
storage costs.

In Fig. 2, we compare the performance of JFNK with these preconditioners against that of EJB-b.
The left panel of Fig. 2 shows the average wall time per timestep, while the right panel indicates the
average number of mobility solves required per timestep. By “mobility solve”, we mean multiplying by
the mobility matrix using the force-coupling method (FCM) as described in Section 2.7.2. We see that
left preconditioning with the approximate Jacobian improves the performance of JFNK much more so
than P∆t. Based on our wall time measurements, however, EJB-b is still approximately five times faster
than JFNK. The additional costs per timestep associated with JFNK are due to the higher number of
mobility solves that it requires. While EJB-b needs only one mobility solve per Broyden iteration, each
Newton iteration in JFNK requires multiple GMRES iterations that each cost one mobility solve. Due
to these additional costs, JFNK is not competitive for solving the nonlinear system.

3.3.2 Choice of Broyden’s method (EJB-b v JFB-g)

In this section, we compare the performance of a JFB implementation of good Broyden’s method
(JFB-g) with EJB-b. Implementing good Broyden’s method with the explicit approximate Jacobian is
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(d) Average wall time per iteration for
M = 128 filaments, formed of N
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Figure 3: Comparison between bad Broyden’s method with J0 (EJB-b) and JFB with three different precondi-
tioner options: (i) unpreconditioned, (ii) P∆t, and (iii) J0. For the wall time measurements, we have
subtracted the initial wall time per iteration of approximately 0.3 s that is independent of M and N
and is associated with setting up the fluid solver.

computationally expensive since it would require solving a dense linear system that changes with each
Broyden iteration (see Line 4 in Algorithm 1). In contrast, for bad Broyden’s method, we avoid the
JFB implementation since we update directly the inverse of the explicit approximate Jacobian. As a
result, the system we need to solve at each Broyden iteration remains the same.

As discussed in Section 3.3.1 for JFNK, preconditioning is also required to accelerate GMRES
convergence in JFB-g. In the tests presented below, we again trial the right preconditioner P∆t, as well
as the approximate Jacobian, J0, as a left preconditioner.

The performance measurements for JFB-g with and without preconditioners and EJB-b simulations
are presented in Fig. 3. For all approaches, the number of Broyden iterations per timestep increases
similarly with both the number of segments per filament (Fig. 3(b)) and the number of filaments
(Fig. 3(a)). This increase is expected, as increasing the number of filaments or segments increases
the concentration of the suspension. This in turn increases filament interactions and the number of
iterations required.

When we examine the wall time per Broyden iteration, however, differences between the approaches
begin to emerge. Fig. 3(c) shows the wall time per iteration as a function of the number of filaments.
We find that for all methods, the wall time per iteration scales linearly with the number of filaments
M . This is a result of the FCM mobility solve being the most expensive part of the iteration and its
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Figure 4: Average wall time per sedimentation time for EJB-b as the Broyden tolerance and timestep size are
changed. The simulations are performed with M = 256 filaments, formed of N = 15 segments and
B = 1000. The filaments are initially straight and randomly oriented. The simulation with ε = 10−4

and ∆t/T = 1/30 failed to converge.

cost scaling linearly with the total number of segments.
The wall time per iteration as the number of segments is varied is indicated in Fig. 3(d). For JFB-g

with P∆t as the preconditioner, or no preconditioner at all, the computational time increases at a more
rapid rate of approximately N4. This rapid increase in cost is a result of the approximate Jacobian
system size growing with N and poor GMRES convergence. For example, we find that for a JFB-g
simulation of M = 512 filaments each with N = 15 segments, without preconditioning, 94% of the wall
time per iteration is spent in the GMRES routine to solve the Jacobian system. We do see, however,
using an effective preconditioner, in this case J0, can bring down this cost. For EJB-b and JFB-g
with preconditioner J0, we observe a slightly faster than linear growth in computational time with the
number of segments. Despite the reduction due to preconditioning, EJB-b still outperforms JFB by
approximately a factor of 2.

In addition to being the more computationally efficient method, EJB-b is demonstrably more robust.
In practice, for JFB-g, we found that the convergence of Broyden’s method relied heavily on the quality
of the solution given by GMRES. Consequently, a low residual tolerance was typically required. We also
observed that GMRES could be prone to stagnation and found that GMRES convergence is sensitive
to the choice of δ in Eq. (65).

3.3.3 Effects of tolerance and timestep size on performance

The Broyden iteration tolerance and the timestep size not only affect the accuracy of the simulation
but also the computation time. In particular, while increasing the timestep size reduces the number
of timesteps, larger timestep sizes require more Broyden iterations in order to reach the prescribed
tolerance as initial guesses are extrapolated from solutions at past timesteps.

Measurements of the wall time for a full settling time, T , at different timestep sizes and different
Broyden’s tolerances are presented in Fig. 4 for EJB-b simulations of a concentrated suspension (area
fraction 12.5%). In general, increasing the Broyden’s tolerance decreases the wall time, though with
reduced effect at the smallest timestep sizes. Due to differences in iteration numbers, we find that
decreasing the timestep from ∆t/T = 1/30 to 1/300 increases the computation time by only a factor
of ∼ 3. We also note that for ∆t/T = 1/30, Broyden’s method fails to converge in the case where the
tolerance was ε = 10−4. Reducing the timestep further to ∆t/T = 1/3000, however, does not lead to
additional reductions in the number of Broyden iterations, and consequently, the computation times
for these simulations are approximately 10 times greater than those with ∆t/T = 1/300.

3.3.4 Effects of segment and filament number on performance

In general, the wall time impact of changing the number of segments, N , or filaments, M , can be
complicated. In practice, we found that increasing local concentrations of filaments can lead to higher
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Figure 5: Error between the simulated steady-state filament shape and the analytical solution given by Landau
& Lifshitz (1986) for different values of segment separation ∆L.

numbers of Boyden iterations. For each iteration, the predominant computations under EJB-b are the
hydrodynamic mobility solve and the inversion of the approximate Jacobian, J0. Given that J0 is block
diagonal, the complexity of this operation is at worst O(N3). For filaments with N . 50, we have
found that the hydrodynamic mobility solve is the more costly aspect of the computation.

The total number of segments impacts the computational work required to apply the mobility
matrix. In Section 2.7, we discussed the two hydrodynamic models used in this work: the force-
coupling method (FCM) for periodic domains and RPY for unbounded domains. As we use a direct
pairwise summation, the computational work with our implementation of RPY scales like O((NM)2).
For FCM, the computational work scales as O(NM), and is linked to the cost of constructing the
body-force in the Stokes equations used to represent the forces the segments exert on the fluid. This
scaling is seen in Fig. 3(c, d). It is important to note that for FCM this cost is in addition to the
fixed cost of the FFT-based Stokes solver that scales like O(Ng logNg), where Ng is the total number
of grid points. Thus, the computational work associated with FCM will scale linearly with the number
of segments only once the filament density is sufficiently high.

4 Accuracy and convergence
In this section, we present results from numerical experiments that demonstrate the finite difference
scheme’s second-order convergence in space, as well as the second-order convergence in time for the 2D
and 3D implementations of the BDF schemes. In addition, we provide a comparison between the RPY
version of the hydrodynamic model and numerical solutions to the boundary integral equations for the
hydrodynamic forces experienced by a straight filament.

4.1 Convergence in space

To demonstrate the second-order convergence of the finite difference scheme used to discretise the force
and moment balances, Eqs. (10) to (12), we consider an initially horizontal filament that is clamped at
one end (s = 0) and subject to a vertical force of magnitude F = 1.93KB/L

2 at the free end (s = L).
The filament bends in the direction of the force, and after some time, reaches an equilibrium shape
described by θ(s), the angle the filament makes with the vertical. After integrating the continuous force
and moment balances, one finds that the equilibrium angle satisfies (Landau & Lifshitz, 1986, §19)

s =
√
KB

2F

∫ π/2

θ(s)

dφ√
cos(θ(L))− cos(φ)

. (67)
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Figure 6: Maximum filament position error at tf = 20T for two (in 2D) or four (in 3D) settling filaments with
N = 30 and B = 103. Units are such that the RPY radius of each segment is a = 1. The error is
estimated by comparing to the very accurate solution Y ∗(s, tf ) computed with tolerance ε = 10−12 and
∆t/T = 10−4. Simulations were performed using BDF2 and in both cases, we obtained the expected
convergence rate for appropriately chosen tolerances.

Fig. 5 shows the L2 error,

E2 =

√√√√∆L
N∑
n=1

(θn − θ(sn))2, (68)

where θn is the angle for segment n given by the finite difference scheme, as a function of ∆L. We
observe second-order convergence to the analytical solution as we decrease ∆L.

4.2 Convergence in time

Here, we confirm the second-order convergence of the BDF2 schemes for two- and three-dimensional
filament motion. To test the 2D scheme, we consider a pair of filaments that are initially straight,
oriented vertically, and separated horizontally. The filaments are then allowed to settle as a result
of a constant vertical force per unit length applied to each. For the 3D scheme, we consider the
same settling problem, but for four initially straight filaments that are aligned vertically and arranged
such that when viewed from above, they are at the corners of a square (cf. Fig. 19). In all 2D and
3D simulations, we use pairwise hydrodynamics via RPY and the dimensionless elasto-gravitational
number is B = L3W/KB = 1000, where W is the force per unit length acting on each filament. Each
filament consists of N = 30 segments and the simulations are run for tf = 20T . The settling time is
denoted as T = ηL/W . With these parameters, the filaments bend as they settle and move apart from
one another until they each reach a horseshoe-like shape (cf. Fig. 15).

Fig. 6 shows the error based on the maximum Euclidean distance of the positions Y (∆t)(s, tf ) to the
very accurate solution Y ∗(s, tf ) that was computed using 104 timesteps per settling time and a tolerance
of 10−12. We remind the reader that the positions along the length of the filament are computed using
the values of the angles (in 2D) or quaternions (in 3D), and thus their accuracy depends on that of the
BDF scheme. For both the 2D and 3D schemes, we do observe second-order accuracy provided that the
tolerance for the Broyden’s iterations is sufficiently low. Thus, a key parameter in ensuring accuracy
of the solution is not only the timestep, but the tolerance to which the resulting system of equations is
solved.
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Figure 7: A comparison between the RPY model and boundary integral (BI) computations for (a) the segment
forces as a function of s for translation perpendicular to the filament axis, (b) the segment forces as a
function of s for translation parallel to the filament axis, and (c) the total force on the filament as a
function of L/a for both perpendicular and parallel translation.
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4.3 Accuracy of the hydrodynamic model

In this section, we examine the accuracy of the hydrodynamic models that we employ in this work
to solve the mobility problem and obtain the translational and angular velocity of the segments. In
this test, we consider the simplest case of a translating rigid, straight filament with a circular cross-
section of radius a. We compute the force on each segment using the RPY model described above and
compare these values with those given by a second-order discretisation of the boundary integral (BI)
equations for rigid body motion (Keaveny & Shelley, 2011). For the boundary integral solver, we take
the surface of the filament to be that of a cylinder with radius a that has spherical caps. The spacing
between the segments with the RPY model is ∆L = 2.2a. We only compare the RPY model with the
BI values since both solvers are configured for an unbounded fluid, while our implementation of FCM
requires the imposition of periodic boundary conditions. We do expect, though, that for an unbounded
fluid, FCM will yield force values similar to those of RPY as the expressions (Maxey & Patel, 2001;
Lomholt & Maxey, 2003) for the FCM fluid velocity and particle mobility are asymptotic to their RPY
counterparts.

Fig. 7(a) shows the force on the filament segments as a function of s given by the RPY model and
BI computations for the case where the filament translates with speed U in a direction perpendicular
to its axis. The segment force values are shown for filaments with different aspect ratios, L/a. For
the BI solutions, the segment forces are computed by integrating numerically the surface tractions over
sections of the cylinder of length ∆L, corresponding directly to those in the RPY model. The numerical
integration is performed using the trapezoidal rule. Similarly, Fig. 7(b) shows the force on the segments
given by the two methods when the filament translates with speed U in the direction of its axis, while
Fig. 7(c) shows the total force as a function of aspect ratio. We see that while the RPY model slightly
overestimates the segment and total force values with a maximum relative error of approximately 4%,
it does reproduce the general dependence of the segment force on s given by the BI computations. We
also observe that the error is largely independent of the filament aspect ratio.

5 Simulations
In this section, we present results from several simulations that range from a single tethered filament
whose position is fixed at one end, to many interacting filaments moving freely in the surrounding fluid.

5.1 Implementations

In the simulations that follow, we used one of three implementations of the method:
1. MATLAB with RPY: For the single filament simulations, we have used a MATLAB imple-

mentation of the method in which the hydrodynamic interactions are accounted for through the
RPY mobility matrices. We have made this implementation available on GitHub (Schoeller et al.,
2019).
For our simulations involving tethered filament arrays, we have accelerated the RPY evaluation
by using MATLAB’s MEX functionality and performing the pairwise computation in C.

2. MATLAB with FCM: For the two-dimensional simulations in periodic domains involving
many sedimenting filaments or active swimmers, we use a MATLAB–MEX implementation of
the method with FCM resolving the hydrodynamic interactions between the segments. Specific-
ally, since with FCM we must solve the Stokes equations, we use C functions to loop through the
grid points when assembling the FCM fluid forcing, and to loop through the wave numbers when
inverting the Stokes operator. The remaining aspects of the computation, including the FFTs,
are performed in MATLAB.

3. C++ with RPY: The final simulations of sedimenting filament clouds were performed with a
more powerful C++ implementation of the method that takes advantage of the Armadillo linear
algebra library (Sanderson & Curtin, 2016, 2018). In addition, the RPY computation, though
still performed pairwise, was parallelised using OpenMP.
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5.2 Tethered filaments

5.2.1 Rotational dynamics of a single tethered filament

In Coq et al. (2008, 2009), an elastic filament is immersed in a tank of pure glycerine. The filament is
connected to a motor at its base such that at rest, the filament forms an angle of 15◦ with the motor
axis. The base of the filament is displaced from the motor axis by δ0 = 2 mm (see Fig. 8a). The
filament has radius a = 435 µm, and its length is varied between 2 cm and 10 cm. A dimensionless
Sperm number, Sp, that characterises the ratio of viscous to elastic forces is introduced as

Sp = ζ⊥ωL
4

KB
, (69)

where ζ⊥ = 4πη/(log(L/a) + 1/2) is the transverse drag coefficient for a straight rod, ω is the rotation
rate of the motor, and KB is the bending modulus of the elastic filament. By varying ω, a range of Sp
can be explored and the steady-state distance, d, of the free end from the rotation axis is recorded. At
lower Sp the filament barely deforms from its straight configuration and undergoes a nearly rigid body
rotation such that d ≈ δ0 + L sin(15◦). At larger Sp, the filament slowly collapses onto the rotation
axis and d ≈ 0.

In order to simulate this experiment, the system of equations Eq. (61) is supplemented with the
additional constraints such that for timestep j,

Y1 =

δ0 cos(jω∆t)
δ0 sin(jω∆t)

0

 , (70)

to tether the filament base to the motor, and

uj1 =

 0
0

ω∆t

 , (71)

to rotate the filament base with the motor. These constraints are associated with two new vector
Lagrange multipliers λ1 and λ2, and consequently the first segment experiences additional constraint
forces and torques given by

FC = λ1, (72)
TC = D>λ2, (73)

where D is the matrix such that Dv = dexp−1
uj

1
(v). The total differential algebraic system is modified by

substituting these new constraints, Eqs. (70) and (71), into the update equations for the first segment.
To compare our simulations to the experimental results, we match the ratio δ0/a = 4.5977 and the

length range 10δ0 ≤ L ≤ 50δ0 by varying the number of segments, N . For each length considered, the
simulation values of ω or KB are varied to explore the range of Sp. In addition, the simulations are run
using the RPY mobility matrices (see Section 2.7.1) to capture segment hydrodynamic interactions.

In Fig. 8b, we present the filament end distance, d/L, as a function of Sp from our simulations for
the range of filament lengths. Along with this data, we show the values measured in the experiments in
Coq et al. (2008). Though the exact filament lengths associated with the data points were not indicated
in Coq et al. (2008), the values of d/L measured in the experiments lie broadly within the range given
by our simulations. For comparison, we have also included similar results given by the gears model
(GM) from Delmotte et al. (2015). While these results largely coincide with those from our simulations
and the experiments, there are some differences that may be attributed to the interpretation of the
offset distance, δ0, as discussed in Delmotte et al. (2015).
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Figure 8: Deflection of a tethered rotating filament.
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5.2.2 Coordination in cilia arrays

In this section, we extend our study of a single tethered elastic filament to the simulation of a model
ciliary array. Cilia are biologically occurring elastic filaments that undergo time-periodic motion and
tend to exhibit metachronal waves and coordination (Brennen & Winet, 1977; Guo et al., 2018). A
simplified model of cilia dynamics involves the “geometric switch” (Guo et al., 2018; Kim & Netz,
2006), wherein a driving torque is applied to the base of an elastic filament until some fixed angle θmax
is reached with respect to the vertical. At this point, the direction of the torque is reversed until the
filament reaches an angle of −θmax, when it switches again and so on. In Kim & Netz (2006), both
the direction and the magnitude of the driving torque change once the critical angle is reached (i.e.
τslow 7→ τfast = −ατslow 7→ τslow 7→ · · · with α ≥ 1), allowing for distinct “effective” and “recovery”
strokes. The resulting filament motion, which is non-reciprocal due to its elasticity, allows for the net
pumping of the fluid.

Using our methodology, we first simulate a single model cilium comprised of N = 20 segments.
The position of the base segment is constrained to remain fixed to where it is attached to a no-slip
wall. The hydrodynamic effects of the wall are included through the RPY tensor for a half-space given
in Swan & Brady (2007). In addition, for numerical stability of our implicit scheme, we allow for a
smooth transition between the torque values once θmax or −θmax are reached. This is accomplished by
introducing a transition period of several timesteps during which the driving torque is taken from a
sigmoid curve connecting τslow to τfast. Fig. 9a shows the shape of the cilium over a period of oscillation
given by our simulations. The differences in filament shape and speed due to the different values of
τfast and τslow can be clearly observed.

Since the switching between τfast and τslow is determined by the tangent vector at the model cilium’s
base, Kim & Netz (2006) observed that hydrodynamically interacting pairs of model cilia can phase-
lock regardless of their initial phase difference. Using our model, we performed similar simulations of
two interacting model cilia that are separated by a distance L at the base. Each model cilium is again
comprised of N = 20 segments and has torque ratio α = 3 and θmax = 2π/5. The torque applied at
the base of the model cilia is perpendicular to both the base-to-base separation vector and the surface
normal. Figure 9b shows θ2, the angle between the surface normal and base tangent for the second
filament, when the first filament switches from the fast to the slow stroke. Similar to the kind of
coordination observed in Kim & Netz (2006), we find that regardless of the initial phase difference, θ2
reaches the same value of θ2 ≈ −π/5 for each simulation.

Expanding from the pair simulations, we now consider arrays of these cilia and investigate the effect
of inter-filament spacing on coordination. We arranged N2

c filaments on an Nc × Nc grid at a base-
to-base separation of L1 in the plane of motion and L2 in the orthogonal plane (see Fig. 10). Fixing
L1 = L, we vary the ratio L2/L1 and explore its effect on cilia self-organisation. Building from the
coordination parameter Q of Guo et al. (2018), we introduce the time-dependent parameter

Q(t) = 1
t0

∫ t

t−t0

∑N2
c

i=1
∑N2

c
j=1 αi(t′)αj(t′)−N2

c

N2
c (N2

c − 1)

dt′ (74)

to measure the coordination of N2
c cilia, where αi(t′) ∈ {−1, 1} is the sign of the driving torque on

cilium i at time t′. We set the moving window size, t0, to be t0 = 5Tc, where Tc is the period of an
isolated cilium. When Q = 1, there is perfect synchrony. Values of Q(t) close to zero indicate a lack of
coordination amongst the cilia.

In Fig. 11, we show Q over time for arrays of N2
c = 36 cilia with different values of L2/L1 ranging

from L2/L1 = 0.5 to 1.5. Each array was initialised with all cilia in-phase and the simulations are run
to a final time of approximately 120Tc. Overall, we find that denser arrays provide a greater level of
coordination, as indicated by the higher values of Q. The decrease in coordination with L2/L1 is also
evident in Fig. 12, where we show snapshots of the array near the final time for the different cases
of L2/L1. At the extremes of the L2/L1 range, Q(t) quickly reaches a value about which it exhibits
fairly small fluctuations. For intermediate L2/L1, however, we see more complex behaviour where Q(t)
fluctuates over a wide range with intermittent periods of coordinated and uncoordinated motion.
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(a) Dynamics of a model cilium over the course
of one period. The colour fades from black
to white with time. Snapshots are taken at
fixed time intervals and the fewer lines for
the recovery stroke indicate its faster speed.
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(b) The long term phase-locking of a pair of model
cilia for different initial phase differences. The
base angle, θ2, of filament 2 at the times, indexed
by m, the base angle of filament 1 reaches θ1 =
−θmax = −2π/5 and switches from recovery to
effective stroke. These simulations used a torque
magnitude ratio of α = 3 and the cilia have a
base-to-base distance of L.

Figure 9: Dynamics and phase-locking of model cilia.

L1L2

Figure 10: A diagram of a model cilia array, including the definitions of the lengths L1 and L2.
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Figure 11: The coordination parameter, Q, for differently spaced cilia arrays over time. We fix the distance
L1 = L and vary L2 to examine the behaviour of arrays with L2/L1 = 0.5 ( ), 0.75 ( ), 1 ( ),
1.25 ( ) and 1.5 ( ).
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(a) Cilia array snapshots illustrating different levels of co-
ordination.

(b) A side view of the arrays in Fig. 12a.
L2/L1 increases from top to bottom.

Figure 12: Cilia array simulations at t/∆t = 6.2× 104.

5.3 Bidisperse suspension of undulatory swimmers

In this section, we employ the 2D version of our computational model to simulate a suspension of slender
undulatory swimmers moving in the xy-plane. The suspension consists of two populations (indexed by
p = 1 and p = 2) that have different swimming gaits. Similar simulations (Agrawal & Babu, 2018)
have been performed using multiparticle collision dynamics for two swimmer populations with different
frequencies, but the same waveform.

All swimmers have length L and are formed of N = 30 segments. The motion of the swimmers is
driven by a time-dependent preferred curvature,

κ(p)
ν (s, t) = K0 sin

(
2πk(p)

L
s− ωt+ φ

)
, (75)

in Eq. (5), where K0 is the amplitude, k(p) is the wavenumber for population p, ω = 2π/T is the
undulation frequency with T as the undulation period, and φ is the phase. The two different swimming
gaits are prescribed by specifying different k(1) and k(2).

In our simulations, the curvature amplitude is K0 = 10.61/L, while the undulation frequency is
set such that the ratio of viscous to elastic forces is (4πωη/KB)1/4L = 10. The phase, φ, for each
swimmer is drawn randomly from a uniform distribution. To achieve sufficiently different waveforms,
we set k(1) = 1 and k(2) = 3. Figure 13 shows waveforms for isolated p = 1 and p = 2 swimmers with
these parameters. With the swimming speeds V1/(Lω) = 0.01 and V2/(Lω) = 0.0024, the swimmers
from population p = 2 travel at less than a quarter of the speed of those from p = 1.

In our simulations, we consider a suspension of 100 swimmers with 50 in population p = 1 and
50 in p = 2. The swimmers are all initially straight and distributed uniformly and isotropically in
the centre-plane of a periodic domain of size 4.7L × 4.7L × 0.29L. FCM is used to resolve the hydro-
dynamic interactions with the fluid flow being solved on a 1024 × 1024 × 64 grid. Steric interactions
are implemented as described in Section 2.6.

The configuration of the suspension at three times is shown in Fig. 14. After 150 undulation periods,
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Figure 13: Swimmer shapes for the two different wavenumbers. Figures are centred at the filament centre of
mass (xCOM, yCOM) and the axes are normalised by the swimmer length, L.
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Figure 14: Snapshots at three different times of 100 active filaments in a periodic domain of size 4.7L× 4.7L×
0.29L. Filaments with k(1) = 1 are coloured black, while those with k(2) = 3 are coloured red, as in
Fig. 13. Filaments are initially straight and randomly oriented.
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Figure 15: A filament with N = 31 and B = 104, is placed horizontally and allowed to sediment vertically under a
constant force per unit length. Upon reaching its final steady shape, the filament’s normal deflection,
A, is measured. Figures are centred at the filament centre of mass (xCOM, yCOM) and are normalised
by the length of the filament, L.

we see that all swimmers have clustered, with swimmers tending to cluster with those from their own
population, i.e. with a similar waveform. Clustering is also observed in planar monodisperse suspensions
of model sperm cells (Schoeller & Keaveny, 2018; Yang et al., 2008) and slender undulatory swimmers
(Yang et al., 2010), as well as in planar bidisperse suspensions (Agrawal & Babu, 2018) of undulatory
swimmers. We first observe swimmers from p = 1 forming clusters with each other, while the slower
swimmers from p = 2 remain dispersed in the surrounding fluid. Once p = 1 clusters are established,
we begin to see p = 2 swimmers joining these clusters, but tending to remain close to other p = 2
swimmers. Interestingly, filament softness has contributed to the development of these slightly mixed
clusters. We sometimes observed high-wavenumber p = 2 swimmers deforming to match the shape of
neighbouring low-wavenumber p = 1 swimmers.

5.4 Sedimentation

In this section, we use our methodology to study filament sedimentation. We both revisit the case of a
single filament falling under gravity, as well as explore cases of multiple filaments, ranging from small
ensembles to clouds and suspensions. We address these situations in cases where filament motion is
restricted to a plane, as well as those where their motion is completely three-dimensional.

5.4.1 Settling filament

We first revisit the case of a single filament settling under gravity and measure its deformation and
effective drag coefficient. This problem, first investigated numerically by Cosentino Lagomarsino et al.
(2005) and more recently in experiments by Marchetti et al. (2018), has also been used previously as a
test problem for filament models (Keaveny, 2008; Delmotte et al., 2015).

In our simulations, we consider an initially straight and horizontal filament formed of N = 31
segments in an unbounded fluid with the hydrodynamic interactions resolved using the RPY tensor
with hydrodynamic radius, a. As in Section 3.3, a constant force per unit length of magnitude W
is applied vertically to the filament. Using the parameters arising in the problem, we can define the
settling time as T = ηL/W , as well as the elasto-gravitational number B = L3W/KB. Running the
simulation with timestep size ∆t = T/30, the filament is allowed to sediment until it reaches a steady-
state shape and steady-state settling speed, Vs. The filament at various points in time is shown in
Fig. 15 for the case where B = 104. Once the steady state is reached, we measure the normal deflection
A, defined as the distance between the highest and lowest points of the filament (see Fig. 15), and
the effective drag coefficient γ/γ0, where γ = WL/Vs and γ0 is the value of γ in the limit B → 0
corresponding to a straight filament.

The values of A/L and γ/γ0 as a function of B are presented in Fig. 16. We compare our results
with those presented in Delmotte et al. (2015) for both their gears model, where filaments are formed
of 34 particles with no separation between the particles, and a joint model, formed of 31 particles with
gaps of 0.2a between the particles. As we have ∆L = 2.2a, our spacing is equivalent to that used in the
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(a) Normalised deflection, A/L, as a function
of the elasto-gravitational number, B. The
final filament shapes at certain values of B
are shown in the inset plots.
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(b) Normalised effective drag coefficient γ/γ0,
as a function of the dimensionless elasto-
gravitational number, B. Here, γ0 is the
drag coefficient for a rigid rod (i.e. at B →
0).

Figure 16: Normal deflection and effective drag coefficients for a single sedimenting filament as a function of B.
Results are compared to the gears and joint model results from Delmotte et al. (2015). Simulations
were performed with a filament formed of N = 31 segments in an infinite domain.

joint model. In all cases, the RPY mobility matrices are used to capture hydrodynamics interactions.
All models show excellent agreement in their respective measurements of normal deflection, A/L.

In all cases, the models predict the same initial linear increase of A/L with B, followed by a plateau to
the same value at high B. For the drag coefficient, γ/γ0, the differences, though still small, are more
pronounced. In particular, our measurements find good agreement with the gears model for B . 103

as the sudden decay in γ/γ0 given by both models coincide. For higher B, however, we observe better
agreement with the joint model, which yield a similar decay with increasing B. We suspect that the
agreement with the gears model for lower B is due to the better resolution of the bending moments
given by these models. At higher B, we attribute the agreement between our results and those given
by the joint model to the similar viscous force on the filament that results from setting ∆L = 2.2a.

5.4.2 Sedimentation of large 2D suspensions

Here, we investigate the sedimentation of a large, planar suspension of filaments in a periodic domain.
This set of simulations was inspired by Gustavsson & Tornberg (2009); Tornberg & Gustavsson (2006),
where a similar simulation was also performed in a periodic domain, but for a suspension of rigid
filaments that can move in all three dimensions. We note as they do, that sedimentation in periodic
domains, while a canonical problem, is quite different from that in unbounded or bounded systems and
can exhibit dependencies on domain sizes. Nevertheless, these simulations do provide a context with
which to explore the effects of filament flexibility on sedimentation.

The simulations presented here are larger versions of the test problem described in Section 3.3. We
also run these simulations for longer times. Specifically, we consider monolayers of 100, 500, and 1000
filaments, each formed of N = 15 segments. The dimensionless elasto-gravitational number is set at two
values, B = 1 and 1000, to examine the effect of deformation on suspension dynamics as the filaments
settle for as long as 500T . The timestep is chosen such that ∆t = T/300. The filaments are initially
straight and are distributed uniformly and isotropically in the centre-plane of a periodic domain of size
18.8L × 18.8L × 1.2L. FCM is used to resolve the hydrodynamic interactions between the filaments,
with the Stokes equations being solved on a grid of 2048 × 2048 × 128 points. Steric interactions are
implemented as in Section 2.6.

Snapshots of the sedimenting suspensions for M = 1000 with B = 1 and B = 1000 are shown in
Fig. 17. In general, we find that both stiff (B = 1) and flexible (B = 1000) filaments over time form
a single large cluster surrounded by isolated filaments that are found to tumble, but are most often
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Figure 17: Snapshots of 1000 filaments sedimenting in a periodic domain of size 18.8L× 18.8L× 1.2L, at three
different times for two different values of B. Filaments are initially straight and randomly oriented.
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Figure 18: Mean sedimentation velocity, w, of a suspension of M (N = 15) filaments in a periodic domain of size
18.8L× 18.8L× 1.2L. Simulations performed for two values of B.

oriented in the direction of gravity. We do see, however, that for the flexible filaments, the cluster
formed is of much higher density, and the filaments surrounding it can buckle and flex, as well as
tumble, due to the shear induced by the falling cluster.

Following Gustavsson & Tornberg (2009), for each of the simulations that we have performed, we
compute the mean sedimentation velocity,

w(t) =
M∑
m=1

wm(t), (76)

where wm(t) is the vertical centre-of-mass velocity of filament m. The resulting values over time are
shown in Fig. 18. We observe that for each concentration, the settling velocity and its growth rate
increase with filament flexibility (higher B). We suspect that this is a result of two factors. First, as
we observed in Section 5.4.1, flexibility leads to a reduction in the filaments’ effective drag coefficient.
Second, we also see in Fig. 17 that deformable filaments form denser clusters. This increase in local
filament density in turn enhances interactions, yielding higher sedimentation velocities.

In previous work (Mackaplow & Shaqfeh, 1998; Gustavsson & Tornberg, 2009) on rigid fibre sedi-
mentation in periodic domains, the onset of a plateau in the mean settling velocity coincided with the
formation of a single cluster in the centre of the domain that is surrounded by an upwelling of clear
fluid. Additionally, observed fluctuations about the plateau value corresponded to cluster break-up and
reformation events that occur periodically. In our case, we find that even after 500T , the mean settling
velocity continues grow with time. For each case ofM , the setting velocity growth rate is higher for the
more flexible filaments, but perhaps more surprising is that the growth rate appears to be independent
of M . Indeed, increasing the filament density by setting M = 1000, we see that over the 150T that for
both B, the mean sedimentation velocity parallels that for M = 500. The continued growth may be
attributed to the observation that there many filaments have yet to join the cluster. Additionally, we
suspect that the continued growth in sedimentation velocity as compared to the fully three-dimensional
cases (Mackaplow & Shaqfeh, 1998; Gustavsson & Tornberg, 2009) is due to both the larger lateral
distances in our simulation that the filaments must traverse, as well as their restriction to move only in
two dimensions. We suspect also that the reduced out-of-plane thickness enhances the hydrodynamic
interactions between the filaments, allowing for the higher growth rates in our simulations.

5.4.3 Tumbling, settling and buckling of a filament square

Gustavsson & Tornberg (2009) have shown that rigid fibres evenly distributed along a circle can period-
ically tumble as they settle. Similar periodic orbits have been seen both numerically (Claeys & Brady,
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1993) and experimentally (Jung et al., 2006) for ellipsoids and other rigid structures released from an
initially symmetric configuration. Here, we explore how the introduction of filament flexibility can
affect these dynamics.

In our simulations, we consider four filaments whose centres coincide with the corners of a horizontal
square of side length D/L = 0.268. The filaments are initially aligned vertically in the direction of
gravity. We discretise the filaments into N = 30 segments and, to allow for an unbounded fluid,
we resolve their hydrodynamic interactions using the RPY mobility matrix. Steric interactions are
implemented as in Section 2.6. The timestep is chosen such that ∆t = T/300. The elasto-gravitational
number, B, is varied from B = 10−1 (very stiff filaments) to B = 104 (very soft filaments). The
long-term behaviour reveals significant differences between these cases, including symmetry breaking
(Fig. 19). We note that similar observations have been made previously Llopis et al. (2007); Saggiorato
et al. (2015).

At the lowest value of B = 10−1, we observe periodic tumbling (Fig. 19a) where the filaments first
separate and then reapproach when they return to their initial configuration. This matches the periodic
orbits seen in Gustavsson & Tornberg (2009); Jung et al. (2006). For B = 1 and B = 10, while we
again observe the filaments returning very close to their initial configuration, we see that the time it
takes to return to this configuration decreases with B, as does the distance between the filaments. For
the case B = 102, when returning after tumbling, the filaments, whose deformation is now apparent,
approach each other so closely that they collide and experience steric interactions (Fig. 19b). At this
point, the filaments cease tumbling and instead begin to settle as a group, rearranging their relative
positions as they move downwards. At B = 103, we see that filaments do not exhibit any tumbling and
instead adopt a horseshoe-like shape and a steady configuration as they settle, see Fig. 19c. Finally, for
B = 104, while we see that at early times the dynamics are similar to those for B = 103, we observe also
that this state is unstable. The accumulation of round-off errors are sufficient to trigger the instability
(Fig. 19d) and the onset of more complex filament behaviour.

5.4.4 Sedimentation of flexible filament clouds

As a final demonstration of our methodology, we consider the dynamics of a cloud of flexible filaments
settling under gravity. For clouds of rigid, spherical particles (Nitsche & Batchelor, 1997; Metzger et al.,
2007), as the cloud settles, the particles within the cloud move along trajectories reminiscent of the
streamlines within a settling spherical drop (Batchelor, 1967). As the cloud settles, it sheds particles at
the cloud axis, until it becomes a torus, leading to the cloud dividing. While similar studies have been
performed for clouds of rigid fibres (Park et al., 2010; Nazockdast et al., 2017), showing how particle
anisotropy accelerates cloud break-up, the role of flexibility, to the best of our knowledge, has not been
explored.

In our fully three-dimensional cloud simulations, the filaments are distributed uniformly and isotrop-
ically in cubes (Figs. 20 and 21) of side length 2.5L and 10L using the initialisation method describe in
Appendix A.5. The filaments are discretised into N = 20 segments and the timestep size is ∆t = T/200.
The hydrodynamic interactions in the unbounded domain are resolved using the RPY motility matrix
and steric interactions are implemented as in Section 2.6. To highlight the effect of filament flexibility,
simulations were performed with elasto-gravitational numbers B = 1 and B = 102.

Fig. 20 shows snapshots from the cloud simulations with M = 120 filaments for both B = 1 and
B = 102. The initial conditions for these simulations are identical. At short times, we observe that
both clouds exhibit very similar behaviour. Later in the simulations, however, marked differences arise.
The cloud of stiff filaments (B = 1) splits into two clusters as a result of filament depletion at its centre.
This behaviour matches results from Park et al. (2010). The cloud consisting of more flexible filaments
(B = 102) breaks up later, and in a much more complicated way. We see that it disintegrates into
several clusters, rather than splitting in two. We suspect that this could be connected to individual
filaments’ orbits within clouds, as well as their sedimentation velocities. We have also performed a
larger, though less dense, cloud simulation with M = 360 filaments and B = 102. As shown in Fig. 21,
we find that the features of the cloud’s initial shape persist as the cloud overturns and only starts to
disappear once the cloud begins to break up.
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Figure 19: Settling dynamics of four, initially vertical filaments for different values of B. The filaments are shown
at every 2T , with the colours alternating between green and magenta. (a) Stiffer filaments (B � 102)
tumble periodically. Though bending is not appreciable for these cases, the tumbling period decreases
as B increases. Softer filaments (B = 103) deform considerably and do not tumble, but may buckle
if B � 103. (b) For B = 102, filaments interact through steric forces, leading to symmetry breaking.
(c) For B = 103 (left) filaments immediately bend at their centres, while for B = 104 (right), the
filaments first buckle at their lower end and this bend propagates to their centres as they fall. (d) For
B = 104, the configuration achieved after the filaments deform is unstable. As perturbations grow,
symmetry is broken and more complex trajectories emerge.
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Figure 20: Sedimentation and break-up of a dense, three-dimensional cloud of M = 120 filaments with B = 1
and B = 102. Filament positions are initially in a cube of linear size 2.5L. The cloud is shown every
3T with the colour alternating between magenta and green and fading with time. Two filaments are
highlighted (red and blue). The arrow (g) indicates the direction of gravity.
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Figure 21: Sedimentation of a three-dimensional cloud ofM = 360 filaments with B = 102. Initially, all filaments
have at least one end in a cube with side 10L. The cloud is shown every 4T with the colour alternating
between magenta and green and fading with time.

6 Discussion and conclusions
In this paper, we have presented a scalable, efficient and flexible method for performing large-scale
simulations of passive and active filaments and their suspensions. In particular, we have shown how to
describe the fully 3D filament deformations due to bending and twisting through the use of quaternions,
and in doing so, demonstrated how quasi-Newton methods coupled with an implicit, geometric multi-
step scheme can be used to overcome the numerical stiffness associated with deformation while ensuring
constraints on filament motion are satisfied. Our framework can be easily integrated with many existing
models and methods for resolving hydrodynamic interactions. In addition, the second-order spatial
discretisation could be substituted for a higher-order finite difference method on the equispaced grid,
though new expressions for the approximate Jacobian would need to be established given the change
in stencil. Our usage of iterative schemes for the nonlinear systems that arise ensures that efficient,
matrix-free methods for the hydrodynamics are also applicable, which we have also demonstrated. We
have shown that our method can be used to study many relevant problems in biofluid dynamics, as
well as suspension mechanics, potentially at scales previously inaccessible. We encourage the reader to
experiment with the MATLAB/Octave implementation (Schoeller et al., 2019) of the method to study
similar problems or expand upon it to explore new directions.

While we have developed and explored the method exclusively in the limit where fluid inertia is
negligible, it would be of interest to understand how our framework could be adapted for use with fluid
solvers where inertia is included (Wiens & Stockie, 2015), to study, for example, filament suspensions
in turbulent flows (Rosti et al., 2018). Additionally, it could be of interest to explore filament motion in
non-Newtonian fluids, such as viscoelastic fluids, especially with respect to modelling flagellar motion
and cell swimming (Teran et al., 2010). Our method could be used in the context where the filaments
are components in more complex physical systems, such as networks, or, by incorporating Brownian
motion (Keaveny, 2014; Delong et al., 2015), suspended polymers in solution, or entangled polymers in
melts.
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A Quaternions

A.1 Quaternion initialisation

In this section we detail how to initialise quaternion encoding the rotation from the standard basis
{êx, êy, êz} to the material frame {t̂, µ̂, ν̂}. Since ν̂ = t̂× µ̂, we need only provide initial conditions for
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the tangent and one of normal vectors. The main idea is to determine the quaternion which rotates a
given unit vector to another and then apply this twice in succession by first mapping êx to t̂ and then
mapping the image of êy under this first rotation to µ̂.

Let â and b̂ be unit vectors. Recall that â · b̂ = cos θ, â × b̂ = sin θ û, where û is normal to the
plane spanned by â and b̂, and θ is the angle between the two vectors as measured anticlockwise about
û. Recalling Eq. (44), we see that the quaternion (â · b̂, â × b̂) represents the rotation of 2θ about
the vector û. Since we need only rotate â by θ to align with b̂, we seek the quaternion q for which
q2 = q • q = (â · b̂, â × b̂). By expanding and rearranging q2 = p we find that a square root of a
quaternion may be defined as

(·)1/2 : (p0,p) 7→


(√

p0+1
2 , p√

2(p0+1)

)
p0 6= −1,

(0, 0, 0, 1) p0 = −1.
(77)

It is readily checked that for all p ∈ U: (a) p1/2 ∈ U, and (b) p1/2 • p1/2 = p. With this defined, we
produce the quaternion initial conditions as follows:

1. Let t̂ = (t̂1, t̂2, t̂3) and µ̂ = (µ̂1, µ̂2, µ̂3) be the initial tangent and normal vectors to the filament
centreline.

2. Evaluate the quaternion which maps êx 7→ t̂ as p1 = (êx · t̂, êx × t̂)1/2 = (t̂1, 0,−t̂3, t̂2)1/2.

3. Let n̂′ = R(p1)êy be the image of the y-axis direction under this first rotation.

4. Evaluate the rotation mapping n̂′ 7→ µ̂ as p2 = (n̂′ · µ̂, n̂′ × µ̂)1/2

5. Assign the quaternion an initial value of p2 • p1.

A.2 Internal moments in terms of quaternions

In this section, we derive an expression for the internal moments, Eq. (5), expressed solely in terms of
the unit orientation quaternion. Recall Eq. (5):

M = KB

(
µ̂

(
t̂ · ∂ν̂

∂s
− κµ

)
+ ν̂

(
µ̂ · ∂t̂

∂s
− κν

))
+KT t̂

(
ν̂ · ∂µ̂

∂s
− γ0

)
. (78)

Since t̂ = R(q)êx, µ̂ = R(q)êy, ν̂ = R(q)êz, we have that

M = R (q)

KT (ν̂ · ∂µ̂/∂s− γ0)
KB(t̂ · ∂ν̂/∂s− κµ)
KB(µ̂ · ∂t̂/∂s− κν)

 . (79)

Next, considering t̂(s, t), a function of arclength s and time t, we observe that(
0, ∂t̂
∂s

)
= ∂

∂s

(
0, t̂
)

(80a)

= ∂

∂s
[q • (0, êx) • q∗] (80b)

= ∂q

∂s
• q∗ •

(
0, t̂
)
−
(
0, t̂
)
• ∂q
∂s
• q∗, (80c)

where we have used q • ∂q∗/∂s = −∂q/∂s • q∗, a consequence of q • q∗ = q∗ • q = Iq. Now, since
‖q‖ = 1, we have that ∂q/∂s • q∗ is a pure quaternion (i.e. one with zero scalar part) and thus may be
unambiguously identified with its vector part [∂q/∂s • q∗]R3 . Observing that for pure quaternions we
have (0,v) • (0,w)− (0,w) • (0,v) = (0, 2v ×w), the above yields

∂t̂

∂s
= 2

[
∂q

∂s
• q∗

]
R3
× t̂. (81)
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Analogous expressions hold for µ̂ and ν̂. Using the invariance under circular shift of the scalar triple
product, we find that

µ̂ · ∂t̂
∂s

= 2
[
∂q

∂s
• q∗

]
R3
· ν̂, (82)

ν̂ · ∂µ̂
∂s

= 2
[
∂q

∂s
• q∗

]
R3
· t̂, (83)

t̂ · ∂ν̂
∂s

= 2
[
∂q

∂s
• q∗

]
R3
· µ̂. (84)

Thus, we simplify,

2∂q
∂s
• q∗ =

(
0,
(
ν̂ · ∂µ̂

∂s

)
t̂+

(
t̂ · ∂ν̂

∂s

)
µ̂+

(
µ̂ · ∂t̂

∂s

)
ν̂

)
(85a)

= q •
(

0, ν̂ · ∂µ̂
∂s
, t̂ · ∂ν̂

∂s
, µ̂ · ∂t̂

∂s

)
• q∗; (85b)

which yields

2q∗ • ∂q
∂s

=
(

0, ν̂ · ∂µ̂
∂s
, t̂ · ∂ν̂

∂s
, µ̂ · ∂t̂

∂s

)
. (86)

Defining D = diag(KT ,KB,KB) we find that Eq. (79) reduces to

M = R (q)D

2
[
q∗ • ∂q

∂s

]
R3
−

γ0
κµ
κν


 . (87)

A.3 The quaternion ODE

In this section, we show that if a frame vector r satisfies dr/dt = Ω × r, where r is defined through
a unit quaternion q and an initial vector r0 (i.e. (0, r) = q • (0, r0) • q∗), then the quaternion q must
satisfy dq/dt = 1

2(0,Ω) • q. Employing the same simplifications as in Eq. (80), we observe that

d
dt (0, r) = dq

dt • q
∗ • (0, r)− (0, r) • dq

dt • q
∗. (88)

This implies
dr
dt = 2

[dq
dt • q

∗
]
R3
× r. (89)

Given that this holds true for all the vectors of the frame, we obtain 2[dq/dt • q∗]R3 = Ω, and since
dq/dt • q∗ is a pure quaternion we have

(0,Ω) = 2dq
dt • q

∗. (90)

Dividing by 2 and right-multiplying by q yields the desired result.

A.4 BDF2 in the Lie algebra

In this section, we derive the form of the BDF2 update equation which applies to the Lie algebra
elements. This derivation follows the more general framework laid out in Faltinsen et al. (2001). Let
um(k) denote the Lie algebra element corresponding to the quaternion at timestep m expressed in the
coordinate system from timestep k, that is,

qm = exp
(
um(k)

)
• qk. (91)
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To integrate Eq. (58) using BDF2 we need to solve

un+1
(n) = 4

3u
n
(n) −

1
3u

n−1
(n) + 2

3∆t dexp−1
un+1

(n)

(
Ωn+1

)
, (92)

given un(n−1) and un−1
(n−1). The coordinate transform between tangent spaces needs to be such that a

given Lie algebra element represents the same quaternion independent of the current coordinate system,
hence

exp
(
um(k+1)

)
• qk+1 = qm = exp

(
um(k)

)
• qk (93)

needs to hold.
To this end, we use the Baker–Campbell–Hausdorff formula B which is defined to satisfy

exp (B (X,Y )) = exp (X) • exp (Y ) . (94)

While in our case (so(3) with BDF2), there is a closed-form expression for the Baker–Campbell–
Hausdorff formula (Engø, 2001), it will only be necessary to use the identity B(X,−X) = 0.

For Eq. (93) to hold, the Lie algebra elements need to be transferred from one tangent space to the
next. It follows from the condition exp(um(k+1)) • qk+1 = exp(um(k)) • qk that this can be achieved via

um(k+1) = B
(
um(k),−u

k+1
(k)

)
. (95)

Substituting this into Eq. (92) we obtain

un+1
(n) = 4

3B
(
un(n−1),−u

n
(n−1)

)
− 1

3B
(
un−1

(n−1),−u
n
(n−1)

)
+ 2

3∆tdexp−1
un+1

(n)

(
Ωn+1

)
. (96)

Observing in the right-hand side of this expression that

B
(
un(n−1),−u

n
(n−1)

)
= 0, (97)

and, since un−1
(n−1) = 0 from Eq. (91), that

B
(
un−1

(n−1),−u
n
(n−1)

)
= −un(n−1), (98)

we obtain
un+1

(n) = 1
3u

n
(n−1) + 2

3∆tdexp−1
un+1

(n)

(
Ωn+1

)
. (99)

Noticing that the Lie algebra elements only appear here expressed according to the coordinate system
in which they were first produced, we may unambiguously write the BDF2 update equation as

un+1 = 1
3u

n + 2
3∆t dexp−1

un+1

(
Ωn+1

)
. (100)

A.5 Filament initialisation in cloud simulations

The isotropic initialisation of straight filaments works as follows. We generate uniform random points
in [0, S]3, where S is the linear box size. These points set the positions of the filament segments at
the s = 0 ends. We then generate four-dimensional random vectors drawn from the standard normal
distribution. After normalising, these vectors provide the initial quaternions for all segments comprising
each filament. We then initialise the remaining segment positions for each filament in straight lines
along directions based on the initial quaternions. If there is any overlap between filaments, one is
discarded and we reinitialise its position and quaternion. This process generates a uniform distribution
of filament orientations (Karney, 2007).
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B Form of the approximate Jacobian
In this section, we detail how we generate an analytic approximation to the Jacobian, ∂f/∂X, by
including only local physics for each particle – a local Stokes drag model, without hydrodynamic or
steric interactions. The resulting approximate Jacobian retains the essence of the full Jacobian, but
can be rapidly generated and posesses a block diagonal structure.

The supplementary code (Schoeller et al., 2019) implements the generation of the Jacobian. Here,
we demonstrate how the expressions are derived.

B.1 In 2D

The system f(X) = 0 as described in Eq. (41) is formed of the position update for particle n = 1 in
each filament, the orientation updates for all n, 1 ≤ n ≤ N , and the modified constraints for 1 < n ≤ N :

0 = (f1)j+1
n=1 := Y j+1

n − 4
3Y

j
n + 1

3Y
j−1
n − 2

3∆tV j+1
n , (101a)

0 = (f2)j+1
1≤n≤N := θj+1

n − 4
3θ

j
n + 1

3θ
j−1
n − 2

3∆tΩj+1
n , (101b)

0 = (f3)j+1
1<n≤N := Y j+1

1 + ∆L
2

n∑
m=2

(
t̂j+1
m−1 + t̂j+1

m

)
− 4

3Y
j
n + 1

3Y
j−1
n − 2

3∆tV j+1
n . (101c)

This system is repeated for each filament.
In general, the velocities and angular velocities of the filament segments are found by solving the

mobility problem, (
V
Ω

)
=M ·

(
F
T

)
, (102)

where V > = (V >1 , . . . ,V >NM ) is the vector of all segments’ velocity components, similarly Ω of all
angular velocity components, F of all force components and T of all torque components acting on the
filaments’ segments.

In the approximate Jacobian, we implement a local Stokes drag model, where the mobility matrix
is diagonal, giving Vn = Fn/6πηa and Ωn = Tn/8πηa3. The only force we apply is the constraint force,
Eq. (16), and the torques applied are the elastic torque, Eq. (15), and the constraint torque, Eq. (17).

Recall that for planar motion, without loss of generality, we take the third frame vector ν̂ to be
aligned with the fixed vector êz. This direction is always normal to the plane of motion.

Together, we have

0 = (f1
0 )j+1
n=1 := Y j+1

1 − 4
3Y

j
1 + 1

3Y
j−1

1 − 2
3

∆t
6πηa

(
Λj+1

3/2 −Λ
j+1
1/2

)
, (103a)

0 = (f2
0 )j+1

1≤n≤N := θj+1
n − 4

3θ
j
n + 1

3θ
j−1
n − 2

3
∆t

8πηa3× (103b)

êz ·

KB

 t̂j+1
n ×

(
t̂j+1
n−1 + t̂j+1

n+1

)
∆L − êzκν

− ∆L
2 t̂j+1

n ×
(
Λj+1
n+1/2 +Λj+1

n−1/2

) ,
0 = (f3

0 )j+1
1<n≤N := Y j+1

1 + ∆L
2

n∑
m=2

(
t̂j+1
m−1 + t̂j+1

m

)
− 4

3Y
j
n + 1

3Y
j−1
n − 2

3
∆t

6πηa
(
Λj+1
n+1/2 −Λ

j+1
n−1/2

)
,

(103c)

repeated for each filament. Since the approximate Jacobian assumes no interaction between filaments,
we can build the approximate Jacobian for a multifilament system from M independent blocks, placed
along the diagonal, with each block holding a single-filament Jacobian. In the following we discuss the
derivation of a single filament’s approximate Jacobian without loss of generality.
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Having written out the system f0 = (f1
0 ,f

2
0 ,f

3
0 ) in Eq. (103), it can be differentiated with respect

to the state variable, Xj+1 = (Y j+1
1 , θj+1

1...N ,Λ
j+1
3/2...N−1/2), to form the Jacobian

J0 = ∂f0
∂Xj+1 =

I 0 J13

0 J22 J23

I J32 J33

 . (104)

The remaining expressions for the submatrices relating segments m and n are given by, after some
algebraic manipulation and dropping the time (superscript) indices for clarity,

J13
1n = ∂(f1

0 )1
∂Λn−1/2

= 2
3

∆t
6πηa(δ1n − δ2n)I, (105a)

J22
mn =∂(f2

0 )m
∂θn

= δmn −
2
3

∆t
8πηa3

[
KB

∆L
(
− δmn[cos(θm − θm−1) + cos(θm+1 − θm)]

+ δ(m−1)n cos(θm − θm−1) + δ(m+1)n cos(θm+1 − θm)
)

−∆L
2 δmn

(
sin θm[Λym+1/2 + Λym−1/2] + cos θm[Λxm+1/2 + Λxm−1/2]

)]
, (105b)

J23
mn = ∂(f2

0 )m
∂Λn−1/2

= 2
3

∆t
8πηa3

∆L
2 (− sin θmêx + cos θmêy)(δmn + δ(m+1)n), (105c)

J32
mn =∂(f3

0 )m
∂θn

= ∆L
2

m∑
r=2

[
(− sin θr−1δ(r−1)n − sin θrδrn)êx + (cos θr−1δ(r−1)n + cos θrδrn)êy

]
,

(105d)

J33
mn = ∂(f3

0 )m
∂Λn−1/2

= 2
3

∆t
6πηa(δmn − δ(m+1)n)I, (105e)

where Λ = (Λx, Λy, 0) and δij is the Kronecker delta.

B.2 In 3D using Lie algebra elements

Here we discuss the differences in the construction of the approximate Jacobian in 3D compared to
2D. Again we consider the system f(X) = 0, this time represented by Eq. (63). The standard BDF2
update for the first segment in the filament is handled analogously to the 2D case, Eq. (103a), so we
restrict our attention to the Lie algebra update equations and the modified constraints. Substituting in
the Stokes drag approximation, each filament-level sub-block of the Jacobian is based on the equations

0 = (f2
0 )j+1

1≤n≤N := uj+1
n − 1

3u
j
n −

∆t
12πηa3 dexp−1

uj+1
n

(
T j+1
n

)
, (106a)

0 = (f3
0 )j+1

1<n≤N := Y j+1
1 + ∆L

2

n∑
m=2

(
t̂j+1
m−1 + t̂j+1

m

)
− 4

3Y
j
n + 1

3Y
j−1
n − ∆t

9πηa
(
Λj+1
n+1/2 −Λ

j+1
n−1/2

)
,

(106b)

where the Lie algebra update equations are for all segments 1 ≤ n ≤ N , and the modified constraints
are for segments 1 < n ≤ N .

For the sake of legibility, we discard any terms with a time index other than j+ 1, as they will have
zero derivative in all cases, and drop the time superscript. Hence, to produce the Jacobian it suffices
to consider the equations

0 = (f2
0 )1≤n≤N := un −

∆t
12πηa3 dexp−1

un
(Tn) , (107a)

0 = (f3
0 )1<n≤N := Y1 + ∆L

2

n∑
m=2

(
t̂m−1 + t̂m

)
− ∆t

9πηa
(
Λn+1/2 −Λn−1/2

)
. (107b)
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The Jacobian then corresponds to the system f0 = (f1
0 ,f

2
0 ,f

3
0 ) in Eqs. (103a) and (107), differen-

tiated with respect to the state variable, X = (Y1,u1...N ,Λ3/2...N−1/2), forming

J0 = ∂f0
∂X

=

I 0 J13

0 J22 J23

I J32 J33

 . (108)

The expressions for J13 and J33 are the same as in the 2D case, Eqs. (105a) and (105e). We therefore
consider the remaining three blocks.

We first observe that

J32
mn = ∂(f3

0 )m
∂un

= ∆L
2

m∑
k=2

(
δ(k−1)n

∂t̂k−1
∂un

+ δkn
∂t̂k
∂un

)
, (109)

where δij is the Kronecker delta. By taking Eq. (58) and replacing dexp−1
u (Ω) by the first term of its

Taylor series expansion,
dexp−1

u (v) ≈ v − 1
2u× v + 1

12u× (u× v) , (110)

we can approximate dun/dt ≈ Ω. Combining this with dt̂n/dt = Ω × t̂n from Eq. (54), we have

∂t̂n
∂un

≈
[
×t̂n

]
, (111)

where we have introduced the notation [v×] for the skew-symmetric matrix satisfying [v×]x = v × x
(and [×v] = −[v×] = [v×]> satisfying [×v]x = x× v). Hence,

J32
mn = ∂(f3

0 )m
∂un

≈ ∆L
2

m∑
k=2

(
δ(k−1)n + δn,k

) [
×t̂n

]
. (112)

For the final blocks, we employ all three terms written in the Taylor series expansion in Eq. (110) to
reduce Eq. (106a) to

(f2
0 )m ≈ um −

∆t
12πηa3

(
Tm −

1
2um × Tm + 1

12um × (um × Tm)
)
. (113)

From this we can see that the matrices of interest take the forms

J23
mn = ∂(f2

0 )m
∂Λn−1/2

≈− ∆t
12πηa3

(
I − 1

2[um×] + 1
12[um×]2

)
∂Tm

∂Λn−1/2
, (114)

J22
mn = ∂(f2

0 )m
∂un

≈− ∆t
12πηa3

(
I − 1

2[um×] + 1
12[um×]2

)
∂Tm
∂un

, (115)

for m 6= n, and otherwise,

J22
mm = ∂(f2

0 )m
∂um

≈ I − ∆t
12πηa3

{
∂Tm
∂um

− 1
2

(
[×Tm] + [um×] ∂Tm

∂um

)
+ 1

12

(
[× (um × Tm)] + [um×] [×Tm] + [um×]2 ∂Tm

∂um

)}
. (116)

The problem of constructing these matrices thus reduces to that of evaluating the derivatives of the
torque on segment m. Segment m experiences elastic and constraint torques

Tm = ∆L
2 t̂m ×

(
Λm+1/2 +Λm−1/2

)
+Mm+1/2 −Mm−1/2, (117)

where Mm+1/2 is the elastic moment between segments m and m + 1. Since the elastic moments do
not depend on the Lagrange multipliers, we have

∂Tm
∂Λn−1/2

≈ ∆L
2
(
δ(m+1)n + δmn

) [
t̂m×

]
. (118)
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Now considering the derivatives with respect to the Lie algebra elements, we have

∂Tm
∂un

≈ ∆L
2 δmn

[
×
(
Λm+1/2 +Λm−1/2

)] [
×t̂m

]
+
∂Mm+1/2
∂un

−
∂Mm−1/2
∂un

. (119)

If we use a frame vector approximation for the elastic moment,

Mm+1/2 ≈ KB

(
t̂m × t̂m+1

∆L − κµ
2 (µ̂m + µ̂m+1)− κν

2 (ν̂m + ν̂m+1)
)

+ KTβ

2
(
t̂m + t̂m+1

)
, (120)

where β = 1
2∆L(µ̂m+1 · ν̂m − µ̂m · ν̂m+1)− γ0, then we can write

∂Mm+1/2
∂um

≈KB

( 1
∆L

[
×t̂m+1

] [
×t̂m

]
− κµ

2 [×µ̂m]− κν
2 [×ν̂m]

)
+ KT

2

[
β
[
×t̂m

]
+ 1

2∆L
(
t̂m + t̂m+1

)
(ν̂m × µ̂m+1 − µ̂m × ν̂m+1)

]
,

(121)

where the last term is a dyadic product. Similarly,

∂Mm+1/2
∂um+1

≈KB

( 1
∆L

[
t̂m×

] [
×t̂m+1

]
− κµ

2 [×µ̂m+1]− κν
2 [×ν̂m+1]

)
+ KT

2

[
β
[
×t̂m+1

]
− 1

2∆L
(
t̂m + t̂m+1

)
(ν̂m × µ̂m+1 − µ̂m × ν̂m+1)

]
.

(122)

The derivative with respect to any other Lie algebra element is zero, and thus we have provided all of
the elements necessary to form an approximate Jacobian. We find that level of approximation employed
here works well in our implementation.
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